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Preface 

Preface to the second edition 

Nearly every Ph.D. student in mathematics needs to pass a 
preliminary or qualifying examination in real analysis. The purpose 
of this book is to teach the material necessary to pass such an 
examination. 

I had three main goals in writing this text: 
(1) present a very clear exposition; 
(2) provide a large collection of useful exercises; 
(3) make the text affordable. 

Let me discuss each of these in more detail. 

(1) There are a large number of real analysis texts already in 
existence. Why write another? In my opinion, none of the exist-
ing texts are ideally suited to the beginning graduate student who 
needs to pass a “prelim” or “qual.” They are either too hard, too 
advanced, too encyclopedic, omit too many important topics, or 
take a nonstandard approach to some of the basic theorems. 

Students who are starting their graduate mathematics educa-
tion are often still developing their mathematical sophistication and 
find that the more details that are provided, the better (within rea-
son). I have tried to make the writing as clear as possible and to 
provide the details. For the sake of clarity, I present the theorems 
and results as they will be tested, not in the absolutely most general 
abstract context. On the other hand, a look at the index will show 
that no topics that might appear on a preliminary or qualifying 
examination are omitted. 

All the proofs are “plain vanilla.” I avoid any clever tricks, 
sneaky proofs, unusual approaches, and the like. These are the 

xiii 
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proofs and methods that most experts grew up on. 

(2) There are over 400 exercises. I tried to make them inter-
esting and useful and to avoid problems that are overly technical. 
Many are routine, many are of moderate difficulty, but some are 
quite challenging. A substantial number are taken from prelimi-
nary examinations given in the past at major universities. 

I thought long and hard as to whether to provide hints to the 
exercises. When I teach the real analysis course, I give hints to the 
harder questions. But some instructors will want a more challeng-
ing course than I give and some a less challenging one. I leave it 
to the individual instructor to decide how many hints to give. 

(3) I have on my bookshelf several books that I bought in the 
early 1970’s that have the prices stamped in them: $10-$12. These 
very same books now sell for $100-$200. The cost of living has 
gone up in the last 40 years, but only by a factor of 5 or 6, not 
a factor of 10. Why do publishers make textbooks so expensive? 
This is particularly troublesome when one considers that nowadays 
authors do their own typesetting and frequently their own page 
layout. 

My aim was to make the soft cover version of this text cost less 
than $20 and to provide a version in .pdf format for free. To do 
that, I am self-publishing the text. 

At this point I should tell you a little bit about the subject 
matter of real analysis. For an interval contained in the real line or 
a nice region in the plane, the length of the interval or the area of 
the region give an idea of the size. We want to extend the notion of 
size to as large a class of sets as possible. Doing this for subsets of 
the real line gives rise to Lebesgue measure. Chapters 2–4 discuss 
classes of sets, the definition of measures, and the construction of 
measures, of which one example is Lebesgue measure on the line. 
(Chapter 1 is a summary of the notation that is used and the 
background material that is required.) 

Once we have measures, we proceed to the Lebesgue integral. 
We talk about measurable functions, define the Lebesgue integral, 
prove the monotone and dominated convergence theorems, look at 
some simple properties of the Lebesgue integral, compare it to the 
Riemann integral, and discuss some of the various ways a sequence 
of functions can converge. This material is the subject of Chapters 
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5–10. 

Closely tied with measures and integration are the subjects of 
product measures, signed measures, the Radon-Nikodym theorem, 
the differentiation of functions on the line, and Lp spaces. These 
are covered in Chapters 11–15. 

Many courses in real analysis stop at this point. Others also in-
clude some or all of the following topics: the Fourier transform, the 
Riesz representation theorem, Banach spaces, and Hilbert spaces. 
We present these in Chapters 16–19. 

Topology and probability are courses in their own right, but 
they are something every analyst should know. The basics are 
given in Chapters 20 and 21, resp. 

Chapters 22–26 include a number of topics that are sometimes 
included in examinations at some universities. These topics are 
harmonic functions, Sobolev spaces, singular integrals, spectral 
theory, and distributions. 

The first edition of this text, which was titled Real analysis 
for graduate students: measure and integration theory, stopped at 
Chapter 19. The main comments I received on the first edition 
were that I should cover additional topics. Thus, the second edition 
includes Chapters 20 to 26. This increased the length from around 
200 pages to around 400 pages. 

The prerequisites to this text are a solid background in un-
dergraduate mathematics. An acquaintance with metric spaces is 
assumed, but no other topology. A summary of what you need to 
know is in Chapter 1. All the necessary background material can 
be learned from many sources; one good place is the book [8]. 

At some universities preliminary or qualifying examinations in 
real analysis are combined with those in undergraduate analysis or 
complex analysis. If that is the case at your university, you will 
have to supplement this book with texts in those subjects. 

Further reading is always useful. I have found the books [5], [7], 
and [9] helpful. 

I would like to thank A. Baldenko, I. Ben-Ari, K. Bharath, K. 
Burdzy, D. Ferrone, E. Giné, M. Gordina, E. Hsu, G. Lawler, L. 
Lu, K. Marinelli, J. Pitman, M. Poehlitz, H. Ren, and L. Rogers 
for some very useful suggestions. I would particularly like to thank 
my colleague Sasha Teplyaev for using the text in his class and 
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suggesting innumerable improvements. 

If you have comments, suggestions, corrections, etc., I would be 
glad to hear from you: r.bass@uconn.edu. I cannot, however, 
provide hints or solutions to the exercises. 

Good luck with your exam! 

Preface to Version 2.1 

Version 2.1 corrects all the errors in the second edition that I am 
aware of. In addition I reorganized Section 4.2 to be more efficient. 

I would like to thank all who pointed out errors and made 
suggestions, especially Iddo Ben-Ari, Evarist Giné, and Sonmez 
Sahutoglu. 

There is a web page of errata that I plan to keep current: 
www.math.uconn.edu/∼bass/errata.html 

Preface to Version 3.1 

In Version 3.1 I made numerous corrections, made some of the 
proofs clearer, and added some homework problems. A section on 
the pointwise convergence of Fourier series was added. To make 
the first chapter on preliminaries more self contained, I added a 
section giving proofs of some of the results from undergraduate 
mathematics that are needed. I especially want to thank Richard 
Laugesen for many valuable suggestions. 

A number of people requested that I provide solutions to the 
homework on the grounds that they were studying the material 
on their own. This is a very reasonable request, but the book is 
also being used at several universities as a textbook and providing 
solutions would greatly reduce its value for that purpose. I didn’t 
see how to reconcile these points of view and decided in the end 
not to provide solutions. 

With this version I am embracing the digital revolution: the 
book will continue to be available as a pdf file, still for free, but a 
paperback version will no longer be published. Go to 

www.math.uconn.edu/∼bass/real.html 
to download a copy. I plan to continue to keep a list of errata at 

www.math.uconn.edu/∼bass/errata.html 

Feel free to send me comments or corrections at 
r.bass@uconn.edu 

mailto:r.bass@uconn.edu
www.math.uconn.edu/�bass/errata.html
www.math.uconn.edu/�bass/real.html
www.math.uconn.edu/�bass/errata.html
mailto:r.bass@uconn.edu
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Preface to Version 4.1 

The biggest change is that I added a chapter, Chapter 27, which 
gives solutions and hints to selected exercises from Chapters 2–19. 
The exercises I selected were based on: is this an important result, 
is this hard, is this a representative problem? 

I changed the proof that the trigonometric polynomials were 
dense to avoid the use of the Stone-Weierstrass theorem. The proof 
is now more elementary. I also reworked Chapter 14 to make it 
more streamlined. 

Preface to Version 4.2 

I corrected a number of errors and made some improvements, 
primarily in the exercises and hints. 

Preface to Version 4.3 

Some more minor corrections. 

Preface to Version 5.0 

This version incorporates the errata of Version 4.3. 

Since I have been retired for some time now, I will no longer be 
maintaining an errata page. I would like to thank all of you who 
have made suggestions to the previous versions. 
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Chapter 1 

Preliminaries 

In this short chapter we summarize some of the notation and ter-
minology we will use and recall a few definitions and results from 
undergraduate mathematics. 

1.1 Notation and terminology 

We use Ac , read “A complement,” for the set of points not in A. 
To avoid some of the paradoxes of set theory, we assume all our 
sets are subsets of some given set X, and to be precise, define 

Ac = {x ∈ X : x ∈/ A}. 

We write 
A − B = A ∩ Bc 

(it is common to also see A \ B) and 

A4B = (A − B) ∪ (B − A). 

The set A4B is called the symmetric difference of A and B and 
is the set of points that are in one of the sets but not the other. If 
I is some non-empty index set, a collection of subsets {Aα}α∈I is 
disjoint if Aα ∩ Aβ = ∅ whenever α =6 β. 

We write Ai ↑ if A1 ⊂ A2 ⊂ · · · and write Ai ↑ A if in addition 
A = ∪∞ Ai. Similarly Ai ↓ means A1 ⊃ A2 ⊃ · · · and Ai ↓ Ai=1 
means that in addition A = ∩∞ 

i=1Ai. 

1 



2 CHAPTER 1. PRELIMINARIES 

We use log x to denote the natural logarithm of x, that is, the 
logarithm of x to the base e. 

We use Q to denote the set of rational numbers, R the set of 
real numbers, and C the set of complex numbers. We use 

x ∨ y = max(x, y) and x ∧ y = min(x, y). 

We can write a real number x in terms of its positive and negative 
+ − x−parts: x = x , where 

+ − x = x ∨ 0 and x = (−x) ∨ 0. 

If z is a complex number, then z is the complex conjugate of z. 
The composition of two functions is defined by f ◦ g(x) = f(g(x)). 

If f is a function whose domain is the reals or a subset of the 
reals, then f(x+) = limy→x+ f(y) and f(x−) = limy→x− f(y) are 
the right and left hand limits of f at x, resp. 

We say a function f : R → R is increasing if x < y im-
plies f(x) ≤ f(y) and f is strictly increasing if x < y implies 
f(x) < f(y). (Some authors use “nondecreasing” for the former 
and “increasing” for the latter.) We define decreasing and strictly 
decreasing similarly. A function is monotone if f is either increas-
ing or decreasing. 

Given a sequence {an} of real numbers, 

lim sup an = inf sup am, 
n→∞ n m≥n 

lim inf an = sup inf am. 
n→∞ n m≥n 

For example, if ( 
1, n even; 

an = 
−1/n, n odd, 

then lim sup = 1 and lim infn→∞ an = 0. The sequencen→∞ an 

{an} has a limit if and only if lim sup = lim infn→∞ an andn→∞ an 

both are finite. We use analogous definitions when we take a limit 
along the real numbers. For example, 

lim sup f(y) = inf sup f(y). 
δ>0y→x |y−x|<δ 



3 1.2. SOME UNDERGRADUATE MATHEMATICS 

1.2 Some undergraduate mathematics 

We recall some definitions and facts from undergraduate topology, 
algebra, and analysis. The proofs and more details can be found 
in many places. A good source is [8]. For the sake of completeness 
we also give proofs of the propositions in Section 1.3. Some of the 
results from topology can also be found in Chapter 20. 

A set X is a metric space if there exists a function d : X × X → 
R, called the metric, such that 
(1) d(x, y) = d(y, x) for all x, y ∈ X; 
(2) d(x, y) ≥ 0 for all x, y ∈ X and d(x, y) = 0 if and only if x = y; 
(3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X. 

Condition (3) is called the triangle inequality. 

Given a metric space X, let 

B(x, r) = {y ∈ X : d(x, y) < r} 

be the open ball of radius r centered at x. If A ⊂ X, the interior 
of A, denoted Ao , is the set of x such that there exists rx > 0 with 
B(x, rx) ⊂ A. The closure of A, denoted A, is the set of x ∈ X 
such that every open ball centered at x contains at least one point 
of A. A set A is open if A = Ao , closed if A = A. If f : X → R, 
the support of f is the closure of the set {x : f(x) =6 0}. f is 
continuous at a point x if given ε > 0, there exists δ > 0 such 
that |f(x) − f(y)| < ε whenever d(x, y) < δ. f is continuous if 
it is continuous at every point of its domain. One property of 
continuous functions is that f−1(F ) is closed and f−1(G) is open 
if f is continuous, F is closed, and G is open. 

A sequence {xn} ⊂ X converges to a point x ∈ X if for each 
ε > 0 there exists N such that d(xn, x) < ε whenever n ≥ N . A 
sequence is a Cauchy sequence if for each ε > 0 there exists N such 
that d(xm, xn) < ε whenever m, n ≥ N . If every Cauchy sequence 
in X converges to a point in X, we say X is complete. 

An open cover of a subset K of X is a non-empty collection 
{Gα}α∈I of open sets such that K ⊂ ∪α∈I Gα. The index set I 
can be finite or infinite. A set K is compact if every open cover 
contains a finite subcover, i.e., there exists G1, . . . , Gn ∈ {Gα}α∈I 

such that K ⊂ ∪n 
i=1Gi. 

We have the following two facts about compact sets. See Section 
1.3 for proofs. 
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Proposition 1.1 If K is compact, F ⊂ K, and F is closed, then 
F is compact. 

Proposition 1.2 If K is compact and f is continuous on K, then 
there exist x1 and x2 such that f(x1) = infx∈K f(x) and f(x2) = 
supx∈K f(x). In other words, f takes on its maximum and mini-
mum values. 

Remark 1.3 If x 6= y, let r = d(x, y) and note that B(x, r/2) and 
B(y, r/2) are disjoint open sets containing x and y, resp. Therefore 
metric spaces are also what are called Hausdorff spaces. 

Let F be either R or C. X is a vector space or linear space if 
there exist two operations, addition (+) and scalar multiplication, 
such that 
(1) x + y = y + x for all x, y ∈ X; 
(2) (x + y) + z = x + (y + z) for all x, y, z ∈ X; 
(3) there exists an element 0 ∈ X such that 0 + x = x for all 
x ∈ X; 
(4) for each x in X there exists an element −x ∈ X such that 
x + (−x) = 0; 
(5) c(x + y) = cx + cy for all x, y ∈ X, c ∈ F ; 
(6) (c + d)x = cx + dx for all x ∈ X, c, d ∈ F ; 
(7) c(dx) = (cd)x for all x ∈ X, c, d ∈ F ; 
(8) 1x = x for all x ∈ X. 

We use the usual notation, e.g., x − y = x + (−y). 

X is a normed linear space if there exists a map x → kxk such 
that 
(1) kxk ≥ 0 for all x ∈ X and kxk = 0 if and only if x = 0; 
(2) kcxk = |c| kxk for all c ∈ F and x ∈ X; 
(3) kx + yk ≤ kxk + kyk for all x, y ∈ X. 

Given a normed linear space X, we can make X into a metric 
space by setting d(x, y) = kx − yk. 

A set X has an equivalence relationship “∼” if 
(1) x ∼ x for all x ∈ X; 
(2) if x ∼ y, then y ∼ x; 
(3) if x ∼ y and y ∼ z, then x ∼ z. 

Given an equivalence relationship, X can be written as the 
union of disjoint equivalence classes. x and y are in the same 
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equivalence class if and only if x ∼ y. For an example, let X = R 
and say x ∼ y if x − y is a rational number. 

A set X has a partial order “≤” if 
(1) x ≤ x for all x ∈ X; 
(2) if x ≤ y and y ≤ x, then x = y; 
(3) if x ≤ y and y ≤ z, then x ≤ z. 

Note that given x, y ∈ X, it is not necessarily true that x ≤ y 
or y ≤ x. For an example, let Y be a set, let X be the collection 
of all subsets of Y , and say A ≤ B if A, B ∈ X and A ⊂ B. 

We need the following three facts about the real line. See Sec-
tion 1.3 for proofs. 

Proposition 1.4 Suppose K ⊂ R, K is closed, and K is contained 
in a finite interval. Then K is compact. 

Proposition 1.5 Suppose G ⊂ R is open. Then G can be written 
as the countable union of disjoint open intervals. 

Proposition 1.6 Suppose f : R → R is an increasing function. 
Then both limy→x+ f(y) and limy→x− f(y) exist for every x. More-
over the set of x where f is not continuous is countable. 

1.3 Proofs of propositions 

In this section we provide proofs of Propositions 1.1, 1.2, 1.4, 1.5, 
and 1.6. 

Proof of Proposition 1.1. Suppose F is a closed subset of the 
compact set K. If G = {Gα} is an open cover of F , then G0 = 
G ∪ {F c} will be an open cover of K. We are given that K is 
compact, so let H be a finite subcover of G0 for K. If F c is one of 
the open sets in H, omit it. The resulting finite subcover of G will 
be an open cover of F . 

We now prove Proposition 1.2. 

Proof of Proposition 1.2. We will prove that f takes on its 
supremum, the case of the infimum being exactly similar. Let 
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M = supx∈K f(x) and suppose f(x) < M for every point in K. If 
y ∈ K, let Ly = (f(y) + M)/2 and let εy = (M − f(y))/2. By 
the continuity of f , there exists δy such that |f(z) − f(y)| < εy 

if d(z, y) < δy. Then Gy = B(y, δy) is an open ball containing y 
on which f is bounded above by Ly. Now {Gy}y∈K is an open 
cover for K. Let {Gy1 , . . . , Gyn } be a finite subcover. Let L = 
max(Ly1 , . . . , Lyn ). Then L is strictly smaller than M . If x ∈ K, 
then x will be in some one of the Gyi , and hence f(x) ≤ Lyi ≤ L. 
But this says that L is an upper bound for {f(x) : x ∈ K}, a 
contradiction to the definition of M . Therefore our supposition 
that f(x) < M for every x in K cannot be true. 

To prove Proposition 1.4 we need to use the following funda-
mental property of the real line: 

If A is a subset of real numbers that is bounded above, then 
supx∈A x exists. 

We will need the following proposition first. 

Proposition 1.7 Suppose I1 ⊃ I2 ⊃ · · · are closed bounded inter-
vals contained in the real line. Then ∩iIi is non-empty. 

Proof. Write Ii = [ai, bi]. Since I1 ⊃ I2 ⊃ · · · , then a1 ≤ a2 ≤ · · · 
and b1 ≥ b2 ≥ · · · . We know Ii ⊂ I1 for each i, so ai ≤ b1. 
Therefore A = {ai} is a subset of reals bounded above. Let x = 
supi ai. 

Suppose x > bi0 for some i0. For each i ≥ i0, we see that 
ai ≤ bi ≤ bi0 . For i < i0 we have ai ≤ ai0 ≤ bi0 . Then bi0 is 
an upper bound for A, a contradiction to x being the least upper 
bound. 

Therefore x ≤ bi for each i. Since x is the supremum of the set 
A, then x ≥ ai for each i. It follows that x ∈ Ii for each i, hence 
x ∈ ∩iIi. 

Proposition 1.8 If −∞ < a < b < ∞, then [a, b] is a compact 
set. 

Proof. Let I1 = [a, b] and set a1 = a, b1 = b. Let G = {Gα} be an 
open cover for I1 and suppose G has no finite subcover. If both the 
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subintervals [a1, (a1+b1)/2] and [(a1+b1)/2, b1] had finite subcovers 
of G, putting the two finite subcovers together would make a finite 
subcover of I1, so at least one of the subintervals does not have a 
finite subcover. Choose the one that doesn’t (or if neither doesn’t, 
choose the left most one) and call it I2 = [a2, b2]. 

We continue by considering [a2, (a2 + b2)/2] and [(a2 + b2)/2, b2] 
and letting I3 be one of these subintervals of I2 that does not have a 
finite subcover of G. We continue, getting a sequence I1 ⊃ I2 ⊃ · · · . 

Let x be a point in ∩iIi. Since the length of Ii is 2−i+1(b − a), 
there can only be one such point. x is in I1 and G is a cover for 
I1, so there exists Gα0 ∈ G such that x ∈ Gα0 . Since Gα0 is open, 
there exists n such that (x−2−n+2(b−a), x+2−n+2(b−a)) ⊂ Gα0 . 
But x ∈ In and the length of In is 2−n+1(b − a), which implies that 
In ⊂ Gα0 . Therefore the singleton {Gα0 } is a finite subcover of G 
covering In a contradiction. 

Proof of Proposition 1.4. This is now immediate from Propo-
sitions 1.1 and 1.8. 

For Proposition 1.5 we need the fact that if I = (a, b) and 
J = (c, d) are two open intervals that intersect, then I ∪ J is an 
open interval. To see this, suppose that a ≤ c, the other case being 
exactly similar. Since I and J intersect, we must have b > c. Then 
I ∪ J = (a, b ∨ d), which is an open interval. 

Proof of Proposition 1.5. Let G be an open subset of the real 
line and for each x ∈ G, let 

Ax = inf{a : there exists b such that x ∈ (a, b) ⊂ G} 

and 

Bx = sup{d : there exists c such that x ∈ (c, d) ⊂ G} 

Let Ix = (Ax, Bx). 

We prove that x ∈ Ix ⊂ G. If y ∈ Ix, then y > Ax, and so 
there exist a and b such that Ax < a < y and x ∈ (a, b) ⊂ G. 
Because y < Bx there exist c and d such that y < d < Bx and 
x ∈ (c, d) ⊂ G. The point x is in both (a, b) and (c, d), hence their 
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union J = (a ∧ c, b ∨ d) is an open interval. J will be a subset of G 
because both (a, b) and (c, d) are. Both x and y are greater than 
a > Ax and less than d < Bx, so x ∈ Ix and y ∈ J ⊂ G. 

We next argue that if x 6= y, then either Ix ∩ Iy = ∅ or else 
Ix = Iy. Suppose Ix ∩ Iy =6 ∅. Then H = Ix ∪ Iy is the union 
of two open intervals that intersect, hence is an open interval, and 
moreover H ⊂ G. We see that H = (Ax ∧ Ay, Bx ∨ By ). Now 
x ∈ Ix ⊂ G. It follows from the definition of Ax that Ax ≤ Ax ∧Ay, 
which implies that Ax ≤ Ay. Similarly Bx ≥ Bx∨By, which implies 
that Bx ≥ By. Hence Iy ⊂ Ix. Reversing the roles of x and y shows 
that Ix ⊂ Iy, hence Ix = Iy. 

We therefore have established that G is the union of a collection 
of open intervals {Ix}, and any two are either disjoint or equal. It 
remains to prove that there are only countably many of them. Each 
open interval contains a rational number and the rational numbers 
corresponding to disjoint open intervals must be different. Since 
there are only countably many rationals, the number of disjoint 
open intervals making up G must be countable. 

Finally we have Proposition 1.6. 

Proof of Proposition 1.6. Let f be an increasing function and 
x0 ∈ R. The collection of real numbers A = {f(x) : x < x0} will be 
bounded above by f(x0) since f is increasing. Let M = supA f(x). 
Let ε > 0. Since M is the least upper bound of A, then M − ε 
is not an upper bound; therefore there exists x1 < x0 such that 
f(x1) > M − ε. Let δ = x0 − x1. If x0 − δ < x < x0, then 
f(x) ≤ M because M is an upper bound, and f(x) > M − ε 
because f(x) ≥ f(x1) > M − ε. This holds for each ε > 0, and so 
limx→x0+ f(x) exists. 

If B is a subset of real numbers bounded below, then A = {−x : 
x ∈ B} will be a collection of real numbers bounded above. If 
M = sup A, then −M = inf B. Therefore a subset of real numbers 
that is bounded below has an infimum. With this observation, we 
can imitate the proof above to see that limx→x0+ f(x) exists. 

Finally, for each x where f(x−) < f(x+) there is a rational 
number in the interval (f(x−), f(x+)). No two such intervals can 
intersect because f is increasing, so the rational numbers corre-
sponding to different intervals must be different, and we conclude 
that there can only be countably many x such that f(x−) 6= f(x+). 
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Chapter 2 

Families of sets 

2.1 Algebras and σ-algebras 

When we turn to constructing measures in Chapter 4, we will see 
that we cannot in general define the measure of an arbitrary set. 
We will have to restrict the class of sets we consider. The class of 
sets that we will want to use are σ-algebras (read “sigma algebras”). 

Let X be a set. 

Definition 2.1 An algebra is a collection A of subsets of X such 
that 
(1) ∅ ∈ A and X ∈ A; 
(2) if A ∈ A, then Ac ∈ A; 
(3) if A1, . . . , An ∈ A, then ∪n Ai and ∩n Ai are in A.i=1 i=1 

A is a σ-algebra if in addition 
(4) whenever A1, A2, . . . are in A, then ∪∞ 

i=1Ai and ∩∞ 
i=1Ai are in 

A. 

In (4) we allow countable unions and intersections only; we do 
not allow uncountable unions and intersections. Since ∩∞ 

i=1Ai = 
(∪∞ 

i=1A
c)c 
i , the requirement that ∩∞ 

i=1Ai be in A is redundant. 

The pair (X, A) is called a measurable space. A set A is measurable 
or A measurable if A ∈ A. 

11 
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Example 2.2 Let X = R, the set of real numbers, and let A be 
the collection of all subsets of R. Then A is a σ-algebra. 

Example 2.3 Let X = R and let 

A = {A ⊂ R : A is countable or Ac is countable}. 

Verifying parts (1) and (2) of the definition is easy. Suppose 
A1, A2, . . . are each in A. If each of the Ai are countable, then 
∪iAi is countable, and so is in A. If Ac

i0 
is countable for some i0, 

then 
(∪iAi)

c = ∩iA
c
i ⊂ Ac

i0 

is countable, and again ∪iAi is in A. Since ∩Ai = (∪iA
c
i )

c , then 
the countable intersection of sets in A is again in A. 

1Example 2.4 Let X = [0, 1] and let A = {∅, X, [0, ], ( 12 , 1]}.2 
Then A is a σ-algebra. 

Example 2.5 Let X = {1, 2, 3} and let A = {X, ∅, {1}, {2, 3}}. 
Then A is a σ-algebra. 

Example 2.6 Let X = [0, 1], and let B1, . . . , B8 be subsets of X 
which are pairwise disjoint and whose union is all of X. Let A be 
the collection of all finite unions of the Bi’s as well as the empty 
set. (Thus A consists of 28 elements.) Then A is a σ-algebra. 

Lemma 2.7 If Aα is a σ-algebra for each α in some non-empty 
index set I, then ∩α∈I Aα is a σ-algebra. 

Proof. This follows immediately from the definition. 

If we have a collection C of subsets of X, define 

σ(C) = ∩{Aα : Aα is a σ-algebra, C ⊂ Aα}, 

the intersection of all σ-algebras containing C. Since there is at 
least one σ-algebra containing C, namely, the one consisting of all 
subsets of X, we are never taking the intersection over an empty 
class of σ-algebras. In view of Lemma 2.7, σ(C) is a σ-algebra. We 
call σ(C) the σ-algebra generated by the collection C, or say that 
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C generates the σ-algebra σ(C). It is clear that if C1 ⊂ C2, then 
σ(C1) ⊂ σ(C2). Since σ(C) is a σ-algebra, then σ(σ(C)) = σ(C). 

