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Abstract. A measure-preserving endomorphism is one-sided Bernoulli
if it is isomorphic to a noninvertible Bernoulli shift. We show that in
piecewise smooth settings this property is very strong and far more
subtle than the weak Bernoulli property, by extending of results of W.
Parry and P. Walters and proving new results based on continuity of
the Radon-Nikodym derivative. In particular, we provide tests which
work for noninvariant measures if an invariant measure equivalent to a
natural measure exists but its density function is not known. Examples
of families of interval maps and complex maps on the Riemann sphere
illustrate the results.
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1. Introduction

In this paper we give necessary criteria for various smooth and piecewise
smooth n-to-one maps to be one-sided Bernoulli, that is, isomorphic to one-
sided {p1, p2, . . . , pn} Bernoulli shifts. Many results exist giving sufficient
criteria for the one-sided Bernoulli property, see for example [2, 18, 15, 17,
30, 41], and these apply to a variety of finite measure-preserving n-to-one
endomorphisms. A one-sided Bernoulli map is a deterministic dynamical
system which is as stochastic as possible, and therefore of interest in many
settings.

The characterization for uniformly n-to-one one-sided Bernoulli maps
given in [15] was used to show that with respect to the unique measure
of maximal entropy, a rational map of degree ≥ 2 is one-sided Bernoulli
[14]. Special cases of this result were proved using different methods [20],
but the result of [14] settled an earlier conjecture of Lyubich [23] and (inde-
pendently) Mañé [25].

There are many natural examples of smooth noninvertible maps such
as interval and toral endomorphisms with Lebesgue measure, and rational
maps with conformal measure, that are not measure-preserving. It is of
interest to study their Bernoulli properties with respect to some invariant
measures known to be equivalent to the given ones, but with unknown den-
sity functions. There are many results (see e.g. [1, 21, 22]) showing that such
systems can still have a Bernoulli natural extension, see Definition 2.18. In
this paper, we show that most of these systems are not one-sided Bernoulli.

The difficulty with proving non-Bernoulli results is that there is little a
priori knowledge on the candidate Bernoulli shift (entropy is not a complete
invariant for one-sided Bernoulli shifts) or the Bernoulli partition. Our cri-
teria are based on two approaches:

∙ One approach builds on early papers of Walters [41] and Parry and
Walters [30], establishing necessary criteria based on symmetries of the
system. We give examples of smooth or piecewise smooth noninvertible
maps which are not one-sided Bernoulli. We extend their results to
cases where the given measure is not preserved.

∙ The other approach applies primarily to a one-(real)-dimensional map
T preserving a measure � equivalent to Lebesgue. We exploit a rigid-
ity result that says certain cohomological equations with measurable
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solutions must have continuous solutions, often referred to as Livs̆ic
regularity. We show that the one-sided Bernoulli property implies that
T is C1 conjugate to a piecewise affine map, see Theorem 3.4 and
cohomological equation (3.2) below.

Combining both approaches, we show that many rational maps for which
the Hoffman-Heicklen-Rudolph result [14, 15] applies using the measure of
maximal entropy, cannot be one-sided Bernoulli with respect to conformal
measure (supported on the Julia set).

The paper is organized as follows. In Section 2 we give the basic definitions
and assumptions about noninvertible maps; Section 2.4 is an updated review
of results from [30] and [41]. We point out the distinctions between one-sided
Bernoulli and weak Bernoulli maps because, while in the invertible case they
are equivalent, in the noninvertible case they are not.

The main results of this paper are contained in Sections 2.6 and 3. First
we extend a classical result about commuting automorphisms of measure-
preserving shifts to the case where only an equivalent measure is preserved.
This allows us to obtain a more easily checkable condition in smooth settings.
In Section 3 we prove some rigidity theorems for piecewise smooth one-
sided Bernoulli maps. We provide many new differentiable and holomorphic
examples in Section 4, some of which are one-sided Bernoulli and some that
are weak Bernoulli but not one-sided Bernoulli, illustrating the results in
Sections 2 and 3.

2. Noninvertible Bernoulli maps and the

Parry-Walters Invariants

We first recall the definition of a one-sided Bernoulli shift.

Definition 2.1. Fix an integer n ≥ 2 and let A = {1, . . . , n} denote a finite
state space with the discrete topology. Any vector p = {p1, . . . , pn} such
that pk > 0 and

∑

pk = 1 determines a measure on A, namely p({k}) = pk.
Let Ω =

∏∞
i=0A be the product space endowed with the product topology

and product measure � determined by A and p. The map � is the one-sided
shift to the left, (�x)i = xi+1. We say � is a one-sided Bernoulli shift and
denote it by (Ω,D, �;�), where D denotes the Borel �-algebra generated by
the cylinder sets, completed with respect to �.

2.1. Nonsingular endomorphisms. We assume throughout that (X,ℬ, �)
is a Lebesgue probability space; ℬ denotes the �-algebra of measurable sets
and we assume that the measure space is complete. We always assume
that T is a surjective nonsingular endomorphism; i.e., T : X → X satisfies:
�(A) = 0 ⇐⇒ �(T−1A) = 0 for every A ∈ ℬ, and �(T (X)△X) = 0. If
�(T−1A) = �(A) for all A ∈ ℬ, we say that T is measure-preserving, or
equivalently T preserves �. We also assume that every point in X has at
most countably many preimages under T . Without loss of generality we can
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assume that T is forward measurable and forward nonsingular; i.e., for all
measurable sets A, T (A) ∈ ℬ and �(A) = 0 ⇐⇒ �(TA) = 0 (see [40]).
When we say that a property holds on X (� mod 0) or � a.e., we mean that
there is a set N ∈ ℬ with �(N) = 0, (N is possibly the empty set), such
that the property holds for all x ∈ X ∖N .

Definition 2.2. Let T1 : (X1,ℬ1, �1) ↺ and T2 : (X2,ℬ2, �2) ↺ be two
measure-preserving endomorphisms.

A measurable map ' : X1 → X2 is a homomorphism if there exists a set
Y1 ∈ ℬ1 of full measure and a set Y2 ∈ ℬ2 of full measure in X2 such that '
maps Y1 onto Y2.

If there exists a homomorphism ' such that T1(Y1) = Y1, T2(Y2) = Y2,
' ∘ T1 = T2 ∘ ' on Y1, and �2(A) = �1('

−1(A)) for all A ∈ ℬ1, then T2 is
called a factor of T1 (w.r.t. the measures �1 and �2), with factor map '.

If in addition ' is injective on Y1 we say it is an isomorphism. If T2 is a
factor of T1 and ' is an isomorphism, then we say that the endomorphisms
T1 and T2 are isomorphic endomorphisms.

A nonsingular endomorphism T : (X,ℬ, �) → (X,ℬ, �) is an automor-
phism of X if there exists Y ∈ ℬ of full measure such that the restriction of
T to Y is bijective (and �T−1 ∼ �, but they are not necessarily equal). If an
endomorphism T is not an automorphism, then we say T is noninvertible.

An n-to-one nonsingular endomorphism T on (X,ℬ, �) is called one-sided
Bernoulli if it is isomorphic to some n-state one-sided Bernoulli shift. We
usually just say that T is one-sided p = {p1, . . . , pn} Bernoulli when we
mean it is isomorphic to the noninvertible dynamical system (Ω,D, �;�).
Bernoulli endomorphisms inherit well-known properties of Bernoulli shifts,
such as ergodicity and exactness.

Definition 2.3. An endomorphism T is ergodic if any B ∈ ℬ with the
property that B = T−1B (� mod 0) has either zero or full measure. It is
exact if any B ∈ ℬ with the property that B = T−nT nB (� mod 0) for every
n ≥ 0 has either zero or full measure.

2.2. Decomposition of a measure with respect to a noninvertible

endomorphism. Since the property of being noninvertible depends on the
measure and plays a critical role in what follows, we describe that depen-
dence here. For a nonsingular endomorphism T we consider the sub-�-
algebra ℱ ≡ T−1ℬ ⊆ ℬ; for each set A ∈ ℱ there is a set B ∈ ℬ such that
A = T−1B (� mod 0). By a canonical construction given by Rohlin [34],
described further in e.g. [6], this sub-�-algebra determines, up to sets of �
measure 0, a unique measurable decomposition of X and � as follows. The
factor map ' maps X onto a Lebesgue factor space (Y,ℱ) with measure �
defined on ℱ as the restriction of �; i.e., �(A) = �(A) for each A ∈ ℱ . A
point in Y is a collection of points in X, namely y = T−1x (� mod 0). The
commutative diagram illustrates the factor map:
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(X,ℬ, �) T−→ (X,ℬ, �)
↓ ' ↓ '

(Y, T−1ℬ, �) T−→ (Y, T−1ℬ, �)
with � = �∣T−1ℬ

By construction of the factor, T gives a well-defined factor transformation
on Y �-a.e.:

T (y) ≡ '(T x),

so that '(T x) = T ('x) for �-a.e. x ∈ X. We note that ' is a measurable
isomorphism from X to itself if and only if T is a nonsingular automorphism
and in this case ' = T−1 is the inverse of T on X. Since every proper factor
map gives a decomposition of � over � we write for each B ∈ ℬ,

(2.1) �(B) =

∫

Y
�y(B)d�(y)

where for �-a.e. y ∈ Y , with y = '(x), �y ≡ �T−1x is a measure on (X,ℬ)
that is purely atomic (since T is at most countable-to-one), and its support
is a subset of the set of points T−1x. Also, for each fixed B ∈ ℬ, the map
y 7→ �y(B) is a measurable function on Y .

