QUASI-SYMMETRY OF CONJUGACIES
BETWEEN INTERVAL MAPS.

HENK BRUIN

ABSTRACT. A homeomorphism h : [0,1] — [0,1] is quasi-symmetric if there exist
K > 1 such that for every z € [0,1] and ¢ > 0, % < % < K. In
this paper we demonstrate a topological condition that prohibits a tent-map to be
quasi-symmetrically conjugate to any C? unimodal map. This topological condition
is so weak, that almost every tent-map satisfies it. We show in a similar way that
typically a C? degree 2 circle map with a critical point cannot be quasi-symmetrically
conjugate to the angle doubling map.

We discuss another topological condition (persistent recurrence of the critical
point), which is almost complementary to the first. We show that a C? unimodal
map f with a persistently recurrent critical point does not satisfy the Collet-Eckmann
condition and (if f is non-flat as well), is not quasi-symmetrically conjugate to a tent-
map.

1 Introduction

Unimodal maps are often topologically conjugate to tent-maps. So in a topological

sense, such a unimodal map is the same as a tent-map. In a metric sense however,
the difference is clear. Still some metric similarities occur, when the conjugacy
satisfies certain constraints. In this paper we will consider quasi-symmetry. A
homeomorphism h : I — I on the interval I = [0,1] is quasi-symmetric if there
exists K > 1 such that for all z € I and all ¢ > 0, % < % < K. Quasi-
symmetry turns out to be a strong property for conjugacies between unimodal
maps.

The notions of quasi-symmetry gained importance since Sullivan [Su] proved the
following result: Let f,(x) = 1—ax?. If f, and f, are quasi-symmetrically conjugate
and do not have a periodic attractor, then a = b. Sullivan used the rigid structure
of quasi-conformal complex mappings. Note that if f : C — C is quasi-conformal
and preserves the real line, then f : R — R is quasi-symmetric.

In this paper we concentrate on the conjugacy between C? unimodal maps (see
below) and tent-maps. We will prove
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2 HENK BRUIN

Theorem 1. Let T, be the tent-map with slope +a. There exists a set A C [1,2]
of full Lebesgue measure such that for every a € A the following property holds:
If f is a C? unimodal map whose critical point ¢ has order £ > 1, then f is not
quasi-symmetrically conjugate to T, .

Since the topological entropy hiop(T,) = loga, we might as well say: For a.e.
h € [0,log2], no C? unimodal map f with hy,(f) = h is quasi-symmetrically
conjugate t0 Texp(n)-

According to a result of Nowicki and Przytycki [NP], every non-renormalizable
S-unimodal Collet-Eckmann map is Holder conjugate to a tent-map. A map f is
called Collet-Eckmann, if liminf L|D f"(c;)| > 0. (c1 = f(c) is the critical value.)
Sands [Sa] proved that Collet-Eckmann maps are abundant in the topological sense:
For a.e. h € [0,log2] it holds that if f is S-unimodal and conjugate to Texp(s), then
f is a Collet-Eckmann map. So quasi-symmetry is a much stronger property than
Holder continuity.

The proof of Theorem 1 is based on a topological condition, stated in Proposition
1. In short the condition reads: There is a sequence n; such that f™ (¢) — ¢, while
the image of the central branch of f™ does not cover ¢ and a has length bounded
away from 0. If a C? map f satisfies it, then f cannot be quasi-symmetrically
conjugate to a tent-map. In section 4 it is shown that a.e. tent-map satisfies this
condition.

If the lengths of the images of the central branches tend to 0, Proposition 1
is indecisive. In section 5 we present a topological condition that deals with this
case: persistent recurrence of the critical point. The notion of persistent recurrence
originally comes from complex dynamics: Yoccoz’ 7-function tends to infinity. We
will use an equivalent definition for the interval, which has been used by e.g. Blokh
and Lyubich [BL]. An example of a map with a persistently recurrent critical point
is the Fibonacci map. Fibonacci maps are characterized by a certain combinatorial
pattern. They have been studied frequently in the past few years, especially in
connection with so-called absorbing Cantor sets [BKNS,HK, KN,LM]. We will show

Theorem 2. If f is C? and has a persistently recurrent critical point, then f does
not satisfy the Collet-Eckmann condition.

and

Theorem 3. If f is non-flat, C? and has a persistently recurrent critical point,
then f is not quasi-symmetrically conjugate to a tent-map.

We remark that Sands [Sa] proved very similar results in the S-unimodal case.

In spite of all this, there exist C? unimodal maps that are quasi-symmetrically
conjugate to tent-maps. Misiurewicz maps, i.e. maps with a non-recurrent critical
point and no periodic attractor, have this property. For the proof see [J,St]. But
apart from Misiurewicz maps there are other maps that don’t have a persistently
recurrent, critical point, and to which Proposition 1 does not apply.

Question. Are there C? non-Misiurewicz maps that are quasi-symmetrically con-
jugate to tent-maps?

The technique presented in Proposition 1 can be used in a more general setting.
We are convinced that statements similar to Theorem 1 can be proved for piecewise
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monotone maps on the interval or the circle. We have worked out some of the details
for a certain class of circle maps:

Theorem 4. LetT : S* — S be angle doubling map z — 2z mod 1. There exists
a set X C S' of full Lebesque measure such that for every x € X the following
holds: Let g be a C? degree 2 circle map conjugate to T (hoT = goh). If h(x) is
a critical point of g, then h is not quasi-symmetric.

Quasi-symmetry of degree d > 2 circle maps can play a role in the construction
of complex mappings whose Julia sets contain quasi-circles. A quasi-circle is the
image of the unit circle under a quasi-conformal map. Ma proved, using van Strien’s
results on Misiurewicz maps, that monotone degree d maps with non-recurrent
critical points are quasi-symmetrically conjugate to the linear degree d circle map
[Ma]. So the above question can also be posed for these kind of circle maps.