If X has some additional structure, say, it is a metric space, 
then we can talk about open sets. If G is the collection of open 
subsets of X, then we call σ(G) the Borel σ-algebra on X, and this 
is often denoted B. Elements of B are called Borel sets and are 
said to be Borel measurable. We will see later that when X is the 
real line, B is not equal to the collection of all subsets of X. 

We end this section with the following proposition. 

Proposition 2.8 If X = R, then the Borel σ-algebra B is gener-

∞ 

ated by each of the following collection of sets: 
(1) C1 = {(a, b) : a, b ∈ R}; 
(2) C2 = {[a, b] : a, b ∈ R}; 
(3) C3 = {(a, b] : a, b ∈ R}; 
(4) C4 = {(a, ∞) : a ∈ R}. 

Proof. (1) Let G be the collection of open sets. By definition, 
σ(G) is the Borel σ-algebra. Since every element of C1 is open, 
then C1 ⊂ G, and consequently σ(C1) ⊂ σ(G) = B. 

To get the reverse inclusion, if G is open, it is the countable 
union of open intervals by Proposition 1.5. Every finite open in-

n=1(a, a + n), then (a, ∞) ∈ σ(C1)terval is in C1. Since (a, ∞) = ∪ 

∞ 

if a ∈ R and similarly (−∞, a) ∈ σ(C1) if a ∈ R. Hence if 
G is open, then G ∈ σ(C1). This says G ⊂ σ(C1), and then 
B = σ(G) ⊂ σ(σ(C1)) = σ(C1). 

n=1(a − 1 1(2) If [a, b] ∈ C2, then [a, b] = ∩ ) ∈ σ(G)., b + n n 
Therefore C2 ⊂ σ(G), and hence σ(C2) ⊂ σ(σ(G)) = σ(G) = B. 

If (a, b) ∈ C1, choose n0 ≥ 2/(b − a) and note h i1 1 
(a, b) = ∪∞ 

n=n0 
a + , b − ∈ σ(C2). 

n n 

∞ 

Therefore C1 ⊂ σ(C2), from which it follows that B = σ(C1) ⊂ 
σ(σ(C2)) = σ(C2). 

n=1(a, b + 1∩ ), we see that C3 ⊂ σ(C1), and(3) Using (a, b] = n 
as above we conclude that σ(C3) ⊂ σ(C1) = B. Using (a, b) = 
∞ (a, b − 1 

n ], provided n0 is taken large enough, C1 ⊂ σ(C3),∪n=n0 

and as above we argue that B = σ(C1) ⊂ σ(C3). 
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(4) Because (a, b] = (a, ∞) − (b, ∞), then C3 ⊂ σ(C4). Since 
(a, ∞) = ∪∞ 

n=1(a, a + n], then C4 ⊂ σ(C3). As above, this is enough 
to imply that σ(C4) = B. 

2.2 The monotone class theorem 

The monotone class theorem is a result that can be used to extend 
certain properties that hold for an algebra A0 to the σ-algebra A 
generated by A0. This section will be used in Chapter 11. 

Definition 2.9 A monotone class is a collection of subsets M of 
X such that 
(1) if Ai ↑ A and each Ai ∈M, then A ∈M; 
(2) if Ai ↓ A and each Ai ∈M, then A ∈M. 

The intersection of monotone classes is a monotone class, and 
the intersection of all monotone classes containing a given collection 
of sets is the smallest monotone class containing that collection. 

The following theorem, the monotone class theorem, is rather 
technical, but very useful. 

Theorem 2.10 Suppose A0 is an algebra, A is the smallest σ-
algebra containing A0, and M is the smallest monotone class con-
taining A0. Then M = A. 

Proof. A σ-algebra is clearly a monotone class, so M ⊂ A. We 
must show A ⊂M. 

First we show that A ∈ M implies Ac ∈ M. Let N1 = {A ∈ 
M : Ac ∈ M}. Note N1 is contained in M and contains A0. 
If Ai ↑ A and each Ai ∈ N1, then each Ac

i ∈ M and Ac
i ↓ Ac . 

Since M is a monotone class, Ac ∈ M, and so A ∈ N1. Similarly, 
if Ai ↓ A and each Ai ∈ N1, then A ∈ N1. Therefore N1 is a 
monotone class. Hence N1 = M, and we conclude M is closed 
under the operation of taking complements. 

To show A, B ∈ M implies A ∩ B ∈ M takes two steps. Let 
N2 = {A ∈ M : A ∩ B ∈ M for all B ∈ A0}. Note the following: 
N2 is contained in M and N2 contains A0 because A0 is an algebra. 
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If Ai ↑ A, each Ai ∈ N2, and B ∈ A0, then A ∩ B = ∪∞ 
i=1(Ai ∩ B). 

Because M is a monotone class, A ∩ B ∈ M, which implies A ∈ 
N2. We use a similar argument when Ai ↓ A. Therefore N2 is 
a monotone class, and we conclude N2 = M. In other words, if 
B ∈ A0 and A ∈M, then A ∩ B ∈M. 

Let N3 = {A ∈ M : A ∩ B ∈ M for all B ∈ M}. As in 
the preceding paragraph, N3 is a monotone class contained in M. 
By the last sentence of the preceding paragraph, N3 contains A0. 
Hence N3 = M. 

We thus have that M is a monotone class closed under the 
operations of taking complements and taking finite intersections. 
To finish up, if A1, A2, . . . are elements of M, then Bn = A1 ∩· · ·∩ 

∞ 
i=1Ai. Since M is a monotoneAn ∈ M for each n and Bn ↓ ∩ 

i=1Ai 
∞class, we have that ∩ ∈ M. If A1, A2, . . . are in M, then 

∞ 
i=1A

c 
iAc 

1, A
c 
2, . . . are in M, hence ∩ ∈M, and then � �c 

∞∪i=1Ai = ∞∩ ∈M.i=1 A
c
i 

∞ 

This shows that M is a σ-algebra, and so A ⊂M. 

2.3 Exercises 

Exercise 2.1 Find an example of a set X and a monotone class 
M consisting of subsets of X such that ∅ ∈ M, X ∈M, but M is 
not a σ-algebra. 

Exercise 2.2 Find an example of a set X and two σ-algebras A1 

and A2, each consisting of subsets of X, such that A1 ∪ A2 is not 
a σ-algebra. 

Exercise 2.3 Suppose A1 ⊂ A2 ⊂ · · · are σ-algebras consisting 
Is ∪of subsets of a set X. Ai necessarily a σ-algebra? If not,i=1 

∞ 

give a counterexample. 

Exercise 2.4 Suppose M1 ⊂ M2 ⊂ · · · are monotone classes. 
n=1Mn.Let M = ∪ Suppose Aj ↑ A and each Aj ∈ M. Is A 

necessarily in M? If not, give a counterexample. 
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Exercise 2.5 Let (Y, A) be a measurable space and let f map 
X into Y , but do not assume that f is one-to-one. Define B = 
{f−1(A) : A ∈ A}. Prove that B is a σ-algebra of subsets of X. 

Exercise 2.6 Suppose X is non-empty. Suppose A is a σ-algebra 
with the property that whenever A ∈ A is non-empty, there exist 
B, C ∈ A with B ∩ C = ∅, B ∪ C = A, and neither B nor C is 
empty. Prove that A is uncountable. 

Exercise 2.7 Suppose F is a collection of real-valued functions on 
X such that the constant functions are in F and f + g, fg, and cf 
are in F whenever f, g ∈ F and c ∈ R. Suppose f ∈ F whenever 
fn → f pointwise and each fn ∈ F . Define the function ( 

1, x ∈ A;
χA(x) = 

0, x ∈/ A. 

Prove that A = {A ⊂ X : χA ∈ F} is a σ-algebra. 

Exercise 2.8 Does there exist a σ-algebra which has countably 
many elements, but not finitely many? 

Exercise 2.9 If Ai is a sequence of sets, define 

lim inf Ai = ∪∞ 
i=j Ai, lim sup Ai = ∩∞ 

i=j Ai.j=1 ∩∞ 
j=1 ∪∞ 

i i 

(1) Show that 

lim inf Ai = {x : x ∈ Ai for all but finitely many i}, 
i 

lim sup Ai = {x : x ∈ Ai for infinitely many i}. 
i 

(2) Give an example where lim infi Ai 6= lim supi Ai. 
(3) Given a set D define the function χD by χD(x) = 1 if x ∈ D 
and χD(x) = 0 if x ∈/ D. Show that 

χ(lim inf Ai)(x) = lim inf χAi (x)
i 

and 
χ(lim sup Ai)(x) = lim sup χAi (x) 

i 

for each x. 



Chapter 3 

Measures 

In this chapter we give the definition of a measure, some examples, 
and some of the simplest properties of measures. Constructing 
measures is often quite difficult and we defer the construction of 
the most important one, Lebesgue measure, until Chapter 4 

A measure is a generalization of the notion of length (in one 
dimension), area (in two dimensions), and volume (in three dimen-
sions). Naturally enough, if A1, A2, . . . , An are pairwise disjoint 
sets, one would expect the measure of ∪n

i=1Ai to be the sum of the 
measures of the Ai. If we extend this idea to countable unions (but 
not uncountable ones), we have the defining property of a measure. 

3.1 Definitions and examples 

Definition 3.1 Let X be a set and A a σ-algebra consisting of 
subsets of X. A measure on (X, A) is a function µ : A → [0, ∞] 
such that 
(1) µ(∅) = 0; 
(2) if Ai ∈ A, i = 1, 2, . . ., are pairwise disjoint, then 

∞X 
µ(∪∞ µ(Ai).i=1Ai) = 

i=1 

Saying the Ai are pairwise disjoint means that Ai ∩ Aj = ∅ if i = j. 

17 

6
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Definition 3.1(2) is known as countable additivity. We say a setPn
function is finitely additive if µ(∪n = i=1 µ(Ai) whenever i=1Ai) 
A1, . . . , An are in A and are pairwise disjoint. 

The triple (X, A, µ) is called a measure space. 

Example 3.2 Let X be any set, A the collection of all subsets of 
X, and µ(A) the number of elements in A. µ is called counting 
measure. 

Example 3.3 Let X = R, A the collection of all subsets of R, 
x1, x2, . . . ∈ R, and a1, a2, . . . ≥ 0. Set X 

µ(A) = ai. 
{i:xi∈A} 

Example 3.4 Let δx(A) = 1 if x ∈ A and 0 otherwise. This 
measure is called point mass at x. 

Proposition 3.5 The following hold: 
(1) If A, B ∈ A with A ⊂ B, then µ(A) ≤ µ(B).P∞
(2) If Ai ∈ A and A = ∪∞ Ai, then µ(A) ≤i=1 i=1 µ(Ai). 
(3) Suppose Ai ∈ A and Ai ↑ A. Then µ(A) = limn→∞ µ(An). 
(4) Suppose Ai ∈ A and Ai ↓ A. If µ(A1) < ∞, then we have 
µ(A) = limn→∞ µ(An). 

Proof. (1) Let A1 = A, A2 = B − A, and A3 = A4 = · · · = ∅. 
Now use part (2) of the definition of measure to write 

µ(B) = µ(A) + µ(B − A) + 0 + 0 + · · · ≥ µ(A). 

(2) Let B1 = A1, B2 = A2 − A1, B3 = A3 − (A1 ∪ A2), B4 = 
A4 − (A1 ∪ A2 ∪ A3), and in general Bi = Ai − (∪i−1 Aj ). The Bij=1 
are pairwise disjoint, Bi ⊂ Ai for each i, ∪n

i=1Bi = ∪n
i=1Ai for each 

n, and ∪∞ Bi = ∪∞ Ai. Hencei=1 i=1 

∞ ∞X X 
µ(A) = µ(∪∞ µ(Bi) ≤ µ(Ai).i=1Bi) = 

i=1 i=1 

(3) Define the Bi as in (2). Recall that if ai are non-negative realP∞ Pn
numbers, then is defined to be limn→∞ Sincei=1 ai i=1 ai. 
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∪n Bi = ∪n Ai, theni=1 i=1 

∞X 
µ(A) = µ(∪∞ 

i=1Ai) = µ(∪∞ 
i=1Bi) = µ(Bi) 

i=1 
nX 

= lim µ(Bi) = lim µ(∪n lim µ(∪n 
i=1Bi) = i=1Ai). 

n→∞ n→∞ n→∞ 
i=1 

(4) Apply (3) to the sets A1 − Ai, i = 1, 2, . . .. The sets A1 − Ai 

increase to A1 − A, and so 

µ(A1) − µ(A) = µ(A1 − A) = lim µ(A1 − An) 
n→∞ 

= lim [µ(A1) − µ(An)]. 
n→∞ 

Now subtract µ(A1) from both sides and then multiply both sides 
by −1. 

Example 3.6 To see that µ(A1) < ∞ is necessary in Proposition 
3.5, let X be the positive integers, µ counting measure, and Ai = 
{i, i + 1, . . .}. Then the Ai decrease, µ(Ai) = ∞ for all i, but 
µ(∩iAi) = µ(∅) = 0. 

Definition 3.7 A measure µ is a finite measure if µ(X) < ∞. A 
measure µ is σ-finite if there exist sets Ei ∈ A for i = 1, 2, . . . such 
that µ(Ei) < ∞ for each i and X = ∪∞ 

i=1Ei. If µ is a finite measure, 
then (X, A, µ) is called a finite measure space, and similarly, if µ 
is a σ-finite measure, then (X, A, µ) is called a σ-finite measure 
space. 

Suppose X is σ-finite so that X = ∪∞ Ei with µ(Ei) < ∞ andi=1 
Ei ∈ A for each i. If we let Fn = ∪n Ei, then µ(Fn) < ∞ for each i=1 
n and Fn ↑ X. Therefore there is no loss of generality in supposing 
the sets Ei in Definition 3.7 are increasing. 

Let (X, A, µ) be a measure space. A subset A ⊂ X is a null 
set if there exists a set B ∈ A with A ⊂ B and µ(B) = 0. We 
do not require A to be in A. If A contains all the null sets, then 
(X, A, µ) is said to be a complete measure space. The completion 
of A is the smallest σ-algebra A containing A such that (X, A, µ) 
is complete, where µ is a measure on A that is an extension of 
µ, that is, µ(B) = µ(B) if B ∈ A. Sometimes one just says that 
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A is complete or that µ is complete when (X, A, µ) is complete. 
Exercise 3.8 guarantees that the completion of A exists. 

A probability or probability measure is a measure µ such that 
µ(X) = 1. In this case we usually write (Ω, F , P) instead of 
(X, A, µ), and F is called a σ-field, which is the same thing as 
a σ-algebra. 

3.2 Exercises 

Exercise 3.1 Suppose (X, A) is a measurable space and µ is a 
non-negative set function that is finitely additive and such that 
µ(∅) = 0. Suppose that whenever Ai is an increasing sequence of 
sets in A, then µ(∪iAi) = limi→∞ µ(Ai). Show that µ is a measure. 

Exercise 3.2 Suppose (X, A) is a measurable space and µ is a 
non-negative set function that is finitely additive and such that 
µ(∅) = 0 and µ(X) < ∞. Suppose that whenever Ai is a sequence 
of sets in A that decrease to ∅, then limi→∞ µ(Ai) = 0. Show that 
µ is a measure. 

Exercise 3.3 Let X be an uncountable set and let A be the collec-
tion of subsets A of X such that either A or Ac is countable. Define 
µ(A) = 0 if A is countable and µ(A) = 1 if A is uncountable. Prove 
that µ is a measure. 

Exercise 3.4 Suppose (X, A, µ) is a measure space and A, B ∈ A. 
Prove that 

µ(A) + µ(B) = µ(A ∪ B) + µ(A ∩ B). 

Exercise 3.5 Prove that if µ1, µ2, . . . are measures on a measur-P∞
able space and a1, a2, . . . ∈ [0, ∞), then is also a mea-n=1 anµn 

sure. 

For this exercise you may use the fact from undergraduate anal-
ysis that 

∞ ∞ ∞ ∞XX XX 
cij = cij 

i=1 j=1 j=1 i=1 

provided each of the cij is a non-negative real or equal to +∞. 
(This will also be a consequence of the Fubini theorem of Chapter 
11.) 
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Exercise 3.6 Prove that if (X, A, µ) is a measure space, B ∈ A, 
and we define ν(A) = µ(A ∩ B) for A ∈ A, then ν is a measure. 

Exercise 3.7 Suppose µ1, µ2, . . . are measures on a measurable 
space (X, A) and µn(A) ↑ for each A ∈ A. Define 

µ(A) = lim µn(A). 
n→∞ 

Is µ necessarily a measure? If not, give a counterexample. What 
if µn(A) ↓ for each A ∈ A and µ1(X) < ∞? 

For this exercise you may use the following two facts from un-
dergraduate analysis: 

(1) if cnj are non-negative real numbers that increase in n to cj 

for each j, then 
∞ ∞X X 

lim cnj = cj , 
n→∞ 

j=1 j=1 

and 

(2) if cnj are finite real numbers which converge to cj for each 
j and 

∞X 
sup |cnj | < ∞, 
n

j=1 

then the same conclusion holds. 

(These conclusions also follow from the monotone convergence the-
orem and dominated convergence theorem, resp.; see Chapter 7.) 

Exercise 3.8 Let (X, A, µ) be a measure space, let N be the col-
lection of null sets with respect to A and µ, and let B = σ(A∪N ). 
Show that B ∈ B if and only if there exists A ∈ A and N ∈ N 
such that B = A ∪ N . Define µ(B) = µ(A) if B = A ∪ N with 
A ∈ A and N ∈ N . Prove that µ(B) is uniquely defined for each 
B ∈ B, that µ is a measure on B, that (X, B, µ) is complete, and 
that (X, B, µ) is the completion of (X, A, µ). 

Exercise 3.9 Suppose X is the set of real numbers, B is the Borel 
σ-algebra, and m and n are two measures on (X, B) such that 
m((a, b)) = n((a, b)) < ∞ whenever −∞ < a < b < ∞. Prove that 
m(A) = n(A) whenever A ∈ B. 
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Exercise 3.10 Suppose (X, A) is a measurable space and C is an 
arbitrary subset of A. Suppose m and n are two σ-finite mea-
sures on (X, A) such that m(A) = n(A) for all A ∈ C. Is it true 
that m(A) = n(A) for all A ∈ σ(C)? What if m and n are finite 
measures? 



Chapter 4 

Construction of 
measures 

Our goal in this chapter is to give a method for constructing mea-
sures. This is a complicated procedure, and involves the concept 
of outer measure, which we introduce in Section 4.1. 

Our most important example will be one-dimensional Lebesgue 
measure, which we consider in Section 4.2. Further results and 
some examples related to Lebesgue measure are given in Section 
4.3. 

One cannot define the Lebesgue measure of every subset of the 
reals. This is shown in Section 4.4. 

The methods used to construct measures via outer measures 
have other applications besides the construction of Lebesgue mea-
sure. The Carathéodory extension theorem is a tool developed in 
Section 4.5 that can be used in constructing measures. 

Let us present some of the ideas used in the construction of 
Lebesgue measure on the line. We want the measure m of an open 
interval to be the length of the interval. Since every open subset 
of the reals is the countable union of disjoint open intervals (see 
Proposition 1.5), if G = ∪∞ (ai, bi), where the intervals (ai, bi) arei=1 
pairwise disjoint, we must have 

∞X 
m(G) = (bi − ai). 

i=1 

23 
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We then set 

m(E) = inf{m(G) : G open, E ⊂ G} 

for arbitrary subsets E ⊂ R. The difficulty is that m is not a 
measure on the σ-algebra consisting of all subsets of the reals; this 
is proved in Section 4.4. We resolve this by considering a strictly 
smaller σ-algebra. This is the essential idea behind the construction 
of Lebesgue measure, but it is technically simpler to work with 
intervals of the form (a, b] rather than open intervals. 

4.1 Outer measures 

We begin with the notion of outer measure. 

Definition 4.1 Let X be a set. An outer measure is a function 
∗ µ defined on the collection of all subsets of X satisfying 
(1) µ ∗(∅) = 0; 
(2) if A ⊂ B, then µ ∗(A) ≤ µ ∗(B);P∞
(3) µ ∗(∪∞ Ai) ≤ ∗(Ai) whenever A1, A2, . . . are subsets ofi=1 i=1 µ 
X. 

∗A set N is a null set with respect to µ if µ ∗(N) = 0. 

A common way to generate outer measures is as follows. 

Proposition 4.2 Suppose C is a collection of subsets of X such 
that ∅ ∈ C and there exist D1, D2, . . . in C such that X = ∪∞ Di.i=1 
Suppose ` : C → [0, ∞] with `(∅) = 0. Define 

∞nX o 
µ ∗ (E) = inf `(Ai) : Ai ∈ C for each i and E ⊂ ∪∞ 

i=1Ai . 
i=1 

(4.1) 
∗Then µ is an outer measure. 

Proof. (1) and (2) of the definition of outer measure are obvious. 
To prove (3), let A1, A2, . . . be subsets of X and let ε > 0. For 
each i there exist Ci1, Ci2, . . . ∈ C such that Ai ⊂ ∪∞ andj=1Cij 
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P ∗(Ai) + ε/2i . Then ∪∞ Ai ⊂ ∪i ∪j Cij andj `(Cij ) ≤ µ i=1 X X�X � 
∗ (∪∞ µ i=1Ai) ≤ `(Cij ) = `(Cij ) 

i,j i j 

∞ ∞X X 
≤ µ ∗ (Ai) + ε/2i 

i=1 i=1 
∞X 

= µ ∗ (Ai) + ε. 
i=1 P∞

Since ε is arbitrary, µ ∗(∪∞ ∗(Ai).i=1Ai) ≤ i=1 µ 

Example 4.3 Let X = R and let C be the collection of intervals 
of the form (a, b], that is, intervals that are open on the left and 
closed on the right. Let `(I) = b − a if I = (a, b]. Observe that `(I) 

∗is just the length of the interval I. Define µ by (4.1). Proposition 
∗4.2 shows that µ is an outer measure, but we will see in Section 4.4 

∗that µ is not a measure on the collection of all subsets of R. We 
∗will also see, however, that if we restrict µ to a σ-algebra L which 

∗is strictly smaller than the collection of all subsets of R, then µ 
will be a measure on L. That measure is what is known as Lebesgue 
measure. The σ-algebra L is called the Lebesgue σ-algebra. 

Example 4.4 Let X = R and let C be the collection of intervals 
of the form (a, b] as in the previous example. Let α : R → R 
be an increasing right continuous function on R. Thus α(x) = 
limy→x+ α(y) for each x and α(x) ≤ α(y) if x < y. Let `(I) = 

∗α(b) − α(a) if I = (a, b]. Again define µ by (4.1). Again Propo-
∗ ∗sition 4.2 shows that µ is an outer measure. Restricting µ to 

a smaller σ-algebra gives us what is known as Lebesgue-Stieltjes 
measure corresponding to α. The special case where α(x) = x for 
all x is Lebesgue measure. 

∗In general we need to restrict µ to a strictly smaller σ-algebra 
than the collection of all subsets of R, but not always. For example, 
if α(x) = 0 for x < 0 and 1 for x ≥ 0, then the corresponding 
Lebesgue-Stieltjes measure is point mass at 0 (defined in Example 
3.4), and the corresponding σ-algebra is the collection of all subsets 
of R. 
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∗Definition 4.5 Let µ be an outer measure. A set A ⊂ X is 
µ ∗-measurable if 

µ ∗ (E) = µ ∗ (E ∩ A) + µ ∗ (E ∩ Ac) (4.2) 

for all E ⊂ X. 

∗Theorem 4.6 If µ is an outer measure on X, then the collection 
∗A of µ ∗-measurable sets is a σ-algebra. If µ is the restriction of µ 

to A, then µ is a measure. Moreover, A contains all the null sets. 

This is sometimes known as the Carathéodory theorem, but do 
not confuse this with the Carathéodory extension theorem in Sec-
tion 4.5. 

Proof. By Definition 4.1, 

µ ∗ (E) ≤ µ ∗ (E ∩ A) + µ ∗ (E ∩ Ac) 

for all E ⊂ X. Thus to check (4.2) it is enough to show 

µ ∗ (E) ≥ µ ∗ (E ∩ A) + µ ∗ (E ∩ Ac). 

This will be trivial in the case µ ∗(E) = ∞. 

Step 1. First we show A is an algebra. If A ∈ A, then Ac ∈ A by 
symmetry and the definition of A. Suppose A, B ∈ A and E ⊂ X. 
Then 

µ ∗ (E) = µ ∗ (E ∩ A) + µ ∗ (E ∩ Ac) 

= [µ ∗ (E ∩ A ∩ B) + µ ∗ (E ∩ A ∩ Bc)] 

+ [µ ∗ (E ∩ Ac ∩ B) + µ ∗ (E ∩ Ac ∩ Bc)]. 

The second equality follows from the definition of A with E first 
replaced by E∩A and then by E ∩Ac . The first three summands on 
the right of the second equals sign have a sum greater than or equal 
to µ ∗(E ∩ (A ∪ B)) because A ∪ B ⊂ (A ∩ B) ∪ (A ∩ Bc) ∪ (Ac ∩ B). 
Since Ac ∩ Bc = (A ∪ B)c , then 

µ ∗ (E) ≥ µ ∗ (E ∩ (A ∪ B)) + µ ∗ (E ∩ (A ∪ B)c), 

which shows A ∪ B ∈ A. Therefore A is an algebra. 
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Step 2. Next we show A is a σ-algebra. Let Ai be pairwise disjoint 
sets in A, let Bn = ∪i

n 
=1Ai, and B = ∪i 

∞ 
=1Ai. If E ⊂ X, 

µ ∗ (E ∩ Bn) = µ ∗ (E ∩ Bn ∩ An) + µ ∗ (E ∩ Bn ∩ Ac )n 

= µ ∗ (E ∩ An) + µ ∗ (E ∩ Bn−1). 

Similarly, µ ∗(E ∩ Bn−1) = µ ∗(E ∩ An−1) + µ ∗(E ∩ Bn−2), and 
continuing, we obtain 

nX 
µ ∗ (E ∩ Bn) ≥ µ ∗ (E ∩ Ai). 

i=1 

Since Bn ∈ A, then 

nX 
µ ∗ (E) = µ ∗ (E ∩ Bn)+ µ ∗ (E ∩ Bc ) ≥ µ ∗ (E ∩ Ai)+ µ ∗ (E ∩ Bc).n 

i=1 

∗Let n →∞. Recalling that µ is an outer measure, 

∞X 
µ ∗ (E) ≥ µ ∗ (E ∩ Ai) + µ ∗ (E ∩ Bc) (4.3) 

i=1 

≥ µ ∗ (∪∞ 
i=1(E ∩ Ai)) + µ ∗ (E ∩ Bc) 

= µ ∗ (E ∩ B) + µ ∗ (E ∩ Bc) 

≥ µ ∗ (E). 

This shows B ∈ A. 