Definition 2.4. For a nonsingular endomorphism T , the index function,
indT (x) is defined (� mod 0) to be the cardinality of the support of �T−1x =
�'(x) for x ∈ X.

The function indT is measurable and defined uniquely up to sets of �
measure 0. It is possible that indT (x) = +∞; however, while the cardinality
of the set T−1x provides an upper bound for indT (x), its value depends on
the measure �. The following example, an endomorphism of [0, 1] with graph
shown in Figure 1, illustrates the dependence of indT on the measure for a
given endomorphism.

Example 2.5. Let T : [0, 1] → [0, 1] be the piecewise linear map defined and
shown in Figure 1. Then T is bounded-to-one with respect to Lebesgue
measure m (see Section 2.3). The index function takes values 2 on (12 , 1]

and 4 on (0, 12). Because of the uniform expansion, T preserves a measure

� ∼ m (with d�
dm = 4

3 on [0, 12) and
d�
dm = 2

3 on (12 , 1], to be precise), but since
indT is not constant (m mod 0), T is not one-sided Bernoulli with respect to
m. In fact, T preserves a measure � ∼ m with � Markov, but not one-sided
Bernoulli.

On the other hand, the log 2
log 3 -dimensional Hausdorff measure  supported

on the middle thirds Cantor set C is also T -invariant. With respect to this
measure T is {1

2 ,
1
2} Bernoulli, and indT ≡ 2 -a.e. Note however, that
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Figure 1. The map T (x) = ∣min{3x−1, 2−3x}∣ is bounded-
to-one w.r.t. m, but 2-to-1 w.r.t. Hausdorff measure sup-
ported on the middle thirds Cantor set.

T−1(x) contains 4 points for every x ∈ (0, 12) ∩C, but only two of these are
atoms of '(x).

The index of an endomorphism is invariant under isomorphism in the
sense that if T1 and T2 are isomorphic endomorphisms and ' ∘ T1 = T2 ∘
' for some automorphism ', then indT1(x) = indT2('x) (�1 mod 0) [30].
Therefore, (X,ℬ, �;T ) can be isomorphic to a one-sided Bernoulli shift on
n states only if the index is the constant function n (� mod 0). However, an
invertible two-state Bernoulli shift is isomorphic to a three-state Bernoulli
shift if and only if they have the same entropy [29], and this can occur; the
index renders the analogous statement false in the case of one-sided shifts,
illustrating a subtlety of noninvertible maps.

2.3. Rohlin partitions and factors. Assume that T is a nonsingular en-
domorphism of (X,ℬ, �), not necessarily preserving �. A partition � is an
ordered countable (possibly finite) disjoint collection of nonempty measur-
able sets, called atoms, whose union is X (� mod 0).

By a result of Rohlin [34] we obtain a partition � = {A1, A2, A3, . . . } of
X into at most countably many atoms and satisfying:

1. �(Ai) > 0 for each i;
2. the restriction of T to each Ai, which we will write as Ti, is one-to-one

(� mod 0);
3. each Ai is of maximal measure in X ∖∪j<iAj with respect to Property

2;
4. T1 is one-to-one and onto X (� mod 0) by numbering the atoms so that

�(TAi) ≥ �(TAi+1)

for i ∈ ℕ.
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We call a partition � as defined above a Rohlin partition for T . When we
say that an endomorphism T is n-to-one, we mean that every Rohlin parti-
tion � = {A1, A2, A3, . . . } satisfying (1)−(4) contains precisely n atoms and
that Ti is one-to-one and ontoX (� mod 0) for each i = 1, .., n. Equivalently,
for �-a.e. x ∈ X, we have indT (x) = n and the set {T−1x} contains exactly
n points which are atoms of �T−1x). If � has n atoms with 1 < n <∞, but
T does not necessarily map each Aj onto X, then we say that T is bounded-
to-one. Figure 1 shows a bounded-to-one but not n-to-one map with respect
to m. Clearly T is invertible if and only if indT is the constant function 1
(� mod 0).

Definition 2.6. We fix a nonsingular endomorphism T of (X,ℬ, �) as above.
Given any partition �, we define the �-algebra generated by � (under T ),
denoted ℱ(�), to be the smallest sub-�-algebra of ℬ containing:

(2.2) �∞0 ≡
⋁

i≥0

T−i(�),

and complete with respect to �. A partition � is a (one-sided) generating
partition if ℱ(�) = ℬ (� mod 0) .

If T is noninvertible with respect to �, every Rohlin partition � contains
at least two atoms and we consider the sub-�-algebra ℱ(�) ≡ ℱ . Since
T−1ℱ ⊂ ℱ , we have that each Rohlin partition determines a proper factor
map onto a factor space (Z,ℱ , �∣ℱ ) and T is well-defined on this space. We
call this factor a Rohlin factor.

Rohlin partitions are not unique; this is easily shown and was known to
Parry and Walters [30]. Moreover in Example 2.7 we give an endomorphism
such that some Rohlin partitions � are generating and some are not, ex-
tending the result to show that the corresponding �-algebras ℱ(�) defined
in (2.2) are not unique either.

Example 2.7. We consider the circle S
1 = ℝ/ℤ and ℬ the �-algebra of Borel

sets. If T : S1 → S
1, T (x) = 2x is the angle doubling map, then for any

t ∈ [0, 12), the partition �t = {A0, A1} with A0 = [t, t + 1
2), A1 = [t + 1

2 , t)
is a Rohlin partition with respect to many measures, some specified below.
The partition �t establishes a coding map �t : S

1 → {0, 1}ℕ ≡ Ω given by

�t(x)i =

{

0 if T ix ∈ A0

1 if T ix ∈ A1,

with the following properties:

1. �t is surjective for every t ∈ (0, 12). (For t = 0, there is no point x with
�0(x) = 111 . . . )

2. �t is not injective, except for t = 0.
3. For every t ∕= 1

4 and p ∈ (0, 1) and a.e. ! ∈ Ω with respect to {p, 1−p}
Bernoulli measure, �−1

t (!) consists of a single point.
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4. If t = 1
4 , �t is a two-to-one map at every point.

5. Fixing p = 1
2 and using Lebesgue measure m on S

1, for every t ∈ [0, 12),

t ∕= 1
4 , �t is a measure-preserving isomorphism; therefore the Rohlin

partitions �t, t ∈ [0, 12) ∖ {1
4}, generate. If t = 1

4 , then (4) implies that
ℱ(�1/4) ∕= ℬ.

6. Despite Statement (4), the original map T on (S1,ℬ,m) and the in-
duced factor map on (Z,ℱ(�1/4)) are isomorphic to each other since
each is isomorphic to a one-sided {1/2, 1/2} Bernoulli shift.

These statements come from descriptions of the quadratic Julia set in
terms of symbolic dynamics and quadratic laminations; (1) can be derived
from work of Bullett and Sentenac [5]. Items (2) and (3) are described in
current work of Bruin and Schleicher, in particular [4, Lemma 8.4] for the
{1
2 ,

1
2} Bernoulli measure, but similar methods work for the general {p, 1−p}

Bernoulli measure.
Piecewise affine examples and a proof of Statement (4) usingm on S

1 and
{p, 1− p} Bernoulli measures on Ω are discussed in Section 4, Example 4.1
of this paper.

2.4. The Parry Jacobian and Radon-Nikodym derivatives. Assume
T is a bounded-to-one nonsingular endomorphism with Rohlin partition �.

For x ∈ Ai, define J�Ti(x) =
d�Ti
d�

(x), and for x ∈ X, let

J�T (x) =
∑

i

J�Ti(x)�Ai(x),

where �A denotes the characteristic function of the set A; this defines J�T
(� mod 0). This is the Jacobian function for T , defined by Parry [30], and
is independent of the choice of �. To see the independence, let �T−1x denote
the conditional measure on the set T−1x as given in Section 2.2, then an
equivalent characterization given in [30] is:

J�T (x) =
1

�T−1(Tx)(x)
.

Our nonsingularity assumption implies that J�T > 0�-a.e. and we then
have the following identities holding �-a.e. ([8], cf. also [12]):

��T (x) ≡
d�T−1

d�
(x) =

∑

y∈T−1x

1

J�T (y)
,

!�T (x) ≡
d�

d�T−1
(Tx) =

1

��T (Tx)
.

The function !�T is frequently referred to as the Radon-Nikodym derivative

of T since when T is one-to-one, !�T =
d�T

d�
.
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In [8] !�T is characterized (� mod 0) as the unique T−1ℬ-measurable
function satisfying:

∫

X
f ∘ T ⋅ !�T d� =

∫

X
f d� for all f ∈ L1(X,ℬ, �).

Clearly !�T = 1 a.e. if and only if T preserves �.

If we have an equivalent measure � ∼ �, we can write d�
d� = g with g > 0

a.e., and we have

(2.3) J�T (x) =
g ∘ T
g

(x) ⋅ J�T (x) a.e.

More generally we use the Jacobian to define the transfer operator ℒ�T
acting on the space of measurable functions ℎ : X → ℝ by

ℒ�Tℎ(x) =
∑

y∈T−1x

ℎ(y)

J�T (y)
.

Since many of our examples are maps on bounded subsets of X ⊂ ℝ
k or

ℂ, the notation mk will refer to normalized k-dimensional Lebesgue measure
on X. The notation m is used for Lebesgue measure on ℝ or any subset of
it unless confusion arises.

