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Abstract

For an arbitrary C” unimodal map f, its inverse limit space X is embedded in a planar region
W in such a way that the induced homeomorphism f : X — X conjugates to a Lipschitz map
g: A CW — A. Furthermore g can be extended, in a C" manner, to the rest of W. In the
course of the proof a characterization of the end-points of X in terms of symbolic dynamics is
given.

1 Introduction

One of the interesting features of inverse limit spaces is that they often model attractors of dy-
namical systems. For example, the attracting set of Smale’s horseshoe is homeomorphic to the
inverse limit space of a full unimodal map, i.e. a unimodal map that is topologically conjugate to
f(z) =1-22% on [-1,1].

Let f:[-1,1] = [-1,1] be a unimodal map with critical point ¢. The interesting dynamics take
place on the dynamical core [f%(c), f(c)]. We consider the class X of inverse limit spaces with a
single unimodal bonding map f|[f2(c), f(c)]. For X = ([f%(c), f(c)], f) € X the induced homeo-
morphism is denoted by f. An old result of Bing [5] states that each X € X can be embedded in
R2. But this result gives little insight what the embedded space, say A = ¢(X), looks like, neither
is any smoothness of g = ¢ o f o~ ! ie. the homeomorphism acting on A, implemented. There
are a few results in this direction. Barge and Holte showed that if f has a periodic critical point,
then (X, f) is topologically conjugate to (A, g), where g : W C R2 — W is a generalized horseshoe
map. See [3, 12] for the details. In [7], Brucks and Diamond used symbolic dynamics to describe
A in detail for a certain class of unimodal maps. We will extend this result with respect to both
the class of unimodal maps and the smoothness properties of g.

Theorem 1 Let f be a C" unimodal map for some r > 0. Then there exists a compact set A
contained in a topological disk W C R% and a map g : W — W such that

A,

e g(A) = A and (A4, g) is topologically conjugate to (X, f).
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e g is a Lipschitz homeomorphism on A and a C" diffeomorphism on (int W) \ A.

e A attracts an open neighbourhood of itself.

The map g has many similarities with the Hénon map H,p : (z,y) — (1 — az® + y,bz). g is
constructed such that it reverses orientation, as does the Hénon map for b > 0. The attractor A
roughly looks like a Hénon attractor. It can be shown that A is the closure of the unstable manifold
W(p) of the unique fixed point p € A. It has a hyperbolically stable foliation, roughly transversal
to the leaves of W*(p), and an unstable foliation, roughly parallel to the leaves of W% (p).

A major difference with the Hénon map, and the reason why g is not C" on A, seems to be
the occurrence of “wandering arcs”. By this we mean arcs J whose iterates g™(J) lie roughly
in the unstable direction, are not attracted to a periodic orbit, but which nonetheless tend to
zero in length: diam(g™(J)) — 0. This corresponds to the interval case. An interval map f has
a wandering interval J if f"|J is homeomorphic for each n and f™(J) does not converge to a
periodic orbit. As was shown in [15], no C? interval map (satisfying a non-flatness condition)
admits wandering intervals. Also in a C! setting, it seems hard to combine the existence of a
wandering interval J with a (non-uniform) expanding structure off the orbit of J (cf. [6]).

To our knowledge, a smooth embedding of X has been constructed only in a few cases. In the
generalized horseshoe case, there exist stable periodic orbits which attract the arc J. So there is no
problem in that case. For the full unimodal map, Misiurewicz [16] established a C* embedding in
R%. C! embeddings in R? were constructed by Barge [2] and Szczechla [18] (using the assumption
that the fixed point —1 of f is neutral). Interesting in this context is the result of Gambaudo et
al. [10], showing that there exists a Hénon map with an attractor of Feigenbaum-Coullet-Tresser
type. We don’t know if the global attracting set of their example is homeomorphic to the inverse
limit space of a Feigenbaum map.

At first sight, an inverse limit space X € X resembles locally a Cantor set of arcs. This is not
true in general. There are in fact many phenomena that make X inhomogeneous, one of them being
the occurrence of end-points, see Section 2 for a definition. Already in the generalized horseshoe
case, X has end-points, see e.g. [4]. We give a complete symbolic characterization (Proposition 2)
which shows that:

Proposition 1 (cf. [4]) If ¢ is recurrent (i.e. ¢ € w(c)), but ¢ is not periodic, then there are
uncountably many end-points. The end-points of X lie dense in X if and only if orb(c) is dense in

[£?¢), f(o)]-

Together with the results of Barge and Martin [4] this shows that X has either a finite or an
uncountable number of end-points. Hénon maps can be expected to be more complicated than the
spaces X € X. Still we hope that this approach may be useful for the study of the topology of
Hénon attractors. (For a symbolic treatment of Lozi attractors, see [13, 14].)

Although g|A is not C™, the embedding is sufficiently nice to preserve some measure theoretical
properties. In particular Theorem 1 enables one to construct planar versions of some of the
pathologies in the theory of unimodal maps.