Now if C1, C2, . . . are sets in A, let A1 = C1, A2 = C2 − A1, 
A3 = C3 −(A1 ∪A2), and in general Ai = Ci −(∪i−1 Aj ). Since each j=1 
Ci ∈ A and A is an algebra, then Ai = Ci ∩ (C1 ∪ · · ·∪ Ci−1)

c ∈ A. 
The Ai are pairwise disjoint, so from the previous paragraph, 

∪∞ 
i=1Ci = ∪∞ 

i=1Ai ∈ A. 

Also, ∩∞ 
i=1Ci = (∪∞ 

i=1Ci
c)c ∈ A, and therefore A is a σ-algebra. 

∗Step 3. We now show µ restricted to A is a measure. The only way 
(4.3) can hold is if all the inequalities there are actually equalities, 
and in particular, 

∞X 
µ ∗ (E) = µ ∗ (E ∩ Ai) + µ ∗ (E ∩ Bc). 

i=1 
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Taking E = B, we obtain 

∞X 
µ ∗ (B) = µ ∗ (Ai). 

i=1 

= ∪∞ 

on A. 
Recalling that B i=1Ai, this shows that µ ∗ is countably additive 

Step 4. Finally, if µ ∗(A) = 0 and E ⊂ X, then 

µ ∗ (E ∩ A) + µ ∗ (E ∩ Ac) = µ ∗ (E ∩ Ac) ≤ µ ∗ (E), 

which shows A contains all the null sets. 

4.2 Lebesgue-Stieltjes measures 

Let X = R and let C be the collection of intervals of the form (a, b], 
that is, intervals that are open on the left and closed on the right. 
Let α(x) be an increasing right continuous function. This means 
that α(x) ≤ α(y) if x < y and limz→x+ α(z) = α(x) for all x. We 
do not require α to be strictly increasing. Define 

`((a, b]) = α(b) − α(a). 

Define 
∞nX o 

m ∗ (E) = inf `(Ai) : Ai ∈ C for each i and E ⊂ ∪∞ 
i=1Ai . 

i=1 

(In this book we usually use m instead of µ when we are talking 
about Lebesgue-Stieltjes measures.) We use Proposition 4.2 to tell 

∗ us that m is an outer measure. We then use Theorem 4.6 to show 
∗that m is a measure on the collection of m ∗-measurable sets. Note 

that if K and L are adjacent intervals, that is, if K = (a, b] and 
L = (b, c], then K ∪ L = (a, c] and 

`(K) + `(L) = [α(b) − α(a)] + [α(c) − α(b)] (4.4) 

= α(c) − α(a) = `(K ∪ L) 

by the definition of `. 

We first want to show that the measure of a half-open interval 
(e, f ] is what it is supposed to be. We need the following lemma. 
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Lemma 4.7 Let Jk = (ak, bk), k = 1, . . . , n, be a finite collection 
of finite open intervals covering a finite closed interval [C, D]. Then 

nX 
[α(bk) − α(ak)] ≥ α(D) − α(C). (4.5) 

k=1 

Proof. Since {Jk} is a cover of [C, D], there exists at least one 
interval, say, Jk1 , such that C ∈ Jk1 . If Jk1 covers [C, D], we stop. 
Otherwise, bk1 ≤ D, and there must be at least one interval, say, 
Jk2 , such that bk1 ∈ Jk2 . If [C, D] ⊂ Jk1 ∪Jk2 , we stop. If not, then 
bk1 < bk2 ≤ D, and there must be at least one interval, say, Jk3 that 
contains bk2 . At each stage we choose Jkj so that bkj−1 ∈ Jkj . We 
continue until we have covered [C, D] with intervals Jk1 , . . . , Jkm . 
Since {Jk} is a finite cover, we will stop for some m ≤ n. 

By our construction we have 

ak1 < C < bk1 , akm < D < bkm , 

and for 2 ≤ j ≤ m, 
akj < bkj−1 < bkj . 

Then 

α(D) − α(C) ≤ α(bkm ) − α(ak1 ) 

= [α(bkm ) − α(bkm−1 )] + [α(bkm−1 ) − α(bkm−2 )] + · · · 
+ [α(bk2 ) − α(bk1 )] + [α(bk1 ) − α(ak1 )] 

≤ [α(bkm ) − α(akm )] + [α(bkm−1 ) − α(akm−1 )] + · · · 
+ [α(bk2 ) − α(ak2 )] + [α(bk1 ) − α(ak1 )]. 

Since {Jk1 , . . . , Jkm } ⊂ {J1, . . . , Jn}, this proves (4.5). 

Proposition 4.8 If e and f are finite and I = (e, f ], then m ∗(I) = 
`(I). 

Proof. First we show m ∗(I) ≤ `(I). This is easy. Let A1 = I and 
A2 = A3 = · · · = ∅. Then I ⊂ ∪∞ Ai, hencei=1 

∞X 
m ∗ (I) ≤ `(Ai) = `(A1) = `(I). 

i=1 
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For the other direction, suppose I ⊂ ∪∞ Ai, where Ai = (ci, di].i=1 
Let ε > 0 and choose C ∈ (e, f) such that α(C) − α(e) < ε/2. 
This is possible by the right continuity of α. Let D = f . For 
each i, choose d0 > di such that α(di 

0 ) − α(di) < ε/2i+1 and leti 
Bi = (ci, d

0 
i). 

Then [C, D] is compact and {Bi} is an open cover for [C, D]. 
Use compactness to choose a finite subcover {J1, . . . , Jn} of {Bi}. 
We now apply Lemma 4.7. We conclude that 

nX 
`(I) ≤ α(D) − α(C) + ε/2 ≤ (α(d0 k) − α(ck)) + ε/2 

k=1 
∞X 

≤ `(Ai) + ε. 
i=1 

Taking the infimum over all countable collections {Ai} that 
cover I, we obtain 

`(I) ≤ m ∗ (I) + ε. 

Since ε is arbitrary, `(I) ≤ m ∗(I). 

The next step in the construction of Lebesgue-Stieltjes measure 
corresponding to α is the following. 

∗Proposition 4.9 Every set in the Borel σ-algebra on R is m -
measurable. 

Proof. Since the collection of m ∗-measurable sets is a σ-algebra, 
∗it suffices to show that every interval J of the form (c, d] is m -

measurable. Let E be any set with m ∗(E) < ∞; we need to show 

m ∗ (E) ≥ m ∗ (E ∩ J) + m ∗ (E ∩ Jc). (4.6) 

Choose I1, I2, . . ., each of the form (ai, bi], such that E ⊂ ∪iIi and X 
m ∗ (E) ≥ [α(bi) − α(ai)] − ε. 

i 

Since E ⊂ ∪iIi, we have X 
m ∗ (E ∩ J) ≤ m ∗ (Ii ∩ J) 

i 
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and X 
m ∗ (E ∩ Jc) ≤ m ∗ (Ii ∩ Jc). 

i 

Adding we have 

X 
m ∗ (E ∩ J) + m ∗ (E ∩ Jc) ≤ [m ∗ (Ii ∩ J) + m ∗ (Ii ∩ Jc)]. 

i 

Let K1 = (−∞, c] and K2 = (d, ∞). Now Ii ∩ J is an interval 
(possibly empty) that is open on the left and closed on the right. 
Both Ii ∩K1 and Ii ∩K2 are also of this form, although it is possible 
that either Ii ∩K1 or Ii ∩K2 or both might be empty, depending on 
the relative locations of Ii and J . Using (4.4) twice and Proposition 
4.8 three times, we see that 

m ∗ (Ii ∩ J) + m ∗ (Ii ∩ Jc) 

≤ m ∗ (Ii ∩ K1) + m ∗ (Ii ∩ J) + m ∗ (Ii ∩ K2) 

= `(Ii ∩ K1) + `(Ii ∩ J) + `(Ii ∩ K2) 

= `(Ii) = m ∗ (Ii). 

Thus X 
m ∗ (E ∩ J) + m ∗ (E ∩ Jc) ≤ m ∗ (Ii) ≤ m ∗ (E) + ε. 

i 

Since ε is arbitrary, this proves (4.6). 

We now drop the asterisks from m ∗ and call m Lebesgue-Stieltjes 
measure. In the special case where α(x) = x, m is Lebesgue mea-

∗ sure. In the special case of Lebesgue measure, the collection of m -
measurable sets is called the Lebesgue σ-algebra. A set is Lebesgue 
measurable if it is in the Lebesgue σ-algebra. 

Given a measure µ on R such that µ(K) < ∞ whenever K is 
compact, define α(x) = µ((0, x]) if x ≥ 0 and α(x) = −µ((x, 0]) if 
x < 0. Then α is increasing, right continuous, and Exercise 4.1 asks 
you to show that µ is Lebesgue-Stieltjes measure corresponding to 
α. 
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4.3 Examples and related results 

Example 4.10 Let m be Lebesgue measure. If x ∈ R, then {x}
is a closed set and hence is Borel measurable. Moreover 

m({x}) = lim m((x − (1/n), x]) = lim [x − (x − (1/n))] = 0. 
n→∞ n→∞ 

We then conclude 

m([a, b]) = m((a, b]) + m({a}) = b − a + 0 = b − a 

and 

m((a, b)) = m((a, b]) − m({b}) = b − a − 0 = b − a. 

Since σ-algebras are closed under the operation of countable 
unions, then countable sets are Borel measurable. Adding 0 to 
itself countably many times is still 0, so the Lebesgue measure of 
a countable set is 0. 

However there are uncountable sets which have Lebesgue mea-
sure 0. See the next example. 

Example 4.11 Recall from undergraduate analysis that the Can-
tor set is constructed as follows. Let F0 be the interval [0, 1]. We 
let F1 be what remains if we remove the middle third, that is, 

21F1 = F0 − ( ).,3 3 

1 
3F1 consists of two intervals of length each. We remove the middle 

third of each of these two intervals and let 

21 87F2 = F1 − [( ) ∪ ( )]., ,9 9 9 9 

We continue removing middle thirds, and the Cantor set F is ∩nFn. 
Recall that the Cantor set is closed, uncountable, and every point 
is a limit point. Moreover, it contains no intervals. 

1 
3 ), the measure of F2 is 4( 1 

9 ), and theThe measure of F1 is 2( 
measure of Fn is ( 2 

3 )
n . Since the Cantor set C is the intersection 

of all these sets, the Lebesgue measure of C is 0. 

Suppose we define f0 to be 1 on the interval ( 21 ), to be 1 on,2 3 3 
21 ), to be 3 

4 
87the interval ( on the interval ( ), and so on. Define, ,9 9 9 9 

f(x) = inf{f0(y) : y ≥ x, y ∈/ C} for x < 1. Define f(1) = 1. 
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Notice f = f0 on the complement of the Cantor set. f is increasing, 
so it has only jump discontinuities; see Proposition 1.6. But if it 
has a jump discontinuity, there is a rational of the form k/2n with 
k ≤ 2n that is not in the range of f . On the other hand, by the 
construction, each of the values {k/2n : n ≥ 0, k ≤ 2n} is taken by 
f0 for some point in the complement of C, and so is taken by f . 
The only way this can happen is if f is continuous. This function 
f is called the Cantor-Lebesgue function or sometimes simply the 
Cantor function. We will use it in examples later on. 

We say that t is a point of increase for an increasing function 
g defined on R if g(s) < g(u) whenever s < t < u. Note that the 
Cantor-Lebesgue function is a non-constant, increasing continuous 
function for which the collection of points of increase is a set of 
measure zero, namely, the Cantor set. 

Example 4.12 Let q1, q2, . . . be an enumeration of the rationals, 
let ε > 0, and let Ii be the interval (qi − ε/2i, qi + ε/2i). Then the 
measure of Ii is ε/2i−1 , so the measure of ∪iIi is at most 2ε. (It is 
not equal to that because there is a lot of overlap.) Therefore the 
measure of A = [0, 1] − ∪iIi is larger than 1 − 2ε. But A contains 
no rational numbers. 

Example 4.13 Let us follow the construction of the Cantor set, 
with this difference. Instead of removing the middle third at the 

5first stage, remove the middle fourth, i.e., remove ( 3 , ). On each 8 8 
of the two intervals that remain, remove the middle sixteenths. On 
each of the four intervals that remain, remove the middle interval 

1of length , and so on. The total that we removed is64 

1 1+ 2( 1 ) + 4( 1 ) + · · · = .4 16 64 2 

The set that remains contains no intervals, is closed, every point 
is a limit point, is uncountable, and has measure 1/2. Such a set 
is called a generalized Cantor set. Of course, other choices than 1 ,4 
1 , etc. are possible. 16 

Let A ⊂ [0, 1] be a Lebesgue measurable set. We will show that 
A is “almost equal” to the countable intersection of open sets and 
“almost equal” to the countable union of closed sets. (A similar 
argument to what follows is possible for subsets of R that have 
finite measure; see Exercise 4.2.) 
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Proposition 4.14 Suppose A ⊂ [0, 1] is a Lebesgue measurable 
set. Let m be Lebesgue measure. 

(1) Given ε > 0, there exists an open set G so that m(G−A) < ε 
and A ⊂ G. 

(2) Given ε > 0, there exists a closed set F so that m(A−F ) < ε 
and F ⊂ A. 

(3) There exists a set H which contains A that is the countable 
intersection of a decreasing sequence of open sets and m(H − A) = 
0. 

(4) There exists a set F which is contained in A that is the 
countable union of an increasing sequence of closed sets which is 
contained in A and m(A − F ) = 0. 

Proof. (1) There exists a set of the form E = ∪j 
∞ 
=1(aj , bj ] such 

that A ⊂ E and m(E − A) < ε/2. Let G = ∪∞ 
j=1(aj , bj + ε2−j−1). 

Then G is open and contains A and 
∞X 
ε2−j−1 m(G − E) < = ε/2. 

j=1 

Therefore 

m(G − A) ≤ m(G − E) + m(E − A) < ε. 

(2) Find an open set G such that A0 ⊂ G and m(G − A0) < ε, 
where A0 = [0, 1]−A. Let F = [0, 1] − G. Then F is closed, F ⊂ A, 
and m(A − F ) ≤ m(G − A0) < ε. 

(3) By (1), for each i, there is an open set Gi that contains A 
and such that m(Gi − A) < 2−i . Then Hi = ∩i

j=1Gj will contain 
A, is open, and since it is contained in Gi, then m(Hi − A) < 2−i . 
Let H = ∩∞ H need not be open, but it is the intersection ofi=1Hi. 
countably many open sets. The set H is a Borel set, contains A, 
and m(H −A) ≤ m(Hi −A) < 2−i for each i, hence m(H −A) = 0. 

(4) If A0 = [0, 1] − A, apply (3) to A0 to find a set H containing 
A0 that is the countable intersection of a decreasing sequence of 
open sets and such that m(H − A0) = 0. Let J = [0, 1] − H. It is 
left to the reader to verify that J has the desired properties. 

The countable intersections of open sets are sometimes called 
Gδ sets; the G is for geoffnet, the German word for “open” and 
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the δ for Durchschnitt, the German word for “intersection.” The 
countable unions of closed sets are called Fσ sets, the F coming 
from fermé, the French word for “closed,” and the σ coming from 
Summe, the German word for “union.” 

Therefore, when trying to understand Lebesgue measure, we 
can look at Gδ or Fσ sets, which are not so bad, and at null sets, 
which can be quite bad but don’t have positive measure. 

We have that the analogue of Proposition 4.14 holds for any 
Lebesgue-Stieltjes measure. This will be needed in Chapter 14. 

Corollary 4.15 Let µ be a Lebesgue-Stieltjes measure on the real 
line. Then the conclusions of Proposition 4.14 hold with m replaced 
by µ. 

Proof. Let A and E be chosen as in the proof of part (1) of 
Proposition 4.14 with m replaced by µ. Since 

µ((aj , bj ]) = lim µ((aj , y)), 
y→bj + 

we can choose cj > bj such that 

µ((aj , cj )) ≤ µ((aj , bj ]) + ε2−j−1 . 

Let G = ∪∞ 
j=1(aj , cj ). Then E ⊂ G and 

∞ ∞X X 
ε2−j−1 µ(G − E) ≤ [µ((aj , cj )) − µ((aj , bj ]) ≤ = ε/2. 

j=1 j=1 

We now proceed exactly as in the proof of Proposition 4.14. 

4.4 Nonmeasurable sets 

∗Theorem 4.16 Let m be defined by (4.1), where C is the collec-
tion of intervals that are open on the left and closed on the right 

∗and `((a, b]) = b − a. m is not a measure on the collection of all 
subsets of R. 
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∗Proof. Suppose m is a measure. Define x ∼ y if x − y is rational. 
It is easy to see that this is an equivalence relationship on [0, 1]. 
For each equivalence class, pick an element out of that class (we 
need to use the axiom of choice to do this). Call the collection of 
such points A. Given a set B, define B +x = {y +x : y ∈ B}. Note 
that `((a + q, b + q]) = b − a = `((a, b]) for each a, b, and q, and so 

∗by the definition of m , we have m ∗(A + q) = m ∗(A) for each set 
A and each q. Moreover, the sets A + q are disjoint for different 
rationals q. 

Now 
[0, 1] ⊂ ∪q∈[−1,1]∩Q(A + q), 

where the union is only over rational q, so X 
1 ≤ m ∗ (A + q), 

q∈[−1,1],q∈Q 

and therefore m ∗(A) > 0. But 

∪q∈[−1,1]∩Q(A + q) ⊂ [−1, 2], 

∗where again the union is only over rational q, so if m is a measure, 
then X 

3 ≥ m ∗ (A + q), 
q∈[−1,1],q∈Q 

which implies m ∗(A) = 0, a contradiction. 

4.5 The Carathéodory extension theo-
rem 

We prove the Carathéodory extension theorem in this section. This 
theorem abstracts some of the techniques used above to give a tool 
for constructing measures in a variety of contexts. 

Let A0 be an algebra but not necessarily a σ-algebra. Saying 
` is a measure on A0 means the following: (1) of Definition 3.1 
holds and if A1, A2, . . . are pairwise disjoint elements of A0 andP∞
also ∪∞ ∈ A0, then `(∪∞ = `(Ai). Sometimes onei=1Ai i=1Ai) i=1 
calls a measure on an algebra a premeasure. Recall σ(A0) is the 
σ-algebra generated by A0. 
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Theorem 4.17 Suppose A0 is an algebra and ` : A0 → [0, ∞] is 
a measure on A0. Define 

n ∞ oX 
µ ∗ (E) = inf `(Ai) : each Ai ∈ A0, E ⊂ ∪∞ 

i=1Ai 

i=1 

for E ⊂ X. Then 
∗(1) µ is an outer measure; 

(2) µ ∗(A) = `(A) if A ∈ A0; 
(3) every set in A0 and every µ ∗-null set is µ ∗-measurable; 
(4) if ` is σ-finite, then there is a unique extension to σ(A0). 

Proof. (1) is Proposition 4.2. We turn to (2). Suppose E ∈ A0. 
We know µ ∗(E) ≤ `(E) since we can take A1 = E and A2, A3, . . . 

∗ empty in the definition of µ . If E ⊂ ∪∞ Ai with Ai ∈ A0, let i=1 
Bn = E ∩ (An − (∪n−1Ai)). Then the Bn are pairwise disjoint, i=1 
they are each in A0, and their union is E. Therefore 

∞ ∞X X 
`(E) = `(Bi) ≤ `(Ai). 

i=1 i=1 

Taking the infimum over all such sequences A1, A2, . . . shows that 
`(E) ≤ µ ∗(E). 

Next we look at (3). Suppose A ∈ A0. Let ε > 0 and let E ⊂P 
X. Pick B1, B2, . . . ∈ A0 such that E ⊂ ∪∞ 

i=1Bi and `(Bi) ≤i 
µ ∗(E) + ε. Then 

∞X ∞X ∞X 
µ ∗ (E) + ε ≥ `(Bi) = `(Bi ∩ A) + `(Bi ∩ Ac) 

i=1 i=1 i=1 

≥ µ ∗ (E ∩ A) + µ ∗ (E ∩ Ac). 

Since ε is arbitrary, µ ∗(E) ≥ µ ∗(E ∩ A) + µ ∗(E ∩ Ac). Thus A is 
µ ∗-measurable. That µ ∗-null sets are µ ∗-measurable follows by the 

∗definition of µ ∗-measurable and the fact that µ satisfies Definition 
4.1(2). 

Finally, we look at (4). Suppose we have two extensions to 
∗σ(A0), the smallest σ-algebra containing A0. One is µ and let the 

other extension be called ν. We will show that if E is in σ(A0), 
then µ ∗(E) = ν(E). 
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∗ ∗Let us first assume that µ is a finite measure. The µ -measur-
able sets form a σ-algebra containing A0. Because E ∈ σ(A0), E 
must be µ ∗-measurable and 

∞nX o 
µ ∗ (E) = inf `(Ai) : E ⊂ ∪∞ 

i=1Ai, each Ai ∈ A0 . 
i=1 P P 

But ` = ν on A0, so `(Ai) = ν(Ai). Therefore if E ⊂ ∪∞ Aii i i=1 
with each Ai ∈ A0, then X X 

ν(E) ≤ ν(Ai) = `(Ai), 
i i 

which implies 
ν(E) ≤ µ ∗ (E). (4.7) 

Since we do not know that ν is constructed via an outer measure, 
we must use a different argument to get the reverse inequality. LetP 
ε > 0 and choose Ai ∈ A0 such that µ ∗(E) + ε ≥ `(Ai) andi 
E ⊂ ∪iAi. Let A = ∪∞ Ai and Bk = ∪k Ai. Observe i=1 i=1 X X 

µ ∗ (E) + ε ≥ `(Ai) = µ ∗ (Ai) ≥ µ ∗ (∪iAi) = µ ∗ (A), 
i i 

hence µ ∗(A − E) ≤ ε. We have 

µ ∗ (A) = lim µ ∗ (Bk) = lim ν(Bk) = ν(A). 
k→∞ k→∞ 

Then 

µ ∗ (E) ≤ µ ∗ (A) = ν(A) = ν(E) + ν(A − E) 

≤ ν(E) + µ ∗ (A − E) ≤ ν(E) + ε, 

using (4.7) in the next to last inequality. Since ε is arbitrary, this 
completes the proof when ` is finite. 

It remains to consider the case when ` is σ-finite. Write X = 
∪iKi, where Ki ↑ X and `(Ki) < ∞ for each i. By the preceding 
paragraph we have uniqueness for the measure ` i defined by ` i(A) = 
`(A ∩ Ki). If µ and ν are two extensions of ` and A ∈ σ(A0), then 

µ(A) = lim µ(A ∩ Ki) = lim ` i(A) = lim ν(A ∩ Ki) = ν(A), 
i→∞ i→∞ i→∞ 

which proves µ = ν. 
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4.6 Exercises 

Exercise 4.1 Let µ be a measure on the Borel σ-algebra of R such 
that µ(K) < ∞ whenever K is compact, define α(x) = µ((0, x]) 
if x ≥ 0 and α(x) = −µ((x, 0]) if x < 0. Show that µ is the 
Lebesgue-Stieltjes measure corresponding to α. 

Exercise 4.2 Let m be Lebesgue measure and A a Lebesgue mea-
surable subset of R with m(A) < ∞. Let ε > 0. Show there exist 
G open and F closed such that F ⊂ A ⊂ G and m(G − F ) < ε. 

Exercise 4.3 If (X, A, µ) is a measure space, define 

µ ∗ (A) = inf{µ(B) : A ⊂ B, B ∈ A} 

∗for all subsets A of X. Show that µ is an outer measure. Show 
∗that each set in A is µ ∗-measurable and µ agrees with the measure 

µ on A. 

Exercise 4.4 Let m be Lebesgue-Stieltjes measure corresponding 
to a right continuous increasing function α. Show that for each x, 

m({x}) = α(x) − α(x−). 

Exercise 4.5 Suppose m is Lebesgue measure. Define x + A = 
{x + y : y ∈ A} and cA = {cy : y ∈ A} for x ∈ R and c a 
real number. Show that if A is a Lebesgue measurable set, then 
m(x + A) = m(A) and m(cA) = |c|m(A). 

Exercise 4.6 Let m be Lebesgue measure. Suppose for each n, 
An is a Lebesgue measurable subset of [0, 1]. Let B consist of those 
points x that are in infinitely many of the An. 
(1) Show B is Lebesgue measurable. 
(2) If m(An) > δ > 0 for each n, show m(B) ≥ δ.P∞
(3) If ) < ∞, prove that m(B) = 0. n=1 m(An P∞
(4) Give an example where ) = ∞, but m(B) = 0. n=1 m(An 

Exercise 4.7 Suppose ε ∈ (0, 1) and m is Lebesgue measure. Find 
a measurable set E ⊂ [0, 1] such that the closure of E is [0, 1] and 
m(E) = ε. 
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Exercise 4.8 If X is a metric space, B is the Borel σ-algebra, and 
µ is a measure on (X, B), then the support of µ is the smallest 
closed set F such that µ(F c) = 0. Show that if F is a closed subset 
of [0, 1], then there exists a finite measure on [0, 1] whose support 
is F . 

Exercise 4.9 Let m be Lebesgue measure. Find an example of 
Lebesgue measurable subsets A1, A2, . . . of [0, 1] such that m(An) > 
0 for each n, m(An4Am) > 0 if n 6= m, and m(An ∩ Am) = 
m(An)m(Am) if n =6 m. 

Exercise 4.10 Let ε ∈ (0, 1), let m be Lebesgue measure, and 
suppose A is a Borel measurable subset of R. Prove that if 

m(A ∩ I) ≤ (1 − ε)m(I) 

for every interval I, then m(A) = 0. 

Exercise 4.11 Suppose m is Lebesgue measure and A is a Borel 
measurable subset of R with m(A) > 0. Prove that if 

B = {x − y : x, y ∈ A}, 

then B contains a non-empty open interval centered at the origin. 
This is known as the Steinhaus theorem. 

Exercise 4.12 Let m be Lebesgue measure. Construct a Borel 
subset A of R such that 0 < m(A ∩ I) < m(I) for every open 
interval I. 

Exercise 4.13 Let N be the non-measurable set defined in Section 
4.4. Prove that if A ⊂ N and A is Lebesgue measurable, then 
m(A) = 0. 

Exercise 4.14 Let m be Lebesgue measure. Prove that if A is a 
Lebesgue measurable subset of R and m(A) > 0, then there is a 
subset of A that is non-measurable. 

∗Exercise 4.15 Suppose µ is an outer measure on X, A a subset 
∗of X, and for each ε > 0 there exists B such that A ⊂ B, B is µ -

measurable, and µ ∗(B − A) < ε. Prove that A is µ ∗-measurable. 
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Exercise 4.16 Let X be a set and A a collection of subsets of X 
that form an algebra of sets. Suppose ` is a measure on A such 

∗that `(X) < ∞. Define µ using ` as in (4.1). Prove that a set A 
is µ ∗-measurable if and only if 

µ ∗ (A) = `(X) − µ ∗ (Ac). 

Exercise 4.17 (1) Give an example of a set X and a finite outer 
∗ measure µ on X, subsets An ↑ A of X, and subsets Bn ↓ B of X 

such that µ ∗(An) does not converge to µ ∗(A) and µ ∗(Bn) does not 
converge to µ ∗(B). 