We want to thank Sebastian van Strien and Gerhard Keller for many discussions
and also Duncan Sands. The proof of Lemma 2 is based on his remarks. We also
thank the referee for his suggestions.

2 Preliminaries

Let N={0,1,2,...} and let (z,y) be the interval with end-points z and y, also if
y < z. If J C I, then |J| denotes the Lebesgue measure of J.

The mapping f : I — I, I = [0,1] is unimodal if f has a unique critical point
¢, i.e. a unique point where D f vanishes or does not exist. Assume that f(c) is
a maximum and that f(0) = f(1) = 0. f™ is the n-fold composition of f. The
forward images of the critical point will be denoted as ¢, = f™(c). The critical
point ¢ has order £ if there exists a diffeomorphism h such that h(0) = 0 and
f(z) = f(c) = |h(z —)|%. Soif fis C2, Lis at least 2. f is called non-flat if £ < co.
A corollary of this is that there exist 0 < O; < O2 < oo such that

(1) Oz - ™" < |Df(2)| < Oala — |t~

for all z. If z is close to ¢, then O2/O; can be taken close to 1.
Let us turn to the Koebe Principle. This principle gives bounds for the distortion
on branches of f™. If f*|J is C*, then the distortion is defined as
. |Df"(z)|
dis(f*,J) = sup ——r= .
Un D)= 5, D)
Let J C T be intervals, and let f™|T be monotone. f"(T) contains a d-scaled
neighbourhood of f™(J) if both components of f(T \ J) are longer than §|f™(J)|.
Usually the Koebe Principle is stated for maps with negative Schwarzian derivative.
There exists however a C? version.

Koebe Principle. Suppose f is C? and J C T are intervals such that f™|T is
monotone. If f*(T) contains a d-scaled neighbourhood of f™(J), then

dis(f*,J) < B = B(6,e, L).

The numbers €,L and B are defined as follows: € = max{|f{(T)| | 0 < i < n}.
L =Y"oIfi(J)| and B(S,e,L) = (%)2(1 + p(e)L). Here p: Ry — Ry is a
continuous function with p(0) = 0. p only depends on the smoothness of f.

In this paper we will use a one-sided version of the Koebe Principle:
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One-sided Koebe Principle. Let f, J C T = (z,y), €, L and B be as in the
Koebe Principle. If f*((x,y)) contains a one-sided -scaled interval of f™(J) at the
side of f™(x), then |[Df"(2)| > §|Df"(y)| for every z € J.

The proofs of these Koebe Principles can be found in [MMS,MvS]. If f has negative
Schwarzian derivative, then B = (‘5%1)2 already suffices. In the C? case the number
e = max{|f(T)| | 0 < i < n} is important. The next lemma shows that ¢ can be
estimated from |f™(T)|. A non-degenerate interval J C I is called a homterval if
f™|J is a homeomorphism for every n > 0.

Lemma 1. If f admits no homterval, then for every € > 0 there exists § > 0 such
that | f™(J)| > 0 whenever |J| > € and f"|J is monotone.

For the proof we refer to [BL] or [MvS, Contraction Principle]. Clearly the existence
of a homterval prohibits the existence of a conjugacy with any tent-map. So in the
sequel we can assume that the conclusion of Lemma 1 is true. (In fact, no non-flat
C? unimodal map without periodic attractor admits a homterval [MMS,MvS].) For
our purpose it suffices to observe that ¢ — 0 as |f™*(T)| — 0.

The tent-map T, : I — I with slope a is defined as T, (z) = min(az,a(1 — z)). It is
well-known that every unimodal map f is semi-conjugate to a tent-map with the
same topological entropy [MT]. An interval J, J 3 ¢, is called restrictive if there
exists some n > 1 such that f*(J) C J and fI(J) ¢ J for 0 < j < n. In this case
f™|J is again a unimodal map, called a renormalization of f. In many cases the
above semi-conjugacy is a conjugacy: If f admits no restrictive interval, and no
homterval, then f is conjugate to a tent-map T,, with slope a > /2.

If f is conjugate to a tent-map T, with a € (1,/2], then both f and T, are
finitely renormalizable. In that case we can consider the deepest renormalizations
of f and Tj,.

As we said before, a homeomorphism A is quasi-symmetric if there exists K > 1
such that for all z € I and all € > 0, % < % < K. Let us give some
corollaries of quasi-symmetry:

Lemma 2. If h is quasi-symmetric, then h is Hélder continuous.

log %
log 2

Proof. Let h : I — I be quasi-symmetric with constant K. Let a = and

C = 212 We will show that
|h(z) — h(y)| < Clz —y|*.

Assume that # < y and 1+ < y. If y < I, then we consider z — 1 — h(1l — z)
instead of x — h(z). Define w; € I as follows: wo = 0, w; = £, and in general

92
Wpy1 = w"2+y. Then there exists N such that wy < z < wyy1 < y. Clearly

2—(N+1) %. By quasi-symmetry, |h(w;) — h(y)| < H_LK|h(wi_1) — h(y)| for all
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1>1. So

h(z) = h(y)| <[h(wn) — h(y)]

K
< 1) — < (—)N -
< 1+K|h(wz\r 1) — h(y)| _(1+K) |R(0) — A(y)|
N+1 log 1K
K N IOSH'LK _ %
<o( B \N41 - < (N+1) s
<Ay g) _2(2 Tor 2 ) _2(2 )
log 1-(;{1(
— log 2
52(|y m') <Cly—z|*
ly =0

This concludes the proof. We remark that in the more general case h : Iy — I, for
some intervals I; and I, the constant C also depends on the ratio |Iz|/|[1]. O

Lemma 3. If h is quasi-symmetric, then for every A > 0 there exists B > 0 such

that if J1 and J2 are adjacent intervals, and % < A, then 12831 <B.

Proof. Similar to the proof of Lemma 2. O
For an interval J C I, let 7(J) = max{i | fi|J is monotone}.