Corollary 1 There erist a map g : W C R?2 — W which is C> except on its attracting set A,
where g is only Lipschitz. Furthermore g satisfies one of the following sets of properties:

1. g admits no physical measure. More precisely, there are continuous test-functions x : W — R
such that % Y1 x0g'(z) does not converge for Lebesgue-a.e. z € W

2. g admits o wild attractor Ag. By this we mean a Cantor set Ay C A such that Ay D wy(z)
for Lebesgue-a.e. z € W, while for a residual set of points z € W, wy(z) = A.
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The paper is organized as follows: In Section 2 we give a symbolic description (kneading theory)
of the inverse limit space. Also the results concerning end-points of the inverse limit space are
proved. In Section 3 we start constructing the embedding by showing that X is homeomorphic to
some space Y/ ~, where Y C R? has the structure of a Cantor set of lines of variable length and ~
is some equivalence relation. In Section 4 some estimates are given and in Section 5 we complete
the construction by bending the space Y/ ~ to a genuine subset of R?>. In that section we also
prove Corollary 1.

2 The Symbolic Description

Let f : I = [-1,1] — I be a unimodal map such that f(1) = f(-1) = -1 and f(z) > =z for
z € (—1,c]. Let orb(c) = {c, 1, ca, ...} be the critical orbit. Throughout the paper we assume that
f has no wandering intervals and no periodic attractor and in particular that ¢ is not periodic.
(Inverse limit spaces of unimodal maps with periodic critical points have been treated in [3, 12].) It
follows that ¢2 < ¢ < ¢;. We will restrict f to the core [cg, ¢1]. Denote the left and right branches
of f as fr : [ea,c] = [e3,¢1] and fg : [e,e1] = [ca,c1]. Let Z be its symmetric point of z, i.e. the
point such that {z,4} = f~! o f(z). The same notation will be used for subsets of the interval.
Let v be the kneading invariant of f,i.e. v = ejezez ..., wheree; =0if ¢; < cande; = 1 if ¢; > c.

Let
"-971 — (_1)#{1§i§n;ei=1}‘

By convention 99 = 1. It follows that f™ has a local maximum (minimum) in ¢ when ¢, =1
(On—1 = —=1). Also |f™ — ¢| has a local maximum (minimum) in ¢ when ¢, = —1 (¥, = 1). The
inverse limit space is

X = {( . .,28_3,513'_2,%'_1,5[30);5(}1' €I and z; = f(m,-_l)},

equipped with the metric d(z,y) = Y,.,2%|z; — y;|. This space is compact and connected, i.e.
X is a continuum. Since we restrict f to the core [ca,c1], the arc-component with end-point
(...—1,—1,-1) is neglected, except when f is the full unimodal map. Let f : X — X, defined as

~

f(( .. ,$72,$71,1'0)) = ( .. 7x*2a$*1ax0;f($0))7

be the induced homeomorphism on X. The projections x +— z; will be denoted by 7;. For each
z € X, let the itinerary v(z) € {0, *,1}% be defined as, for i < 0,

0 ifz; < c,
vi(z) =¢ x ifx; =c,
1 ifz;>ec
and for i > 0 )
0 if fz(ib'o) <egc,
vi(z) =< * if fi(z) = ¢,
1 if fi(zo) > c.

Clearly x; = y; implies v;(z) = v;(y) for all j > i. Since ¢ is not periodic, v(x) can contain at
most one . We say that =,y € X have the same tail if there exists N such that v,(y) = v,(z) for
alln < N. Let

Tn(z) ={y € X;v,(y) = vu(z) for all n < N}.

Lemma 1 For each x € X and N < 0, Ty is homeomorphic to an open, closed or half-open
interval.
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Proof: T (z) can be parameterized by its N-th coordinate. O

Abbreviate T'(z) = T_1(z). The set of points having the same tail as = is Ty (2) = Un<—1Tn ().
For x € X such that x; # ¢ for all ¢ < 0, let

7r.(x) = sup{n > L;v_(,_1)(2)V_(n—2)(2) .. .v_1(Z) = €1€2...€p_1 and ¥, = —1}
and
TR(Z) = sup{n > L,v_(p_1)(T)V_(n_2)(z)... v 1(z) = eiea...e, 1 and ¥, 1 = 1}

In general 71 (z) and/or 7r(z) could be infinite. For completeness, if f is the full unimodal map
and z = (...0,0,0), set 77,(z) = 1 and 7r(z) = oco.

Lemma 2 If 7, (z), 7r(x) < 0o and x; # ¢ for all i < 0, then (T (x)) = (F72)(c), f2@)(c)).
If z,y € X are such that vi(z) = v;(y) for all i < 0 except for i = —7r(x) = —71R(Y) (0r
i =—15(x) = —71.(y)), then T'(x) and T(y) have a common boundary point.

Proof: Suppose that n = 7g(z). Assume without loss of generality that z_, < ¢. By definition of
Tr(Z), _p is contained in a neighbourhood of ¢, namely the set of points whose itinerary starts
with e1...ep—1. As 91 = 1, g < f™(c). Suppose yo = supm(T(z)) < f™(c). Then there
exists ¥ = (...y—2,Y—1,Y0) such that v;(z) = v;(y) for all i < 0, with at most one exception. In
particular y_,, € [£_p,c). Next take U = (..., U_2,U_1,Up), X DU 3y, where U_,, = (z_p,0),
Ui = f(Ui_1) for 0 > i > —n and for i < —n, U; is the component of f~1(U;y1) having z; as
boundary point.