∗(2) Let (X, A, µ) be a finite measure space, and define µ as in 
Exercise 4.3. Show that if An ↑ A for subsets An, A of X, then 
µ ∗(An) ↑ µ ∗(A). 

Exercise 4.18 Suppose A is a Lebesgue measurable subset of R 
and 

B = ∪x∈A[x − 1, x + 1]. 

Prove that B is Lebesgue measurable. 

Exercise 4.19 Suppose A ⊂ R has Lebesgue measure 0. Prove 
that there exists c ∈ R such that A ∩ (c + Q) = ∅, where c + Q = 
{c + x : x ∈ Q} and Q is the rational numbers. 
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Chapter 5 

Measurable functions 

We are now ready to move from sets to functions. Not surprisingly, 
given a σ-algebra A, we can only work with functions that are 
related to A in some fashion. 

5.1 Measurability 

Suppose we have a measurable space (X, A). 

Definition 5.1 A function f : X → R is measurable or A measur-
able if {x : f(x) > a} ∈ A for all a ∈ R. A complex-valued function 
is measurable if both its real and imaginary parts are measurable. 

Example 5.2 Suppose f is real-valued and identically constant. 
Then the set {x : f(x) > a} is either empty or all of X, so f is 
measurable. 

Example 5.3 Suppose f(x) = 1 if x ∈ A and 0 otherwise. Then 
the set {x : f(x) > a} is either ∅, A, or X. Hence f is measurable 
if and only if A is in A. 

Example 5.4 Suppose X is the real line with the Borel σ-algebra 
and f(x) = x. Then {x : f(x) > a} = (a, ∞), and so f is measur-
able. 

43 
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Proposition 5.5 Suppose f is real-valued. The following condi-
tions are equivalent. 
(1) {x : f(x) > a} ∈ A for all a ∈ R; 
(2) {x : f(x) ≤ a} ∈ A for all a ∈ R; 
(3) {x : f(x) < a} ∈ A for all a ∈ R; 
(4) {x : f(x) ≥ a} ∈ A for all a ∈ R. 

Proof. The equivalence of (1) and (2) and of (3) and (4) follow 
from taking complements, e.g., {x : f(x) ≤ a} = {x : f(x) > a}c . 
If f is measurable, then 

{x : f(x) ≥ a} = ∩∞ 
n=1{x : f(x) > a − 1/n} 

shows that (4) holds if (1) does. If (4) holds, then (1) holds by 
using the equality 

{x : f(x) > a} = ∪∞ 
n=1{x : f(x) ≥ a + 1/n}. 

This completes the proof. 

Proposition 5.6 If X is a metric space, A contains all the open 
sets, and f : X → R is continuous, then f is measurable. 

Proof. Note that {x : f(x) > a} = f−1((a, ∞)) is open, and hence 
in A. 

Proposition 5.7 Let c ∈ R. If f and g are measurable real-valued 
functions, then so are f + g, −f , cf , fg, max(f, g), and min(f, g). 

Proof. If f(x) + g(x) < a, then f(x) < a − g(x), and there exists 
a rational r such that f(x) < r < a − g(x). Hence 

{x : f(x) + g(x) < a} = ∪r∈Q({x : f(x) < r} ∩ {x : g(x) < a − r}). 

This proves f + g is measurable. 

Since {x : −f(x) > a} = {x : f(x) < −a}, then −f is measur-
able using Proposition 5.5. 
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If c > 0, then {x : cf(x) > a} = {x : f(x) > a/c} shows cf is 
measurable. When c = 0, cf is measurable by Example 5.2. When 
c < 0, write cf = −(|c|f), which is measurable by what we have 
already proved. 

f2 is measurable since for a < 0, {x : f(x)2 > a} = X, while 
for a ≥ 0, 

√ √ 
{x : f(x)2 > a) = {x : f(x) > a} ∪ {x : f(x) < − a}. 

The measurability of fg follows since 

1fg = [(f + g)2 − f2 − g 2].2 

The equality 

{x : max(f(x), g(x)) > a} = {x : f(x) > a} ∪ {x : g(x) > a} 

shows max(f, g) is measurable, and the result for min(f, g) follows 
from min(f, g) = − max(−f, −g). 

Proposition 5.8 If fi is a measurable real-valued function for 
each i, then so are supi fi, infi fi, lim supi→∞ fi, and lim infi→∞ fi, 
provided they are finite. 

Proof. The result will follow for lim sup and lim inf once we 
have the result for the sup and inf by using the definitions since 
lim supi fi = infj supi≥j fi and similarly for the lim inf. We have 
{x : supi fi(x) > a} = ∪∞ {x : fi(x) > a}, so supi fi is measur-i=1 
able, and the proof for inf fi is similar. 

Definition 5.9 We say f = g almost everywhere, written f = g 
a.e., if {x : f(x) =6 g(x)} has measure zero. Similarly, we say 
fi → f a.e. if the set of x where fi(x) does not converge to f(x) 
has measure zero. 

If X is a metric space, B is the Borel σ-algebra, and f : X → R 
is measurable with respect to B, we say f is Borel measurable. If 
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f : R → R is measurable with respect to the Lebesgue σ-algebra, 
we say f is Lebesgue measurable. 

We saw in Proposition 5.6 that all continuous functions are 
Borel measurable. The same is true for increasing functions on the 
real line. 

Proposition 5.10 If f : R → R is monotone, then f is Borel 
measurable. 

Proof. Let us suppose f is increasing, for otherwise we look at 
−f . Given a ∈ R, let x0 = sup{y : f(y) ≤ a}. If f(x0) ≤ a, then 
{x : f(x) > a} = (x0, ∞). If f(x0) > a, then {x : f(x) > a} = 
[x0, ∞). In either case {x : f(x) > a} is a Borel set. 

Proposition 5.11 Let (X, A) be a measurable space and let f : 
X → R be an A measurable function. If A is in the Borel σ-algebra 
on R, then f−1(A) ∈ A. 

Proof. Let B be the Borel σ-algebra on R and C = {A ⊂ R : 
f−1(A) ∈ A}. If A1, A2, . . . ∈ C, then since 

f−1(∪iAi) = ∪if
−1(Ai) ∈ A, 

we have that C is closed under countable unions. Similarly C is 
closed under countable intersections and complements, so C is a 
σ-algebra. Since f is measurable, C contains (a, ∞) for every real 
a, hence C contains the σ-algebra generated by these intervals, that 
is, C contains B. 

The above proposition says that if f is measurable, then the 
inverse image of a Borel set is measurable. 

Example 5.12 Let us construct a set that is Lebesgue measur-
able, but not Borel measurable. Recall the Lebesgue measurable 
sets were constructed in Chapter 4 and include the completion of 
the Borel σ-algebra. 

Let f be the Cantor-Lebesgue function of Example 4.11 and 
define 

F (x) = inf{y : f(y) ≥ x}. 
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Although F is not continuous, observe that F is strictly increasing 
(hence one-to-one) and maps [0, 1] into C, the Cantor set. Since F 
is increasing, F −1 maps Borel measurable sets to Borel measurable 
sets. 

Let m be Lebesgue measure and let A be the non-measurable 
set we constructed in Proposition 4.16. Let B = F (A). Since 
F (A) ⊂ C and m(C) = 0, then F (A) is a null set, hence is Lebesgue 
measurable. On the other hand, F (A) is not Borel measurable, be-
cause if it were, then A = F −1(F (A)) would be Borel measurable, 
a contradiction. 

5.2 Approximation of functions 

Definition 5.13 Let (X, A) be a measurable space. If E ∈ A, 
define the characteristic function of E by ( 

1, x ∈ E;
χE (x) = 

0, x ∈/ E. 

A simple function s is a function of the form 

nX 
s(x) = aiχEi (x) 

i=1 

for real numbers ai and measurable sets Ei. 

Proposition 5.14 Suppose f is a non-negative and measurable 
function. Then there exists a sequence of non-negative measurable 
simple functions sn increasing to f . 

Proof. Let 

Ain = {x : (i − 1)/2n ≤ f(x) < i/2n} 

and 
Bn = {x : f(x) ≥ n} 

for n = 1, 2, . . . and i = 1, 2, . . . , n2n . Then define 

n2nX i − 1 
sn = + nχBn χAin . 

2n 
i=1 
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In words, sn(x) = n if f(x) ≥ n. If f(x) is between (i − 1)/2n 

and i/2n for i/2n ≤ n, we let sn(x) = (i − 1)/2n . 

It is easy to see that sn has the desired properties. 

5.3 Lusin’s theorem 

The following theorem is known as Lusin’s theorem. It is very 
pretty but usually other methods are better for solving problems. 
Example 5.16 will illustrate why this is a less useful theorem than 
at first glance. 

We use m for Lebesgue measure. Recall that the support of a 
function f is the closure of the set {x : f(x) 6= 0}. 

Theorem 5.15 Suppose f : [0, 1] → R is Lebesgue measurable, m 
is Lebesgue measure, and ε > 0. There exists a closed set F ⊂ [0, 1] 
such that m([0, 1] − F ) < ε and the restriction of f to F is a 
continuous function on F . 

This theorem can be loosely interpreted as saying every measurable 
function is “almost continuous.” 

Proof. First let us suppose that f = χA, where A is a Lebesgue 
measurable subset of [0, 1]. By Proposition 4.14 we can find E 
closed and G open such that E ⊂ A ⊂ G and m(G − A) < ε/2 
and m(A − E) < ε/2. Let δ = inf{|x − y| : x ∈ E, y ∈ Gc}. Since 
E ⊂ A ⊂ [0, 1], E is compact and δ > 0. Letting � �+d(x, E) 

g(x) = 1 − ,
δ 

+where y = max(y, 0) and d(x, E) = inf{|x − y| : y ∈ E}, we 
see that g is continuous, takes values in [0, 1], is equal to 1 on 
E, and equal to 0 on Gc . Take F = (E ∪ Gc) ∩ [0, 1]. Then 
m([0, 1] − F ) ≤ m(G − E) < ε, and f = g on F . PM
Next suppose f = is simple, where each Ai is ai=1 aiχAi 

measurable subset of [0, 1] and each ai ≥ 0. Choose Fi closed such 
that m([0, 1] − Fi) < ε/M and χAi restricted to Fi is continuous. 
If we let F = ∩M Fi, then F is closed, m([0, 1] − F ) < ε, and fi=1 
restricted to F is continuous. 
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Now suppose f is non-negative, bounded by K, and has support 
in [0, 1]. Let 

Ain = {x : (i − 1)/2n ≤ f(x) < i/2n}. 

Then 
K2nX+1 

i − 1 
fn(x) = (x)χAin2n 

i=1 

are simple functions increasing to f . Note that 

hn(x) = fn+1(x) − fn(x) 

is also a simple function and is bounded by 2−n . Choose F0 closed 
such that m([0, 1]−F0) < ε/2 and f0 restricted to F0 is continuous. 
For n ≥ 1, choose Fn closed such that m([0, 1] − Fn) < ε/2n+1 and 

= ∩∞hn restricted to Fn is continuous. Let F n=0Fn. Then F , being 
the intersection of closed sets, will be closed, and 

∞X 
m([0, 1] − F ) ≤ m([0, 1] − Fn) < ε. 

n=0 P∞
On the set F , we have that f0(x)+ n=1 hn(x) converges uniformly 
to f(x) because each hn is bounded by 2−n . The uniform limit of 
continuous functions is continuous, hence f is continuous on F . 

If f ≥ 0, let BK = {x : f(x) ≤ K}. Since f is everywhere finite, 
BK ↑ [0, 1] as K →∞, hence m(BK ) > 1 − ε/3 if K is sufficiently 
large. Choose D ⊂ BK such that D is closed and m(BK −D) < ε/3. 
Now choose E ⊂ [0, 1] closed such that f · χD restricted to E is 
continuous and m([0, 1] − E) < ε/3. Then F = D ∩ E is closed, 
m([0, 1] − F ) < ε, and f restricted to F is continuous. 

Finally, for arbitrary measurable f write f = f+ − f− and find 
F + and F − closed such that m([0, 1]−F +) < ε/2, m([0, 1]−F −) < 
ε/2, and f+ restricted to F + is continuous and similarly for f− . 
Then F = F + ∩ F − is the desired set. 

Example 5.16 Suppose f = χB , where B consists of the irra-
tionals in [0, 1]. f is Borel measurable because [0, 1] − B is count-
able, hence the union of countably many points, and thus the union 
of countably many closed sets. Every point of [0, 1] is a point of 
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discontinuity of f because for any x ∈ [0, 1], there are both ratio-
nals and irrationals in every neighborhood of x, hence f takes the 
values 0 and 1 in every neighborhood of x. 

Recall Example 4.12. f restricted to the set A there is identi-
cally one, hence f restricted to A is a continuous function. A is 
closed because it is equal to the interval [0, 1] minus the union of 
open intervals. 

This does not contradict Lusin’s theorem. No claim is made 
that the function f is continuous at most points of [0, 1]. What is 
asserted is that there is a closed set F with large measure so that 
f restricted to F is continuous when viewed as a function from F 
to R. 

5.4 Exercises 

Exercise 5.1 Suppose (X, A) is a measurable space, f is a real-
valued function, and {x : f(x) > r} ∈ A for each rational number 
r. Prove that f is measurable. 

Exercise 5.2 Let f : (0, 1) → R be such that for every x ∈ (0, 1) 
there exist r > 0 and a Borel measurable function g, both depend-
ing on x, such that f and g agree on (x − r, x + r) ∩ (0, 1). Prove 
that f is Borel measurable. 

Exercise 5.3 Suppose f is a measurable function and f(x) > 0 
for all x. Let g(x) = 1/f(x). Prove that g is a measurable function. 

Exercise 5.4 Suppose fn are measurable functions. Prove that 

A = {x : lim fn(x) exists}
n→∞ 

is a measurable set. 

Exercise 5.5 If f : R → R is Lebesgue measurable, prove that 
there exists a Borel measurable function g such that f = g a.e. 

Exercise 5.6 Suppose (X, A) is a measurable space and f = g+ih 
with g and h both being real-valued Borel measurable functions on 
X. 
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(1) Prove that |f | is a measurable function. 
iθ(2) For z ∈ C, define arg z = θ if z =6 0, z = re , and 0 ≤ θ < 2π. 

Let arg 0 = 0. Prove that arg is a measurable function from C to 
C. 

Exercise 5.7 Suppose f : R → R is differentiable at each point. 
Prove that f and f 0 are Borel measurable. 

Exercise 5.8 Give an example of a collection of measurable non-
negative functions {fα}α∈A such that if g is defined by g(x) = 
supα∈A fα(x), then g is finite for all x but g is non-measurable. (A 
is allowed to be uncountable.) 

Exercise 5.9 Suppose f : R → R is Lebesgue measurable and 
g : R → R is continuous. Prove that g ◦ f is Lebesgue measurable. 
Is this true if g is Borel measurable instead of continuous? Is this 
true if g is Lebesgue measurable instead of continuous? 

Exercise 5.10 Suppose f : R → R is Borel measurable. Define 
A to be the smallest σ-algebra containing the sets {x : f(x) > a}
for every a ∈ R. Suppose g : R → R is measurable with respect to 
A, which means that {x : g(x) > a} ∈ A for every a ∈ R. Prove 
that there exists a Borel measurable function h : R → R such that 
g = h ◦ f . 

Exercise 5.11 One can show that there exist discontinuous real-
valued functions f such that 

f(x + y) = f(x) + f(y) (5.1) 

for all x, y ∈ R. (The construction uses Zorn’s lemma, which is 
equivalent to the axiom of choice.) Prove that if f satisfies (5.1) 
and in addition f is Lebesgue measurable, then f is continuous. 
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Chapter 6 

The Lebesgue integral 

In this chapter we define the Lebesgue integral. We only give the 
definition here; we consider the properties of the Lebesgue integral 
in later chapters. 

6.1 Definitions 

Definition 6.1 Let (X, A, µ) be a measure space. If 
nX 

s = aiχEi 

i=1 

is a non-negative measurable simple function, define the Lebesgue 
integral of s to be Z nX 

s dµ = aiµ(Ei). (6.1) 
i=1 

Here, if ai = 0 and µ(Ei) = ∞, we use the convention that 
aiµ(Ei) = 0. If f ≥ 0 is a measurable function, define Z nZ o 

f dµ = sup s dµ : 0 ≤ s ≤ f, s simple . (6.2) 

Let f be measurable and let f+ = max(f, 0) and f− = max(−f, 0).R R 
Provided f+ dµ and f− dµ are not both infinite, define Z Z Z 

f dµ = f+ dµ − f− dµ. (6.3) 

53 
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R 
Finally, if f = u + iv is complex-valued and (|u| + |v|) dµ is finite, 
define Z Z Z 

f dµ = u dµ + i v dµ. (6.4) 

A few remarks are in order. A function s might be written as 
a simple function in more than one way. For example s = χA∪B = 
χA + χB if A and B are disjoint. It is not hard, although a bitR 
tedious, to check that the definition of s dµ is unaffected by how P Pm n 
s is written. If s = = j=1 bj χBj , then we need toi=1 aiχAi 

show 
m nX X 
aiµ(Ai) = bj µ(Bj ). (6.5) 

i=1 j=1 

We leave the proof of this to the reader as Exercise 6.2. 

Secondly, if s is a simple function, one has to think a moment R 
to verify that the definition of s dµ by means of (6.1) agrees with 
its definition by means of (6.2). 

R 
Definition 6.2 If f is measurable and |f | dµ < ∞, we say f is 
integrable. 

The proof of the next proposition follows from the definitions. 

Proposition 6.3 (1) If f is a real-valued measurable function withR 
0 ≤ a ≤ f(x) ≤ b for all x and µ(X) < ∞, then aµ(X) ≤ f dµ ≤ 
bµ(X); 

(2) If f and g are measurable, real-valued, and integrable andR R 
0 ≤ f(x) ≤ g(x) for all x, then f dµ ≤ g dµ. 

(3) If f is real-valued, non-negative, and integrable and c is aR R 
non-negative real number, then cf dµ = c f dµ. 

(4) If µ(A) = 0 and f is non-negative and measurable, thenR 
fχA dµ = 0. 

R R 
The integral fχA dµ is often written f dµ. Other nota-

A R 
tion for the integral is to omit the µ and write f if it is clearR 
which measure is being used, to write f(x) µ(dx), or to writeR 
f(x) dµ(x). 
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When we are integrating a function f with respect to Lebesgue R R 
measure m, it is usual to write f(x) dx for f(x) m(dx) and to 
define Z b Z 

f(x) dx = f(x) m(dx). 
a [a,b] R R R 

We do not yet know that (f + g) = f + g. We will see this 
in Theorem 7.4. 

6.2 Exercises 

Some of these exercises will be easier once we have the results of 
Chapter 7, but it is good practice to try to solve them using only 
the definitions. 

Exercise 6.1 Prove that if f is non-negative and measurable andR 
f dµ < ∞, then f < ∞ a.e. 

Exercise 6.2 Verify (6.5). 

Exercise 6.3 Suppose A1 and A2 are measurable and disjoint and 
f is non-negative or integrable. Prove that Z Z Z 

f = f + f. 
A1 ∪A2 A1 A2 

Exercise 6.4 Let X be a set and A the collection of all subsets of 
X. Pick y ∈ X and let δy be point mass at y, defined in Example 
3.4. Prove that if f : X → R, then Z 

f dδy = f(y). 

Exercise 6.5 Let X be the positive integers and A the collection 
of all subsets of X. If f : X → R is non-negative and µ is counting 
measure defined in Example 3.2, prove that Z ∞X 

f dµ = f(k). 
k=1 

This exercise is very useful because it allows one to derive many 
conclusions about series from analogous results about general mea-
sure spaces. 
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Exercise 6.6 Suppose f is non-negative and measurable and µ is 
σ-finite. Show there exist simple functions sn increasing to f at 
each point such that µ({x : sn(x) =6 0}) < ∞ for each n. 

Exercise 6.7 Let f be a non-negative measurable function. Prove 
that Z Z 

lim (f ∧ n) = f. 
n→∞ 

Exercise 6.8 Let (X, A, µ) be a measure space and suppose µ is 
σ-finite. Suppose f is integrable. Prove that given ε there exists δ 
such that Z 

|f(x)| µ(dx) < ε 
A 

whenever µ(A) < δ. 

Exercise 6.9 Let (X, A, µ) be a finite measure space and suppose 
f is a non-negative, measurable function that is finite at each point 
of X, but not necessarily integrable. Prove that there exists a 
continuous strictly increasing function g : [0, ∞) → [0, ∞) such 
that limx→∞ g(x) = ∞ and g ◦ f is integrable. 



Chapter 7 

Limit theorems 

The main reason the Lebesgue integral is so much easier to work 
with than the Riemann integral is that it behaves nicely when 
taking limits. In this chapter we prove four main results: 
(1) the monotone convergence theorem, 
(2) the linearity of the Lebesgue integral, 
(3) Fatou’s lemma, and 
(4) the dominated convergence theorem. 

7.1 Monotone convergence theorem 

One of the most important results concerning Lebesgue integration 
is the monotone convergence theorem. 

Theorem 7.1 Suppose fn is a sequence of non-negative measur-
able functions with f1(x) ≤ f2(x) ≤ · · · for all x and with 

lim fn(x) = f(x) 
n→∞ R R 

for all x. Then fn dµ → f dµ. 

R 
Proof. By Proposition 6.3(2), fn is an increasing sequence. LetR 
L be the limit. Since fn ≤ f for all n, then L ≤ f . We must R 
show L ≥ f . 

57 
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Pm
Let s = be any non-negative simple function lessi=1 aiχEi 

than or equal to f and let c ∈ (0, 1). Let An = {x : fn(x) ≥ cs(x)}. 
Since fn(x) increases to f(x) for each x and c < 1, then An ↑ X. 
For each n, Z Z Z 

fn ≥ fn ≥ c s 
An AnZ mX 

= c aiχEi 
An i=1 
mX 

= c aiµ(Ei ∩ An). 
i=1 

If we let n → ∞, by Proposition 3.5(3) the right hand side con-
verges to 

m ZX 
c aiµ(Ei) = c s. R i=1 

Therefore L ≥ c s. Since c is arbitrary in the interval (0, 1), thenR 
L ≥ s. Taking the supremum over all simple s ≤ f , we obtainR 
L ≥ f . 

Example 7.2 Let X = [0, ∞) and fn(x) = −1/n for all x. Then R R 
fn = −∞, but fn ↑ f where f = 0 and f = 0. The reason the 

monotone convergence theorem does not apply here is that the fn 

are not non-negative. 

Example 7.3 Suppose fn = nχ(0,1/n). Then fn ≥ 0, fn → 0 forR R 
each x, but fn = 1 does not converge to 0 = 0. The reason the 
monotone convergence theorem does not apply here is that the fn 

do not increase to f for each x. 

7.2 Linearity of the integral 

Once we have the monotone convergence theorem, we can prove 
that the Lebesgue integral is linear. 

Theorem 7.4 If f and g are non-negative and measurable or if f 
and g are integrable, then Z Z Z 

(f + g) dµ = f dµ + g dµ. 
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Proof. First suppose f and g are non-negative and simple, say, P Pm n
f = and g = bj χBj . For i ≤ m let ci = ai andi=1 aiχAi j=1 
Ci = Ai. For m + 1 ≤ i ≤ m + n let ci = bi−m and Ci = Bi−m. 
Then 

m+nX 
f + g = ciχCi , 

i=1 

and we see that Z m+nX 
(f + g) = ciµ(Ci) 

i=1 
m nX X 

= ciµ(Ci) + cj+mµ(Cj+m) 
i=1 j=1 

m nX X 
= aiµ(Ai) + bj µ(Bj ) 

i=1 j=1Z Z 
= f + g. 

Thus the theorem holds in this case. 

Next suppose f and g are non-negative. Take sn non-negative, 
simple, and increasing to f and tn non-negative, simple, and in-
creasing to g. Then sn +tn are simple functions increasing to f +g, 
so the result follows from the monotone convergence theorem and Z Z Z Z Z Z 
(f +g) = lim (sn +tn) = lim sn + lim tn = f + g. 

n→∞ n→∞ n→∞ 

Suppose now that f and g are real-valued and integrable but 
take both positive and negative values. Since Z Z Z Z 

|f + g| ≤ (|f | + |g|) = |f | + |g| < ∞, 

then f + g is integrable. Write 

−(f + g)+ − (f + g)− = f + g = f+ − f− + g + − g , 

so that 

−(f + g)+ + f− + g = f+ + g + + (f + g)− . 

Using the result for non-negative functions, Z Z Z Z Z Z 
− +(f + g)+ + f− + g = f+ + g + (f + g)− . 
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Rearranging, Z Z Z 
(f + g) = (f + g)+ − (f + g)− Z Z Z Z 

− = f+ − f− + g + − g Z Z 
= f + g. 

If f and g are complex-valued, apply the above to the real and 
imaginary parts. 

Proposition 7.5 (1) If f is a real-valued measurable function withR 
a ≤ f(x) ≤ b for all x and µ(X) < ∞, then aµ(X) ≤ f dµ ≤ 
bµ(X); 

(2) If f and g are measurable, real-valued, and integrable andR R 
f(x) ≤ g(x) for all x, then f dµ ≤ g dµ. 

(3) If f is complex-valued and integrable and c is a complex R R 
number, then cf dµ = c f dµ. R 

(4) If µ(A) = 0 and f is measurable, then fχA dµ = 0. 

Proof. These follow from the definition of the Lebesgue integral 
of a complex-valued function, Proposition 6.3, and Theorem 7.4. 

−For example, to prove (2), write f = f+ − f− and g = g+ − g . 
Then 

f+(x) − f−(x) = f(x) ≤ g(x) = g +(x) − g −(x) 

implies 
0 ≤ f+(x) + g −(x) ≤ g +(x) + f−(x) R R 

+for all x. Proposition 6.3(2) implies (f+ + g−) ≤ (g +f−), and R R 
the linearity of the Lebesgue integral imples that f ≤ g. 

Proposition 7.6 Suppose fn are non-negative measurable func-
tions. Then Z ∞ ∞ ZX X 

fn = fn. 
n=1 n=1 
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PN P∞
Proof. Let FN = fn. Since 0 ≤ Fn(x) ↑ fn(x), we n=1 n=1 
can write Z X∞ Z NX 

fn = lim fn 
N→∞ 

n=1 n=1Z Z 
= lim FN = lim FN (7.1) 

N→∞ N→∞ 

N Z ∞ ZX X 
= lim fn = fn, 

N→∞ 
n=1 n=1 

using the monotone convergence theorem and the linearity of the 
integral. 

Proposition 7.7 If f is integrable, Z Z 
f ≤ |f |. 

R R 
Proof. For the real case, this is easy. f ≤ |f |, so f ≤ |f |. AlsoR R 
−f ≤ |f |, so − f ≤ |f |. Now combine these two facts. R 
For the complex case, f is a complex number. If it is 0, theR 

iθinequality is trivial. If it is not, then f = re for some r and θ. 
Then Z Z Z 

−iθf = r = e f = e −iθf. R 
From the definition of f when f is complex, it follows thatR R R 
Re ( f) = Re (f). Since | f | is real, we have Z �Z � Z Z 

−iθf −iθf) ≤f = Re e = Re (e |f | 

as desired. 