Lemma 4. Assume that f is quasi-symmetrically conjugate to the tent-map T,
with slope a > /2. Then there exists M such that for every interval J C I,

m(J)

L(J) =3 IF(Dl < M.

Proof. Let h be the conjugacy (hoT, = foh), and h has quasi-symmetry constant
K. Let a and C = 2'*“ be as in Lemma 2. In particular Ah~! is Holder with
constants o and C. Take M such that 2z > C2(=™/2) for every m > M — 2. If
there exists J such that L(J) > M, then first of all 7(J) > M. Also there exists i
such that 7(J) —i =m > M — 2 and |f*(J)| > 2. Indeed, if this is not the case,

mZ
then
T(J)—M—-2

1 2
Ly<M-2+ Y
=0

™

Because T, expands distances with a factor a > /2 it follows that h(f*(J)) <
2-m/2,

Assume for simplicity that ¢ = h(c) = } and that fi(J) = (z,y) C [1,1]. Then
also h((z,y)) € [4,1]. By the choice of M it follows that

1 )
o=yl > g > €20 > OJn(a) — )|
So h~! cannot be Hoélder, contradicting the assumptions. [

Let us continue with a few combinatorial notions. Let f : I — I be a unimodal
map. For each z # ¢, the symmetric point is defined as the point £ # x such that
f(&) = f(z). A point z € I is called a closest precritical point if f™(z) = ¢ for some
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n > 1and fi((x,c)) # cfor 0 < j < n. Clearly z and # are closest precritical points
simultaneously. If f admits no periodic attractor or wandering interval, then the
closest precritical points accumulate on c. Let {2z }x>0 denote the closest precritical
points left of c. So f~1(c) = {20, 20}, and

20<21<22<..<c<...< 2<% < 2.

Let Sk be such that f% (z) = f5¢(2;) = c. The iterates {Si}s are called the
cutting times. Let U; 3 ¢ be the maximal interval such that fi~1|f(U;) is monotone.
It is not hard to see that if Sx_; < i < Sk, then U; = (zx—1,2k—1). Hence
5=1(Us,) = f5%1((2k—1,2k-1)) = (c,cs,_,]- By definition of closest precritical
point, fS*=1(2;) € (¢, cs,_,) is again a closest precritical point, which we will denote
as 2Q(k) Or 2Q(k)- It follows that

(2) Sy = Sk — Sk-1-

The map @ is called the kneading map. The kneading map was introduced by
Hofbauer, e.g. [H]. It determines the combinatorics of a unimodal map completely.
It can be proved that if f has no periodic attractor, then Q(k) < k for all & > 1.
Additionally, an integer map @ : N — N is an admissible kneading map, i.e. @
appears as the kneading map of some unimodal map, if and only if

{Q(k+ )} i1 = {Q(Q o Q(k) +7)}i>1

for all k. > denotes lexicographical order. For the proof of these statements, and
for more details on @) we refer to [H,B].

Finally, notice that f™(U,) 3 c if and only if n = m is a cutting time. More
precisely,

(3) fSk (USk) = [CSkafSk (zkfl)) = [Csk’csk*Sk_J = [CSkJCSQ(k))'

3 The main topological condition

The proof of Theorem 1 relies on the existence of certain close returns of the
critical point to itself. In the smooth case, the effect of these returns is that
dis(f*1, f(U,)) becomes arbitrarily large for appropriate iterates n. More pre-
cisely, we will define points yi € (c, zx) such that the quantity

_ |z — vkl

Rf(k)_ |Zk—C|

becomes arbitrarily small for appropriate values of k. However, for the conjugate
tent-map T, Rr(k) is bounded away from 0 for the same values of k. By Lemma
3, this prohibits the conjugacy to be quasi-symmetric.

Proposition 1. Let T be a tent-map, and f a C? unimodal map conjugate to T.
If there exists 8 > 0 and a sequence {n;}; such that
i) f™(c) = ¢ as i — o0,

it) ™ (Uy,) F ¢, and

i) |f™(Uni)| 2 B,
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then the conjugacy between f and T is not quasi-symmetric.

After reading the proof, the reader may conclude that condition iii) can be
weakened. |f™(Up,)| need not be bounded away from 0; it should not tend to 0
too fast. Condition i) is essential; it excludes Misiurewicz maps.

Proof of Proposition 1. Let us first assume by contradiction that f and T are
quasi-symmetrically conjugate with constant K. Without loss of generality, we can
assume that the slope of T' is larger than /2. By Lemma 4, there exists M such
that M > L(J) for every J C I.

As f is C?, the order £ of the critical point is larger than 1. So by (1), there
exists 1 < £’ < £ and a neighbourhood V' > ¢ with the property: For every x € V
and every y € (c, ) such that f(y) € (f(z), M),

2=yl _ 111@) = J()l
|z —c| = € |f(z) = flo)]
Let B > 1 and ¢ > 1 be so small that

(B

(4)

Let V" C V' be a small neighbourhoods of ¢ to be specified shortly. Let ¢ be
such that if T is an interval such that f*(T) C V' and f™|T is monotone, then
max{|f¢(J)| | 0 <i < n} <e. By Lemma 1 it follows that ¢ — 0 as |V'| — 0. Let

é= 2'“(,/,',‘. Recall that (2+1)2(1 4 p(e) M) is the distortion bound corresponding to
Koebe-space 4 in the (One-sided) Koebe Principle. So let V' and V" be so small
that (2+2)%(1 + p(e) M) < B.