There exists m < —n such that ¢; € Up41, because otherwise y € int (U) C T(x) contradicting
the definition of yo. But if ¢; € Upyq1, then ¢ € Uy, and vy, (z) ... v—1(z) = €1 ...epm—_1. Further-
more f™~" has a local maximum in ¢, 80 ¥—pn—1 = 1. Asz_, < cp_pn < ¢, also ¥, = 1. This
contradicts the maximality of n = Tg(x). The proof for 7 () is the same.

Now for the last statement, suppose that {v;(z)};<o and {v;(y)}i<o only differ at entry —7g(x) =
—7r(y) = —7r. Combining the above proof for z and y, we get the common boundary point z € X,
where z_;, = ¢, and {v;(2)}i<o = {vi(z)}i<o except for the entry —7g. O

Lemma 3 Ifz € X, then
supmo(T(z)) = inf{cp;v_nt1(z)...v_1(z) =€1...en_1 and 9,1 =1} (1)

and
inf mo(T'(x)) = sup{cn; V—nt1(z)...v_1(z) =e1...€p_1 and 9,,_1 = —1} (2)

If additionally 11,(x) and Tr(z) are both infinite and x; # ¢ for all i < 0, then Ty(z) = T(z).

Proof: We prove statement (1). Statement (2) can be proven in the same way. We abbreviate
a = inf{ep;V_py1(x)...v_1(x) = e1...en—1 and ¥,—; = 1}. Recall that if 9,1 = 1, ¢, =
max{f"(y);V—n+1(y)...v_1(y) = e1...en—1}. This proves that supmo(Tz) < a. Next assume
that @ > supmo(Tz). Take y € X such that yo = (a + supn(Tz)) < a and vi(y) = v;(z)
for all i < 0. This point is well defined. Indeed, if y; is found, then both f;'(y;) and fz'(y:)
exist, provided y; < ¢;. But if y; > ¢; for some ¢ < 0, then , knowing that yo > sup mo(T'x), we
obtain that yo = f~%(y;) > c_i11. Furthermore v;(y)...v_1(y) = e1...e_;y1, yielding yo > a, a
contradiction.

For the third statement, suppose 71 (z) = 7r(x) = co. Assume by contradiction that there exists
y € Ty(z) with m := mm{z < 0;v;(z) # vi(y)} > —oo. Assume also, without loss of generality,
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that z,, < ¢ < Y- Take n < m such that v, 1(z)...v_1(z) =e1...€_p_1 and ¥,,_,,_1 = 1. This
means that f™~™ maps [z,,c] into (0,¢) and f™ "(c) is a local maximum of f™~". As y,, > ¢,
there must be a k, n < k < m, such that vg(z) # vi(y), contradicting minimality of m. Therefore
T.(z) =T (x). m|

Inverse limit spaces X of unimodal maps are known to be chainable. This means that for every
e > 0, there exists a finite open cover {U;}Y,; of X such that diam(U;) < ¢ and U; N U; = 0
whenever |i — j| > 1 and {7,j} # {1, N}. In particular X contains no triods, i.e. homeomorphic
copies of the letter Y. Therefore the following definition makes sense: x € X is called an end-point
of X if for each pair of subcontinua A, B C X such that x € AN B either A C B or B C A.

Proposition 2 Let z € X be such that x; # ¢ for all i < 0. Then x € X is an end-point of
T(x) if and only if Tr(x) = o0 and xg = supwe(T(z)) (or To.(x) = oo and o = inf 7e(T(x))).
Furthermore, © is an end-point of X in this case.

Note that if z; = ¢ for some unique i < 0, then 2 is an end-point if and only if fi(z) is an end-point.
We can apply the Proposition 2 (and Lemma 3) to fi(z) in this case. For the proof of Proposition
2 we need the following result of Barge and Martin, [4, Theorem 1.4].

Proposition 3 The point © = (...,x_2,Z_1,Zo) is an end-point of X if and only if for every
i <0, every subinterval J; = [a;,b;] O x; and € > 0, there exists an integer N > 0 such that if
Jin D xin and fN(J;_n) C J;, either fN(Ji_n) 2 [a; +¢,b; — €] or z;_n does not separate
f(ai,a; +el) N Ji-n from f~N([bi —e,b]) N Jion.