7.3 Fatou’s lemma 

The next theorem is known as Fatou’s lemma. 
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Theorem 7.8 Suppose the fn are non-negative and measurable. 
Then Z Z 

lim inf fn ≤ lim inf fn. 
n→∞ n→∞ 

Proof. Let gn = infi≥n fi. Then the gn are non-negative and 
gn increases to lim infn fn. Clearly gn ≤ fi for each i ≥ n, soR R 
gn ≤ fi. Therefore Z Z 

gn ≤ inf fi. (7.2)
i≥n 

If we take the limit in (7.2) as n → ∞, on the left hand side we R 
obtain lim infn fn by the monotone convergence theorem, while R 
on the right hand side we obtain lim infn fn. 

A typical use of Fatou’s lemma is the following. Suppose we R 
have fn → f and sup |fn| ≤ K < ∞. Then |fn| → |f |, and by R n 
Fatou’s lemma, |f | ≤ K. 

7.4 Dominated convergence theorem 

Another very important theorem is the dominated convergence the-
orem. 

Theorem 7.9 Suppose that fn are measurable real-valued func-
tions and fn(x) → f(x) for each x. Suppose there exists a non-
negative integrable function g such that |fn(x)| ≤ g(x) for all x. 
Then Z Z 

lim fn dµ = f dµ. 
n→∞ 

Proof. Since fn + g ≥ 0, by Fatou’s lemma, Z Z Z Z Z Z 
f + g = (f + g) ≤ lim inf (fn + g) = lim inf fn + g. 

n→∞ n→∞ 

Since g is integrable, Z Z 
f ≤ lim inf fn. (7.3) 

n→∞ 
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Similarly, g − fn ≥ 0, so Z Z Z Z Z Z 
g − f = (g −f) ≤ lim inf (g −fn) = g +lim inf (−fn), 

n→∞ n→∞ 

and hence Z Z Z 
− f ≤ lim inf (−fn) = − lim sup fn. 

n→∞ n→∞ 

Therefore Z Z 
f ≥ lim sup fn, 

n→∞ 

which with (7.3) proves the theorem. 

Exercise 7.1 asks you to prove a version of the dominated con-
vergence theorem for complex-valued functions. 

Example 7.3 is an example where the limit of the integrals is not 
the integral of the limit because there is no dominating function g. 

If in the monotone convergence theorem or dominated conver-
gence theorem we have only fn(x) → f(x) almost everywhere, the 
conclusion still holds. For example, if f and the fn are measurable, 
non-negative, and fn ↑ f a.e., let A = {x : fn(x) → f(x)}. Then 
fnχA(x) ↑ fχA(x) for each x. Since Ac has measure 0, we see from 
Proposition 6.3(4) and the monotone convergence theorem that Z Z Z Z 

lim fn = lim fnχA = fχA = f. 
n n 

7.5 Exercises 

For these exercises you may use the fact that if f is continuous 
on [a, b], −∞ < a < b < ∞, and F is differentiable on [a, b] withR b
derivative f , then f(x) dx = F (b) − F (a). This follows by the 

a 
results of Chapter 9 and the fundamental theorem of calculus from 
undergraduate analysis. 

Exercise 7.1 State and prove a version of the dominated conver-
gence theorem for complex-valued functions. 

Exercise 7.2 Give another proof of the dominated convergence 
theorem by applying Fatou’s lemma to 2g − |fn − f |. 
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Exercise 7.3 Suppose f is integrable. Prove that if either An ↑ AR R 
or An ↓ A, then 

An 
f → 

A f . P∞ R P∞
Exercise 7.4 Show that if |fn| < ∞, then f(x)n=1 n=1 
converges absolutely a.e., is integrable, and its integral is equalP∞ R 
to n=1 fn. 

Exercise 7.5 The following generalized dominated convergence 
theorem is often useful. Suppose fn, gn, f , and g are integrable, R R 
fn → f a.e., gn → g a.e., |fn| ≤ gn for each n, and gn → g.R R 
Prove that fn → f . 

Exercise 7.6 Give an example of a sequence of non-negative func-R 
tions fn tending to 0 pointwise such that fn → 0, but there is no 
integrable function g such that fn ≤ g for all n. 

Exercise 7.7 Suppose (X, A, µ) is a measure space and µ is σ-
finite. If fn is a sequence of non-negative integrable functions such R 
that fn(x) decreases to f(x) for every x, prove that fn dµ →R 
f dµ. 

Exercise 7.8 Suppose µ(X) < ∞ and suppose fn is a sequence of 
uniformly bounded real-valued measurable functions that converge 
to f pointwise. Prove that Z Z 

fn dµ → f dµ. 

This is sometimes called the bounded convergence theorem. 

Exercise 7.9 Suppose (X, A, µ) is a measure space, f and each R R 
fn is integrable and non-negative, fn → f a.e., and fn → f . 
Prove that for each A ∈ A Z Z 

fn dµ → f dµ. 
A A 

Exercise 7.10 Suppose fn and f are integrable, fn → f a.e., andR R 
|fn| → |f |. Prove that Z 

|fn − f | → 0. 
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Exercise 7.11 Suppose f : R → R is integrable, a ∈ R, and we 
define Z x 

F (x) = f(y) dy. 
a 

Show that F is a continuous function. 

Exercise 7.12 Let fn be a sequence of non-negative Lebesgue 
measurable functions on R. Is it necessarily true that Z Z 

lim sup fn dx ≤ lim sup fn dx? 
n→∞ n→∞ 

If not, give a counterexample. 

Exercise 7.13 Find the limit Z n � �−nx 
lim 1 + log(2 + cos(x/n)) dx 

n→∞ n0 

and justify your reasoning. 

Exercise 7.14 Find the limit Z n � �nx 
lim 1 − log(2 + cos(x/n)) dx 

n→∞ n0 

and justify your reasoning. 

Exercise 7.15 Prove that the limit exists and find its value: Z 1 21 + nx 
lim log(2 + cos(x/n)) dx. 
n→∞ (1 + x2)n 

0 

Exercise 7.16 Prove the limit exists and determine its value: Z ∞ 
−nx x2 + 1 

lim ne dx. 
n→∞ 0 x2 + x + 1 

Exercise 7.17 Let g : R → R be integrable and let f : R → R be 
bounded, measurable, and continuous at 1. Prove that Z n � � x 

lim f 1 + g(x) dx 
n→∞ −n n2 

exists and determine its value. 
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Exercise 7.18 Suppose µ(X) < ∞, fn converges to f uniformly,R 
and each fn is integrable. Prove that f is integrable and fn →R 
f . Is the condition µ(X) < ∞ necessary? 

Exercise 7.19 Prove that 

∞ Z 1X p1 x 
= − log x dx 

(p + k)2 1 − x0k=1 

for p > 0. 

Exercise 7.20 Let {fn} be a sequence of measurable real-valued 
functions on [0, 1] that is uniformly bounded. 
(1) Show that if A is a Borel subset of [0, 1], then there exists aR 
subsequence nj such that fnj (x) dx converges. 

A 
(2) Show that if {Ai} is a countable collection of Borel subsets ofR 
[0, 1], then there exists a subsequence nj such that 

Ai 
fnj (x) dx 

converges for each i. R 
(3) Show that there exists a subsequence nj such that fnj (x) dxA 
converges for each Borel subset A of [0, 1]. 

Exercise 7.21 Let (X, A, µ) be a measure space. A family of 
measurable functions {fn} is uniformly integrable if given ε there 
exists M such that Z 

|fn(x)| dµ < ε 
{x:|fn(x)|>M} 

for each n. The sequence is uniformly absolutely continuous if given 
ε there exists δ such that Z 

fn dµ < ε 
A 

for each n if µ(A) < δ. 

Suppose µ is a finite measure. Prove that {fn} is uniformly R 
integrable if and only if sup |fn| dµ < ∞ and {fn} is uniformlyn 
absolutely continuous. 

Exercise 7.22 The following is known as the Vitali convergence 
theorem. Suppose µ is a finite measure, fn → f a.e., and {fn} isR 
uniformly integrable. Prove that |fn − f | → 0. 
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Exercise 7.23 Suppose µ is a finite measure, fn → f a.e., each R 
fn is integrable, f is integrable, and |fn − f | → 0. Prove that 
{fn} is uniformly integrable. 

Exercise 7.24 Suppose µ is a finite measure and for some γ > 0 Z 
sup |fn|1+γ dµ < ∞. 
n 

Prove that {fn} is uniformly integrable. 

Exercise 7.25 Suppose fn is a uniformly integrable sequence of 
functions defined on [0, 1]. Prove that there is a subsequence njR 1
such that fnj g dx converges whenever g is a real-valued bounded 

0 
measurable function. 

Exercise 7.26 Suppose µn is a sequence of measures on (X, A) 
such that µn(X) = 1 for all n. Suppose µ is a measure on (X, A) 
such that µn(A) → µ(A) as n →∞ for each A ∈ A.R R 
(1) Prove that f dµn → f dµ whenever f is bounded and mea-
surable. 
(2) Prove that Z Z 

f dµ ≤ lim inf 
n→∞ 

f dµn 

whenever f is non-negative and measurable. 

Exercise 7.27 Let (X, A, µ) be a measure space and let f be non-
negative and integrable. Define ν on A by Z 

ν(A) = f dµ. 
A 

(1) Prove that ν is a measure. 
(2) Prove that if g is integrable with respect to ν, then fg is inte-
grable with respect to µ and Z Z 

g dν = fg dµ. 

Exercise 7.28 Suppose µ and ν are finite positive measures onR R 
the Borel σ-algebra on [0, 1] such that f dµ = f dν whenever f 
is real-valued and continuous on [0, 1]. Prove that µ = ν. 
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Exercise 7.29 Let B be the Borel σ-algebra on [0, 1]. Let µn be a 
sequence of finite measures on ([0, 1], B) and let µ be another finite 
measure on ([0, 1], B). Suppose µn([0, 1]) → µ([0, 1]). Prove that 
the following are equivalent: R R 
(1) f dµn → f dµ whenever f is a continuous real-valued func-
tion on [0, 1]; 
(2) lim sup (F ) ≤ µ(F ) for all closed subsets F of [0, 1];n→∞ µn 

(3) lim infn→∞ µn(G) ≥ µ(G) for all open subsets G of [0, 1]; 
(4) limn→∞ µn(A) = µ(A) whenever A is a Borel subset of [0, 1] 
such that µ(∂A) = 0, where ∂A = A − Ao is the boundary of A; 
(5) limn→∞ µn([0, x]) = µ([0, x]) for every x such that µ({x}) = 0. 

Exercise 7.30 Let B be the Borel σ-algebra on [0, 1]. Suppose R R 1 
µn are finite measures on ([0, 1], B) such that f dµn → f dx 

0 
whenever f is a real-valued continuous function on [0, 1]. Suppose 
that g is a bounded measurable function such that the set of dis-
continuities of g has measure 0. Prove that Z Z 1 

g dµn → g dx. 
0 

Exercise 7.31 Let B be the Borel σ-algebra on [0, 1]. Let µn be a 
sequence of finite measures on ([0, 1], B) with supn µn([0, 1]) < ∞. 
Define αn(x) = µn([0, x]). 
(1) If r is a rational in [0, 1], prove that there exists a subsequence 
{nj } such that αnj (r) converges. 
(2) Prove that there exists a subsequence {nj } such that αnj (r) 
converges for every rational in [0, 1]. 
(3) Let α(r) = limn→∞ αnj (r) for r rational and define 

α(x) = lim α(r). 
r→x+,r∈Q 

This means, since clearly α(r) ≤ α(s) if r < s, that 

α(x) = inf{α(r) : r > x, r ∈ Q}. 

Let µ be the Lebesgue-Stieltjes measure associated with α. Prove 
that Z Z 

f dµnj → f dµ 

whenever f is a continuous real-valued function on [0, 1]. 
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Exercise 7.32 Suppose Z 
2−y +sin(x+y) dy. F (x) = e 

R 

Prove that F is differentiable at each x and Z 
−y +sin(x+y) cos(x + y) dy. F 0(x) = e 

2 

R 
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Chapter 8 

Properties of Lebesgue 
integrals 

We present some propositions which imply that a function is zero 
a.e. and we give an approximation result. 

8.1 Criteria for a function to be zero a.e. 

The following two propositions are very useful. 

Proposition 8.1 Suppose f is measurable and non-negative andR 
f dµ = 0. Then f = 0 almost everywhere. 

Proof. If f is not equal to 0 almost everywhere, there exists an n 
such that µ(An) > 0 where An = {x : f(x) > 1/n}. But since f is 
non-negative, Z Z 

1 
0 = f ≥ f ≥ µ(An), 

nAn 

a contradiction. 

Proposition 8.2 Suppose f is real-valued and integrable and forR 
every measurable set A we have f dµ = 0. Then f = 0 almost

A 
everywhere. 

71 
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Proof. Let A = {x : f(x) > ε}. Then Z Z 
0 = f ≥ ε = εµ(A) 

A A 

since fχA ≥ εχA. Hence µ(A) = 0. We use this argument for 
ε = 1/n and n = 1, 2, . . . to conclude 

µ{x : f(x) > 0} = µ(∪∞ 
n=1{x : f(x) > 1/n}) 

∞X 
≤ µ({x : f(x) > 1/n}) = 0. 

n=1 

Similarly µ{x : f(x) < 0} = 0. 

As a corollary to Proposition 8.2 we have the following. 

Corollary 8.3 Let m be Lebesgue measure and a ∈ R. Suppose R x
f : R → R is integrable and f(y) dy = 0 for all x. Then f = 0 

a 
a.e. 

Proof. For any interval [c, d], Z d Z d Z c 

f = f − f = 0. 
c a a 

By linearity, if G is the finite union of disjoint intervals, thenR 
f = 0. By the dominated convergence theorem and Proposi-

G R 
tion 1.5, f = 0 for any open set G. Again by the dominated

G 
convergence theorem, if Gn are open sets decreasing to H, thenR R 

f = limn f = 0.
H Gn 

If E is any Borel measurable set, Proposition 4.14 tells us that 
there exists a sequence Gn of open sets that decrease to a set H 
where H differs from E by a null set. Then Z Z Z Z 

f = fχE = fχH = f = 0. 
E H 

This with Proposition 8.2 implies f is zero a.e. 
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8.2 An approximation result 

We give a result on approximating a function on R by continuous 
functions. 

Theorem 8.4 Suppose f is a Lebesgue measurable real-valued in-
tegrable function on R. Let ε > 0. Then there exists a continuous 
function g with compact support such that Z 

|f − g| < ε. 

Proof. If we write f = f+ − f− , it is enough to find continuous R 
functions g1 and g2 with compact support such that |f+ − g1| <R 
ε/2 and |f− − g2| < ε/2 and to let g = g1 − g2. Hence we may 
assume f ≥ 0. R 
By the monotone convergence theorem, f ·χ[−n,n] increases toR 
f , which is finite, so by taking n large enough, the difference of the 

integrals will be less than ε/2. If we find g continuous with compact R R 
support such that |f · χ[−n,n] − g| < ε/2, then |f − g| < ε. 
Therefore we may in addition assume that f is 0 outside some 
bounded interval. 

Suppose f = χA, where A is a bounded Lebesgue measurable 
set. We can choose G open and F closed such that F ⊂ A ⊂ G 
and m(G − F ) < ε by Proposition 4.14. Without loss of generality, 
we may assume G is also a bounded set. Since F is compact, there 
is a minimum distance between F and Gc , say, δ. Let � �+dist (x, F ) 

g(x) = 1 − . 
δ 

Then g is continuous, 0 ≤ g ≤ 1, g is 1 on F , g is 0 on Gc , and g 
has compact support. We have 

|g − χA| ≤ χG − χF , 

so Z Z 
|g − χA| ≤ (χG − χF ) = m(G − F ) < ε. 

Thus our result holds for characteristic functions of bounded sets. Pp
If f = , where each Ai is contained in a bounded i=1 aiχAi 

interval and each ai > 0, and we find gi continuous with compact 
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R Pp
support such that |χAi − gi| < ε/aip, then g = willi=1 aigi 
be the desired function. Thus our theorem holds for non-negative 
simple functions with compact support. 

If f is non-negative and has compact support, we can find simple 
functions sm supported in a bounded interval increasing to f whoseR 
integrals increase to f . Let sm be a simple function such thatR R 
sm ≤ f and sm ≥ f − ε/2. We choose continuous g withR 
compact support such that − g| < ε/2 using the precedingR |sm 

paragraphs, and then |f − g| < ε. 

The method of proof, where one proves a result for characteristic 
functions, then simple functions, then non-negative functions, and 
then finally integrable functions, is very common. 

8.3 Exercises 

Exercise 8.1 This exercise gives a change of variables formula in 
two simple cases. Show that if f is an integrable function on the 
reals and a is a non-zero real number, then Z Z 

f(x + a) dx = f(x) dx 
R R 

and Z Z 
f(ax) dx = |a|−1 f(x) dx. 

R R 

Exercise 8.2 Let (X, A, µ) be a σ-finite measure space. Suppose 
f is non-negative and integrable. Prove that if ε > 0, there exists 
A ∈ A such that µ(A) < ∞ and Z Z 

ε + f dµ > f dµ. 
A 

Exercise 8.3 Suppose A is a Borel measurable subset of [0, 1], m 
is Lebesgue measure, and ε ∈ (0, 1). Prove that there exists a 
continuous function f : [0, 1] → R such that 0 ≤ f ≤ 1 and 

m({x : f(x) 6= χA(x)}) < ε. 
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Exercise 8.4 Suppose f is a non-negative integrable function on 
a measure space (X, A, µ). Prove that 

lim t µ({x : f(x) ≥ t}) = 0. 
t→∞ 

Exercise 8.5 Find a non-negative function f on [0, 1] such that 

lim tm({x : f(x) ≥ t}) = 0 
t→∞ 

but f is not integrable, where m is Lebesgue measure. 

Exercise 8.6 Suppose µ is a finite measure. Prove that a measur-
able non-negative function f is integrable if and only if 

∞X 
µ({x : f(x) ≥ n}) < ∞. 

n=1 

Exercise 8.7 Let µ be a measure, not necessarily σ-finite, and 
suppose f is real-valued and integrable with respect to µ. Prove 
that A = {x : f(x) 6= 0} has σ-finite measure, that is, there exists 
Fn ↑ A such that µ(Fn) < ∞ for each n. 

Exercise 8.8 Recall that a function f : R → R is convex if 

f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y) 

whenever x < y ∈ R and λ ∈ [0, 1]. 
(1) Prove that if f is convex and x ∈ R, there exists a real number 
c such that f(y) ≥ f(x) + c(y − x) for all y ∈ R. Graphically, this 
says that the graph of f lies above the line with slope c that passes 
through the point (x, f(x)). 
(2) Let (X, A, µ) be a measure space, suppose µ(X) = 1, and let 
f : R → R be convex. Let g : X → R be integrable. Prove Jensen’s 
inequality (pronounced “Yen-sen”): � Z � Z 

f g dµ ≤ f ◦ g dµ. 
X R R 

(3) Continue to suppose that µ(X) = 1. Deduce that ( g)2 ≤ gR R 
gg ≤and e e . 

(4) Prove that if g is convex and a1, . . . , an ∈ R, then � n � nX X1 1 
g ai ≤ g(ai). 
n n 

i=1 i=1 

2 
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Exercise 8.9 Suppose f is a real-valued function on R such that �Z 1 � Z 1 

f g(x) dx ≤ f(g(x)) dx 
0 0 

whenever g is bounded and measurable. Prove that f is convex. 

Exercise 8.10 Suppose g : [0, 1] → R is bounded and measurable 
and Z 1 

f(x)g(x) dx = 0 
0 R 1

whenever f is continuous and f(x) dx = 0. Prove that g is equal 
0 

to a constant a.e. 

Exercise 8.11 State and prove the analogue of Theorem 8.4 for 
functions on Rn . 

Exercise 8.12 Suppose that f is integrable. Prove that Z 
|f(x + h) − f(x)| dx → 0 

as h → 0. 



Chapter 9 

Riemann integrals 

We compare the Lebesgue integral and the Riemann integral. We 
show that the Riemann integral of a function exists if and only if 
the set of discontinuities of the function have Lebesgue measure 
zero, and in that case the Riemann integral and Lebesgue integral 
agree. 

9.1 Comparison with the Lebesgue in-
tegral 

We only consider bounded functions from [a, b] into R. If we areR 
looking at the Lebesgue integral, we write f , while, temporarily, 
if we are looking at the Riemann integral, we write R(f). Recall 
that the Riemann integral on [a, b] is defined as follows: if P = 
{x0, x1, . . . , xn} with x0 = a and xn = b is a partition of [a, b], let 

n � �X 
U(P, f) = sup f(x) (xi − xi−1) 

xi−1≤x≤xii=1 

and 
n � �X 

L(P, f) = inf f(x) (xi − xi−1). 
xi−1≤x≤xi 

i=1 

Set 
R(f) = inf{U(P, f) : P is a partition} 

77 
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and 
R(f) = sup{L(P, f) : P is a partition}. 

The Riemann integral exists if R(f) = R(f), and the common value 
is the Riemann integral, which we denote R(f). 

Theorem 9.1 A bounded real-valued function f on [a, b] is Rie-
mann integrable if and only if the set of points at which f is dis-
continuous has Lebesgue measure 0, and in that case, f is Lebesgue 
measurable and the Riemann integral of f is equal in value to the 
Lebesgue integral of f . 

Proof. Step 1. First we show that if f is Riemann integrable, then R 
f is continuous a.e. and R(f) = f . If P is a partition, define 

n � �X 
TP (x) = sup f(y) χ[xi−1,xi)(x), 

xi−1≤y≤xii=1 

and 
n � �X 

SP (x) = inf f(y) χ[xi−1 ,xi)(x). 
xi−1≤y≤xi 

i=1R R 
We observe that TP = U(P, f) and SP = L(P, f). 

If f is Riemann integrable, there exists a sequence of parti-
tions Qi such that U(Qi, f) ↓ R(f) and a sequence Q0 such thati 
L(Q0 , f) ↑ R(f). It is not hard to check that adding points to a par-i 
tition increases L and decreases U , so if we let Pi = ∪j≤i(Qj ∪ Q0 j ), 
then Pi is an increasing sequence of partitions, U(Pi, f) ↓ R(f) 
and L(Pi, f) ↑ R(f). We see also that TPi (x) decreases at each 
point, say, to T (x), and SPi (x) increases at each point, say, to 
S(x). Also T (x) ≥ f(x) ≥ S(x). By the dominated convergence 
theorem (recall that f is bounded) Z Z 
(T − S) = lim (TPi − SPi ) = lim (U(Pi, f) − L(Pi, f)) = 0. 

i→∞ i→∞ 

We conclude T = S = f a.e. We also note that T is Borel measur-
able since it is the limit of step functions, and for each a we have 
that {x : f(x) > a} differs from {x : T (x) > a} by a null set, so f 
is Lebesgue measurable. 

If x is not in the null set where T (x) 6= S(x) nor in ∪iPi, which is 
countable and hence of Lebesgue measure 0, then TPi (x) ↓ f(x) and 



79 9.2. EXERCISES 

SPi (x) ↑ f(x). We claim that f is continuous at such x. To prove 
the claim, given ε, choose i large enough so that TPi (x)−SPi (x) < ε 
and then choose δ small enough so that (x − δ, x + δ) is contained 
in the subinterval of Pi that contains x. Finally, since Z Z 

R(f) = lim U(Pi, f) = lim TPi = f 
i→∞ i→∞ 

by the dominated convergence theorem, we see that the Riemann 
integral and Lebesgue integral agree. 

Step 2. Now suppose that f is continuous a.e. Let ε > 0. Let Pi 

be the partition where we divide [a, b] into 2i equal parts. If x is 
not in the null set where f is discontinuous, nor in ∪∞ Pi, theni=1 
TPi (x) ↓ f(x) and SPi (x) ↑ f(x). As in Step 1, we see that f must 
be Lebesgue measurable. By the dominated convergence theorem, Z Z 

U(Pi, f) = TPi → f 

and Z Z 
L(Pi, f) = SPi → f. 

This does it. 

Example 9.2 Let [a, b] = [0, 1] and f = χA, where A is the set of 
irrational numbers in [0, 1]. If x ∈ [0, 1], every neighborhood of x 
contains both rational and irrational points, so f is continuous at 
no point of [0, 1]. Therefore f is not Riemann integrable. 

Example 9.3 Define f(x) on [0, 1] to be 0 if x is irrational and to 
be 1/q if x is rational and equals p/q when in reduced form. f is 
discontinuous at every rational. If x is irrational and ε > 0, there 
are only finitely many rationals r for which f(r) ≥ ε, so taking 
δ less than the distance from x to any of this finite collection of 
rationals shows that |f(y) − f(x)| < ε if |y − x| < δ. Hence f is 
continuous at x. Therefore the set of discontinuities is a countable 
set, hence of measure 0, hence f is Riemann integrable. 

9.2 Exercises 

Exercise 9.1 Find a measurable function f : [0, 1] → R such thatR 1 R 1
R(f) =6 f(x) dx and R(f) 6= f(x) dx.

0 0 
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Exercise 9.2 Find a function f : (0, 1] → R that is continuous, 
is not Lebesgue integrable, but where the improper Riemann inte-R 1
gral exists. Thus we want f such that |f(x)| m(dx) = ∞ but

0 
lima→0+ R(fχ[a,1]) exists. 

Exercise 9.3 Let g(x) = |x|−1/2χ[−1,1](x).R 
(1) Evaluate the Lebesgue integral R g(x) dx, justifying the steps. 
Since g is unbounded, one cannot just apply Theorem 9.1. 
(2) Let {qn} be an enumeration of the rationals. Define 

∞X 
2−nf(x) = g(x − qn). 

n=1 R 
Evaluate R f(x) dx. Note f is unbounded in every open interval. 

Exercise 9.4 Suppose f : [0, 1] → R is integrable, f is bounded 
on (a, 1] for each a > 0, the Riemann integral R(fχ(a,1]) exists for 
each a > 0, and the improper Riemann integral 

lim R(fχ(a,1]) 
a→0+ R 1

exists. Show that the limit is equal to f(x) dx.
0 

Exercise 9.5 Divide [a, b] into 2n equal subintervals and pick a 
point xi out of each subinterval. Let µn be the measure defined by 

2nX 
µn(dx) = 2

−n δxi (dx), 
i=1 

where δy is point mass at y. Note that if f is a bounded measurable 
real-valued function on [a, b], then Z b 2nX 

f(x) µn(dx) = f(xi)2
−n (9.1) 

a i=1 

is a Riemann sum approximation to R(f). 
(1) Prove that µn([a, x]) → m([a, x]) for every x ∈ [a, b]. ConcludeR R b
by Exercise 7.29 that f dµn → f dx whenever f is continuous. 

a 
(2) Use Exercise 7.30 to see that if f is a bounded and measurable 
function on [a, b] whose set of discontinuities has measure 0, then 
the Riemann sum approximation of f given in (9.1) converges to 
the Lebesgue integral of f . This provides an alternative proof of 
Step 2 of Theorem 9.1. 
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Exercise 9.6 Let f be a bounded, real-valued, and measurable 
function. Prove that if 

f(x) = lim sup f(y), 
δ→0 |y−x|<δ,a≤y≤b 

then f = T a.e., where we use the notation of Theorem 9.1. Con-
clude f is Lebesgue measurable. 