We inductively construct a subsequence {m;}; C {n;}; and another integer
sequence {k;}; as follows: Let m; = ny and let k; be so large that 2z, € V". Let

Yk, be such that Ry (k) = L T

[2k;—c] — 3¢
Now for ¢ > 1, assume by induction that

|Zk. — Yk; 1
= 1%k T Ikl o 2
(5) Rf(kz) |zk, —ecl = 3¢

Suppose that also m; and k; are known. Choose miy1 (m; < miy1 = n; for some
J) so large that ¢y, € (2k,,%k,;) and

_eemd o
|zki - Cmi+1|

if ¢y € (21;,¢) and
Zp, —C
A|k17| <,
|zki - sz'+1|
if ¢,y € (2k;, ). See figure 1.
We pull back the point zi, by the branch f™i+1=1| f(Up,,,), obtaining a point
z' close to f(c). We claim that 2’ is the image of a closest precritical point z < c.
Because zy, is a closest precritical point, x is also a precritical point. So f*(z) = ¢
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f””i+1 fm,-+1—1

2, 2

i
3 e

i

Cm;q1 it
T = Zki+1 c gki+1 ;L'I = f(zki+1) f(\
Figure 1

for a = miy1 + Sk,. If f2((x,c)) 3 ¢ for some b < a, then f™i+1((z,c)) C (2,,c)
contains a point in f =%+ T2~5(¢), contradicting that 2y, is a closest precritical point.
Hence z is a closest precritical point.

Let ki;1 be such that zp,,, = x. Then f™i+1(z,.,) = 2i,. Now let y;
(Zk;41,€) be such that

i1 i1 €

me-l (yki+1) = Yk;-
Now let us check that we can use the One-sided Koebe Principle. Because
mit1 € {n;};, the branch f™i+1=1f(Upy,,,) is long: |f™+1(Up,,,)| > B > [V'|.
Let U},,., C (0,¢) N Up,,, be the maximal interval such that f™+ (U, . ) C V'

mit1 mi41

By definition of € and V', max{|f*(U},., )| | 0 <i <mia} <e. Also L(U},,,,) <

mi41/ —
M. Because zi, € V", the branch f™i+1=1|f(U} ,.) has relative Koebe-space of
length > % = 0 at the side of zx,. So the One-sided Koebe Principle can be
applied. We obtain:

|f(zki+1) - f(yki+1)| <B |zk,- — Yk; < (B |zki — Yk,
|f(zki+1) - f(C)| |Zki - Cmi+1| |Zki -C
It follows | |
Zkiv1 — Yk
Ry(kipr) = hizr = Ykina]
f( +1) |zki+1 — C|
< l |f(zki+1) - f(yki+1)|

v |f(zki+1) - f(c)l
< Q |2k: — Yk,
— 0z —c
|Zki — Yk;

r
= ek —c

= T’Rf (kz)
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For the first inequality we have used (4) and (5). Because r < 1, (5) holds for k; ;.
So we can continue the induction. It follows that Rz(k;) — 0 as i — oo.

On the other hand, f is the conjugate tent-map T'. Let h be the conjugacy. 7™+
maps (h(zk,,,),h(c)) monotonically into (h(zx;),h(c)) or (h(c),h(2k;)). Let M; =
may + m3 + ... + m;, then T™: maps (h(2y,), h(c)) monotonically into (h(z,), h(c))
or into (h(2k1)7 ]’L(C)) Also TM: (h(yki+1)) = h(ykl) or h(?jkl)

As T |h(Un;) is linear, Rr(ki) = eyl > Tzl i)l — Ry (ky) > 0
for all 4. So by Lemma 3, h cannot be quasi-symmetric. [

4 The proof of Theorem 1

Let T, be the tent-map with slope +a and ¢, (a) = T"(c). For each a € [v/2,2] we
denote the subsequent cutting times of Tj, by {Sk(a)}r. The same applies to ¢, (a)
and z,(a).

Proposition 2. Let € > 0 be arbitrary and let
Y(a,e) = (z3(a), 23(a) + £) U (33(a) — €, Z3(a)).

Then for a.e. a € [v/2,2], ©s,(a) (@) € Y(a,e) for some k € N.
Before proving this proposition, we need some preliminary results.

Lemma 5. Let a > /2 be arbitrary. Suppose that n = Si(a) is a cutting time.
Then there exists an interval J 3 a such that ¢,|J is monotone and p,(J) 3 c.

Sketch of proof. a is a turning point of ¢, if and only if ¢, (a) = ¢ for some m < n.
Hence the domain J of a branch of ¢, is a maximal interval J such that ¢,,(J) # ¢
for every m < n. Let J be the branch domain of ¢,, containing a.

Define the itinerary v, (z) = e1(x)ea(x)es(x)..., where

0 if Ti(x) €[0,c¢),
a@) =4 1 #Ti@) e (1],
C ifTiz) =c

The kneading invariant v, = ejeses... = v,(c) is the itinerary of the critical point.
As n = Sy is a cutting time, i.e. T2(U,) 3 c(a), there are points in U,, whose
itinerary coincides with v, up to the Sg-th entry. In particular, the itinerary of
c_g, is ejes...eg, _1Cereq.... Therefore, there exists a tent-map T,» whose kneading
invariant is periodic: v, = ejes...es,—1Ce1es...5,-1C.... As v, coincides with v
up to entry Sy = n, o’ € J. It is also clear that ¢, (a') = ¢. This concludes the
sketch. A more comprehensive treatment of the functions ¢, can be found in [Sa]
and [BM]. O

Lemma 6. For a.e. a € [\/2,2], the critical orbit of the tent-map T, is dense in
the dynamical core [ca,c1].

Proof. See [BM]. O
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Lemma 7. Let T be a tent-map with cutting times Sy and kneading map Q. If
liminf Q(k) > 2, then orb(c) is not dense in [ca,c1].

Proof. Assume there exists ko such that Q(k) > 2 for all k£ > ko. Let p be the
orientation reversing fixed point of T. We will show that p is not approximated by
the forward orbit of c.

Let V be a neighbourhood of p such that ¢; ¢ V for 0 <4 < Sg,. Let T?(V) 3 ¢
for some minimal integer v, then c_, is a precritical point closest to p. Since p is a
repelling fixed point, c_,_1 € T~?7!(c), c_y—2 € T7V"2(c),... can be chosen to be
precritical points closest to p. If we assume that p < ¢_,, then

(*) Cpy1 <Cp3<...<p<K...<Cpy—92<Cy.