Proof of Proposition 2: 1If zo € int mo(T(x)), then z is an interior point of ¢l T(x) and therefore
no end-point. If 2o = sup mo(T'z) then either 7z(z) < 0o and zo = ™) (¢), which we excluded
by assumption, or 7g(z) = co. Therefore let us assume that 7r(x) = oo and zo = sup wo(T'(x)).
Take an integer ¢ < 0, an interval J; = [a;,b;] 3 z; and € > 0 arbitrary. We assume that
#{i < j < O;vj(z) = 1} is even. (The other possibility is proven similarly.) If b; — e < w;,
then Proposition 3 holds by default. Assume therefore that z; < b; —¢. By Lemma 3, z¢y =
inf{c ;v_pny1(z)...v_1(z) = €1 ...e,_1 and ¥,,_; = 1}. Therefore we can find N € N such that
VieN+1(2)Ving2 () ...v_1(z) = erea...en_i—1, IN_i—1 = 1 (and also ¥y_1; = 1), and z; <
fV(c) < b —e. Let Ji_n D (zi_n,#i_n) be the maximal interval such that fV(J;_n) C J;. As
fN(c) € J;, ¢ € Ji_n and by maximality J;_y = Ji_n. Therefore either fV(J;_n) 2 [ai+¢, b;i—¢]
or z;_n does not separate f V([a;,a; +¢€]) N J;_n from fN([b; —e,b;]) N Ji_n. It follows that
x is an end-point of X and therefore of T'(x) too. The same argument applies if 7 (z) = oo and
o = inf 7(0(T(.’L')) O

Corollary 2 If f is not a full unimodal map, then X has end-points if and only if c is recurrent.
The end-points of X lie dense if and only if ¢ has a dense orbit in the dynamical core.

Proof: We exclude the full unimodal map since its inverse limit space is the Knaster continuum,
which has an end-point associated to the orientation preserving fixed point. In general this fixed
point is not contained in the dynamical core.

If ¢ is periodic, say fV(c) = ¢, the end-points of X are (...ci,¢2...¢n,¢1...cn) and its shifts,
see [4]. We therefore assume that c is recurrent but not periodic. Let ny be arbitrary and let
Ui 5 c be the interval U; = {z € I;v;(z) = ¢; for 1 <i < m;}. As c is recurrent, there exists
ny such that f"2(c) € U;. Take Uy = {z € I;y;(z) = ¢; for 1 < i < ny +na}. Clearly Uz 3 c.
Continuing this way we get a nested sequence of intervals U;, and a sequence of integers n;. Write
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N; = ny + ...+ n; and let {a;};<o be the sequence in {0,1}%- defined as a; = ey, ; whenever
Nj, > —i. Tt is not hard to show that there exists a point € X such that ...v_s(z)v_1(z) = a
and z¢ = limy, fV*(c¢). By construction, 7g(x) = 0o or 77,(z) = co. By the previous proposition,
must be an end-point.

Remark: Because there are uncountably many ways to construct such a sequence U; as can
easily be seen, there are uncountably many end-points.

Conversely, if z € X were an end-point, and 7g(z) = oo say, there must be integers m and n
such that

Vopm(Z) oo cv_p(x)...v_1(x) =€1...€ntm-1=€1...€ne1...Cn 1.
This means that f™(c) is close to ¢ and because n can be arbitrarily large, ¢ € w(c).

Now for the second statement, assume that orb(c) is dense. Let U C X be an arbitrary open
set and let a_,,...a, € {0,1}?"*! be such that x € U whenever v_,(z)...v,() = a_p...ap.
Because orb(c) is dense, there exists ny such that ey, —2,...€p, = d—p ...a,. Starting with this
number n;, construct an end-point z € X by the above method. Then f~"1(z) is an end-point
which is contained in U.

Conversely, if there exists an interval J C I such that orb(c) N J = @, then by Proposition 3,
there can be no end-point z of X such that m;(x) € int J for any i € Z. m|

3 Representation in the Plane

Let A € (0,1) be some number to be specified in Section 4. Let C' be the middle 1 — 2\ Can-
tor set embedded in the (vertical) interval [—1,1]. The bridges, i.e. the closed intervals creating
the Cantor set, will be coded with finite strings of zeroes and ones, according to the follow-
ing parity-lexicographical order: The string epeny1...e—1 < eje; ;...€ | if epriep42...a1 =
e;g+le;c+2 ...€"_; and either e}, < e}, and ey y1€py2...€e_1 contains even number of zeroes, or e > e},
and egy1€k42 ...e1 contains odd number of zeroes. See figure 1.

| 111
I on
02 1

| 001
0L 101

Cy
Ci| 100
| 000

| 010

Cs| 10 | 110

Figure 1: Construction of the Cantor set C for v =100...

By this process, the points of C' will be coded by an infinite string in {0,1}%-. Note that the
strings corresponding to boundary points of components of R\ C' have tails consisting of only ones.



Embeddings of Inverse Limit Spaces 7

It follows that the arc component through the fixed point (...p,p,p) will be the only part of the
embedded inverse limit space that is accessible from the complement.

Define the special bridge C), to be the bridge whose code equals e; ...e,_1. In particular C; =
[-1,1]. Note that |Cy,| = 2A"~! for each n.

To each z € X we can attach a point k(z) € C such that {v;(z)}i<o is precisely the code of k(z).
If ; = ¢ (i.e. vi(z) = %) for some i < 0, then we attach two points to z: ko(z) and k1(z). The
codes of these points coincide with {v;(x)}i<o, except for the entry 7, which is 0 and 1 respectively.

Let 7y : I x C'—= [ and 7¢ : I x C' — C be the natural projections. Define ¢ : X — I x C as

W(z) = (o, k(x)) ifx; #cforalli<0
T = (%o, ko(z)) U (mg, k1(x)) if 2; = ¢ for some ¢ < 0

Let Y =¢(X) and let F: Y — Y be defined as
(f(@), =1 = Ay - 1)) ifz<c,

F(z,y) =< (f(@),1+Ay—1)) ifz >, 3)
{(e1,=1 =Xy =1),(c1,1 + ANy —1)} ifz=c.