Exercise 9.7 Define f(x) = limδ→0 inf |y−x|<δ,a≤y≤b f(y) and let 
f be defined as in Exercise 9.6. 
(1) Suppose that the set of discontinuities of a bounded real-valued 
measurable function f has positive Lebesgue measure. Prove that 
there exists ε > 0 such that if 

Aε = {x ∈ [a, b] : f(x) − f(x) > ε}, 

then m(Aε) > 0. 
(2) Prove that U(P, f) − L(P, f) > εm(Aε) for every partition P 
on [a, b], using the notation of Theorem 9.1. Conclude that f is 
not Riemann integrable. This provides another proof of Step 1 of 
Theorem 9.1. 

Exercise 9.8 A real-valued function on a metric space is lower 
semicontinuous if {x : f(x) > a} is open whenever a ∈ R and 
upper semicontinuous if {x : f(x) < a} is open whenever a ∈ R. 
(1) Prove that if fn is a sequence of real-valued continuous functions 
increasing to f , then f is lower semicontinuous. 
(2) Find a bounded lower semicontinuous function f : [0, 1] → R 
such that f is continuous everywhere except at x = 1/2. 
(3) Find a bounded lower semicontinuous real-valued function f 
defined on [0, 1] such that the set of discontinuities of f is equal to 
the set of rationals in [0, 1]. 
(4) Find a bounded lower semicontinuous function f : [0, 1] → R 
such that the set of discontinuities of f has positive measure. 
(5) Does there exist a bounded lower semicontinuous function f : 
[0, 1] → R such that f is discontinuous a.e.? 

Exercise 9.9 Find a sequence fn of continuous functions mapping 
[0, 1] into [0, 1] such that the fn increase to a bounded function f 
which is not Riemann integrable. Such an example shows there 
is no monotone convergence theorem or dominated convergence 
theorem for Riemann integrals. 
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Exercise 9.10 Let M > 0 and let B be the σ-algebra on [−M, M ]2 

generated by the collection of sets of the form [a, b] × [c, d] with 
−M ≤ a ≤ b ≤ M and −M ≤ c ≤ d ≤ M . Suppose µ is a measure 
on ([−M, M ]2 , B) such that 

µ([a, b] × [c, d]) = (b − a)(d − c). 

(We will construct such a measure µ in Chapter 11.) Prove that 
if f is continuous with support in [−M, M ]2 , then the Lebesgue 
integral of f with respect to µ is equal to the double Riemann 
integral of f . 

Recall that the double Riemann integral is defined to be the one 
where [−M, M ]2 is partitioned into equal size rectangles and the 
upper and lower Riemann sums are defined analogously to the one-
dimensional case. Undergraduate analysis tells us that the double 
Riemann integral is equal to the two multiple Riemann integrals of 
f . 



Chapter 10 

Types of convergence 

There are various ways in which a sequence of functions fn can 
converge, and we compare some of them. All functions in this 
chapter are assume to be measurable. 

10.1 Definitions and examples 

Definition 10.1 If µ is a measure, we say a sequence of mea-
surable functions fn converges almost everywhere to f and write 
fn → f a.e. if there is a set of measure 0 such that for x not in 
this set we have fn(x) → f(x). 

We say fn converges in measure to f if for each ε > 0 

µ({x : |fn(x) − f(x)| > ε}) → 0 

as n →∞. 

Let 1 ≤ p < ∞. We say fn converges in Lp to f if Z 
|fn − f |p dµ → 0 

as n →∞. 

Proposition 10.2 (1) Suppose µ is a finite measure. If fn → f 
a.e., then fn converges to f in measure. 
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(2) If µ is a measure, not necessarily finite, and fn → f in 
measure, there is a subsequence nj such that fnj → f a.e. 

Proof. Let ε > 0 and suppose fn → f a.e. If 

An = {x : |fn(x) − f(x)| > ε}, 

then χAn → 0 a.e., and by the dominated convergence theorem, Z 
µ(An) = χAn (x) µ(dx) → 0. 

This proves (1). 

To prove (2), suppose fn → f in measure, let n1 = 1, and 
choose nj > nj−1 by induction so that 

µ({x : |fnj (x) − f(x)| > 1/j}) ≤ 2−j . 

Let Aj = {x : |fnj (x) − f(x)| > 1/j}. If we set 

A = ∩∞ 
k=1 ∪∞ 

j=k Aj , 

then by Proposition 3.5 

∞X 
2−k+1 µ(A) = lim µ(∪j 

∞ 
=kAj ) ≤ lim µ(Aj ) ≤ lim = 0. 

k→∞ k→∞ k→∞ 
j=k 

Therefore A has measure 0. If x ∈/ A, then x ∈/ ∪∞ Aj for somej=k 
k, and so |fnj (x) − f(x)| ≤ 1/j for j ≥ k. This implies fnj → f on 
Ac . 

If A = ∩∞ ∪∞ Aj , then x ∈ A if and only if x is in infinitelyk=1 j=k 
many of the Aj . Sometimes one writes A = {Aj i.o.}. 

Example 10.3 Part (1) of the above proposition is not true if 
µ(X) = ∞. To see this, let X = R and let fn = χ(n,n+1). We have 
fn → 0 a.e., but fn does not converge in measure. 

The next proposition compares convergence in Lp to conver-
gence in measure. Before we prove this, we prove an easy prelimi-
nary result known as Chebyshev’s inequality. 
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Lemma 10.4 If 1 ≤ p < ∞, then R 
|f |p dµ 

µ({x : |f(x)| ≥ a}) ≤ . 
ap 

Proof. Let A = {x : |f(x)| ≥ a}. Since χA ≤ |f |pχA/a
p, we have Z Z 

|f |p 1 
µ(A) ≤ dµ ≤ |f |p dµ. 

ap apA 

This is what we wanted. 

Proposition 10.5 If fn converges to f in Lp, then it converges in 
measure. 

Proof. If ε > 0, by Chebyshev’s inequality R 
|fn − f |p 

µ({x : |fn(x) − f(x)| > ε}) ≤ → 0 
εp 

as required. 

Example 10.6 Let fn = n2χ(0,1/n) on [0, 1] and let µ be Lebesgue 
measure. This gives an example where fn converges to 0 a.e. and 
in measure, but does not converge in Lp for any p ≥ 1. 

Example 10.7 We give an example where fn → f in measure and 
iθin Lp, but not almost everywhere. Let S = {e : 0 ≤ θ < 2π} be 

the unit circle in the complex plane and define 

µ(A) = m({θ ∈ [0, 2π) : e iθ ∈ A}) 

to be arclength measure on S, where m is Lebesgue measure on 
[0, 2π). 

Let X = S and let fn(x) = χFn (x), where 

n n+1 

Fn = e iθ :
1 
j 
≤ θ ≤ 

1 
j
. 

j=1 j=1 

n X X o 

Let f(eiθ) = 0 for all θ. 
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Then µ(Fn) ≤ 1/(n + 1) → 0, so fn → f in measure. Also, 
since fn is either 1 or 0, Z Z 

|fn − f |p dµ = χFn dµ = µ(Fn) → 0. P∞
But because 1/j = ∞, each point of S is in infinitely many j=1 
Fn, and each point of S is in S − Fn for infinitely many n, so fn 

does not converge to f at any point. 

The Fn are arcs whose length tends to 0, but such that ∪n≥mFn 

contains S for each m. 

The following is known as Egorov’s theorem. 

Theorem 10.8 Suppose µ is a finite measure, ε > 0, and fn → f 
a.e. Then there exists a measurable set A such that µ(A) < ε and 
fn → f uniformly on Ac . 

This type of convergence is sometimes known as almost uniform 
convergence. Egorov’s theorem is not as useful for solving problems 
as one might expect, and students have a tendency to try to use it 
when other methods work much better. 

Proof. Let 

= ∪∞Ank m=n{x : |fm(x) − f(x)| > 1/k}. 

For fixed k, Ank decreases as n increases. The intersection ∩nAnk 

has measure 0 because for almost every x, |fm(x) − f(x)| ≤ 1/k if 
m is sufficiently large. Therefore µ(Ank) → 0 as n → ∞. We can 
thus find an integer nk such that µ(Ank k) < ε2−k . Let 

A = ∪∞ 
k=1Ankk. 

Hence µ(A) < ε. If x ∈/ A, then x ∈/ Ank k, and so |fn(x) − f(x)| ≤ 
1/k if n ≥ nk. Thus fn → f uniformly on Ac . 

10.2 Exercises 

Exercise 10.1 Suppose that fn is a sequence that is Cauchy in 
measure. This means that given ε and a > 0, there exists N such 
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that if m, n ≥ N , then 

µ({x : |fn(x) − fm(x)| > a}) < ε. 

Prove that fn converges in measure. 

Exercise 10.2 Suppose µ(X) < ∞. Define Z 
|f − g|

d(f, g) = dµ.
1 + |f − g| 

Prove that d is a metric on the space of measurable functions, 
except for the fact that d(f, g) = 0 only implies that f = g a.e., 
not necessarily everywhere. Prove that fn → f in measure if and 
only if d(fn, f) → 0. 

Exercise 10.3 Prove that if fn → f in measure and each fn is 
non-negative, then Z Z 

f ≤ lim inf fn. 
n→∞ 

Exercise 10.4 Prove that if An is measurable, µ(An) < ∞ for 
each n, and χAn converges to f in measure, then there exists a 
measurable set A such that f = χA a.e. 

Exercise 10.5 Suppose for each ε there exists a measurable set F 
such that µ(F c) < ε and fn converges to f uniformly on F . Prove 
that fn converges to f a.e. 

Exercise 10.6 Suppose that fn and f are measurable functions 
such that for each ε > 0 we have 

∞X 
µ({x : |fn(x) − f(x)| > ε}) < ∞. 

n=1 

Prove that fn → f a.e. 

Exercise 10.7 Let fn be a sequence of measurable functions and 
define 

gn(x) = sup |fm(x) − fn(x)|. 
m≥n 

Prove that if gn converges in measure to 0, then fn converges a.e. 
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Exercise 10.8 If (X, A, µ) is a measure space and fn is a sequenceR 
of real-valued measurable functions such that fng dµ converges 
to 0 for every integrable g, is it necessarily true that fn converges 
to 0 in measure? If not, give a counterexample. 

Exercise 10.9 Suppose (X, A, µ) is a measure space and X is a 
countable set. Prove that if fn is a sequence of measurable func-
tions converging to f in measure, then fn also converges to f a.e. 



Chapter 11 

Product measures 

We have defined Lebesgue measure on the line. Now we give a 
method for constructing measures on the plane, in n-dimensional 
Euclidean spaces, and many other product spaces. The main theo-
rem, the Fubini theorem, which allows one to interchange the order 
of integration, is one of the most important theorems in real anal-
ysis. 

The Fubini theorem says that if (X, A, µ) and (Y, B, ν) are two 
measure spaces, then under suitable measurability and integrability 
conditions on f we have Z Z Z Z 

f(x, y) ν(dy) µ(dx) = f(x, y) µ(dx) ν(dy) 
X Y YZ X 

= f(x, y) d(µ × ν), 
X×Y 

where of course there are a number of definitions necessary to make 
sense of this. 

The idea of the proof is to first prove it when f is of the form 
f(x, y) = χA(x)χB (y). Next we use linearity to take care of thePn 
case f(x, y) = (y). Then we use the monotonei=1 χAi (x)χBi 

class theorem to show that it holds when f is the characteristic 
function of a set in a certain σ-algebra A×B. After that the proof is 
straightforward: use linearity for simple f , monotone convergence 
for non-negative f , and and then linearity again for integrable f . 

Let’s get started with some definitions. 
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11.1 Product σ-algebras 

Suppose (X, A, µ) and (Y, B, ν) are two measure spaces. A mea-
surable rectangle is a set of the form A × B, where A ∈ A and 
B ∈ B. 

Let C0 be the collection of finite unions of disjoint measurable 
rectangles. Thus every element of C0 is of the form ∪n (Ai × Bi),i=1 
where Ai ∈ A, Bi ∈ B, and if i 6= j, then (Ai × Bi) ∩ (Aj ×Bj ) = ∅. 
Note 

(A × B)c = (A × Bc) ∪ (Ac × Y ). (11.1) 

(Although (11.1) lacks symmetry, it is correct. To convince yourself 
of this, draw a picture with X = Y = [0, 1], A a subinterval of 
X, and B a subinterval of Y .) Using (11.1) and the fact that the 
intersection of two measurable rectangles is a measurable rectangle, 
it is easy to check that C0 is an algebra of sets. We define the product 
σ-algebra 

A× B = σ(C0), 

the σ-algebra generated by C0. 

If E ⊂ X × Y , we define the x-section of E by 

sx(E) = {y ∈ Y : (x, y) ∈ E} 

and similarly define the y-section: 

ty(E) = {x : (x, y) ∈ E}. 

Lemma 11.1 (1) If E ∈ A × B, then sx(E) ∈ B for each x and 
ty(E) ∈ A for each y. 
(2) Suppose f is A×B measurable. If x ∈ X is fixed and we define 
k(y) = f(x, y), then k is B measurable. If y ∈ Y is fixed and we 
define h(x) = f(x, y), then h is A measurable. 

Proof. (1) Let C be the collection of sets in A × B for which 
sx(E) ∈ B for each x. We will show that C is a σ-algebra containing 
the measurable rectangles, and hence is all of A× B. 

If E = A × B, then sx(E) is equal to B if x ∈ A and equal to 
∅ if x ∈/ A. Hence sx(E) ∈ B for each x when E is a measurable 
rectangle. 
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Suppose E ∈ C and x ∈ X. If sx(E) = ∅, then sx(Ec) = Y . 
If sx(E) 6= ∅, then y ∈ sx(Ec) if and only if (x, y) ∈ Ec , which 
happens if and only if y ∈/ sx(E). Therefore sx(Ec) is B measur-
able, and C is closed under the operation of taking complements. 
Similarly, it is easy to see that sx(∪∞ 

i=1Ei) = ∪∞ 
i=1sx(Ei), and so C 

is closed under the operation of countable unions. 

Therefore C is a σ-algebra containing the measurable rectangles, 
and hence is equal to A×B. The argument for ty(E) is the same. 

(2) Fix x. Let k(y) = f(x, y). If f = χE for E ∈ A × B, note 
that k(y) = χsx(E)(y), which is B measurable. By linearity, k is 
B measurable when f is a simple function. If f is non-negative, 
take A×B measurable simple functions rn increasing to f , and let 
kn(y) = rn(x, y). Observe that kn(y) ↑ k(y), so k is B measurable. 
Writing f = f+ − f− and using linearity again shows that k is B 
measurable when f takes positive and negative values. The argu-
ment for h(x) = f(x, y) for fixed y is the same. 

Proposition 11.2 Suppose µ and ν are σ-finite. Let E ∈ A × B 
and let 

h(x) = ν(sx(E)), k(y) = µ(ty(E)). 

(1) h is A measurable and k is B measurable. 
(2) We have Z Z 

h(x) µ(dx) = k(y) ν(dy). (11.2) 

We can rewrite (11.2) as Z h Z i Z h Z i 
χE (x, y) ν(dy) µ(dx) = χE (x, y) µ(dx) , ν(dy). 

We will usually drop the brackets. 

Proof. First suppose µ and ν are finite measures. Let C be the 
collection of sets in A×B for which (1) and (2) hold. We will prove 
that C contains C0 and is a monotone class. This will prove that C 
is the smallest σ-algebra containing C0 and hence is equal to A×B. 

If E = A × B, with A ∈ A and B ∈ B, then h(x) = χA(x)ν(B),R 
which is A measurable, and h(x) µ(dx) = µ(A)ν(B). Similarly, 
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R 
k(y) = µ(A)χB (y) is B measurable and k(y) ν(dy) = µ(A)ν(B). 
Therefore (1) and (2) hold for measurable rectangles. 

If E = ∪n
i=1Ei, where each Ei is a measurable rectangle and the 

Ei are disjoint, then sx(E) = ∪n (Ei), and since the sx(Ei) arei=1sx 

disjoint, then 

nX 
h(x) = ν(sx(E)) = ν(∪n (Ei)) = ν(sx(Ei)).i=1sx 

i=1 

This shows that h is A measurable, since it is the sum of A mea-
surable functions. Similarly k(y) is B measurable. If we let hi(x) = 
ν(sx(Ei)) and define ki(y) similarly, then Z Z 

hi(x) µ(dx) = ki(y) ν(dy) 

by the preceding paragraph, and then (2) holds for E by linearity. 
Therefore C contains C0. 

Suppose En ↑ E and each En ∈ C. If we let hn(x) = ν(sx(En)) 
and let kn(y) = µ(ty(En)), then hn ↑ h and kn ↑ k. Therefore h is 
A measurable and k is B measurable. We have (11.2) holding when 
h and k are replaced by hn and kn, resp. We let n → ∞ and use 
the monotone convergence theorem to see that (11.2) holds with h 
and k. 

If En ↓ E with each En ∈ C, almost the same argument shows 
that h and k are measurable with respect to A and B, and that 
(11.2) holds. The only difference is that we use the dominated con-
vergence theorem in place of the monotone convergence theorem. 
This is where we need µ and ν to be finite measures. 

We have shown C is a monotone class containing C0 and con-
tained in A× B. By the monotone class theorem (Theorem 2.10), 
C is equal to σ(C0), which is A× B. 

Finally suppose µ and ν are σ-finite. Then there exist Fi ↑ X 
and Gi ↑ Y such that each Fi is A measurable and has finite µ 
measure and each Gi is B measurable and has finite ν measure. 
Let µi(A) = µ(A ∩ Fi) for each A ∈ A and νi(B) = ν(B ∩ Gi) for 
each B ∈ B. Let hi(x) = νi(sx(E)) = ν(sx(E) ∩ Gi) and similarly 
define ki(y). Exercise 11.2 tells us that Z Z 

hi(x) µi(dx) = hi(x)χFi (x) µ(dx) 
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and similarly with hi, Fi, and µi replaced with ki, Gi, and νi, 
respectively. By what we have proved above, hi is A measurable, 
ki is B measurable, and (11.2) holds if we replace h and k by hi and 
ki, resp. Now hi ↑ h and ki ↑ k, which proves the measurability of 
h and k. Applying the monotone convergence theorem proves that 
(11.2) holds with h and k. 

We now define µ × ν by Z Z 
µ × ν(E) = h(x) µ(dx) = k(y) ν(dy), (11.3) 

where again h(x) = ν(sx(E)) and k(y) = µ(ty (E)). Clearly we 
have µ × ν(∅) = 0. If E1, . . . , En are disjoint and in A × B and 
E = ∪n then we saw in the proof of Proposition 11.2 thati=1Ei,Pn
ν(sx(E)) = ν(sx(Ei)). We conclude thati=1 Z n ZX 

µ × ν(E) = ν(sx(E)) µ(dx) = ν(sx(Ei)) µ(dx) 
i=1 

nX 
= µ × ν(Ei), 

i=1 

or µ × ν is finitely additive. If En ↑ E with each En ∈ A × B 
and we let hn(x) = ν(sx(En)), then hn ↑ h, and by the monotone 
convergence theorem, µ × ν(En) ↑ µ × ν(E). Therefore µ × ν is a 
measure. 

Note that if E = A × B is a measurable rectangle, then h(x) = 
χA(x)ν(B) and so 

µ × ν(A × B) = µ(A)ν(B), 

which is what it should be. 

11.2 The Fubini theorem 

The main result of this chapter is the Fubini theorem, which allows 
one to interchange the order of integration. This is sometimes 
called the Fubini-Tonelli theorem. 

Theorem 11.3 Suppose f : X ×Y → R is measurable with respect 
to A×B. Suppose µ and ν are σ-finite measures on X and Y , resp. 
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If either 
(a) f is non-negative, orR 
(b) |f(x, y)| d(µ × ν)(x, y) < ∞, 

then 
(1) for each x, the function y 7→ f(x, y) is measurable with respect 
to B; 
(2) for each y, the function x 7→ f(x, y) is measurable with respect 
to A; R 
(3) the function h(x) = f(x, y) ν(dy) is measurable with respect 
to A; R 
(4) the function k(y) = f(x, y) µ(dx) is measurable with respect 
to B; 
(5) we have Z Z h Z i 

f(x, y) d(µ × ν)(x, y) = f(x, y) µ(dx) ν(dy) (11.4) Z h Z i 
= f(x, y) ν(dy) µ(dx). 

The last integral in (11.4) should be interpreted as Z h Z i 
k(y) ν(dy) µ(dx) 

and similarly for the second integral in (11.4). Since no confusion 
results, most often the brackets are omitted in (11.4). 

We also need to mention a technical point. Under (b) we know R 
the function |f(x, y)| ν(dy) is finite for almost every x (with re-
spect to µ). However for x in the null set it is possible thatR R 
f+(x, y) ν(dy) and f−(x, y) ν(dy) are both infinite, in which 

case h(x) is undefined. Let us set h(x) = 0 for such x. When 
we are assuming (b), the conclusion (3) should be interpreted to 
mean that h is equal almost everywhere (with respect to µ) to a 
function that is measurable with respect to A. Of course similar 
considerations hold for (4). 

Proof. If f is the characteristic function of a set in A × B, then 
(1)–(5) are merely a restatement of Lemma 11.1 and Proposition 
11.2. By linearity, (1)–(5) hold if f is a simple function. Since the 
increasing limit of measurable functions is measurable, then writing 
a non-negative function as the increasing limit of simple functions 
and using the monotone convergence theorem shows that (1)–(5) 
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R 
hold when f is non-negative. In the case where |f | d(µ × ν) < ∞, 
writing f = f+ − f− and using linearity proves (1)–(5) for this 
case, too. 

Observe that if we know Z Z 
|f(x, y)| µ(dx) ν(dy) < ∞, 

then since |f(x, y)| is non-negative the Fubini theorem tells us that Z Z Z 
|f(x, y)| d(µ × ν) = |f(x, y)| µ(dx) ν(dy) < ∞ 

We can then apply the Fubini theorem again to conclude Z Z Z Z Z 
f(x, y) d(µ × ν) = f(x, y) dµ dν = f(x, y) dν dµ. 

Thus in the hypotheses of the Fubini theorem, we could as well R R R R 
assume |f(x, y)| dµ dν < ∞ or |f(x, y)| dν dµ < ∞. 

When f is measurable with respect to A×B, we sometimes say 
that f is jointly measurable. 

Even when (X, A, µ) and (Y, B, ν) are complete, it will not be 
the case in general that (X × Y, A × B, µ × ν) is complete. For 
example, let (X, A, µ) = (Y, B, ν) be Lebesgue measure on [0, 1] 
with the Lebesgue σ-algebra. Let A be a non-measurable set in 
[0, 1] and let E = A ×{1/2}. Then E is not a measurable set with 
respect to A×B, or else A = t1/2(E) would be in A by Lemma 11.1. 
On the other hand, E ⊂ [0, 1]×{1/2}, which has zero measure with 
respect to µ × ν, so E is a null set. 

One can take the completion of (X × Y, A× B, µ × ν) without 
great difficulty. See [9] for details. 

There is no difficulty extending the Fubini theorem to the prod-
uct of n measures. If we have µ1, . . . , µn all equal to m, Lebesgue 
measure on R with the Lebesgue σ-algebra L, then the completion 
of (Rn , L × · · · × L,m × · · · × m) is called n-dimensional Lebesgue 
measure. 

For a general change of variables theorem, see [5]. 
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11.3 Examples 

We give two examples to show that the hypotheses of the Fubini 
theorem are necessary. 

Example 11.4 Let X = Y = [0, 1] with µ and ν both being 
Lebesgue measure. Let gi be continuous functions with support R 1
in (1/(i + 1), 1/i) such that gi(x) dx = 1, i = 1, 2, . . .. Let

0 

∞X 
f(x, y) = [gi(x) − gi+1(x)]gi(y). 

i=1 

For each point (x, y) at most two terms in the sum are non-zero, so 
the sum is actually a finite one. If we first integrate with respect 
to y, we get Z 1 ∞X 

f(x, y) dy = [gi(x) − gi+1(x)]. 
0 i=1 

This is a telescoping series, and sums to g1(x). Therefore Z 1 Z 1 Z 1 

f(x, y) dy dx = g1(x) dx = 1. 
0 0 0 

On the other hand, integrating first with respect to x gives 0, so Z 1 Z 1 

f(x, y) dx dy = 0. 
0 0 

This doesn’t contradict the Fubini theorem because Z 1 Z 1 

|f(x, y)| dx dy = ∞. 
0 0 

Example 11.5 For this example, you have to take on faith a bit 
of set theory. There exists a set X together with a partial order 
“≤” such that X is uncountable but for any y ∈ X, the set {x ∈ 
X : x ≤ y} is countable. An example is to let X be the set of 
countable ordinals. The σ-algebra is the collection of subsets A 
of X such that either A or Ac is countable. Define µ on X by 
µ(A) = 0 if A is countable and 1 if A is uncountable. Define f 
on X × X by f(x, y) = 1 if x ≤ y and zero otherwise. ThenR R R R 

f(x, y) µ(dy) µ(dx) = 1 but f(x, y) µ(dx) µ(dy) = 0. The 
reason there is no contradiction is that f is not measurable with 
respect to the product σ-algebra. 
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We give an example showing how the Fubini theorem gives an-
other proof of an important result in undergraduate analysis. 

Example 11.6 Let X = Y be the positive integers and let µ = 
ν be counting measure. Write cij for f(i, j). Then the Fubini 
theorem says that 

∞ ∞ ∞ ∞XX XX 
cij = cij 

i=1 j=1 j=1 i=1 P P 
provided either that the cij are non-negative or that i j |cij | < 
∞. 

11.4 Exercises 

Exercise 11.1 State and prove a version of the Fubini theorem 
for complex-valued functions. 

Exercise 11.2 Let (X, A, µ) be a measure space, let E ∈ A, and 
define ρ(A) = µ(A ∩ E) for A ∈ A. Prove that if f is non-negative 
and measurable, then Z Z 

f(x) dρ = f(x)χE (x) dµ. 

Exercise 11.3 Let (X, A) and (Y, B) be two measurable spaces 
and let f ≥ 0 be measurable with respect to A × B. Let g(x) = 
supy∈Y f(x, y) and suppose g(x) < ∞ for each x. Is g necessarily 
measurable with respect to A? If not, find a counterexample. 