Suppose T = (T1, . . . , Tk) : ℝ
k → ℝ

k is a continuously differentiable map

on an open set O. If for every x ∈ O the classical Jacobian, det( ∂Ti∂xj
), is

nonzero, then T is a diffeomorphism between O and T (O) with JmkT (x) =

∣det( ∂Ti∂xj
)(x)∣. For example, if T : ℝ → ℝ is C1, the transfer operator be-

comes

ℒmTℎ(x) =
∑

y∈T−1x

ℎ(y)

∣T ′(y)∣ .

and if T : ℂ → ℂ is holomorphic the Jacobian with respect to Lebesgue
measure on ℂ is Jm2T (z) = ∣T ′(z)∣2.

For differentiable maps in one real variable or holomorphic maps in one
complex variable, a variation of Lebesgue measure, called conformal measure
is frequently the “best dynamical measure”. For example, for rational maps
R : ℂ∞ → ℂ∞ the interesting dynamics take place on the Julia set, on
which Lebesgue measure typically is not useful; however a natural variant of
it is (see the examples in Subsection 4.2). Here, and throughout we use the
notation ℂ∞ = ℂ ∪ {∞} to denote the Riemann sphere, and for a rational
map R : ℂ∞ → ℂ∞ the Julia set is denoted by J (R). A general introduction
to complex dynamics can be found for example in [28].

Notation 2.8. In order to treat the real and complex case together, we let Y
denote any of I, ℝ or S1 (respectively, ℂ or ℂ∞); I ⊂ ℝ is always a compact
interval. We endow Y with ℬ, the �-algebra of Borel sets. Assume that
T is a C1 (respectively, holomorphic) map on Y and simply call T smooth.
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If X ⊂ Y is such that T (X) = X, then (X,ℬX ) has the restricted Borel
structure on it.

Definition 2.9. A measure m�, � > 0, on (X,ℬX) is called �-conformal
w.r.t. the smooth map T if the Jacobian Jm�T (x) = ∣T ′(x)∣� m�-a.e. For
instance, Lebesgue measure m is 1-conformal w.r.t. piecewise C1 maps on
the interval or circle.

In the general setting it is easy to see the following classical identities
hold (� mod 0), cf. [12].

Lemma 2.10. For T a bounded-to-one endomorphism,

1. ��T = d�T−1

d� (x) = ℒ�T 1;
2. T preserves � if and only if ℒ�T 1 = 1;
3. T preserves a measure � ∼ � if and only if ℒ�T g = g and d� = gd�;

The next result was proved in [6] and illustrates the roles of Rohlin par-
titions in this study.

Lemma 2.11. Let T on (X,ℬ, �) be an n-to-one measure preserving endo-
morphism and � = {A1, . . . An} a Rohlin partition. As in (2.2), we denote
by ℱ the associated sub �-algebra generated by �.

1. Then the induced factor map of T on ℱ , is isomorphic to a measure
preserving shift on n states, so with A = {1, 2, , . . . , n} the diagram

(X,ℬ, �) T−→ (X,ℬ, �)
↓ � ↓ �

(Aℕ, C, �) �−→ (Aℕ, C, �)
commutes, where � is the factor measure induced by �.

2. If in addition there exists a Rohlin partition for T such that the Ja-
cobian J�T (x) = 1

pi
for all x ∈ Ai, then the induced Rohlin factor

(Aℕ, C, �) is isomorphic to a one-sided p = {p1, . . . , pn} Bernoulli shift
(see Definition 2.1 below).

If  : (X1,ℬ1, �1) → (X2,ℬ2, �2) is a measure preserving isomorphism,
then J�1 = 1, and if T : (X,ℬ, �) → (X,ℬ, �) is a measure preserving
endomorphism and ' : (X,ℬ, �) → (X,ℬ, �) is a nonsingular automorphism,
the preceding discussion gives these chain rules:

(2.4) !�(T∘') = !�T ∘ ' ⋅ !�' = J�'(� mod 0)

and

(2.5) !�('∘T ) = !�' ∘ T ⋅ !�T = J�' ∘ T (� mod 0).

Chain rules (2.4) and (2.5) prove the next well-known result.
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Proposition 2.12. If T : (X,ℬ, �) → (X,ℬ, �) is an ergodic probability
measure preserving endomorphism and ' : (X,ℬ, �) → (X,ℬ, �), is a non-
singular automorphism that commutes with T , then ' preserves �.

Proof. The commuting hypothesis gives that (2.4) is equal to (2.5). There-
fore J�' is a T -invariant measurable function, and the ergodicity of T implies
it is the constant function 1 (� mod 0). □

Clearly every Bernoulli shift is a measure preserving n-to-one endomor-
phism. As a corollary to Proposition 2.12 we obtain two necessary conditions
for an endomorphism to be one-sided Bernoulli shift when the given measure
is preserved [30].

Corollary 2.13. If T on (X,ℬ, �) preserves � and is one-sided {p1, p2, . . . , pn}
Bernoulli, then (� mod 0) we have indT (x) = n and the set of values
{J�T (y)}y∈supp(�T−1x)

= {1/p1, 1/p2, . . . , 1/pn}.

Proof. Using Definition 2.1, the conjugating isomorphism ' : X → Ω, and
the statement preceding (2.4), we have (� mod 0)

J�T (y) = J�('−1�')(y) = J�(�('y)) ⋅ J��('y) ⋅ J�('y) = J��('y).

Since y ∈ T−1x⇔ '(y) ∈ �−1('x), the result follows. □

While Corollary 2.13 gives a necessary condition for one-sided Bernoulli,
it is not sufficient, as Example 4.1 for t = 1

4 shows. Moreover the next result
indicates that the Jacobian condition of Corollary 2.13 is not always possible
to verify.

Corollary 2.14. If T on (X,ℬ, �) preserves � ∼ � with g = d�/d�, and is
one-sided {p1, p2, . . . , pn} Bernoulli, then for �-a.e. x ∈ X and y ∈ T−1(x),

J�T (y) =
g(x)

g(y) ⋅ pk
for some k.

Example 2.15. Consider the modified Boole map T : ℝ → ℝ, T (x) = 1
2(x−

1/x) with Lebesgue measure m. For any x0 ∕= 0 testing the Jacobians

JmT (y) = 1/∣T ′(y)∣ = ∣1± x0
√

1 + x20
∣ at y ∈ T−1x0

would not indicate whether or not this map is isomorphic to the {1
2 ,

1
2}

Bernoulli shift (it is, by [3]), or whether this variation is: S(x) = a(x−1/x),
a ∈ (0, 1) ∖ {1

2} is (it is not, by Theorem 2.21 below). In each case m is not
preserved, but equivalent probability measures are, so we are in the setting
of Corollary 2.14 and not Corollary 2.13.

2.5. The weak Bernoulli property. We recall a condition which is strictly
weaker than one-sided Bernoulli for endomorphisms [10], but equivalent to
Bernoulli in the invertible case [9].
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Definition 2.16. Let T be an endomorphism of X preserving the measure
�. Let � = {P1, P2, ⋅ ⋅ ⋅ } and � = {Q1, Q2, ⋅ ⋅ ⋅ } be partitions. The partition
� is independent of � if

�(Pi ∩Qj) = �(Pi)�(Qj) for all i, j.

The partition � is "−independent of � if
∑

i

∑

j

∣�(Pi ∩Qj)− �(Pi)�(Qj)∣ ≤ ".

For an ergodic measure-preserving endomorphism T on (X,ℬ, �), (invertible
or noninvertible) a partition � is weak Bernoulli if given " > 0, there exists
N ∈ ℕ such that for all m ≥ 1,

m
⋁

0

T−i� is "− independent of

N+m
⋁

N

T−i�.

It was proved by Friedman and Ornstein in [9] that for an invertible
transformation T , if there exists a weak Bernoulli partition � such that:

�∞−∞ ≡
∞
⋁

i=−∞
T−i(�)

generates ℬ (note that this is a two-sided generator), then T is isomorphic
to an (invertible) Bernoulli shift. The first example of a noninvertible en-
domorphism with a weak Bernoulli generator in the sense of (2.2) is due
to Furstenberg [10]. It is clear that a measure-preserving endomorphism T
is one-sided Bernoulli if and only if there exists an independent generating
partition.

Definition 2.17. We say that a noninvertible endomorphism T on (X,ℬ, �)
has the weak Bernoulli property or that T is weak Bernoulli if there exists a
weak Bernoulli generating partition P for T (in the sense of Definition 2.6
(2.2)).

Definition 2.18. An automorphism T̃ is the natural extension of the (non-

invertible endomorphism) T if T is a measurable factor of T̃ and any other

automorphism S which has T as a factor also has T̃ as a factor.

It was shown by Rohlin [35] that a unique natural extension exists for
every finite measure preserving endomorphism; the construction of the in-
vertible extension leads to a straightforward proof that a weakly Bernoulli
endomorphism has a weakly Bernoulli, hence Bernoulli natural extension.
This is well-known (see e.g. [1, 21]).

Weakly Bernoulli endomorphisms exhibit many highly mixing properties
and have been well-studied; for example weakly Bernoulli toral endomor-
phisms were described by Adler [1], Smorodinsky [37] and others in the
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early 70’s. Conditions under which piecewise smooth bounded-to-one inter-
val maps are weakly Bernoulli were given by Ledrappier in [21]. Haydn [13]
showed that rational maps R on the Riemann sphere are weakly Bernoulli
with respect to equilibrium measures of Hölder potentials  , when the supre-
mum gap holds: P ( ) > sup{ (z) : z ∈ J }, where P is the pressure function
and J the Julia set of R. When J is sufficiently far from the critical points
of a hyperbolic R, these conditions hold for the potential  = − log ∣R′∣;
in this case, R is weakly Bernoulli with respect to the R-invariant mea-
sure � that is equivalent to t-conformal measure (∼ t-dimensional Hausdorff
measure) for t = dimH(J ).