Lemma 4 The diagram

X f X
wl . lw
Y Y

commutes.

The proof is straightforward. The next step is to identify points in Y. Let a ~ b whenever
{a,b} C ¢(z) for some z € X. If a # b ~ a, then 77(a) = 77(b) = ¢, for some n > 0, and the
codes m¢(a) and 7o (b) differ at entry —n only. In this case we denote b as @ (or a as b).

Proposition 4 The map ¢ : X — Y/ ~ is a homeomorphism.

Proof: Let us first verify that Y/ ~ is Hausdorff. Let 77 : Y — I and n¢ : Y — C be the standard
projections. Take z £y € Y/ ~. If |rr(z) — mwr(y)| = dr > 0, then {z;|m1(2) — 71(z)| < dr/3} and
{z;|m1(2) —m1(2)| < 6r/3} are disjoint open neighbourhoods of z and y respectively. If dr = 0, then
de = min{|ro(z) — e (y)l; [rc(z) — mo(@)[} > 0. Now {z;|rc(2) — mo(z)| or |rc(z) — mo(Z)| <
dc/3} and {z;|mc(2) — ()| or |mc(2) — me(§)| < dc/3} are disjoint open neighbourhoods of 2
and y respectively.

Next we prove that ¢ is continuous. Pick U C Y/ ~ open, then it suffices to prove that for
every z € U, 9~!(z) is an interior point of 9)~*(U). Take a neighbourhood V C U of x. Hence
77(V) contains an neighbourhood of 7;(z). Because f is continuous, the sets m; o ¢y~1(V) are
neighbourhoods of 7; 04y~ () for all i < 0. If it was not for the identifications in Y/ ~, 1 is clearly
continuous. For each y € U let V,, C U be a neighbourhood of ¢, if § exists, and V,, = ) otherwise.
Since U is open, this is possible. Then ¢=(V UUyecrVy) C ¢~ (U) is a neighbourhood of ¢~ (z).

To prove the other direction, suppose by contradiction that ¢! is discontinuous. Then there
exist an open set U C X such that ¢(U) is not open in Y/ ~. Let z € ¢(U) be a non-interior
point of )(U). As Y/ ~ is Hausdorff, there exist for each y € Y/ ~ \¢(U) a neighbourhood V;, 3 y
which is disjoint from some neighbourhood of x. Since v is continuous, U U Uyey/Nw(U)gb_l(Vy)
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is an open cover of X. This cover however has no finite subcover, contradicting the compactness
of X. O

In order to get a clearer picture we will connect the identified points with a semi-circle. Suppose
y and § € Y are such that m;(y) = m;(§) = c¢n, then we draw this semi-circle to the right (left) if
'l9n71 =1 (197;,1 = —].).

Proposition 5 The above semi-circles can be drawn simultaneously crossing neither each other
nor Y.

Proof: Assume z,%,y,§ € Y exist and no(z) < mo(y) < meo(Z). Let m be such that 7r(z) = ¢y,
so —m is the only entry in which k(7w¢(z)) and k(wc(y)) differ. Without loss of generality we can
take ¥,,—1 = 1, so the semi-circle connecting z and Z is directed to the right. Let also 71(y) = ¢p.

As mo(z) < me(y) < me (),
k(me(x))i = k(re(y)): for all —m <4 <O0. (4)
Since ¥p—1 =1,
em =max{z9;2 € X and v_ppq1(2)...v_1(2) =€1...em—_1},

and therefore ¢,, = my(z) > m7(y). Therefore the semi-circle connecting z and Z does not cross
Y. To see that this semi-circle does not cross the semi-circle between y and §, we check two
possibilities:

e ¥, 1 = —1. Therefore the semi-circle between y and ¢ is directed to the left. As ¢, < ¢,
there is no crossing.

= 1. It follows from (4) and the definition of 7 that n > m. Therefore nc(z) <
7o (§) < mo(Z). Because also ¢, < ¢, there is again no crossing.

Remark: What this proof says is that if (x,y) € Y is such that y € C),, then z < ¢, (z > uy)
if Gy =1 (Up_y = —1). O

We can extend the map F to I x I, using the same definition (3), obtaining a discontinuous map
F:IxI—1Ix]I. Clearly F maps vertical lines into vertical lines, squeezing them by a factor A.
Therefore Y is a normally hyperbolic attracting set.

4 The Choice of )\

So far the discussion has been purely topological. However, in the construction of the embedding of
the inverse limit space, we want to retain as much of the original smoothness as possible. Therefore
let f be C" for some r > 1. Let £ > 1 be the critical order, i.e. |f(z) — f(c)| = O(1)|z — ¢|*.
We recall that f is assumed to have no wandering intervals and periodic attractors. The following
lemmas show that certain points in the critical orbit cannot lie too close together.