Exercise 11.4 Let B2 be the Borel σ-algebra on R2 , that is, the 
smallest σ-algebra that contains all the open subsets of R2 , and let 
B1 be the usual Borel σ-algebra on R. 
(1) Is B2 equal to B1 × B1? Prove or disprove. 
(2) If m2 is two-dimensional Lebesgue measure, is the completion 
of B2 with respect to m2 equal to the completion of B1 × B1 with 
respect to m2? Prove or disprove. 

Exercise 11.5 Prove the equality Z ∞ Z ∞ 

|f(x)| dx = m({x : |f(x)| ≥ t}) dt, 
−∞ 0 
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where m is Lebesgue measure. 

Exercise 11.6 Let A be a Lebesgue measurable subset of [0, 1]2 

with m2(A) = 1, where m2 is two-dimensional Lebesgue measure. 
Show that for almost every x ∈ [0, 1] (with respect to one di-
mensional Lebesgue measure) the set sx(A) has one-dimensional 
Lebesgue measure one. 

Exercise 11.7 Let f : [0, 1]2 → R be such that for every x ∈ [0, 1] 
the function y → f(x, y) is Lebesgue measurable on [0, 1] and for 
every y ∈ [0, 1] the function x → f(x, y) is continuous on [0, 1]. 
Prove that f is measurable with respect to the completion of the 
product σ-algebra L×L on [0, 1]2 . Here L is the Lebesgue σ-algebra 
on [0, 1]. 

Exercise 11.8 Suppose f is real-valued and integrable with re-
spect to two-dimensional Lebesgue measure on [0, 1]2 and Z Z ba 

f(x, y) dy dx = 0 
0 0 

for all a ∈ [0, 1] and b ∈ [0, 1]. Prove that f = 0 a.e. 

Exercise 11.9 Prove that Z 1 Z 1 2x2 − y 
log(4 + sin x) dy dx 

(x2 + y2)3/4 
0 0 Z 1 Z 1 2x2 − y 

= log(4 + sin x) dx dy. 
(x2 + y2)3/4 

0 0 

Exercise 11.10 Let X = Y = [0, 1] and let B be the Borel σ-
algebra. Let m be Lebesgue measure and µ counting measure on 
[0, 1]. 
(1) If D = {(x, y) : x = y}, show that D is measurable with respect 
to B × B. 
(2) Show that Z Z Z Z 

χD(x, y) µ(dy) m(dx) 6= χD(x, y) m(dx) µ(dy). 
X Y Y X 

Why does this not contradict the Fubini theorem? 



99 11.4. EXERCISES 

Exercise 11.11 Let X = Y = R and let B be the Borel σ-algebra. 
Define ⎧ ⎪1, x ≥ 0 and x ≤ y < x + 1; ⎨ 

f(x, y) = −1, x ≥ 0 and x + 1 ≤ y < x + 2; ⎪⎩
0, otherwise. 

Show that Z Z Z Z 
f(x, y) dy dx 6= f(x, y) dx dy. 

Why does this not contradict the Fubini theorem? 

Exercise 11.12 Find a real-valued function f that is integrable 
on [0, 1]2 such that Z Z 1 Z 1 Z ba 

f(x, y) dy dx = 0, f(x, y) dy dx = 0 
0 0 0 0 

for every a, b ∈ [0, 1], but f is not zero almost everywhere with 
respect to 2-dimensional Lebesgue measure. 

Exercise 11.13 Let µ be a finite measure on (R, B) where B is 
the Borel σ-algebra and let f(x) = µ((−∞, x]). Show Z 

[f(x + c) − f(x)] dx = cµ(R). 

Exercise 11.14 Use Z ∞1 −xy dy= e 
x 0 

and the Fubini theorem to calculate Z b Z ∞ 

e −xy sin x dy dx 
0 0 

two different ways. Then prove that Z b sin x π 
lim dx = . 
b→∞ x 20 

Recall that Z 
eau(a sin u − cos u) 

e au sin u du = + C. 
1 + a2 
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Exercise 11.15 Let X = {1, 2, . . .} and let µ be counting measure 
on X. Define f : X × X → R by ⎧ ⎪1, x = y;⎨ 

f(x, y) = −1, x = y + 1; ⎪⎩
0, otherwise. 

Show that Z Z Z Z 
f(x, y) µ(dx) µ(dy) 6= f(x, y) µ(dy) µ(dx). 

X X X X 

Why is this not a contradiction to the Fubini theorem? 

Exercise 11.16 Let {an} and {rn} be two sequences of real num-P∞
bers such that |an| < ∞. Prove that n=1 

∞X anp
|x − rn|n=1 

converges absolutely for almost every x ∈ R. 

Exercise 11.17 Let (X, A, µ) and (Y, B, ν) be measure spaces. 
Suppose µ and ν are σ-finite. Prove that if λ is a measure on 
A× B such that 

λ(A × B) = µ(A)ν(B) 

whenever A ∈ A and B ∈ B, then λ = µ × ν on A× B. 

Exercise 11.18 If M = (Mij )
n is a n × n matrix and x = i,j=1 

(x1, . . . , xn) ∈ Rn , define Mx to be the element of Rn whose ith Pn
coordinate is j=1 Mij xj . (This is just the usual matrix multipli-
cation of a n × n matrix and a n × 1 matrix.) If A is a Borel subset 
of Rn , let M(A) = {Mx : x ∈ A}. 
(1) If c ∈ R and ⎧ ⎪c, i = j = 1;⎨ 

Mij = 1, i = j 6= 1;⎪⎩
0, i =6 j; 

show 
mn(M(A)) = |c|mn(A) = | det M |mn(A), 
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where we use mn for n-dimensional Lebesgue measure. (Multipli-
cation by M multiplies the first coordinate by c.) 
(2) If 1 ≤ k ≤ n and ⎧ 

1, i = 1 and j = k;⎪⎨1, j = 1 and i = k;
Mij = 

1, i = j and neither equals k;⎪⎩ 
0, otherwise; 

show 
mn(M(A)) = mn(A) = | det M |mn(A). 

(Multiplication by M interchanges the first and kth coordinates.) 
(3) If c ∈ R and ⎧ ⎪1, i = j;⎨ 

Mij = c, i = 1, j = 2;⎪⎩
0, otherwise, 

show 
mn(M(A)) = mn(A) = | det M |mn(A). 

(Multiplication by M replaces x1 by x1 + cx2.) 
(4) Since every n × n matrix can be written as the product of ma-
trices each of which has the form given in (1), (2), or (3), conclude 
that if M is any n × n matrix, then 

mn(M(A)) = | det M |mn(A). 

(5) If M is an orthogonal matrix, so that M times its transpose 
is the identity, show mn(M(A)) = mn(A). (Multiplication by an 
orthogonal matrix is a rotation of Rn.) 

Exercise 9.10 might be a useful tool here, although you would 
need to use a limiting procedure first instead of applying it directly. 

iθExercise 11.19 Let S be the unit circle {e : 0 ≤ θ < 2π} and 
iθdefine a measure µ on S by µ(A) = m({θ : e ∈ A}), where m is 

Lebesgue measure on [0, 2π). Let m2 be two-dimensional Lebesgue 
measure. Show that if A is a Borel subset of S and R > 0, then 

iθ m2({re : 0 < r < R, eiθ ∈ A}) = µ(A)R2/2. 
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Exercise 11.20 Use Exercise 11.19 to prove that if f is a continu-
ous real-valued function with support in the ball B(0, R) = {(x, y) : 
2 2x + y < R2}, then Z Z Z 2π Z R 

f(x, y) dy dx = f(r cos θ, r sin θ) r dr dθ. 
B(0,R) 0 0 

Exercise 11.21 Prove that Z ∞ p
−x e 

2/2 dx = π/2 
0 

by filling in the missing steps and making rigorous the following. R ∞ −xIf I = e 
2/2 dx, then

0 Z ∞ Z ∞ Z π/2 Z ∞ 
−(x +y −rI2 = e 

2 2)/2 dy dx = e 
2/2r dr dθ = π/2. 

0 0 0 0 

Exercise 11.22 Suppose f : Rn → R is Lebesgue measurable, 
c > 0, and p < n. If |f(x)| ≤ c|x|−pχB(0,1)(x) a.e., prove that f is 
integrable. 



Chapter 12 

Signed measures 

Signed measures have the countable additivity property of mea-
sures, but are allowed to take negative as well as positive val-
ues. We will see shortly that an example of a signed measure isR 
ν(A) = f dµ, where f is integrable and takes both positive and

A 
negative values. 

There are two main results in this chapter. The first, the Hahn 
decomposition theorem, says that if µ is a signed measure, then 
X can be decomposed as the union of two disjoints sets P and 
N such that µ behaves like a positive measure (the measures we 
have been considering up until now) on P and −µ behaves like 
a positive measure on N . The second main result is the Jordan 
decomposition theorem, which says that a signed measure can be 
written as the difference of two positive measures. 

12.1 Positive and negative sets 

Definition 12.1 Let A be a σ-algebra. A signed measure is a 
function µ : A → (−∞, ∞] such that µ(∅) = 0 and if A1, A2, . . . 
are pairwise disjoint and all the Ai are in A, then µ(∪∞ 

i=1Ai) =P∞ 
i=1 µ(Ai), where the series converges absolutely if µ(∪∞ Ai) isi=1 

finite. 

We require the absolute convergence so that the order of sum-
mation does not matter. 
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When we want to emphasize that a measure is defined as in 
Definition 3.1 and only takes non-negative values, we refer to it as 
a positive measure. 

Definition 12.2 Let µ be a signed measure. A set A ∈ A is called 
a positive set for µ if µ(B) ≥ 0 whenever B ⊂ A and B ∈ A. We 
say A ∈ A is a negative set if µ(B) ≤ 0 whenever B ⊂ A and 
B ∈ A. A null set A is one where µ(B) = 0 whenever B ⊂ A and 
B ∈ A. 

A null set for a positive measure is, of course, a null set in the 
above sense. 

Note that if µ is a signed measure, then 

µ(∪∞ lim µ(∪n
i=1Ai).i=1Ai) = 

n→∞ 

The proof is the same as in the case of positive measures. 

Example 12.3 Suppose m is Lebesgue measure and Z 
µ(A) = f dm 

A 

for some integrable f . If f takes both positive and negative values, 
then µ will be a signed measure. If we let P = {x : f(x) ≥ 0}, then 
P is easily seen to be a positive set, and if N = {x : f(x) < 0}, 
then N is a negative set. The Hahn decomposition which we give 
below is a decomposition of our space (in this case R) into the 
positive and negative sets P and N . This decomposition is unique, 
except that C = {x : f(x) = 0} could be included in N instead 
of P , or apportioned partially to P and partially to N . Note, 
however, that C is a null set. The Jordan decomposition below isR 

+ −a decomposition of µ into µ and µ , where µ+(A) = f+ dmR A 
and µ−(A) = f− dm.

A 

Proposition 12.4 Let µ be a signed measure which takes values 
in (−∞, ∞]. Let E be measurable with µ(E) < 0. Then there exists 
a measurable subset F of E that is a negative set with µ(F ) < 0. 

Proof. If E is a negative set, we are done. If not, there exists 
a measurable subset with positive measure. Let n1 be the small-
est positive integer such that there exists E1 ⊂ E with µ(E1) ≥ 



105 12.2. HAHN DECOMPOSITION THEOREM 

1/n1. We then define pairwise disjoint measurable sets E2, E3, . . . 
by induction as follows. Let k ≥ 2 and suppose E1, . . . , Ek−1 

are pairwise disjoint measurable subsets of E with µ(Ei) > 0 for 
i = 1, . . . , k − 1. If Fk = E − (E1 ∪ · · · ∪ Ek−1) is a negative set, 
then 

k−1X 
µ(Fk) = µ(E) − µ(Ei) ≤ µ(E) < 0 

i=1 

and Fk is the desired set F . If Fk is not a negative set, let nk be 
the smallest positive integer such that there exists Ek ⊂ Fk with 
Ek measurable and µ(Ek) ≥ 1/nk. 

We stop the construction if there exists k such that Fk is a 
negative set with µ(Fk) < 0. If not, we continue and let F = 
∩kFk = E − (∪kEk). Since 0 > µ(E) > −∞ and µ(Ek) ≥ 0, then 

∞X 
µ(E) = µ(F ) + µ(Ek). 

k=1 

Then µ(F ) ≤ µ(E) < 0, so the sum converges. This implies 
µ(Ek) → 0, and so nk →∞. 

It remains to show that F is a negative set. Suppose G ⊂ F is 
measurable with µ(G) > 0. Then µ(G) ≥ 1/N for some N . But 
this contradicts the construction, since for some k, nk > N , and 
we would have chosen the set G instead of the set Ek at stage k. 
Therefore F must be a negative set. 

12.2 Hahn decomposition theorem 

Recall that we write A4B for (A − B) ∪ (B − A). The following is 
known as the Hahn decomposition. 

Theorem 12.5 (1) Let µ be a signed measure taking values in 
(−∞, ∞]. There exist disjoint measurable sets E and F in A whose 
union is X and such that E is a negative set and F is a positive 
set. 

(2) If E0 and F 0 are another such pair, then E4E0 = F 4F 0 is 
a null set with respect to µ. 

(3) If µ is not a positive measure, then µ(E) < 0. If −µ is not 
a positive measure, then µ(F ) > 0. 
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Proof. (1) Note that there is at least one negative set, namely, 
∅. Let L = inf{µ(A) : A is a negative set}. Choose negative sets 
An such that µ(An) → L. Let E = ∪∞ 

n=1An. Let B1 = A1 and let 
Bn = An − (B1 ∪· · ·∪ Bn−1) for each n. Since An is a negative set, 
so is each Bn. Also, the Bn are disjoint and ∪nBn = ∪nAn = E. 
If C ⊂ E, then 

nX 
µ(C) = lim µ(C ∩ (∪i

n 
=1Bi)) = lim µ(C ∩ Bi) ≤ 0. 

n→∞ n→∞ 
i=1 

Thus E is a negative set. 

Since E is a negative set, 

µ(E) = µ(An) + µ(E − An) ≤ µ(An). 

Letting n →∞, we obtain µ(E) = L. Hence L > −∞. 

Let F = Ec . If F were not a positive set, there would exist 
B ⊂ F with µ(B) < 0. By Proposition 12.4 there exists a negative 
set C contained in B with µ(C) < 0. But then E ∪ C would be a 
negative set with µ(E ∪ C) < µ(E) = L, a contradiction. 

(2) To prove uniqueness, if E0, F 0 are another such pair of sets 
and A ⊂ E − E0 ⊂ E, then µ(A) ≤ 0. But A ⊂ E − E0 = F 0 − F ⊂ 
F 0 , so µ(A) ≥ 0. Therefore µ(A) = 0. The same argument works if 
A ⊂ E0 − E, and any subset of E4E0 can be written as the union 
of A1 and A2, where A1 ⊂ E − E0 and A2 ⊂ E0 − E. 

(3) Suppose µ is not a positive measure but µ(E) = 0. If A ∈ A, 
then 

µ(A) = µ(A ∩ E) + µ(A ∩ F ) ≥ µ(E) + µ(A ∩ F ) ≥ 0, 

which says that µ must be a positive measure, a contradiction. A 
similar argument applies for −µ and F . 

Let us say two measures µ and ν are mutually singular if there 
exist two disjoint sets E and F in A whose union is X with µ(E) = 
ν(F ) = 0. This is often written µ ⊥ ν. 

Example 12.6 If µ is Lebesgue measure restricted to [0, 1/2], that 
is, µ(A) = m(A ∩ [0, 1/2]), and ν is Lebesgue measure restricted to 
[1/2, 1], then µ and ν are mutually singular. We let E = (1/2, 1] 
and F = [0, 1/2]. This example works because the Lebesgue mea-
sure of {1/2} is 0. 
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Example 12.7 A more interesting example is the following. Let f 
be the Cantor-Lebesgue function where we define f(x) = 1 if x ≥ 1 
and f(x) = 0 if x ≤ 0 and let ν be the Lebesgue-Stieltjes measure 
associated with f . Let µ be Lebesgue measure. Then µ ⊥ ν. To 
see this, we let E = C, where C is the Cantor set, and F = Cc . We 
already know that m(E) = 0 and we need to show ν(F ) = 0. To do 
that, we need to show ν(I) = 0 for every open interval contained 
in F . This will follow if we show ν(J) = 0 for every interval of the 
form J = (a, b] contained in F . But f is constant on every such 
interval, so f(b) = f(a), and therefore ν(J) = f(b) − f(a) = 0. 

12.3 Jordan decomposition theorem 

The following is known as the Jordan decomposition theorem. See 
Example 12.3 for an example. 

Theorem 12.8 If µ is a signed measure on a measurable space 
+ −(X, A), there exist positive measures µ and µ such that µ = 

−µ+ −µ− and µ+ and µ are mutually singular. This decomposition 
is unique. 

Proof. Let E and F be negative and positive sets, resp., for µ 
so that X = E ∪ F and E ∩ F = ∅. Let µ+(A) = µ(A ∩ F ), 
µ−(A) = −µ(A ∩ E). This gives the desired decomposition. 

If µ = ν+ − ν− is another such decomposition with ν+, ν− 

mutually singular, let E0 be a set such that ν+(E0) = 0 and 
ν−((E0)c) = 0. Set F 0 = (E0)c . Hence X = E0 ∪F 0 and E0 ∩F 0 = ∅. 
If A ⊂ F 0 , then ν−(A) ≤ ν−(F 0) = 0, and so 

µ(A) = ν+(A) − ν−(A) = ν+(A) ≥ 0, 

and consequently F 0 is a positive set for µ. Similarly, E0 is a nega-
tive set for µ. Thus E0, F 0 gives another Hahn decomposition of X. 
By the uniqueness part of the Hahn decomposition theorem, F 4F 0 

is a null set with respect to µ. Since ν+(E0) = 0 and ν−(F 0) = 0, 
if A ∈ A, then 

ν+(A) = ν+(A ∩ F 0) = ν+(A ∩ F 0) − ν−(A ∩ F 0) 

= µ(A ∩ F 0) = µ(A ∩ F ) = µ +(A), 
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−and similarly ν− = µ . 

The measure 
+ −|µ| = µ + µ (12.1) 

is called the total variation measure of µ and |µ|(X) is called the 
total variation of µ. 

12.4 Exercises 

Exercise 12.1 Suppose µ is a signed measure and A is measur-
able. Prove that A is a null set with respect to µ if and only if 
|µ|(A) = 0. 

Exercise 12.2 Let µ be a signed measure. Define Z Z Z 
f dµ = f dµ+ − f dµ− . 

Prove that Z Z 
f dµ ≤ |f | d|µ|. 

Exercise 12.3 Let µ be a finite signed measure on (X, A). Prove 
that n Z o 

|µ|(A) = sup f dµ : |f | ≤ 1 . 
A 

Exercise 12.4 Let (X, A) be a measurable space. Suppose λ = 
µ − ν, where µ and ν are finite positive measures. Prove that 
µ(A) ≥ λ+(A) and ν(A) ≥ λ−(A) for every A ∈ A. 

Exercise 12.5 Let (X, A) be a measurable space. Prove that if µ 
and ν are finite signed measures, then |µ + ν|(A) ≤ |µ|(A)+ |ν|(A) 
for every A ∈ A. 

Exercise 12.6 Suppose that µ is a signed measure on (X, A). 
Prove that if A ∈ A, then 

µ +(A) = sup{µ(B) : B ∈ A, B ⊂ A} 

and 
µ −(A) = − inf{µ(B) : B ∈ A, B ⊂ A}. 



109 12.4. EXERCISES 

Exercise 12.7 Suppose that µ is a signed measure on (X, A). 
Prove that if A ∈ A, then 

nnX
|µ|(A) = sup |µ(Bj )| : each Bj ∈ A, 

j=1 o 
the Bj are disjoint, ∪n

j=1Bj = A . 
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Chapter 13 

The Radon-Nikodym 
theorem 

Suppose f is non-negative and integrable with respect to µ. If we 
define ν by Z 

ν(A) = f dµ, (13.1) 
A 

then ν is a measure. The only part that needs thought is the 
countable additivity. If An are disjoint measurable sets, we have 

Z ∞ Z ∞X X 
ν(∪nAn) = f dµ = f dµ = ν(An) 

∪nAn Ann=1 n=1 

by using Proposition 7.6. Moreover, ν(A) is zero whenever µ(A) 
is. 

In this chapter we consider the converse. If we are given two 
measures µ and ν, when does there exist f such that (13.1) holds? 
The Radon-Nikodym theorem answers this question: if ν(A) is zero 
whenever µ(A) is, then there exists f such that (13.1) holds. We 
also prove the Lebesgue decomposition theorem, which handles the 
case when ν(A) being zero does not necessarily imply µ(A) being 
zero. 
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13.1 Absolute continuity 

Definition 13.1 A measure ν is said to be absolutely continuous 
with respect to a measure µ if ν(A) = 0 whenever µ(A) = 0. We 
write ν � µ. 

Proposition 13.2 Let ν be a finite measure. Then ν is absolutely 
continuous with respect to µ if and only if for all ε there exists δ 
such that µ(A) < δ implies ν(A) < ε. 

Proof. Suppose for each ε, there exists δ such that µ(A) < δ 
implies ν(A) < ε. If µ(A) = 0, then ν(A) < ε for all ε, hence 
ν(A) = 0, and thus ν � µ. 

Suppose now that ν � µ. If there exists an ε for which no 
corresponding δ exists, then there exists Ek such that µ(Ek) < 2−k 

but ν(Ek) ≥ ε. Let F = ∩n 
∞ 
=1 ∪∞ 

k=n Ek. Then 

∞X 
µ(∪∞ 2−k µ(F ) = lim k=nEk) ≤ lim = 0, 

n→∞ n→∞ 
k=n 

but 
ν(F ) = lim ν(∪∞ Ek) ≥ ε;k=n 

n→∞ 

ν being finite is needed for the equality in the last line. This con-
tradicts the absolute continuity. 

13.2 The main theorem 

Lemma 13.3 Let µ and ν be finite positive measures on a mea-
surable space (X, A). Either µ ⊥ ν or else there exists ε > 0 and 
G ∈ A such that µ(G) > 0 and G is a positive set for ν − εµ. 

Proof. Consider the Hahn decomposition for ν − 1 µ. Thus there n 
exists a negative set En and a positive set Fn for this measure, 
En and Fn are disjoint, and their union is X. Let F = ∪nFn and 
E = ∩nEn. Note Ec = ∪nE

c = ∪n = F .n Fn 
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For each n, E ⊂ En, so 

ν(E) ≤ ν(En) ≤ 1 µ(En) ≤ 1 µ(X). n n 

Since ν is a positive measure, this implies ν(E) = 0. 

One possibility is that µ(Ec) = 0, in which case µ ⊥ ν. The 
other possibility is that µ(Ec) > 0. In this case, µ(Fn) > 0 for 
some n. Let ε = 1/n and G = Fn. Then from the definition of Fn, 
G is a positive set for ν − εµ. 

We now are ready for the Radon-Nikodym theorem. 

Theorem 13.4 Suppose µ is a σ-finite positive measure on a mea-
surable space (X, A) and ν is a finite positive measure on (X, A) 
such that ν is absolutely continuous with respect to µ. Then there 
exists a µ-integrable non-negative function f which is measurable 
with respect to A such that Z 

ν(A) = f dµ 
A 

for all A ∈ A. Moreover, if g is another such function, then f = g 
almost everywhere with respect to µ. 

The function f is called the Radon-Nikodym derivative of ν with 
respect to µ or sometimes the density of ν with respect to µ, and 
is written f = dν/dµ. Sometimes one writes 

dν = f dµ. 

The idea of the proof is to look at the set of f such thatR 
f dµ ≤ ν(A) for each A ∈ A, and then to choose the one such 

A R 
that f dµ is largest.

X 

Proof. Step 1. Let us first prove the uniqueness assertion. Sup-
pose f and g are two functions such that Z Z 

f dµ = ν(A) = g dµ 
A A 

for all A ∈ A. For every set A we have Z 
(f − g) dµ = ν(A) − ν(A) = 0. 

A 



114 CHAPTER 13. THE RADON-NIKODYM THEOREM 

By Proposition 8.2 we have f − g = 0 a.e. with respect to µ. 

Step 2. Let us assume µ is a finite measure for now. In this step 
we define the function f . Define Zn o 

F = g measurable : g ≥ 0, g dµ ≤ ν(A) for all A ∈ A . 
A R 

F is not empty because 0 ∈ F . Let L = sup{ g dµ : g ∈ F}, 
note L ≤ ν(X) < ∞, and let gn be a sequence in F such thatR 
gn dµ → L. Let hn = max(g1, . . . , gn). 

We claim that if g1 and g2 are in F , then h2 = max(g1, g2) is 
also in F . To see this, let B = {x : g1(x) ≥ g2(x)}, and write Z Z Z 

h2 dµ = h2 dµ + h2 dµ 
A A∩B A∩BcZ Z 

= g1 dµ + g2 dµ 
A∩B A∩Bc 

≤ ν(A ∩ B) + ν(A ∩ Bc) 

= ν(A). 

Therefore h2 ∈ F . 

By an induction argument, hn is in F . 

The hn increase, say to f . By the monotone convergence theo-
rem, Z 

f dµ ≤ ν(A) (13.2) 
A 

for all A ∈ A and Z Z Z 
f dµ ≥ hn dµ ≥ gn dµ 

R 
for each n, so f dµ = L. 

Step 3. Next we prove that f is the desired function. Define a 
measure λ by Z 

λ(A) = ν(A) − f dµ. 
A 

λ is a positive measure since f ∈ F . 

Suppose λ is not mutually singular to µ. By Lemma 13.3, there 
exists ε > 0 and G such that G is measurable, µ(G) > 0, and G is 



115 13.3. LEBESGUE DECOMPOSITION THEOREM 

a positive set for λ − εµ. For any A ∈ A, Z Z 
ν(A) − f dµ = λ(A) ≥ λ(A ∩ G) ≥ εµ(A ∩ G) = εχG dµ, 

A A 

or Z 
ν(A) ≥ (f + εχG) dµ. 

A 

Hence f + εχG ∈ F . But Z 
(f + εχG) dµ = L + εµ(G) > L, 

X 

a contradiction to the definition of L. 

Therefore λ ⊥ µ. Then there must exist H ∈ A such that 
µ(H) = 0 and λ(Hc) = 0. Since ν � µ, then ν(H) = 0, and hence Z 

λ(H) = ν(H) − f dµ = 0. 
H R 

This implies λ = 0, or ν(A) = f dµ for all A.
A 

Step 4. We now suppose µ is σ-finite. There exist Fi ↑ X such 
that µ(Fi) < ∞ for each i. Let µi be the restriction of µ to Fi, 
that is, µi(A) = µ(A ∩ Fi). Define νi, the restriction of ν to Fi, 
similarly. If µi(A) = 0, then µ(A ∩ Fi) = 0, hence ν(A ∩ Fi) = 0, 
and thus νi(A) = 0. Therefore νi � µi. If fi is the function such 
that dνi = fi dµi, the argument of Step 1 shows that fi = fj on Fi 

if i ≤ j. Define f by f(x) = fi(x) if x ∈ Fi. Then for each A ∈ A, Z Z 
ν(A ∩ Fi) = νi(A) = fi dµi = f dµ. 