Entropy gives a simple necessary test for one-sided Bernoulli maps. Note
that, contrary to two-sided Bernoulli shifts, entropy is not a complete invari-
ant in the setting of one-sided Bernoulli shifts. We give an example showing
that many of these weakly Bernoulli maps are not one-sided Bernoulli.

Lemma 2.19. Suppose T : (X,ℬ, �) → (X,ℬ, �) is a measure preserving
n-to-one endomorphism, and ℎ�(T ) > log n. Then T is not isomorphic to a
one-sided Bernoulli shift.

Proof. The maximal entropy for an n-state one-sided Bernoulli shift is log n.
□

Example 2.20. The map A(x, y) = (3x + y, x + y) (mod 1) on T
2 = ℝ

2/ℤ2

gives a two-to-one m2-preserving map of T2 with entropy log(2+
√
2) > log 2.

By Lemma 2.19, A is not one-sided Bernoulli, despite being weakly Bernoulli
[1].

2.6. Parry-Walters invariant and commuting automorphisms. As-
sume T is a measure preserving endomorphism on (X,ℬ, �), and let ��(T ) ≡
�� denote the smallest �-algebra with respect to which J�T is measurable
and such that T−1�� ⊂ ��.

Our starting point is an observation by Walters [41] that if p ∈ (0, 1) and
p ∕= 1

2 , then ��(�) = �� = ℬ for the one-sided {p, 1 − p} Bernoulli shift,

and if p = 1
2 , then �� = {∅,X}. From this he showed that there are no

measure-preserving automorphisms commuting with a {p, 1 − p} Bernoulli
shift unless p = 1

2 . In this section we push this result further in order to
obtain some differentiable non-Bernoulli maps.

We prove a (slightly stronger) version of a theorem from [30] and ([41,
Theorem 2]), starting with the basic ideas laid out in the original work from
the 1970’s. The results in this section provide us with many new examples
in later sections.

Theorem 2.21. Suppose p ∕= 1
2 :

1. Let � on (Ω, �) be the one-sided {p, 1− p} Bernoulli shift. Then there
exists no nontrivial nonsingular automorphism ' : (Ω, �) → (Ω, �) with
' ∘ � = � ∘ ' (� mod 0).
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2. If T on (X,ℬ, �) is a one-sided {p, 1 − p} Bernoulli endomorphism,
then there is no nontrivial nonsingular commuting automorphism ' :
(X,�) → (X,�).

Proof. Under the assumption that p ∕= 1
2 , we have that �� = D, the entire

�-algebra of Borel sets. Since � is ergodic, applying Proposition 2.12 it
follows that ' preserves �. We consider the factor map induced by � on
��. Two points x ∼�� y under the factor relation if and only if J��(x) =
J��(y), J��(�x) = J��(�y), . . ., and J��(�

nx) = J��(�
ny) for all n ∈ ℕ. By

assumption and the chain rule on J�('∘�),

J�('∘�)(x) = J�'(�x) ⋅ J��(x) = J��(x).

Since ' ∘ � = � ∘ ', this is equal to
J�(�∘')(x) = J��('x) ⋅ J�'(x) = J��('x).

Therefore x and '(x) belong to the same atom of �� = D, so x = '(x)
under the factor map induced by ��, which is the identity map. This is a
contradiction unless ' is the identity map on a set of full measure.

In the case that T preserves �, and is isomorphic to � on (Ω, �), it follows
immediately that there is no nontrivial automorphism ' on X preserving �
because any such automorphism would result in one on (Ω, �). □

The following corollary leads to the construction of examples; the addition
here is that we have a checkable condition even if we do not know the precise
invariant measure.

Corollary 2.22. [30] Suppose T : (X,ℬ, �) → (X,ℬ, �) is a measure pre-
serving two-to-one endomorphism, and ℎ�(T ) < log 2. If there exists a
nontrivial nonsingular automorphism ' commuting with T , then T is not
isomorphic to a one-sided {p, 1 − p} Bernoulli shift.

Proof. Since ℎ�(T ) < log 2, we know that T is not isomorphic to the {1
2 ,

1
2}

Bernoulli shift. The result follows from Theorem 2.21 (1). □

For a {p1, p2, . . . , pn} one-sided Bernoulli shift, and the resulting product
measure �, in order to extend Theorem 2.21 one must ask when ��(�) = D.
Of course ��(�) = {∅,X} if each pk = 1

n , but neither case above need to
occur. For example, if p = {1/2, 1/6, 1/6, 1/6}, �� is neither trivial nor equal
to ℬ, but gives rise to a {1/2, 1/2} Bernoulli shift factor.

However, we still obtain results for n-to-one Bernoulli shifts and the proof
of (1) and (2) is the same as for Theorem 2.21.

Corollary 2.23. 1. If T on (X,ℬ, �) is a one-sided Bernoulli endomor-
phism isomorphic to � on (Ω, �), and �� = D, then there is no nontriv-
ial automorphism ' : (X,�) → (X,�) preserving any �-finite measure
equivalent to �.
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2. If T on (X,ℬ, �) is a one-sided Bernoulli endomorphism and ' is a
�-preserving automorphism commuting with T , then J�T is constant
on orbits of ' (� mod 0).

3. If T on (X,ℬ, �) is measure preserving and n-to-one and has a Rohlin
factor that is isomorphic to the { 1

n ,
1
n , . . . ,

1
n} one-sided Bernoulli shift,

then either T is isomorphic to its Rohlin factor or T is not one-sided
Bernoulli.

Proof. Corollary 2.11 shows that the assumption on the Rohlin factor is
a shift factor of T such that ℎ�(�) = log n; hence ℎ�(T ) ≥ log n. By
Lemma 2.19, ℎ�(T ) > log n implies the result, and if ℎ�(T ) = log n, either
T is not Bernoulli or is isomorphic to its Rohlin factor. □

3. Rigidity of piecewise smooth noninvertible

Bernoulli interval maps

In this section we prove a series of results showing the rigidity of a smooth
one-sided Bernoulli interval map. In particular, each such map is conjugate
to a piecewise linear map via a conjugating map which is as differentiable
as can be hoped for, depending on the setting.

3.1. Radon-Nikodym derivatives of interval maps. We begin a ver-
sion of the so-called Folklore Theorem which we apply to obtain continuity of
Radon-Nikodym derivatives, following the exposition given in [24, Theorem
III.1.3].

Theorem 3.1 (Folklore Theorem). Let (X,ℬ, �) be a probability space
equipped with a metric d. If the map T : X → X satisfies:

1. there is a finite or countable partition P of X, i.e., X = ∪P∈PP
(mod �) and �(P ∩Q) = 0 for distinct P,Q ∈ P;

2. T ∣P : P → X is one-to-one and onto for each P ∈ P;
3. there exists � > 1 and N ≥ 1 such that

d(TNx, TNy) ≥ �d(x, y)

if x, y belong to the same atom of
⋁N−1
i=0 T−i(P);

4. there are ,C0 > 0, such that distortion of the Jacobian satisfies:
∣

∣

∣

∣

J�T (x)

J�T (y)
− 1

∣

∣

∣

∣

≤ C0d(Tx, Ty)


for all x, y in the same atom of P;

then there is a T -invariant measure � ≪ � and:

∙ d�
d� is Hölder continuous (with exponent ), bounded and bounded away

from 0;
∙ T is exact with respect to �;
∙ �(A) = limn→∞ �(T−n(A)) for every A ∈ ℬ.
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We next apply the Folklore Theorem to first return maps for C2 interval
maps to prove continuity of some Radon-Nikodym derivatives. The notation
acip stands for absolutely continuous (w.r.t. Lebesgue) invariant probability
measure in what follows. Let orb(A) = ∪n≥0T

n(A) be the (forward) orbit
of the set (or point) A, and let Crit denote the set of critical points of T ,
i.e., the points c where T ′(c) = 0. The following proposition is useful only
when orb(Crit) is not dense. As in 2.8, I is compact.

Proposition 3.2. Let T : I → I be a C2 interval map with an acip �≪ m.
Then the Radon-Nikodym derivative g = d�

dm is continuous at every point in

I ∖ orb(Crit).
Proof. Every acip has at most #Crit ergodic components, whose supports
have pairwise disjoint interiors. So we restrict our attention to a single
ergodic component with acip �; its support is a finite union of intervals
Ik, k = 1, . . . , N which are permuted cyclically under the map, and �-a.e.
x ∈ supp(�) has a dense orbit in supp(�). In particular, supp(�) contains no
periodic attractors or periodic intervals of period ∕= N . Therefore supp(�)
has a dense set of periodic orbits. These facts can be found e.g. in [38]; the
monograph [26] covers the unimodal case.

Take t ∈ supp(�) ∖ orb(Crit). We show that d�
dm is continuous at t. Let

V ′ be the component of supp(�) ∖ orb(Crit) containing t and let V be a
neighborhood of t, compactly contained in V ′, such that orb(∂V )∩ V ∘ = ∅.
Because the set of periodic points is dense in supp(�), we can find such a
V ′ by giving it periodic boundary points.