Lemma 5 (Nowicki [17]) If f is C! and has no periodic attractor, then there exists Ao > 0 such
that for allm > 1, |ep, — | > M.
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Proof: Let L = max,¢r|Df()| and let K be such that |Df(z)| < K|z — c[*~! for all z € I. Here
¢ > 1is the critical order. Assume by contradiction that |c, — ¢| < L(3)FT. Take z < ¢
the point closest to ¢ such that |[Df"(z)| = 1. In particular, f* is monotone on (z,c). We have

1 =|Df"(z)| < K|z — c[*"*L™. Tt follows that

1 1 € 1 1
o= 2al < len = el +len = 2al < 5 ()™ + [ IDF WY < 5le =l + ol
T

2 2KL"

This means that f™ maps (z, ¢) into itijzlfl and |D f"| < 1 on (c,z). This yields a periodic attractor.
- 1

Hence the lemma is true for Ao = (3) 77 (&£) 7. m]

Let p(n) = min{i > 1;e; # enyi}-

Lemma 6 If f is C®, has negative Schwarzian derivative and no periodic attractor, then there
exists Ay > 0 with the following property: If n > 1, k > 1 are such that

€1...€—1 =€n41.--.-Cntk—1,

then |cx — cntr| > /\?"‘k.

Note that because v = 10.. ., the assumption on n and k can only hold if n > 2. Note also that
Lemma 6 gives another proof of Proposition 5, since the semi-circles attached to {c,} x C,, are all
concentric.

Proof: By assumption p(n) > k and p(n) is the smallest integer such that c,(,) and ¢, () lie on
different sides of c¢. If p(n) < 3n, then by Lemma 5

|Cntp(n) = Co(m)l AL S ﬁ)3(n+k)_

etk — ck| > Le(n)—k = Lp(n)—k = (L

The assertion holds for A\; = (%)3 For this part, the assumption on the Schwarzian derivative is
not necessary. If p(n) > 3n, then, as shown in e.g. [§], ¥, = 1 and |f™ — ¢| has a local minimum
in ¢. The situation is as follows (see figure 2): There exists m dividing n such that ¥, = 1, ¢, is
a closest return to ¢. Furthermore (cp,¢) D (¢m,c).

C3m 4

Com,

Cm

c Zz

Figure 2: A close return ¢, with 9, =1
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Therefore it suffices to show the lemma for n = m. The central branch of f™ is almost tangent to
the diagonal. The interval (cam,cmn) will be much smaller than (¢, ¢) (it may be expected that
lcam — em| = O(lem — c|?), but afterwards the intervals (cam, csm), (€3m,Cam), €tc. can shrink no
faster than geometrically, say with rate k > 0. Take r minimal such that rm > m+ k. Then, using
the first part of the proof,

&)Sm

|C7'm - C(r—l)m| > ’iT_1|C2m - le > "37‘_1( T

7

(3m
whence, for m sufficiently large, |¢pyr — ci| > ﬁkrm = Cr—1)ym| > K1

(32)3(m+k) " Therefore the lemma is fulfilled for the same value \; = (32)°.

e © ) i
O

Take A = %)\1 < % Let as before C' be the middle 1 — 2\ Cantor sets. The special bridges C,, (as
all bridges of order n) have length 2A"~1.

5 The Embedding of the Inverse Limit Space

In this section we construct a genuine embedding. Although it may be not so easy to recognize,
the basic idea is to squeeze the semi-circles that were introduced in Section 3 simultaneously to
points. For a function r : B C R?> — R? we denote the smallest Lipschitz constant as

Lips(r|B) = inf{k; |r(z) — r(y)| < k|z — y| for all z,y € B}.

Let us introduce some notation. Let u, be the middle point of the special bridge C,,. For a > 0
and n > 1, let Cp(a) = [un — §|Cnl,un + §|Chr|], i.e. the interval concentric with C, such that
|Cn(a)| = a|Cpl|. Take € > 0 small and let

v, = [en — €|Chl, cn + €|Cr|] X Ch.
Then define recursively V; = 171 and

Vn+1 = Vn+1 n F(Vn)

Therefore {c,} x C, CV,, C V,, for each n, and if ¢, is close to ¢, F(V,) = Va1 Let J, = w1V,
and let J;F be the component of J,, \ {¢, } that lies to the right (left) of ¢,, if #,—1 = 1 (Ip—1 = —1).
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W
U921 —
Wy
U1 1 -
Wy
U4 1 ED
W3
U3 :|
C2 C3 c Cyq 1

Figure 8: The sets W;, {c;} x C; and J x {u;} for 1 <i <4 and v =1001...

Let

Wy = [en — 2en?|Ch|, cn + 2en?|Cy|] x Ch,
and let W, be the component of W, \ ({¢,} x C,) which lies to the left (right) if ¢, =1
(9n—1 = —1). Let also

Wi = [en — 26Ln®|Cy|, cn + 26 L0?|C|] X Cr(2).

Clearly V,, ¢ W,, € W, and because L = max, |D f(z)|, also F(W,) C Wn+1 for all n > 1. Recall
that |Cy,| = 2A™ 1. The choice of A and the results from Section 4 guarantee that for ¢ sufficiently
small,
W, N ({em} X Cp) =0 for all n. > m > 1.