Assume by contradiction that p € w(c), then there exists n minimal such that
Cn € (¢_y_3,¢ 4 2). Suppose T"™(U,) covers two adjacent precritical points c¢_,,
and c_,,_» of (x), where w is taken minimal. Then T%*+"(U,,) contains a component
of (21, 21)\{c}. Son+w is a cutting time, say S;, and as ¢4 ¢ (21, 21), Q(I+1) < 1.

Hence {c,} can only approximate p stepwise: T"(U,) can only contain one
preimage from (x) at the time. Assume, without loss of generality, that ¢, €
(C,v,4,C,v,2) and C_y—2 € Tn(Un) = [Cnacm) C (071174;0711)' By mlnlmahty
of n, T™(Up) C (c—y_2,¢—). T ?|T™U,) is monotone and TV *t"(U,) > ¢,
son+ v+ 2is a cutting time Sk and m + v + 2 = Sg)- On the other hand
Tv+2+m |y, is monotone and T*T2+™(U,,) # c. So m + v+ 2 is not a cutting time.
This contradiction shows that orb(c) N (c_y_3,¢ 4 2)=0. O

Finally, we need some estimates on the branches of ¢, (a)

Lemma 8. For every € > 0 there exist N such that for every n > N, and every
U C [V2,2] on which ¢,|U is monotone, dis(pn,U) < 1+¢.

Proof. See [BM]. O
Now we are ready to prove Proposition 2.

Proof of Proposition 2. Choose € € (0,1) arbitrary. By Lemmas 6 and 7 it follows
that for a.e. a € [v/2,2], liminf Q,(k) < 1. Let

A, ={a € [V2,2] | liminf Q,(k) <1 and TS+ (¢) ¢ Y (a,¢) for all k}.

Let N be so large that dis(pn,J) < 1+ ¢/2 for every n > N and every interval J
of monotonicity of ¢,,. By Lemma 8, this is possible.
Suppose by contradiction that |A;| > 0. Then there exists a density point a of
A, and an integer k such that
i) Sk(a) > N,
i) Qu(k+1) < 1,50 To* ™ (e) ¢ (23(a), 53(a)),
)

iii) there is a one-sided neighbourhood J 3 a, such that pg, (4)(J) = (c, Toe(@ ()
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Property iii) follows from Lemma 5. In particular, Si(a) = Si is constant on J. By
definition, ¢y (a) ¢ Y(a,¢€) for every a € A.. Due to the boundedness of distortion,

les,. (TN Al
|905k(‘])|
 |(e, 5, (@) \ Y(a,5)
<+ ) e ps. @)

<A+ H1-e) < (1-3).

< N4 <@1+<

g
1-2=
1= =V Te

)

This contradicts the existence of the density point a. So |4.| =0. O

Proof of Theorem 1. Suppose a € [v/2,2]. By Proposition 2, A, has zero measure
for every € > 0. So A = {a € [v/2,2] | liminf Q,(k) < 1}\; A1 has full measure in

[v/2,2]. Pick a € A, then there exists a sequence k; such that Tfk"(a)(c) €Y(a, 1)

for every i. As Tfs(“)(Y(a, ) = (c,c+ assi(a)) or (¢ — “Ssi(a),c), and S3(a) <8
rs (@ a 28 8
6) Tk (DFS5() () ¢ (c==.c)or (c,c+27).
So
Sk. (a)+S3(a a S’“i a
Ta 1( ) 3( )(USki(a)-f—S:g(a)) — Tf(&( )(C,Ta ( )(C))
(7)

= (T3 (0), T (o)) F c.

As (6) and (7) are true for every i, the conditions of Proposition 1 are fulfilled. This
proves Theorem 1 for non-renormalizable maps. If a < v/2, i.e. T, is renormalizable,
we pass to the smallest restrictive interval. [

5 Maps with persistently recurrent critical points

As before, let f be C? unimodal. Proposition 1 does not cover maps for which
the height of the central branches tends to 0. Another, more or less complementary,
topological condition ensures that in that case f cannot fulfill the Collet-Eckmann
condition, and, if additionally f is non-flat, f is not quasi-symmetrically conjugate
to a tent-map.

Let us be more precise: Let H,(z) > = be the maximal interval on which f" is
monotone, and let M, (z) = f*(H,(x)). So Hy(x) is the domain of the branch f"
at z, and M,(z) is the co-domain. Notice that M, (z) C orb(c) U {0,1}. Let

rn(z) = d(f"(2), 0Mn(2)).
We call ¢ persistently recurrent if
rn(c1) = 0 as n — oo.

We will prove slightly different versions of Theorems 2 and 3.
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Theorem 2’. Let f be a C? unimodal map with a persistently recurrent critical
point. Then

1
lim sup — log|Df™(c¢1)| < 0.
n N
Theorem 3°. Let f be a non-flat C? unimodal map, such that
. 1
lim sup - log |Df™(c1)| <0.

Then f is not quasi-symmetrically conjugate to a tent-map.

Sands [Sa, Theorem 49] has found similar, and probably stronger topological
conditions that prohibit the Collet-Eckmann condition in the S-unimodal case.
He also proved [Sa, Theorem 31] that S-unimodal maps not satisfying the Collet-
Eckmann condition cannot be quasi-symmetrically conjugate to tent-maps. So
Theorem 3’ is an improvement on the part of the smoothness condition. But the
condition lim sup,, < log|Df™(c1)| < 0 is stronger than the negation of the Collet-
Eckmann condition.

Persistent recurrence of the critical point is quite a restrictive condition. We will
see in Lemma 11 that the w(c) (i.e. the set of accumulation points of the orbit of
¢,) must be minimal. On the other hand, every map for which the kneading map
Q tends to infinity has a persistently recurrent critical point [B]. In particular, the
Fibonacci unimodal map cannot be Collet-Eckmann. Fibonacci maps are unimodal
maps with kneading map @Q(k) = max(k — 2,0). They have been studied by many
authors in the past few years, e.g. [BKNS,HK,KN,LM]. So non-flat C? Fibonacci
maps are not quasi-symmetrically conjugate to the Fibonacci tent-map.