For x ∈ V , let �(x) := min{n ≥ 1 : T n(x) ∈ V } be the first return time,
and let V∗ = {x ∈ V : �(x) is well-defined}. Then

F : V∗ → V, F : x 7→ T �(x)(x).

is the first return map. If x ∈ V∗, let U ′
x be the maximal neighborhood of x

on which T �(x) is monotone. Since T �(x)(∂U ′
x) ⊂ orb(Crit), T �(x)(U ′

x) ⊂ V ′

and hence there is a smaller neighborhood Ux such that T �(x) maps Ux
monotonically onto V . Moreover, T i(Ux) ∩ V = ∅ for every 0 < i < �(x).
Indeed, if T i(Ux) ⊂ V , then �(x) is not the first return time to V , and if

T i(Ux) ∩ ∂V ∕= ∅, then V ⊂ T �(x)−i(∂V ) contradicting the definition of V .
Hence �(x) = �(y) for all y ∈ Ux.

This means that the domain V∗ consists of a countable union of disjoint
intervals, which we can renumber as {Ui}i∈ℕ. We noted above that �-a.e.
x ∈ supp(�) has a dense orbit in supp(�), so V∗ = ∪iUi has full Lebesgue
measure in V , and the same holds for V∞ =

∩

i≥0 F
−i(V∗), the set on which

all iterates of F are well-defined.
The Koebe Principle [26, Chapter IV.1] guarantees that the distortion

condition (4) of the Folklore Theorem 3.1 holds for C0 = C0(V
′, V ) and

 = 1. One can extend these arguments to show that the same distortion
bound holds uniformly over all iterates of F , and due to the absence of
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periodic attractors, there is some iterate FN such that ∣(FN )′(x)∣ ≥ 2 for
all x ∈ V∞.

The Folklore Theorem 3.1 gives an F -invariant measure � on V with d�
dm

continuous and bounded away from 0. On I, the measure defined by

(3.1) �0(A) =
∑

i

�i−1
∑

j=0

�(T−j(A) ∩ Ui)

can be checked to be absolutely continuous, �-finite and T -invariant. There-
fore �0 ∼ �, and since � is a probability measure, d� = Cd�0 for some
C ∈ (0,∞).

For each A ⊂ V , equation (3.1) gives that �0 =
∑

i �(A ∩ Ui) = �(A), so
d�
dm = C d�0

dm = C d�
dm is indeed continuous at t. □

Remark: The Folklore Theorem implies that d�
dm is bounded away from

0 on each Ui above. Moreover, for any fixed Ui, there exists an N such

that ∪Nk=0T
k(Ui) ⊃ supp(�). From this it is not hard to derive that d�

dm is
bounded away from 0 on supp(�), cf. [19, Theorem 1(3)].

3.2. Rigidity of smooth Bernoulli maps. We now turn to some results
regarding one-sided Bernoulli differentiable maps of the interval and circle.

Definition 3.3. Suppose we have two interval maps T, S : I → I.

∙ We say S and T are C0-conjugate, or topologically conjugate if there
exists a homeomorphism  : I → I such that S =  ∘ T ∘  −1.

∙ If  above is a Ck diffeomorphism (with a Ck inverse), we say T and
S are Ck-conjugate.

Theorem 3.4. Let T : I → I be a piecewise C2 n-to-1 interval map pre-
serving a probability measure � equivalent to Lebesgue measure m such
that the Radon-Nikodym derivative g(x) = d�

dm is continuous and bounded
away from 0. Then T is one-sided Bernoulli on (I,ℬ, �) if and only if T is
C1-conjugate to a map S : I → I whose graph consists of n linear pieces,
with slopes ± 1

pi
such that ℎ�(T ) = −∑n

i=1 pi log pi.

Proof. (⇐): The map S is clearly one-sided Bernoulli with respect to the
invariant measure m, with ℎm(S) = −∑n

i=1 pi log pi. Under the assumption
that S is C1-conjugate to T , this implication follows immediately.

(⇒): Define  : I → I by  (x) = �([0, x]). Since g is positive and
continuous,  is a C1 diffeomorphism and  ′(x) = g(x) > 0, so  −1 is C1

as well. Furthermore the map S :=  ∘ T ∘  −1 preserves m.
It remains to show that S is piecewise linear or equivalently it suffices

to show that S ′ is piecewise constant. By construction, S is topologically
conjugate to T , so ℎm(S) = ℎ�(T ). We differentiate both sides of S ∘  =
 ∘ T , and write ' := log ′ to obtain

(3.2) log ∣T ′∣+ ' ∘ T − ' = log ∣S ′∣ ∘  .
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The left hand side is defined and continuous except at the set C of discon-
tinuities of T ′. Therefore S ′ is continuous, except at  (C), (where possibly
C = ∅). Let � : I → Aℕ be the isomorphism between (I,ℬ, �;T ) and a one-
sided p = {p1, . . . , pn} Bernoulli shift �. Then Ψ :=  ∘ �−1 is an isomor-
phism between (I,ℬ,m;S) and the Bernoulli shift (Ω,D, �;�), see Figure 2.
It follows that for m-a.e. x, the Jacobian functions JmS(yj) at the n preim-

-(Aℕ, �) (Aℕ, �)
�

? ?

Ψ Ψ =  ∘ �−1-(I, �) (I, �)
T

A
A
AAK

�
�
���

� �

�
�
���

A
A
AAU

  

-(I,m) (I,m)
S

Figure 2. Commutative diagram to construct Ψ =  ∘ �−1.

ages y1, . . . , yn of x take the values 1
p1
, . . . , 1

pn
since JmS(y) = J��(Ψ

−1y).

But since m is Lebesgue measure, the Jacobian of S coincides with the ab-
solute value of the derivative, and the derivative is piecewise continuous. It
follows that S ′ is piecewise constant as asserted. □

Corollary 3.5. Let T : I → I be a piecewise C2 expanding n-to-1 map.
Then T is one-sided Bernoulli on (I,ℬ,m) if and only if T is C1-conjugate
to a map S : I → I whose graph consists of n linear pieces, with slopes ± 1

pi
such that ℎ�(T ) = −∑n

i=1 pi log pi.

Proof. The Folklore Theorem 3.1 gives an invariant probability measure �

such that g = d�
dm is continuous and bounded away from 0 and ∞. Hence

Theorem 3.4 applies □

Remarks:

1. The partition P = {P1, . . . , Pn} into intervals such that T : Pi → (0, 1) is
C2 onto generates ℬ. The coding map � : I → Ω =

∏∞
0 {1, . . . , n} gives the

isomorphism with the Bernoulli shift (Ω,D, �;�).
2. Theorem 3.4 shows that one-sided Bernoulli interval maps are rare, the
property is quite rigid, as the C1-conjugacy implies that multipliers of all
periodic points of T are the same as the multipliers of the corresponding
periodic points of the piecewise linear map S, see Corollary 3.12.

Example 3.6. Chebyshev polynomials form a well-known collection of one-
sided Bernoulli maps. Scaled to [0, 1], the Chebyshev polynomial Чn of
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degree n can be defined by Чn =  ∘ Sn ∘  −1, where  (x) = 2
� arcsin

√
x

and Sn : I → I is the continuous map with n linear branches of slope ±n and
Sn(0) = 0. For example, Ч2(x) = 4x(1− x) and Ч3(x) = 9x− 24x2 + 16x3.
Clearly (I,ℬ,m;Sn) is { 1

n , . . . ,
1
n} Bernoulli, and so is (I,ℬ, �;Чn) with

invariant measure � = m ∘  . A straightforward computation shows that
the Radon-Nikodym derivative g(x) = d�

dm (x) = 1

�
√
x(1−x)

for each n. Since

g(x) → ∞ as x → 0 or 1, the hypotheses of Theorem 3.4 are not met,
and indeed  has infinite derivative at these points. The following corollary
shows how Theorem 3.4 can be rephrased and extended to include this (and
similar) examples.

Corollary 3.7. Let (I,ℬ,m;T ) be as in Theorem 3.4, and assume that the

Radon-Nikodym derivative g(x) = d�
dm is continuous and positive on (0, 1).

Then T is one-sided Bernoulli on (I,ℬ,m) if and only if T is topologically
conjugate to a map S : I → I whose graph consists of n linear pieces, with
slopes ± 1

pi
such that ℎ�(T ) = −∑n

i=1 pi log pi. In this case the conjugacy  

is C1 on (0, 1) and it has a C1 inverse.

Proof. (⇐): The system (I,ℬ,m;S) is one-sided Bernoulli as in the proof
of Theorem 3.4. As  is C1 on (0, 1), it is still absolutely continuous on I,
so T is one-sided Bernoulli as well.
(⇒): Following the proof of Theorem 3.4, we see that  ′(x) = g(x), except
that  ′ need not be defined (or be infinite) at x = 0, 1. The points 0 and 1
and T−1({0, 1}) should be added to the set C because ' or '∘T are undefined
at those points. Therefore  (C) ⊂ {0, 1}∪S−1({0, 1}) as well. But this has
no further effect on the conclusion that S′ is piecewise constant. □

Corollary 3.8. Let T : I → I be a C2 n-to-1 map with T (∂I) ⊂ ∂I and
whose critical points map into ∂I. Assume also that all periodic points of
T are repelling and that all critical points are nonflat (i.e., some derivative
DnT (c) ∕= 0). Then T is one-sided Bernoulli on (I,ℬ,m) if and only if T is
topologically conjugate to a map S : I → I whose graph consists of n linear
pieces, with slopes ± 1

pi
such that ℎ�(T ) = −∑n

i=1 pi log pi. Moreover the

conjugacy is C1 on (0, 1).