In fact, if n > m then W,,NW,, # 0 implies W,, C W, . Furthermore, Wnﬂ({c} xI) =0 for all n >
1, and W, N W, 11 =0 = F(W,,) N W,.

Let 6 > 0 and extend f to the interval [-1 — 4,1 4 §] in such a way that the extension is still
unimodal and f(1+6) = f(—1—6) = —1— 4. Let

11

AT
Extend F' to W, keeping the definition (3). Then F maps W into itself, F' is discontinuous on
{c}x[1—%, +—1] and F maps [-1—§,1+8]x {1—} in a two-to-one fashion onto [-1—§,1+6] x {0}.
F maps the remaining part of W diffeomorphically onto its image.

W=[-1-61+6]x]1 1].

We will construct perturbations F; of F' and maps h; such that the following diagram commutes:

L S L S I

F l Fll Fl F3l
h hz h h4

1 3

w w w w
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We will need a sequence of mappings ®,, : W — W with the following properties:

e &, is the identity outside W,, and C" outside {c, } x Cp,.
e &, maps W, into itself.

e &, maps {c,} x Cp, onto J, x {u,} in such a way that if |y — u,| < 3|Ch|,

y_unl
lim & Cn + O J+| ,Up
Jm n(®,y) = ( EAY Gl )

and

. y—u

lgrcln ®,(z,y) = (cn + 19n71|J;'|(1 - | |Cn|n|)7un)
Extending @, to {c,} x C, by “continuity”, we get that the point (¢,,y) has two images
under ®,,, each of which has two preimages in {c,} x C,,. We say that ®,, maps {c,} x Cp,
in a two-to-two fashion onto J;* x {u,}. See Figure 4.

24
®,,(24)
21 |,z ¢n (bn(zl) l (in(z3)
(I)n(z2)
<2
{ea} x Cy In % {un} = ®n({cn} x Cn)

Figure 4: The two-to-two mapping ®,|{cn} x Cp

e Lips(®,|W,;) =1+ (%) and also Lips(®;;|®,(W,) NU*) < 1+ O(%), where Ut =
{(z,y) € W, ;Y > up} an = {(z,y) € W;y < upn}. Since |r1(Wy)| > 2n2|J,|, this is no
problem

e &, is symmetric in the sense that &, (x,u, + 1) = ®,(x,u, —n) for all z and 7.

First set
hl :(I>1 andFozF

If h, and F,,_; are constructed, let
F,=hy,oF,_10 h;l.

It is not hard to see that Fy is a C" diffeomorphism outside J; x {u1}. Indeed J;t x {u;} is mapped

in a two-to-two fashion into hy({c2} x C2). In general F,, will be C", except in the arc hpo...0

h1(Jn x {u,}). This set is mapped in a two-to-two fashion into h, o...0 hy({cpt1} X Cpt1). The

action hp41 will cancel this discontinuity, but induce a “smaller” discontinuity of F,, 11 elsewhere.
Define hp41 as follows:
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e h,.1 is the identity outside Fj, o hy o ... 0 hy(W,,).

e For (z,y) € F,ohyo...ohi(W,) D hpo...0ohi(W,y1), let

Bpg1(2,y) =hpo...ohyo®, 1 0hi o...0h  (z,y).

e By adjusting ®,,11 if necessary, we can also assume that hp10F), is C" in the neighbourhood
hno...0hy(Wy) of hp_yo...0hi(J} x {uyn}), with a Lipschitz constant < L 4+ O(Z).

Finally, let
h=...0h30h20h1, A=h(Y)

and
G=lim F,=hoFoh !

n—oo

This construction has the following properties:

1. Lips(hn|hn—10...0 hi(W;)) < [Ii; 1+ O(:). Indeed, Lips(®,|W,;) <1+ O(5;), and if
W, NW,, # 0 for some m < n, then W,, C W,,. This follows from the remark at the end
of the proof of Proposition 5. Therefore the statement follows by induction. In particular,
there exists K such that Lips(hp|hn—10...0h(W,,)) < K for all n.

2. hpy1 maps hpo. . .ohi({cnt1} X Cry1) in a two-to-two fashion onto hpo. ..ok (Jif, | X {unt1}).

n

3. F, = hy,oF, 10h;! maps h, 10...0hy(J, x {u,}) in a two-to-two fashion onto h,, o
...0ohi({ent1} x Cpy1). But then h,y1 maps hy o ... 0 hi({cht1} X Cpy1) in a two-to-
two fashion onto hy o ... 0 hy(Jpyr1 X {uny1}). Therefore F, 1 restores the continuity at
hp—10...0hi(J, x {up}) that was violated by F,,. A fortiori, due to the third property of
hn+1, Fny1 is even C7 in a neighbourhood of hy,, 1 0...0 hy(J, X {u,}).

4. F, maps hp_20...0h;(Jp—1 X {tp—1}) onto hp_q10...0hi(J, x {un}). Because hy,|hp_2 o
.0 hi(Jp—1 X {up—1}) and hpmy1|hn—10...0hi1(J, x {un}) are the identity for m > n, we
obtain that in the limit

Gohn,Z o... ohl(Jn,1 X {un,l}) = hnfl o... ohl(Jn X {un}),

for all n > 2. Therefore the sets {h,—_20...0h1 (Jy—1 X {un—1})}n play the role of a wandering
arc. The existence of such an arc is the main difficulty in achieving smoothness for G.