The proof of Theorem 2’ heavily depends on a result by Ledrappier. What we
need is, in our notation:

Lemma 9. Let p be an ergodic non-atomic invariant measure, and suppose that
Jlog|Df|dp > 0. Then for p-a.e. x € I, there exists a neighbourhood U > z and
sequences {n;} C N and {y;} C supp(u) such that for every i, f™(y;) = = and
Mni (yz) oU.

Proof. Follows directly from [L, Proposition 7 and Theorem 8]. O

Define the nice points as N' = {z € I | fi(z) ¢ (=, %) for all i > 0}. Nice points are
used to estimate distortion of branches of f™. For instance, Martens uses them in
[Mr]. We list a couple of properties of nice points, using Martens’ notation.

Clearly N is closed. Every periodic orbit contains a nice point, and because the
periodic points are dense under our assumptions, ¢ is an accumulation point of N.
We call V' a nice interval if it is symmetric and its boundary points are nice. There
are arbitrarily small nice intervals.

Let ¢, be the first return of ¢ to a nice interval V. Then (V) is defined to
be the maximal neighbourhood of ¢ such that f"(»(V)) C V. Because f is not
renormalizable, (V) C V, and orb(dy(V)) NV = 0.

Lemma 10. Let V be a nice interval, and U = (V). Let z € [ca,c1] \ U and let
r be the smallest integer such that f"(x) € U (assuming it exists). Then

M,(z) D V.
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Furthermore, if ¢ € V \ U, then pull-back of V along the orbit x, f(x), ..., f"(x) is
contained in V \ U.

Proof. Can be found in [Mr], but it is short enough to give it here. Let (y,z) =
H,(z). By definition of H,(z), there exists a,b < r such that ¢ = f%(y) = fb(2).
So f2((y,)) and fb((z,2)) both contain a point in OU. It follows that f7((y,z))
and f7((z, z)) contain points in orb(0U), and therefore f"((y,z2)) = M,.(z) D V.

Now for the second statement, assume J is the pull-back. If J N OV # @, then
V = f7(J) contains a point from orb(dV) in its interior. Hence OV is not nice.
This same argument works for OU. O

Lemma 11. Ifr,(c1) — 0, then r,(x) — 0 uniformly on w(c).

Proof. We will only carry out the proof for maps having no homtervals, allowing
us to use Lemma 1. (Proofs for the maps with homtervals are somewhat tedious,
but not substantially more difficult.) The Lemma is clear if f is infinitely renor-
malizable. By passing to the smallest restrictive interval, we can assume that f is
not renormalizable at all.

We may also assume that ¢ € w(x) for every z € w(c). Indeed, suppose z €
w(c) and ¢ ¢ w(z). Let ¢ = d(c,orb(z)) > 0. Then by Lemma 1 we can find
0 such that r,(x) > § for all n. Next take m arbitrary, and let m be minimal
such that ¢, € H,(x). Then M,,_1(c1) D Hp(z), and My, ypn—1(c1) D My(z). So
|Myptn-1(c1)| > |Hp(z)| > 6, contradicting the assumption r;(¢;) — 0.

In particular we can conclude that w(c) is minimal and ¢ € w(c).

Assume by contradiction that there exists {z,}, C w(c) with the property that
limsup r,(z,) > € > 0. Let 6 > 0 be as in Lemma 1. Let V be a nice interval such
that |V| <, and let U = ¢(V). Let ¢’ be the length of the smallest component of
V\U.

Take n such that r,(z,) > §. Let my(n) = min{k > 0 | f"*(z,) € V}.
Because rn(z,) > §, i.e. My(z,) > ¢, it follows from Lemmas 1 and 10 that
there exists an interval J; such that f"(z,) € Ji C Mp(z,) and f™ () maps J;
monotonically onto V. Next let Jo C H,(z,) be the pull-back of J; along the orbit
T, F(T0)y ooy fM(x0). So frH™1(") maps Jo monotonically onto V.

Let mo(n) = min{k | ckgy1 € J}. zn € w(c), so ma(n) exists. Because
OMp(c1) C orb(c) U{0,1}, My, (ny(c1) D Ja. Let Js be the pull-back of J; along
the orbit ¢1,¢2, ..., €1 4my(n)- Then frtmi(n)+ma(n) maps J; monotonically onto V.

Finally, take m3(n) = min{k > 0 | ¢14ntm,(n)+ma(n)+% € U}, and abbreviate
N(n) = n + mi(n) + ma(n) + mz(n). By Lemma 10, there exists Jy such that
Clantmi(n)+ma(n) € Ja C V} and f™s(") maps J monotonically onto V. Pulling
back Jy along the orbit ci, ¢, ..., ¢N(n)4+1, We obtain an interval Js 3 ¢ which is
mapped monotonically onto V by fN( . As cNm)+1 € U, rn(my(c1) > 6'. Since
this is true for arbitrarily large numbers n, ri(c1) /# 0. This proves Lemma 11. O

Proof of Theorem 2°. Let f have a persistently recurrent critical point. Suppose
by contradiction that limsup,, £ log|Df™(c1)| > € > 0. Then we can find a sub-

n
sequence {n;}; such that both lim; = log |Df"(c;)| = € and - 27:61 dc; 4, tends
weakly to a measure yu. Here 4, is a Dirac-measure in x. Clearly y is invariant and
lives on w(c). As w(c) is minimal, y is non-atomic as well.
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Let ¢ = log|Df| and for L > 0, let ¢, = max(p,—L). Then ¢, is continuous,
and by definition of weak convergence,

n;—1 n;—1

1 1
/‘PLdN = lim o ];0 pr(cj+r) > lim - j;o log |D f(cj+1)|

n;—1

1 . n —
= 11zmn—ilog jl;[o |Df(cj+1)| = 11£nn—ilog|Df (c1)| =,

for every L. As ¢, \¢ ¢ as L — oo, also [¢du > e. Using the ergodic decom-
position, we can also find an ergodic measure v, with [ pdv > e. Indeed, let 7 be
the algebra {A | f71(A) = A} mod p—nullsets. And let A be the set of atoms of
Z. Then for a non-empty A € A, pa = ﬁMA is a ergodic invariant probability

measure. Because
/ pdp=Y_ p(A) / pdp,
D#£A€A

J @dua > e for at least one A € A.