Proof. The conditions (including the nonflatness of critical points) guar-
antee the existence of an invariant probability measure � ≪ m, see [26,
Chapter V.3]. In this case, the Radon-Nikodym derivative is unbounded at
∂I, but by Proposition 3.2, g(x) is continuous and positive elsewhere. Thus
Corollary 3.7 applies. □

The following corollary gives a version of the Theorem 3.4 in the case of
smooth circle maps; related results appear in [36] and [16].

Corollary 3.9. If T : S1 → S
1 is an expanding C2 degree n ≥ 2 circle map

and T (0) = 0, then T is one-sided Bernoulli if and only if it is C1-conjugate
to x 7→ nx (mod 1).
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Proof. (⇐): As in Theorem 3.4.
(⇒): T is an expanding C2 n-to-one (degree n) circle map if and only if

there is a C2 covering map T̃ : ℝ → ℝ such that T̃ (x + 1) = T (x) + n and

T̃ ′(x) = T ′(x) > 1 for x ∈ [0, 1). Therefore T has exactly n− 1 fixed points.
Let 0 be one of them. We cut the circle at 0 to obtain an interval, and
then T can be extended to a C2 n-to-one on this interval. Now the proof of
Theorem 3.4 applies; it actually gives that the set C = ∅, because T ′ has no
discontinuities. Therefore S′ is constant, and after gluing the interval back
to a circle, the map S becomes a linear degree n circle map. There is only
one such map: x 7→ nx (mod 1). □

Corollary 3.10. There are no C2 expanding n-to-one one-sided Bernoulli
maps on (S1,ℬ,m) that are {p1, . . . , pn} Bernoulli unless pi =

1
n for each i.

Proof. If pi ∕= 1
n for some i, then S′ would have to have at least one dis-

continuity which is impossible as shown in the proof of Corollary 3.9. □

The next two results on conformal measures show how the one-sided
Bernoulli property imposes rigidity results on the multipliers of periodic
points. Let Y and X ⊂ Y , T be as in Section 2.9 and let m� denote a con-
formal measure on X. If f : X → ℝ is piecewise constant then X = ∪kj=1Fj
such that the Fj ’s are disjoint, open and closed sets, and f is constant on
Fj , j = 1, . . . , k.

Proposition 3.11. Let T be a C1 n-to-one map on (X,ℬX ,m�) preserving
a measure � ∼ m� and assume that the Radon-Nikodym derivative g(x) :=
d�
dm�

is continuous and bounded away from 0. If T has no critical points onX

and is one-sided {p1, . . . , pn} Bernoulli, then J�T is continuous everywhere
on X. Moreover J�T is constant on components of X; if X is connected,
J�T is constant on X.

Proof. As T is one-sided {p1, . . . , pn} Bernoulli, J�T (x) ∈ { 1
p1
, . . . , 1

pn
} for

�-a.e. x. By (2.3) we have for each x ∈ X

(3.3) J�T (x) =
d�

dm�
(Tx) ⋅ Jm�T (x) ⋅

(

d�

dm�
(x)

)−1

=
g(Tx)

g(x)
∣T ′(x)∣�;

the hypotheses imply that the right hand side of the equality is the prod-
uct of continuous nonzero functions and hence J�T is continuous and finite
valued. If X is connected, the only finite-valued continuous functions are
constants. Therefore J�T must be piecewise constant with Fj = J−1

�T (pk);
each component of X must be contained in a single Fj by continuity. □

Corollary 3.12. Suppose T is a C1 n-to-one map on (X,ℬX ,m�) preserving

� ∼ m� with g(x) := d�
dm�

continuous and bounded away from 0. Assume
T has no critical points on X and is one-sided Bernoulli. Then for every
k-periodic point q, the multiplier ∣(T k)′(q)∣� is a k-fold product of numbers
1/pi.
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Proof. Apply (3.3) to the k-fold Jacobian J�T k(q) to see that

J�T k(q) =
g(T kq)

g(T k−1q)
∣T ′(T k−1q)∣� ⋅ g(T

k−1q)

g(T k−2q)
∣T ′(T k−2q)∣� ⋅ ⋅ ⋅

⋅ ⋅ ⋅ g(Tq)
g(q)

∣T ′(q)∣�

= ∣(T k)′(q)∣�.
By Proposition 3.11 the left hand side is a product of numbers 1/pi. □

4. Examples of Non-Bernoulli n-to-one Maps

4.1. Maps in one real dimension. We first give a basic example illus-
trating Theorem 2.21.

Example 4.1 (Piecewise affine maps). Fix any p, q ∈ (0, 1) such that p+q = 1.
A dynamical system which is well-known to be isomorphic to the one-sided
{p, q} Bernoulli shift is (S1,ℬ,m;Tp,0), where

Tp,0(x) =

{

1
q x for x ∈ [0, q) = A2

1
p (x− 1) + 1 for x ∈ [q, 1) = A1,

and ℬ is the �-algebra of Lebesgue measurable sets. The coding map with
respect to the partition � = {A1, A2} is the isomorphism.

The following variation is no longer one-sided Bernoulli (unless p = q =
1
2): Let Tp, 1

4

: S1 → S
1 = ℝ/ℤ be given by

Tp, 1
4

(x) =

⎧











⎨











⎩

1
p x if x ∈ [0, p2 )

1
q (x− p

2) +
1
2 if x ∈ [p2 ,

1
2 )

1
q (x− 1

2) if x ∈ [12 ,
1+q
2 )

1
p(x− 1+q

2 ) + 1
2 if x ∈ [1+q2 , 1)

(see Figure 3). The map Tp, 1
4

also preserves Lebesgue measure m and com-

mutes with the automorphism '(x) = 1−x. Theorem 2.21 implies that Tp, 1
4

cannot be one-sided Bernoulli. Let A1 = [0, p2) ∪ [1+q2 , 1) and A2 = [p2 ,
1+q
2 ).

Then � = {A1, A2} is a Rohlin partition, and ' interchanges Ai, i = 1, 2. Be-
cause of this, the coding map � : S1 → {1, 2}ℕ with respect to � = {A1, A2}
is 2-to-1; so � is not generating. If x ∕= y ∕= '(x), then �(x) ∕= �(y).
This can be seen by the fact that Tp, 1

4

is expanding, and the atoms in

�n :=
⋁n−1
i=0 T

−i
p, 1

4

(�) are unions of two intervals (symmetric under '), and

each of these intervals has length 1
2p
kqn−k, where k denotes the number of

1’s in the first n entries of the coding under �.
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q + 2t(p − q)

Figure 3. The map Tp,t is not one-sided Bernoulli for t = 1
4

(left) but it is for e.g. t = 3
20 (right).

Since m is Lebesgue measure, JmT = ∣T ′∣, hence JmT ∣A1
= 1/p and

J�T ∣A2
= 1/q. It follows from Lemma 2.11 that � is a 2-to-1 factor map

onto the {p, 1−p} Bernoulli shift. This proves statement (4) in Example 2.7.
The above examples are special cases (namely t = 0 and t = 1/4) of the

family Tp,t : S
1 → S

1 with t ∈ [0, 1/2), p+ q = 1 and

Tp,t(x) =

⎧











⎨











⎩

1
p x if x ∈ [0, 2tp)

1
q (x− 2tp) + 2t if x ∈ [2tp, q + 2t(p − q))

1
q (x− q − 2t(p− q)) if x ∈ [q + 2t(p− q), q + 2tp)

1
p(x− 1) + 1 if x ∈ [q + 2tp, 1)

The maps Tp,t are piecewise affine, and the derivative has two discontinuities,

namely at T−1
p,t (2t), see Figure 3. Again, Lebesgue measure is Tp,t-invariant.

This family can be thought of as a “{p, q} version” of Example 2.7 in the
sense that for every p ∈ (0, 1) and t ∈ [0, 12 ), the system (S1,ℬ,m;Tp,t) is
isomorphic to (or if t = 1/4, is a two-point extension of) the {p, q} Bernoulli
shift, and the coding map with respect to the partition �p,t defined below
implements the isomorphism (respectively, factor map).

Let �p,t = {A1, A2} for A1 = [0, 2tp) ∪ [q +2tp, 1) and A2 = [2tp, q +2tp);
it is obviously a Rohlin partition. The map Tp,t maps both A1 and A2 onto
S
1. From this it follows that the coding map �p,t is surjective unless t = 0,

when there is no point x with �p,0(x) = 111 . . . . Furthermore, �p,t is not
injective unless t = 0. However, unless t = 1/4, �p,t is generating (so the
coding map is injective m-a.e.). One can show by induction that for any n,

the atoms of
⋁n−1
i=0 T

−i�p,t are unions of intervals whose combined Lebesgue

measure is pkqn−k, where k denotes the number of 1’s in the first n entries
of the coding under �p,t. By the Kolmogorov extension theorem, this means
that �p,t is an isomorphism.

Although the Jacobian JmTp,t takes values 1/p or 1/q at every point except
two, and in particular at every periodic point, the Jacobian may fail to be
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Figure 4. Non-Bernoulli example and the one-sided
{1/2, 1/2} Bernoulli (dotted line)

invariant under the isomorphism on a set of m measure 0, which could
include some periodic points.

For example, if t is close to 1/4, then there is a periodic point x = 1
p(

q
1+q+

2t(p−q)) whose period 2 orbit belongs to A2, so JmTp,t(x) = JmTp,t(Tp,tx) =
1/q. Thus �p,t(x) is fixed (not period 2) under �; moreover the period 2 point
y = 212121 . . . of the Bernoulli shift has J��(y) = 1/q and J��(�(y)) = 1/p.