We come to the main result.
Theorem 2 The following properties hold:

1. h is C" outside cl Uy {cn} x Cp, continuous on'Y and absolutely continuous on W.
2. G is C™ outside Ncl Uysny h(Wy) and Lipschitz homeomorphic on int W.
3. G|W s a factor of F|W and G|A is conjugate to f|X,

4. The set A has zero Lebesgue measure and A is the global attractor of h((—=1,1)x [1—%, 3+ —1])
in the sense that for each B, A C B C cIB C h((—1,1)x[1—%, $+ —1]), we have A = N,G"(B).
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Proof: h,, is C" outside h,,_j0...0h;({c,}xC,), and the identity outside h,,_10...0hy (Wn), the area
of which decreases exponentially. Therefore h is C™ outside cl U, {c, } x C,. Moreover cl Uy, {c, } X Cyy
has Lebesgue measure 0 and is mapped into itself. Therefore h is also absolutely continuous. The
discontinuity of h, is only caused by the fact that for |y — u,| < %|Cn|, lim, »., ®n(z,y) #
lim,~ ¢, ®n(z,y). Since Y NW), lies only on one side of {c,} x Cp, this discontinuity is not visible
on Y. This proves 1.

By property 3., F}, is C" outside h(W,,). Moreover, for m > n, Fy,, = F,,, except on h(Up/>nWyr).
Therefore G = lim,, F, is C" except in Nycl Uysy h(Wy). Note also that diam(F,(W,,)) — 0 as
n — oco. Let us prove that Lips(F,|W \ h, o ... o hi(W,,)) is uniformly bounded. If (z,y)
Bno...ohi(Wpy1 UW,), then F, 41 coincides with F,. Therefore take (z,y) € hyo0...0 hy (W,
Then

Fn+1(x7y) = hn+1 0 Fn o h;il(may) = hn+1 o F ('Z' y)
= hpo...ohjo®,10h o...0oh o F,(z,y)
= hno...ohlolI)n+loFoh1 hn(, Y).

Now Lips(hno...0h1|®nq1 0 F(W,)) <[5, 1+ O(%). The discontinuity of hy,*|hno...0hi (W)
is canceled by @, o F|W,, giving a Lipschitz constant Ly = O(L) which is independent of
n. Because W, N {cy} x Cpy = B for all m < n, hyo...0 hl(W ) lies always to one side of
Pm—10...0 hl({um} X J+) Therefore Lips(h _1|hm o...0h(W,)) <1+ O(:%) and Lips(h; "

cooh Bt 0. o hi(W)) < 1, "1+ O(3). We obtain

- > 1
Lips(Fpp1|hn o ... 0 hy(Wy) < Lo(J[ 1+ 0(2,_2))2 =K,

i=1

which is independent of n. Now for the limit map Lips(G|W) < K + 2. Indeed, let z # 2’ € W be
arbitrary. Take N so large that diam(F,,(W,)) < |z — 2| for all n > N. Then also

IG(z) = G()] < |G(2) = Fal2)| + |Fu(2) = Fu(2)] + |Fu(2) = G(z')| < 3Kz — 2.
This proves 2.

Since ho G = F o h, G is a factor of F' by definition. Note that if h~1(z,y) is multi-valued
(two-valued, to be precise), then h o F' maps the different images to one point again. Furthermore,
h(z,y) = h(z',y’) only if (z,y) ~ (z',3') by the equivalence relation introduced in Section 3.
Therefore G| A is indeed conjugate to F|Y/ ~, which is conjugate to f|X.

For the last statement, A = h(Y") has measure 0 because Y has and h is absolutely continuous.
Furthermore Y attracts every point in (—1,1) x [1 — §, + — 1] under iteration of F. Therefore A

attracts every point of h((—1,1 — L 1 _ 1)) under iteration of G. |
PRI

Proof of Theorem 1: Take g = G as in Theorem 2. Then all the assertions of Theorem 1 are
satisfied except that if f is a full map. In this case A need not attract a neighbourhood of itself.
For example the points (c; + |J;"| + n,u1) (and its iterates) need not be attracted to A for any
n > 0. Note that (¢ + |J1+|,u1) € A. However, let F; be a C" perturbation of F' which maps
both branches of F|{c} x I into the interior of {¢;} x I. The rest of the construction remains the
same. Then the limit map g = G maps {c} x I into the interior of J;% x {u;1}, and by continuation,
g'({c} x I) lies in the interior of J;" x {u;} = h({¢;} x C;). Now A indeed attracts a neighbourhood
of itself. O

Proof of Corollary 1: Because F|Y is just a skew product of f and a vertical contraction, and
because h is absolutely continuous, the assertions follow directly from the one-dimensional coun-
terparts. For statement 1., this is a result by Hofbauer and Keller [11, Theorem 1]. (Note that
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also Theorems 2 and 3 of that paper have, by this technique, planar versions.) For case 2., this is
the main result of [9]. O
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