Hence we can apply Lemma 9 on pa. Take z € w(e), U > z and y; €
f7(z) N supp(pa) C w(e) as in Lemma 9. Then r,,(y;) > d(z,0U) > 0 for
every i, contradicting Lemma 11. So limsup £|Df"(¢;)| <0. O

In order to prove Theorem 3’, we need the following lemma.

Lemma 12. Let f be a non-flat C? unimodal map, and suppose f is quasi-symmetrically
conjugate to o tent-map. Then there exists 6 > 0 and a sequence of nice intervals
{Va}n with |V,| = 0, such that V,, contains a 6-scaled neighbourhood of y(V5,).

Proof. If f is S-unimodal, then Lemma 12 is just Theorem 3.4 of [Mr]. In that
theorem, negative Schwarzian derivative is only used for the Koebe Principle. Due
to our assumptions, we can use the Koebe Principle stated in section 2. In Martens’
proof, the Koebe Principle is only applied to pull-backs of the intervals V,, D ¢¥(V,,).
In our version, the distortion bound is B = B(4,¢, L). For large n, V,, is small, and
therefore the £ can be taken small too. By Lemma 4, L is uniformly bounded. O

Proof of Theorem 3’. Let f be a non-flat C? unimodal map with the property
that lim sup,, %log |Df™(¢1)| < 0. In particular, f can not be a Misiurewicz map,
because all C? Misiurewicz maps are Collet-Eckmann [St]. If the critical point is
periodic, or attracted to a periodic orbit, then f is not even conjugate to a tent-
map. So we can assume that c¢ is recurrent, but not periodic. As before, we can
assume that f is not renormalizable.

Suppose by contradiction that f is quasi-symmetrically conjugate to the tent-
map T, for some a > v/2. So we can apply Lemmas 4 and 12. By Lemma 2, the
conjugacy h (f oh = hoT,,) is also Holder. Let C,a > 0 be the Holder constants.

Let V;, D 9(Vy,) = U, be nice intervals as in Lemma 12. Let W/ be a $-scaled
neighbourhood of U,. Then V,, contains an %—neighbourhood of W,!. We will use
the Koebe Principle for these intervals, yielding a distortion bound B (%, e, M). M
is taken as in Lemma 4, and € — 0 as n — 0. Therefore, there exists B such that
B > B(%,e, M) for every n € N.

Let t, be the smallest positive integer such that fi=(c) € U,. So by Lemma
10, there exists an interval J 3 ¢; such that fi»~! maps J monotonically onto
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W!. Let W = JnN(c,c1), then fi»=1(W]) contains a component of W)/ \ U,, so
[fo L (W)l > $5IW|. Let also W,, = f~*(W,). Clearly W,, ¢ W/, because
otherwise fi=(W,) C W,, and f would be renormalizable. Using non-flatness and
the Koebe Principle, we obtain

2146 _ 1+ _
wal < Wi < 2220 ) < 282 Do e
e NG ILAR

Hence
a1

1 £=1
Whal > .
Wl {4Buﬂ|thn—1<cl)|}

On the other hand, fi»~!|f(W,,) and therefore Tt»~!|T o h='(W,,) are monotone.
So

|h=H(Wh)| <

atn”

As h is Holder, |W,| < C|h=(W,,)|*, which results in

1 -1 9 -
<cl—=—) ,
{4B%|thn1(c1)|} - (at")

whence

1 2  log4B1£e
ogC + alog og i Qa log a.
t,(f—1) tn -1

1
—log|Dfi " (er)| +
tn

Taking the limit n — oo, we get lim sup, 1 log |D f*(c1)| > 0 after all. O

6 Circle maps

In this section we prove a result similar to Theorem 1 in a class of increasing degree
2 circle maps. Generalizations to degree n circle maps are possible, but no more
interesting than this class. Let S! = R/Z be the circle and T : S — S! be the
angle doubling map: T(z) = 2z. Fix z € S!, and let g, : S* — S?! satisfy the
following conditions:

i) g is an increasing degree 2 circle map, so g has at least one fixed point p.

ii) g, is C2.

iii) g, has at least one critical point c.

iv) For every interval J C S!, there exists n > 0 such that g7?(J) > p.

Condition iv) implies that p is the only fixed point. There are no periodic attractors,
so in particular ¢ is not periodic. Moreover, g, is conjugate to T. Let h be the
conjugacy, hoT = g, o h.

v) The critical point ¢ = h(z).

Let us reformulate Theorem 4:
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Theorem 4. For a.e. x € S* the following property holds: If g, satisfies the above
conditions, then h is not quasi-symmetric.

The proof is completely analogous to the proof of Theorem 1. But we have to define

the topological notions all over again. So let us start with this. For brevity, we

drop the subscript & of g,. Put an orientation on S such that p < c.

- The left precritical points of ¢ will be denoted as {zx}r. 2z_1 = z_2 = ¢, and
20 =g '(c) N (p;c).

- The right precritical points of ¢ will be denoted as {Zx}r. 2.1 = 2.2 = ¢, and
20 =g"'(c) N (c,p). )

- The left and right cutting times will be denoted as {S;}; and {S;};. S_1 =
9_1:Oa,nd$’0:§0:1.