This phenomenon needs to be taken into account in the proofs of Proposi-
tions 4.5 and 4.9. It also demonstrates the importance of the smoothness as-
sumption in Theorem 3.4 because the map Tp,t is in general not C1-conjugate
to Tp,0; the multipliers at corresponding periodic points do not agree.

Example 4.2. Using Corollaries 3.9 and 3.10 one can construct a C∞ ex-
panding two-to-one non-Bernoulli circle map. Define

T (x) = 2x+ " sin 4�x

for ∣"∣ < 1/4�. For each such ", T is a C∞ two-to-one expanding map of
S
1 = ℝ/ℤ, it is topologically conjugate to S(x) = 2x (mod 1) [36], and there

is an invariant probability measure � ∼ m (with � ∕= m for " ∕= 0). However,
the derivative at the fixed point 0 is 2 + 4�" and not 2, and therefore T is
not one-sided Bernoulli by Corollary 3.5 and the subsequent remarks. By
[21], T is weakly Bernoulli with weak Bernoulli partition {[0, 12 ), [12 , 1)}.
Example 4.3. Blaschke products on the circle. In [3] the following family of
degree two rational maps is studied: for a ∈ (0, 1), define:

Ba(z) =
z(2

√
a− 1 + z)

1 + (2
√
a− 1)z

,

with a ∈ (0, 1).
Each of these maps takes the unit disk to itself and J (Ba) = S

1; Moreover
each is a degree 2 expanding map and a = 1/4 if and only if Ba is isomorphic
to the {1/2, 1/2} Bernoulli shift [3]. Then by Corollary 3.10 we have that
for all other values of a ∈ (0, 1), Ba : S1 → S

1 is weakly Bernoulli but not
one-sided Bernoulli with respect to m.
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Figure 5. The graph of a non-Bernoulli unimodal map Ra

Example 4.4. We consider the following family of unimodal maps on I =
[−2, 2], for a ∈ (0, 1):

Ra(x) =
−8 + (2 + 8a)x2

4 + (−1 + 4a)x2
.

We obtain the Chebyshev polynomial at when a = 1/4, otherwise there
are no polynomial maps in the family. From [3] we have the following easily
shown properties and we see the graph of a typical map in Figure 4.4.

∙ Ra(−2) = Ra(2) = 2, Ra(0) = −2, and Ra has one critical point at
x = 0, is strictly decreasing on [−2, 0) and strictly increasing on (0, 2].

∙ Ra[−2, 2] = R−1
a [−2, 2] = [−2, 2].

∙ R′
a(−2) = −1/a and R′

a(2) = 1/a, so x = 2 is a repelling fixed point.
∙ Each Ra is finite postcritical (has a finite forward critical orbit).
∙ There is one other fixed point in [−2, 2], namely p = −2

1+2
√
a
∈ (−2,−2/3),

with derivative R′(p) = −(1 + 2
√
a). That is, p is always repelling.

∙ The Schwarzian derivative of Ra,

S(Ra) :=
R′′′
a

R′
a

− 3

2

(R′′
a

R′
a

)2
=

−3

2z2
.

These properties imply the existence of an invariant probability measure
�a ∼ m, and by [21] these maps are weakly Bernoulli. We show that ex-
cept for the {1/2, 1/2} Bernoulli Chebyshev case, Ra cannot be one-sided
Bernoulli.

Proposition 4.5. The map Ra is not one-sided Bernoulli except w.r.t. m if
a = 1/4, the Chebyshev polynomial.

Proof. Using Corollary 3.12 if Ra were {p, 1 − p} Bernoulli, then at each
fixed point x0 not on a critical orbit, ∣R′(x0)∣ = 1/p or 1/(1 − p) and at
each period two cycle {y1, y2}, we have that ∣(R2

a)
′(yi)∣ = 1/p2, 1/p(1 − p),

or 1/(1 − p)2.
We calculate directly using the conformally conjugate map:

fa(x) = a(x+ 1/x+ 2) = a
(x+ 1)2

x
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(cf. [3]). The unique fixed point not in a critical orbit is x0 = −1 + 1
1+

√
a

with derivative −1− 2
√
a, so Jmfa(x0) = 1 + 2

√
a > 1. Then p = 1

1+2
√
a
, so

1− p = 2
√
a

1+2
√
a
with associated Jacobian 1+2

√
a

2
√
a
> 1.

Moving to period two points, setting y1 = −
√
1+a−1√
1+a

, and y2 = −
√
1+a+1√
1+a

,

we first note that y1y2 =
a

1+a and that (yi + 1)2 = 1
1+a . Hence

fa(y1) =
a(y1 + 1)2

y1
=

a

(a+ 1)y1
=
y1y2
y1

= y2,

and similarly fa(y2) = y1. Using that f ′a(x) = a(1− 1/x2), we compute that
∣(f2a )′(yi)∣ = 3 + 4a, i = 1, 2.

Setting 1/p2 = 3 + 4a gives

(1 + 2
√
a)2 = 1 + 4

√
a+ 4a = 3 + 4a,

which implies that
√
a = 1/2, giving only the solution a = 1/4 in the

interval. Similarly, if 1/(1 − p)2 = 3 + 4a, we have

1 + 4
√
a+ 4a

4a
= 3 + 4a,

or equivalently, 16a2 + 8a − 4
√
a − 1 = 0. Treating this as a degree 4

polynomial in u =
√
a and factoring out the known solution u = 1/2, we

again obtain using basic calculus on the cubic polynomial 1+6u+4u2+8u3

that u = 1/2 or a = 1/4 is the only solution in the interval (0, 1).
Finally we suppose that

1

p
⋅ 1

1− p
=

(1 + 2
√
a)2

2
√
a

= 3 + 4a.

This yields the polynomial equation 8a3/2 − 4a+2a1/2 +1 = 0, and basic
calculus as above gives that a = 1/4 is the only solution. □

Remark: Although Ra is a symmetric map (i.e., Ra(−x) = Ra(x)) with a
symmetric critical orbit, a = 1

4 is the only parameter for which the Radon-

Nikodym derivative d�a
dm is symmetric. At a = 1/4, Ra reduces to x 7→ x2−2,

with
d�1/4
dm = 1

�
√
4−x2 . For general a ∈ (0, 1), d�adm is continuous on (−2, 2) by

Proposition 3.2, and by Lemma 2.10 (3) it is a fixed point of the transfer
operator

ℒmRaℎ(x) =
∑

y∈R−1
a (x)

ℎ(y)

∣R′
a(y)∣

.

Inserting ℎ = d�a
dm at the fixed point p, we find ℎ(p) = ℎ(p)+ℎ(−p)

1+2
√
a

. If ℎ were

symmetric (and hence ℎ(p) = ℎ(−p)), then this would reduce to 1+2
√
a = 2,

so a = 1/4.
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4.2. Examples on the Riemann sphere. Recall that ℂ∞ denotes the
Riemann sphere. Sullivan showed in [39, Theorem 3] that every rational
map R : ℂ∞ → ℂ∞ of degree d ≥ 2 has a conformal measure for some
� ∈ (0, 2], but the question as to whether m� is unique and/or nonatomic is
not entirely resolved. Under certain conditions (see [11] for extensive results
in this direction), there is a minimal �∗ ∈ (0, 2], for which the Julia set
supports a unique ergodic nonatomic �∗-conformal measure with respect
to which R is d-to-one, whereas for � ∈ (�∗, 2], only atomic �-conformal
measures (supported on backward orbits of critical and neutral periodic
points) exist. Moreover, �∗ is the Hausdorff dimension of the Julia set.

Definition 4.6. Let R : ℂ∞ → ℂ∞ be a rational map of degree d ≥ 2. R
is hyperbolic if the closure of the orbits of all critical points is disjoint from
Julia set J (R) and subhyperbolic if all critical points in J (R) have finite
forward orbits and the closure of the set of orbits of all critical points in the
Fatou set is disjoint from the Julia set J (R).

Sullivan [39, Theorem 4] showed that for hyperbolic maps, �∗ is the Haus-
dorff dimension of the Julia set, and the normalized �∗-dimensional Haus-
dorff measure is �∗-conformal; the corresponding result for subhyperbolic
maps was proved in [7] and this covers most of the examples in this subsec-
tion.

It is known that for hyperbolic and subhyperbolic maps there is an in-
variant probability measure � equivalent to the �∗-conformal measure above
[7, 11] and it exhibits highly chaotic behavior (e.g. ergodic, exact, positive
Lyapunov exponents). The next result gives a large class of examples for
which the measure � cannot be one-sided Bernoulli.

Theorem 4.7. If R is a hyperbolic rational map of degree d ≥ 2 on ℂ∞,
and if J (R) is connected, then R is not one-sided Bernoulli with respect to
� ∼ m� unless R conformally conjugate to z 7→ z±d.

Proof. The hypotheses imply that R is uniformly expanding on J (R) with
respect to a smooth Riemannian metric. Therefore by the Folklore Theo-
rem 3.1, we see that if g = d�

dm�
, then g is continuous on J (R).

If we assume that R is one-sided {p1, . . . , pn} Bernoulli, J�R(z) ∈ { 1
p1
, . . . , 1

pn
}

for �-a.e. z. By (2.3) we have

J�R(z) = g(Tz) ⋅ Jm�T (z) ⋅ g(z)−1 =
g(Tz)

g(z)
∣R′(z)∣�,

so J�R is continuous everywhere on J (R) as ∣R′(z)∣� and g(z) are defined
and nonzero. A continuous function taking values from a finite set is con-
stant on a connected space. Therefore J�R(z) must take the value 1/d
everywhere by Lemma 2.10, and hence � is the unique measure of maxi-
mal entropy, which is only equivalent to conformal measure m� for maps
conformally conjugate to z 7→ z±d when R is hyperbolic by [42]. □
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Example 4.8. Consider quadratic polynomials of the form fc(z) = z2 + c. If
c belongs to the interior of a hyperbolic component of the Mandelbrot set
ℳ (which is the same as the interior of ℳ provided the conjecture that ℳ
is locally connected is true), then fc has a connected hyperbolic Julia set
Jc. Hence Theorem 4.7 implies that (Jc, �c; fc) is not one-sided Bernoulli.