- S; =min{n > S;_1 | g"(2i-1,¢) 3 ¢} and z; € (2;-1,c¢) is the point closest to z;
such that g%i(z;) = c.

-5 = min{n > Si 1 | g"(c,2:-1) O ¢} and 2; € (¢, 2;_1) is the point closest to Z;
such that g% (3;) = c.

It can happen that S; = S;y;. In that case, g% ((2;,2i41)) = (¢,2_1) = S\ {c}.

An analogous statement holds for S;.

- By definition of closest precritical point, g%i-1(z;) = 2 for some k > —1. Hence
it is possible to define the left kneading map @ : N — NU {—1} such that

Si — Si—1 = Sq ),

and

9% (e) € (Bguy: 2o 1),
for all 4 > 1. If Q(i) = 0, this property degenerates to g%i-1(c) € S\ {c}. One
must understand that in this case g5*-1((z,_1,¢)) D S*

- For the right cutting times we have the analogous statements: gS"—1 (2:) = 2 for
some k > —1. The right kneading map @) : N — NU {—1} satisfies

Si =S = Sgq,

and X
9%71(0) € (203, 240 1)

for all i > 1. If Qi) = 0, gSi—l(c) € S'\ {c}. As above this means that

9°=1((¢, 2p—1)) D S* _

Let U, 3 ¢ be the largest intervals such that ¢’ (U) Z ¢ for all 0 < j < n. Then
Un = (2, 2r), where k = max{m | S,, < n} and ¥ = max{m | S,, < n}.
Consequently, g™(U,) = (g"5*(c), g"~5¥ (c)).

As for kneading maps of unimodal maps, we have some admissibility constraints.
First, if g has no periodic attractor, then @ o Q(z +1) <iand Qo QG+1) <1
for all 4. Additionally, a pair of integer maps @ and @ are admissible left and right
kneading maps if and only if

{QUk+5)}j>1 = {Q(Q o Q(k) + j)}j>1,

and

{QUk+ j)}j>1 = {Q(Q 0 Q(k) + j)}j>1,
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for all k. Again > denotes the lexicographical order. Any pair of left and right
kneading maps uniquely determines (the dynamics of) a point z € S*.

Remark: We did not define the kneading invariant for the circle map g,. Much
work in that direction was done by Bandt and Keller [BK1-2]. They noticed and
exploited the fact that the kneading invariant does not uniquely determine the map.
Therefore the left and right kneading map cannot be determined by the kneading
invariant only: It is not visible from the kneading invariant if cutting times S with
Q(k) = =1 (or S), with Q(k) = —1) occur.

We will prove none of the above statements, because they do not play a role in
the proof of Theorem 4. However, we need the analogous version of Lemma 7.

Lemma 13. If the orbit of c is accumulates on the fixed point of T, then

min(lim inf Q(k), lim inf Q(k)) < 2.
k—o00 k—o00

Proof. We argue as in Lemma, 7. Assume that ¢ is not periodic, and not eventually
fixed either. Let in this proof < denote an ordering such that zy < p < zp < c.
Consider the precritical points closest to p:

Zo=c_1<cC2<c3<...<p<...<c_3<c2<cC1=2-

Assume that ¢ accumulates on p. So take n such that c_,, < ¢, < c__1 < p and
¢m & (c—yw,p) for m < n. Then ¢"(U,) D (€—w,C—w-1), and g" ¥ (Up1v) D (¢, 20)-
Moreover n+w = Sy, is a left cutting time. If ¢4 € (21,20), then Q(k+1) < 2. If
on the other hand ¢pqy € (¢, 31), then n+w + 1 = Sj is a right cutting time, and
Cntwil € (¢1,20). So Q(k' +1) < 2. This proves the lemma, if orb(c) accumulates
on p from the left . A similar argument is valid if orb(c) accumulates on p from the
right. O

In order to express the dependence on z, we will write Si(z), zk(x), Qz(k) etc.

Proposition 3. Choose € > 0 arbitrary. For a.e. x the following holds: Let
Y(.Z‘, 5) = (Z3(.'E), 23 (IL') + 6)

and

A~

Y(z,e) = (%5(z) — ¢, 23(x)).
Then there exists k such that TS+ (x) € Y (x,€) or Tgk(m)(:b) €Y(z,e).

Proof. The proof is similar to the proof of Proposition 2. Lemma 1 can be easily
generalized to expanding circle maps. Because z — T"(z) is affine, we do not need
versions of Lemmas 5 and 8 here. [

Proof of Theorem 4. We will use Proposition 1 in an adjusted form. Let V,, be the
maximal interval adjacent to and to the left of z such that T™(V,,) F x for m < n.
Suppose that g, satisfies the following properties: There exist 5 > 0 and a sequence
of iterates {n;}; such that

i) g™ (c) — c from the left as i — oo,

ii) g™ (V) % c, and
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iii) [g" (Vi,)| = B.
Then h,; is not quasi-symmetric. (The analogous statement is true if g™ — ¢ from
the right.) Let us show that for a.e. z, the combinatorics of g, satisfy the above
conditions.
The angle doubling map T preserves Lebesgue measure. So by Birkhoff’s Er-
godic Theorem, p € w(z) a.e. By Lemma 13, either liminfy o, Q,(k) < 2 or

liminfy e Q4 (k) < 2. Let Y (z,¢) and Y (z,¢) be as in Proposition 3. Let
X(e)={z € ' | T5(x) ¢ Y(x,¢) for every k}

and X = S\ |J,X(2). Assume that X has full measure, otherwise we start a

similar argument for sets X (¢) and X. Pick = € X, then there exists a sequence ;
such that T%(*)(z) € Y (x, 1) for every i. Hence

. 1 & .
(sz(4) (.CC),JI) ») TSk,-(z)-‘rSs(:c) (Vsk(w)+33(z)) ) (ZQ2(4) (.73),.(13 _ ?253( ))

Since this is true for every 7, the conditions i) to iii) are satisfied. This proves the
theorem. O
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