We now assume that c does not belong to the Mandelbrot setℳ, so fc has
a hyperbolic Cantor Julia set Jc ⊂ ℂ, supporting an �-conformal measure
m� for � = dimH(Jc). Clearly, there is a Rohlin partition of Jc into two
atoms such that fc maps each atom onto Jc. Moreover, fNc is uniformly
expanding on Jc for some N ≥ 1, hence by the Folklore Theorem 3.1, Jc
supports an invariant measure �c ∼ m�, and its Radon-Nikodym derivative
g = d�c

dm�
is continuous, bounded and bounded away from 0.

Proposition 4.9. Let c ∈ ℂ ∖ℳ. If in addition (i) c /∈ (14 ,∞), (ii) Re c ∕= −1
2

and (iii) 2∣1 + c∣ ∕= ∣1 − 2c ±
√
1− 4c∣, then (Jc, �c; fc) is not one-sided

Bernoulli.

Proof. The map fc has two fixed points

x± =
1±

√
1− 4c

2
with f ′c(x±) = 1±

√
1− 4c.

and one periodic orbit of period 2 consisting of the points

y± =
−1±

√

1− 4(1 + c)

2
.

Assume by contradiction that fc is one-sided {p, 1 − p} Bernoulli. Apply
Corollary 3.12 to the fixed points to get

∣f ′c(x±)∣� = ∣1±
√
1− 4c∣� ∈ {1/p, 1/(1 − p)}.

Condition (i) implies that ∣f ′c(x+)∣ ∕= ∣f ′c(x−)∣. So we can assume that
∣f ′c(x+)∣� = 1

p and ∣f ′c(x−)∣� = 1
1−p . Multiplying these two and taking

logarithms gives

(4.1) � log ∣f ′c(x+) ⋅ f ′c(x−)∣ = − log p− log(1− p).

Corollary 3.12 applied to the period 2 orbit gives

(4.2) ∣(f2c )′(y±)∣� = ∣4(1 + c)∣� ∈
{

1

p(1− p)
,
1

p2
,

1

(1− p)2

}

.

If the left hand side is 1
p(1−p) , we can combine it with (4.1) to derive

� log ∣f ′c(y+) ⋅ f ′c(y−)∣ = � log ∣f ′c(x+) ⋅ f ′c(x−)∣,
whence log ∣4c∣ = log ∣4(1 + c)∣. But this is only true when Re c = −1

2 ,

violating condition (ii). If the left hand side in (4.2) is 1
p2
, then we get

∣4(1 + c)∣� = ∣(f2c )′(y±)∣� = ∣(f ′c)(x+)∣2� = ∣2− 4c+ 2
√
1− 4c∣,
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so 2∣1 + c∣ = ∣1− 2c+
√
1− 4c∣, contrary to condition (iii). Finally, the left

hand side in (4.2) equal to 1
(1−p)2 leads to 2∣1+ c∣ = ∣1−2c−

√
1− 4c∣ which

is again excluded by condition (iii). □

We continue with some examples of rational maps with commuting auto-
morphisms to which Theorem 2.21 applies.

Example 4.10. We define a family of quadratic rational maps of the Riemann
sphere by:

R�(z) = �(z + 1/z),

for any nonzero � ∈ ℂ. It is easy to see that the critical points are c = ±1,
and the forward orbits of the two critical values are negatives of each other
so there is basically one critical orbit to follow. It is well-known from the
general theory of complex dynamics that ℎtop(R�) = log 2 and that there
exists a unique measure of maximal entropy for each value of �. In [20] it
is shown that if � = ±i/2, then J (R�) = ℂ∞ and R� is isomorphic to the
{1
2 ,

1
2} Bernoulli shift. When � = 1/2, we have the degree two Chebyshev

polynomial which is also one-sided Bernoulli. In all other cases, it was
shown in [42] that the measure of maximal entropy is singular with respect
to conformal measure on ℂ∞.

The automorphism '(z) = −z commutes with R� for each �. Endowed
with the standard Riemannian volume form m2 (locally two-dimensional
Lebesgue measure or standard surface area on the sphere), it is clear that '
preserves m2.

There are many examples of critically finite maps in this family which then
preserve a probability measure equivalent to � ∼ m2 and J (R�) = ℂ∞.
However, since ℎ� < log 2, such maps are not one-sided Bernoulli. For

example, setting � = ±1

2

√
−1± 2i gives four values with the property that

±1 7→ ±2� 7→ ±i 7→ 0 7→ ∞,

and ∞ is a repelling fixed point with multiplier 1/� of modulus 2/51/4 > 1.
Since R�(i) = 0 for every value of �, any critical orbit landing on i leads to

a postcritically finite map, which is m2 ergodic, preserves a measure equiv-
alent to m2 but is not one-sided Bernoulli (apart from � = ±i/2 discussed
above).

Applying a result of Rees [33], it can be shown that there is a set of
parameters of positive measure (no longer critically finite) with these prop-
erties, obtained by pushing off from the postcritically finite parameters. It
was shown by Milnor ([27, Theorem 5.1]) that this family of maps is the
only quadratic family of maps with nontrivial commuting automorphisms
up to conformal conjugacy so this is the only family of quadratic maps to
which Theorem 2.21 applies.

If � = −1/2 then the automorphism group G of R� is nonabelian of order
6. To see this, one can show that R−1/2 is conformally conjugate to the
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map z 7→ 1
z2
, and this map commutes with the automorphisms generated by

z 7→ −z, z 7→ z, and z 7→ e2�i/3z. The Julia set of R−1/2 is the imaginary
axis and the two critical points, ±1 form a superattracting period 2 orbit.
From this we deduce it is not a parabolic example, so it is non-Bernoulli with
respect to the invariant probability measure equivalent to one-dimensional
Lebesgue measure m on JR

−1/2
.

We summarize this family of examples with the following result.

Proposition 4.11. For quadratic rational maps of the form

R�(z) = �(z + 1/z), � ∈ ℂ ∖ {0},
1. For all ∣�∣ > 1, and whenever ∣�∣ < 1 corresponds to a hyperbolic or

subhyperbolic map with respect to conformal measure m�, R� is not
one-sided Bernoulli.

2. There exists a set ℰ ⊂ {� : ∣�∣ < 1}, m2(ℰ) > 0, yielding (nonhyper-
bolic) maps with J (R�) = ℂ∞, such that with respect to m2, R� is
not one-sided Bernoulli.

Proof. When ∣�∣ > 1, the map is well-known to be hyperbolic with a Cantor
Julia set (see e.g. [27]). For each map R�, � ∕= 0, we have a nontrivial
group of automorphisms commuting with R� and leaving the corresponding
Jacobian for the conformal measure invariant. Applying Theorem 2.21 we
have the result for (1). In the second case, using the parameters coming
from the results of Rees [33], we have the result for m2. □

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

Figure 6. The Julia set separating basins of super-
attracting fixed points for the rational function of Newton’s
root-finding algorithm for z3 − 1.

Example 4.12. Let Nd : ℂ → ℂ be the rational map associated the Newton
algorithm for finding the roots of the equation zd − 1 = 0. The root basins
and J (Nd) ≡ J are shown in Figure 6, and Nd is given by:

Nd(z) = z − zd − 1

dzd−1
=

(d− 1)zd + 1

dzd−1
.
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The map Nd has d super-attracting fixed points at the d-th roots of unity,
as well as a critical point of order d− 1 at the origin. This point maps to ∞
which is a repelling fixed point with derivative d

d−1 in the spherical metric.

The point 0 is the only critical point in J , and Nd(0) = ∞ = Nd(∞).
ThereforeNd is subhyperbolic and preserves a measure � ∼ m�, but does not
satisfy the hypotheses of Theorem 4.7. However one can show that g = d�

dm�

is continuous and bounded away from 0 on J ∖{∞}. Since J ∖{0,∞} consists
of d connected components, say A1, . . . , Ad, it follows as in Theorem 4.7 that
J�Nd

is constant on each Ai. Moreover one can show that the sets A1, . . . , Ad
form a Rohlin partition for Nd (� mod 0).

The dihedral group G generated by z 7→ e2�i/dz and z 7→ z is the group
of symmetries of J , and G transitively permutes the sets A1, . . . , Ad. More
precisely, Nd∘' = '∘Nd for each ' ∈ G and clearly ' ∈ G is also nonsingular
respect to the invariant measure �.

The proof of Theorem 2.21 shows that J�Nd
(z) = J�Nd

('z) for all ' ∈ G,
so J�Nd

is constant �-a.e. On the other hand, it follows from [42] and [7]
that � is not the measure of maximal entropy. Therefore Corollary 2.23 (2)
implies that (J,ℬ, �;Nd) is not one-sided Bernoulli.
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[24] Mañé, R. Ergodic theory and differentiable dynamics, Translated from the Por-
tuguese by Silvio Levy. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Re-
sults in Mathematics and Related Areas (3)], 8. Springer-Verlag, Berlin, (1987).
MR0889254 (88c:58040)
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