A A∩Fi 

Letting i →∞ shows that f is the desired function. 

13.3 Lebesgue decomposition theorem 

The proof of the Lebesgue decomposition theorem is almost the 
same as the proof of the Radon-Nikodym theorem. 

Theorem 13.5 Suppose µ is a σ-finite positive measure and ν is 
a finite positive measure. There exist positive measures λ, ρ such 
that ν = λ + ρ, ρ is absolutely continuous with respect to µ, and λ 
and µ are mutually singular. 



116 CHAPTER 13. THE RADON-NIKODYM THEOREM 

Proof. As in the proof of Theorem 13.4 we reduce to the case 
where µ is a finite measure. Define F and L and construct f asR 
in the proof of the Radon-Nikodym theorem. Let ρ(A) = f dµ 

A 
and let λ = ν − ρ. Our construction shows that Z 

f dµ ≤ ν(A), 
A 

so λ(A) ≥ 0 for all A. We have ρ + λ = ν. We need to show µ and 
λ are mutually singular. 

If not, by Lemma 13.3, there exists ε > 0 and F ∈ A such that 
µ(F ) > 0 and F is a positive set for λ − εµ. We get a contradic-
tion exactly as in the proof of the Radon-Nikodym theorem. We 
conclude that λ ⊥ µ. 

The Lebesgue decomposition is unique. This is Exercise 13.13. 

13.4 Exercises 

Exercise 13.1 This exercise asks you to prove the Radon-Niko-
dym theorem for signed measures. Let (X, A) be a measurable 
space. Suppose ν is a finite signed measure, µ is a finite positive 
measure, and ν(A) = 0 whenever µ(A) = 0 and A ∈ A. Show thereR 
exists an integrable real-valued function f such that ν(A) = f dµ 

A 
for all A ∈ A. 

Exercise 13.2 State and prove a version of the Lebesgue decom-
position theorem for signed measures. 

Exercise 13.3 We define a complex measure µ on a measurable 
space (X, A) to be a bounded map from A to C such that µ(∅) = 0P∞
and µ(∪∞ Ai) = i=1 µ(Ai) whenever the Ai are in A and arei=1 
pairwise disjoint. Note that this implies that µ(A) is finite for each 
measurable set A. Formulate and prove a Radon-Nikodym theorem 
for complex measures. 

Exercise 13.4 Let µ be a complex measure on a measurable space 
(X, A). The total variation measure is defined to be a positive 
measure |µ| such that d|µ| = |f | dρ, where ρ is a positive measure 
and f is a measurable function such that dµ = f dρ. The quantity 
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|µ|(X) is called the total variation of µ. Prove that the definition of 
|µ| is independent of the choice of ρ, that is, if dµ = f1 dρ1 = f2 dρ2, 
then |f1| dρ1 = |f2| dρ2. 

Exercise 13.5 Let (X, A) be a measurable space and let µ and ν 
be two finite measures. We say µ and ν are equivalent measures if 
µ � ν and ν � µ. Show that µ and ν are equivalent if and only if 
there exists a µ-integrable function f that is strictly positive a.e. 
with respect to µ such that dν = f dµ. 

Exercise 13.6 Suppose µ and ν are two finite measures such that 
ν is absolutely continuous with respect to µ. Let ρ = µ + ν. Note 
that µ(A) ≤ ρ(A) and ν(A) ≤ ρ(A) for each measurable A. In 
particular, µ � ρ and ν � ρ. Prove that if f = dµ/dρ and 
g = dν/dρ, then f is strictly positive for almost every x with 
respect to µ, f + g = 1 a.e., and dν = (g/f) dµ. 

Exercise 13.7 If µ is a signed measure on (X, A) and |µ| is the 
total variation measure, prove that there exists a real-valued func-
tion f that is measurable with respect to A such that |f | = 1 a.e. 
with respect to µ and dµ = f d|µ|. 

Exercise 13.8 Suppose dν = g dµ, where g ≥ 0 is µ-integrable 
and non-negative and µ is σ-finite. Prove that if f is measurableR R 
and non-negative, then f dν = fg dµ. 

Exercise 13.9 Suppose µ, ν, and ρ are finite signed measures, ν � 
|µ|, and ρ � |ν|. Here ν � |µ| means that ν(A) = 0 whenever 
|µ|(A) = 0 and A is measurable. We write dν/dµ for a measurable R 
function g such that ν(A) = g dµ for every measurable A. Prove 

A 
that ρ � |µ| and that 

dρ dρ dν 
= · 

dµ dν dµ 

almost everywhere with respect to |µ|. 

Exercise 13.10 Let µ be a positive measure and ν a signed mea-
sure. Prove that ν � µ if and only if ν+ � µ and ν− � µ. 

Exercise 13.11 Suppose λn is a sequence of positive measures 
on a measurable space (X, A) with supn λn(X) < ∞ and µ is 
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another finite positive measure on (X, A). Suppose λn = fn dµ+νn 

is the Lebesgue decomposition of λn; in particular, νn ⊥ µ. IfP∞
λ = n=1 λn is a finite measure, show that � ∞ � ∞X X 

λ = fn dµ + νn 

n=1 n=1 

is the Lebesgue decomposition of λ. 

Exercise 13.12 Suppose µ is a σ-finite measure and ν is a finite 
measure. Prove that if ν � µ and ν ⊥ µ, then ν is the zero 
measure. 

Exercise 13.13 Prove that the decomposition in the Lebesgue de-
composition theorem is unique. 

Exercise 13.14 The point of this exercise is to demonstrate that 
the Radon-Nikodym derivative can depend on the σ-algebra. 

Suppose X is a set and E ⊂ F are two σ-algebras of subsets of 
X. Let µ, ν be two finite positive measures on (X, F) and suppose 
ν � µ. Let µ be the restriction of µ to (X, E) and ν the restriction 
of ν to E . Find an example of the above framework where dν/dµ =6 
dν/dµ, that is, where the Radon-Nikodym derivative of ν with 
respect to µ (in terms of E) is not the same as the Radon-Nikodym 
derivative of ν with respect to µ (in terms of F). 

Exercise 13.15 Let (X, F , µ) be a complete measure space, and 
suppose E is a sub-σ-algebra of F , that is, E is itself a σ-algebra 
and E ⊂ F . Suppose f is a non-negative integrable function thatR 
is measurable with respect to F . Define ν(A) = f dµ for A ∈ E 

A 
and let µ be the restriction of µ to E . 
(1) Prove that ν � µ. 
(2) Since ν and µ are measures on E , then g = dν/dµ is measurable 
with respect to E . Prove that Z Z 

g dµ = f dµ (13.3) 
A A 

whenever A ∈ E . g is called the conditional expectation of f with 
respect to E and we write g = E [f | E ]. If f is integrable and 
real-valued but not necessarily non-negative, we define 

E [f | E ] = E [f+ | E ] − E [f− | E ]. 
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(3) Show that f = g a.e. if f is measurable with respect to E .R R 
(4) Prove that if h is E measurable and h dµ = f dµ for all

A A 
A ∈ E , then h = g a.e. with respect to µ. 
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Chapter 14 

Differentiation 

In this chapter we want to look at when a function from R to R is 
differentiable and when the fundamental theorem of calculus holds. 
Briefly, our results are the following. R x
(1) The derivative of f(y) dy exists and is equal to f a.e. if f is 

a 
integrable (Theorem 14.5); 
(2) Functions of bounded variation, in particular monotone func-
tions, are differentiable a.e. (Theorem 14.8);R b
(3) f 0(y) dy = f(b)−f(a) if f is absolutely continuous (Theorem

a 
14.16). 

Our approach uses what are known as maximal functions and 
uses the Radon-Nikodym theorem and the Lebesgue decomposition 
theorem. There is an alternate approach which avoids the use of 
these theorems (but which is no simpler); see previous versions of 
this book, available online on my web site, or see [7]. 

The definition of derivative is the same as in elementary calcu-
lus. A function f is differentiable at x if 

f(x + h) − f(x)
lim 
h→0 h 

exists, and the limit is called the derivative of f at x and is denoted 
f 0(x). If f : [a, b] → R, we say f is differentiable on [a, b] if the 
derivative exists for each x ∈ (a, b) and both 

f(a + h) − f(a) f(b + h) − f(b)
lim and lim 

h→0+ h h→0− h 

121 
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exist. 

Here is a summary of what is in each section. In Section 14.1 
we introduce the maximal function and prove what is known as 
the weak 1-1 inequality. We use this in Section 14.2 to considerR x
antiderivatives. If f is integrable and F (x) = f(y) dy, then F is 

a 
differentiable a.e. with derivative equal to f . (This is the first half 
of the Fundamental Theorem of Calculus.) 

In Section 14.3 we prove that increasing functions on R are 
differentiable a.e. We then introduce the concept of bounded vari-
ation in Section 14.4 and show that functions of bounded variation 
can be written as the difference of two increasing functions. 

Section 14.5 deals with absolutely continuous functions. For 
such functions the second half of the Fundamental Theorem of 
Calculus holds: if F is absolutely continuous, then F 0 exists a.e.R b
and F 0(x) dx = F (b) − F (a).

a 

14.1 Maximal functions 

In this section we consider real-valued functions on Rn . Let B(x, r) 
be the open ball with center x and radius r. 

The following is an example of what is known as a covering 
lemma. We use m for Lebesgue measure on Rn throughout this 
section. 

Proposition 14.1 Suppose E ⊂ Rn is covered by a collection of 
balls {Bα} and there exists a positive real number R such that the 
diameter of each Bα is bounded by R. Then there exists a disjoint 
sequence B1, B2, . . . of elements of {Bα} such that X 

m(E) ≤ 5n m(Bk). 
k 

Proof. Let d(Bα) be the diameter of Bα. Choose B1 such that 

d(B1) ≥ 1 sup d(Bα).2 
α 

Once B1, . . . , Bk are chosen, choose Bk+1 disjoint from B1, . . . , Bk 

such that 

d(Bk+1) ≥ 1 sup{d(Bα) : Bα is disjoint from B1, . . . , Bk}.2 
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The procedure might terminate after a finite number of steps or it 
might not. P P 
If k m(Bk) = ∞, we have our result. Suppose k m(Bk) < 

∞. Let B∗ be a ball with the same center as Bk but 5 times thek 
radius. We claim E ⊂ ∪kBk 

∗ . Once we have this, X X 
m(E) ≤ m(∪kBk 

∗ ) ≤ m(Bk 
∗ ) = 5n m(Bk). 

k k 

To show E ⊂ ∪kBk 
∗ , it suffices to show each Bα ⊂ ∪kBk 

∗ , since 
{Bα} is a cover of E. Fix α. If Bα is one of the Bk, we are done. P 
If k m(Bk) < ∞, then d(Bk) → 0. Let k be the smallest 

1integer such that d(Bk+1) < d(Bα). must intersect one of2 Bα 

B1, . . . , Bk, or else we would have chosen it instead of Bk+1. Let 
j0 be the smallest positive integer less than or equal to k such that 

1Bα intersects Bj0 . We know d(Bα) ≤ d(Bj0 ), and some simple2 
geometry shows that Bα ⊂ B∗ . In fact, let xj0 be the center ofj0 

Bj0 and y a point in Bα ∩ Bj0 . If x ∈ Bα, then 

|x − xj0 | ≤ |x − y| + |y − xj0 | < d(Bα) + d(Bj0 )/2 ≤ 5 d(Bj0 ),2 

or x ∈ B∗ . Therefore Bα ⊂ B∗ , and the proof is complete.j0 j0 

Next we turn to defining the maximal function. We say f isR 
locally integrable if |f(x)| dx is finite whenever K is compact. If

K 
f is locally integrable, define Z 

1 
Mf(x) = sup |f(y)| dy. 

r>0 m(B(x, r)) B(x,r) 

Note that without the supremum, we are looking at the average of 
|f | over B(x, r). The function Mf is called the maximal function 
of f . 

We show that Mf is a measurable function as follows. If f isR 
locally integrable, for each r the function x → |f(y)| dy is

B(x,r) 
continuous by dominated convergence. Thus for each r and each A,R 
the set {x : |f(y)| dy > A} is open. Since Mf(x) is greater

B(x,r) 
than a if and only if for some r we have Z 

|f(y)| dy > am(B(x, r)), 
B(x,r) 
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then Z[ n o 
{x : Mf(x) > a} = x : |f(y)| dy > am(B(x, r)) , 

B(x,r)r>0 

and thus {x : Mf(x) > a} is the union of open sets, hence open. 
Therefore Mf is measurable. 

We now prove a weak 1-1 inequality, due to Hardy and Little-
wood. It is so named because M does not map integrable functions 
into integrable functions, but comes close in a certain sense to doing 
so. 

Theorem 14.2 If f is integrable, then for all β > 0 Z 
5n 

m({x : Mf(x) > β}) ≤ |f(x)| dx. 
β 

Proof. Fix β and let Eβ = {x : Mf(x) > β}. If x ∈ Eβ , then there R 
exists a ball Bx centered at x such that |f(y)| dy > βm(Bx) by 

Bx 

the definition of Mf(x). Then R 
|f |

m(Bx) ≤ ,
β 

so {Bx} is a cover of Eβ by balls whose diameters are bounded 
by some number independent of x. Extract a disjoint sequenceP 
B1, B2, . . . such that m(Eβ ) ≤ 5n k m(Bk). Then ZX 5n X 

m(Eβ ) ≤ 5n m(Bk) ≤ |f |
β BkZk Z k 

5n 5n 

= |f | ≤ |f |,
β β∪kBk 

as desired. 

If we look at the function f(x) = χB , where B is the unit ball, 
note that Mf(x) is approximately a constant times |x|−n for x 
large, so Mf is not integrable. Hence M does not map the class of 
integrable functions into the class of integrable functions. 

Key to using maximal functions to study differentiation is the 
following theorem. 
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Theorem 14.3 Let Z 
1 

fr(x) = f(y) dy. (14.1) 
m(B(x, r)) B(x,r) 

If f is locally integrable, then fr(x) → f(x) a.e. as r → 0. 

Proof. It suffices to prove that for each N , fr(x) → f(x) for 
almost every x ∈ B(0, N). Fix N . We may suppose without loss of 
generality that f is 0 outside of B(0, 2N), and thus we may suppose 
f is integrable. 

Fix β > 0. Let ε > 0. Using Exercise 8.11 (or Theorem 8.4 in 
the one-dimensional case), take g continuous with compact support R 
such that |f − g| dm < ε. If gr is defined analogously to fr using 
(14.1), Z 

1 |gr(x) − g(x)| = [g(y) − g(x)] dy (14.2) 
m(B(x, r)) B(x,r)Z 

1 ≤ |g(y) − g(x)| dy → 0 
m(B(x, r)) B(x,r) 

as r → 0 by the continuity of g. We have 

lim sup |fr(x) − f(x)| ≤ lim sup |fr(x) − gr(x)|
r→0 r→0 

+ lim sup |gr(x) − g(x)|
r→0 

+ |g(x) − f(x)|. 

The second term on the right is 0 by (14.2). We now use Theorem 
14.2 and Lemma 10.4 to write 

m({x : lim sup|fr(x) − f(x)| > β}) 
r→0 

≤ m({x : lim sup |fr(x) − gr(x)| > β/2}) 
r→0 

+ m({x : |f(x) − g(x)| > β/2})R 
|f − g|

≤ m({x : M(f − g)(x) > β/2}) + 
β/2Z 

2(5n + 1) ≤ |f − g|
β 

2(5n + 1)ε 
< ,

β 
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where we use the definition of the maximal function to see that 

|fr(x) − gr(x)| ≤ M(f − g)(x) 

for all r. This is true for every ε, so 

m({x : lim sup |fr(x) − f(x)| > β}) = 0. 
r→0 

We apply this with β = 1/j for each positive integer j, and we 
conclude 

m({x : lim sup|fr(x) − f(x)| > 0}) 
r→0 

∞X 
≤ m({x : lim sup |fr(x) − f(x)| > 1/j}) = 0. 

r→0
j=1 

This is the result we seek. 

We can get a stronger statement: 

Theorem 14.4 Suppose f is locally integrable. Then for almost 
every x Z 

1 |f(y) − f(x)| dy → 0 
m(B(x, r)) B(x,r) 

as r → 0. 

Proof. For each rational c there exists a set Nc of measure 0 such 
that Z 

1 |f(y) − c| dy → |f(x) − c|
m(B(x, r)) B(x,r) 

for x ∈/ Nc; we see this by applying Theorem 14.3 to the function 
|f(x) − c|. Let N = ∪c∈QNc and suppose x ∈/ N . Let ε > 0 and 
choose c rational such that |f(x) − c| < ε. Then Z 

1 |f(y) − f(x)| dy 
m(B(x, r)) B(x,r) Z 

1 ≤ |f(y) − c| dy 
m(B(x, r)) B(x,r)Z 

1 
+ |f(x) − c| dy 
m(B(x, r)) B(x,r)Z 
1 

= |f(y) − c| dy + |f(x) − c|
m(B(x, r)) B(x,r) 
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and hence Z 
1 

lim sup |f(y) − f(x)| dy ≤ 2|f(x) − c| < 2ε. 
r→0 m(B(x, r)) B(x,r) 

Since ε is arbitrary, our result follows. 

If we apply the above to the function f = χE , then for almost 
all x ∈ E Z 

1 
χE → 1, 

m(B(x, r)) B(x,r) 

or 
m(E ∩ B(x, r)) → 1, 
m(B(x, r)) 

and similarly, for almost all x ∈/ E, the ratio tends to 0. The points 
where the ratio tends to 1 are called points of density for E. 

14.2 Antiderivatives 

For the remainder of the chapter we consider real-valued functions 
on the real line R. We can use the results on maximal functions 
to show that the derivative of the antiderivative of an integrable 
function is the function itself. A ball B(x, h) in R is merely the 
interval (x−h, x+h). We use m for Lebesgue measure throughout. 

Define the indefinite integral or antiderivative of an integrable 
function f by Z x 

F (x) = f(t) dt. 
a 

Recall by Exercise 7.11 that F is continuous. 

The main theorem of this section is the following. 

Theorem 14.5 Suppose f : R → R is integrable and a ∈ R. De-
fine Z x 

F (x) = f(y) dy. 
a 

Then F is differentiable almost everywhere and F 0(x) = f(x) a.e. 
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Proof. If h > 0, we have Z x+h 

F (x + h) − F (x) = f(y) dy, 
x 

so Z x+hF (x + h) − F (x) 1 − f(x) = (f(y) − f(x)) dy
h h x 

1 
Z x+h 

≤ 2 |f(y) − f(x)| dy. 
m(B(x, h)) x−h 

By Theorem 14.4, the right hand side goes to 0 as h → 0 for almost 
every x, and we conclude the right hand derivative of F exists and 
equals f for almost every x. The left hand derivative is handled 
similarly. 

14.3 Increasing functions 

In this section we show that increasing functions are differentiable 
almost everywhere. We start with right continuous increasing func-
tions. 

By the Lebesgue decomposition theorem a finite measure on the 
real line can be decomposed into a part that is absolutely continu-
ous with respect to Lebesgue measure and a part that is mutually 
singular with respect to Lebesgue measure. We first deal with the 
mutually singular part. 

Lemma 14.6 Suppose H : R → R is increasing, right continuous, 
and constant for x ≥ 1 and x ≤ 0. Let λ be the Lebesgue-Stieltjes 
measure defined using the function H and suppose λ and m are 
mutually singular. Then 

λ(B(x, r))
lim = 0 
r→0 m(B(x, r)) 

for almost every x (with respect to the measure m). 

Proof. Step 1. By adding a constant to H we may assume without 
loss of generality that H(0) = 0. Let us first address measurability. 
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Let He (y) = limz→y− H(z). Then 

He (y) = lim λ([0, z]) = λ([0, y)). 
z→y− 

Both H and He are increasing functions, hence Borel measurable. 
We see that 

λ(B(x, r)) = λ([0, x + r)) − λ([0, x − r]) = He (x + r) − H(x − r), 

so for each r the function x → λ(B(x, r)) is Borel measurable. 

Let rj = 2
−j . If 2−j−1 ≤ r < 2−j , then 

λ(B(x, r)) λ(B(x, rj )) λ(B(x, rj ))≤ = 2 
m(B(x, r)) m(B(x, rj+1)) m(B(x, rj )) 

To prove our result, it thus suffices to prove that 

λ(B(x, rj ))
lim = 0 
j→∞ m(B(x, rj )) 

for almost every x. 

Step 2. The result is clear if x < 0 or x > 1. Since λ ⊥ m, there 
exist measurable sets E and F such that λ(F ) = 0, m(E) = 0, and 
F = Ec . Let ε > 0. 

Next we find a bounded open set G such that F ∩ [0, 1] ⊂ G 
and λ(G) < ε. By Corollary 4.15 there exists G0 open containing 
F such that λ(G0) < ε. Since H is constant on (−∞, 0] and [1, ∞), 
we can take G to be the set G = G0 ∩ (−1, 2). 

Step 3. If β > 0, let n λ(B(x, rj )) 
o 

Aβ = x ∈ F ∩ [0, 1] : lim sup > β . 
j→∞ m(B(x, rj )) 

In this step we show that m(Aβ ) = 0. If x ∈ Aβ , then x ∈ F ⊂ G, 
and there exists an open ball Bx centered at x with radius 2−j 

for some j and contained in G such that λ(Bx)/m(Bx) > β. Use 
Proposition 14.1 to find a disjoint subsequence B1, B2, . . . such that 

∞X 
m(Aβ ) ≤ 5 m(Bi). 

i=1 

Then 
∞ ∞X X5 5 5 

m(Aβ ) ≤ 5 m(Bi) ≤ λ(Bi) ≤ λ(G) ≤ ε. 
β β β 

i=1 i=1 



130 CHAPTER 14. DIFFERENTIATION 

Since ε is arbitrary, and our construction of G did not depend on 
β, then m(Aβ ) = 0. 

Since m(A1/k) = 0 for each k, then 

m({x ∈ F ∩ [0, 1] : lim sup λ(B(x, rj ))/m(B(x, rj )) > 0}) = 0. 
j→∞ 

Since m(E) = 0, this completes the proof. 

Here is our result on differentiation for right continuous increas-
ing functions. 

Proposition 14.7 Let F : R → R be an increasing and right con-
tinuous function. Then F 0 exists a.e. Moreover, F 0 is locally inte-R b
grable and for every a < b, F 0(x) dx ≤ F (b) − F (a). 

a 

Proof. We will show F is differentiable a.e. on [0, 1]. Once we have 
that, the same argument can be used to show that F is differen-
tiable a.e. on [−N, N ] for each N , and that proves that F is differ-
entiable a.e. on R. If we redefine F so that F (x) = limy→0+ F (y) 
if x ≤ 0 and F (x) = F (1) if x > 1, then F is still right continuous 
and increasing, and we have not affected the differentiability of F 
on [0, 1] except possibly at the points 0 and 1. 

Let ν be the Lebesgue-Stieltjes measure defined in terms of F . 
By the Lebesgue decomposition theorem, we can write ν = λ + ρ, 
where λ ⊥ m and ρ � m. Note 

ρ([0, 1]) ≤ ν([0, 1]) = F (1) − F (0). 

By the Radon-Nikodym theorem there exists a non-negative inte-R 
grable function f such that ρ(A) = f dm for each measurable

A 
A. 

Let Z x 

H(x) = λ((0, x]) = ν((0, x])−ρ((0, x]) = F (x)−F (0)− f(y) dy. 
0 R x

By Exercise 7.11, the function x → f(y) dy is continuous, so
0 

H is right continuous, increasing, and λ is the Lebesgue-Stieltjes 
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measure defined in terms of H. By Lemma 14.6, 

H(x + h) − H(x) H(x + h) − H(x − h)
lim sup ≤ lim sup 

h h 

λ((x − h, x + h]) 
h→0+ h→0+ 

= lim sup 
h 

λ(B(x, 2h)) 
h→0+ 

≤ 4 lim sup = 0 
4hh→0+ 

for almost every x. The same is true for the left hand derivative, 
so H 0 exists and equals 0 for almost every x. We saw by Theo-R x 
rem 14.5 that the function x → f(y) dy is differentiable almost

0 
everywhere, and we conclude that F is differentiable a.e. 

We have shown that F 0 = f a.e. If a < b, Z b Z b 

F 0(x) dx = f(x) dx = ρ((a, b]) ≤ ν((a, b]) = F (b) − F (a). 
a a 

This completes the proof. 

Here is the main theorem on the differentiation of increasing 
functions. 

Theorem 14.8 If F : R → R is increasing, then F 0 exists a.e. 
and Z b 

F 0(x) dx ≤ F (b) − F (a) (14.3) 
a 

whenever a < b. 

Proof. Let G(x) = limy→x+ F (y). Since F is increasing, there 
are at most countably many values of x where F is not continuous 
(Proposition 1.6), so F (x) = G(x) a.e. Since G is increasing and 
right continuous, G is differentiable a.e. by Proposition 14.7. We 
will show that if x is a point where G is differentiable and at the 
same time F (x) = G(x), then F 0(x) exists and is equal to G0(x). 

Let x be such a point, let L = G0(x) and let ε > 0. Because F 
and G are increasing, for any h > 0 there exists a point xh strictly 
between x + h and x + (1 + ε)h where F and G agree, and so 

F (x + h) ≤ F (xh) = G(xh) ≤ G(x + (1 + ε)h). 
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Then 

F (x + h) − F (x) G(x + (1 + ε)h) − G(x)
lim sup ≤ lim sup 

h h 

G(x + (1 + ε)h) − G(x) 
h→0+ h→0+ 

= (1 + ε) lim sup 
h→0+ (1 + ε)h 

= (1 + ε)L. 

Similarly, lim infh→0+[F (x + h) − F (x)]/h ≥ (1 − ε)L. Since ε 
is arbitrary, the right hand derivative of F exists at x and is equal 
to L. That the left hand derivative equals L is proved similarly. 

Since F 0 = G0 a.e., then F 0 is locally integrable. If a < b, take 
an ↓ a and bn ↑ b such that F and G agree on an and bn. Then 
using Proposition 14.7, 

F (b) − F (a) ≥ F (bn) − F (an) Z bn 

= G(bn) − G(an) ≥ G0(x) dx 
anZ bn 

= F 0(x) dx. 
an 

Now let n →∞ and use the monotone convergence theorem. 

Remark 14.9 Note that if F is the Cantor-Lebesgue function, 
then F 0(x) = 0 a.e., in fact at every point of Cc , where C is the 
Cantor set. Thus Z 1 

1 = F (1) − F (0) > 0 = F 0(x) dx, 
0 

and we do not in general have equality in (14.3). 

14.4 Bounded variation 

A real-valued function f is of bounded variation on [a, b] if 

knX o 
Vf [a, b] = sup |f(xi) − f(xi−1)| (14.4) 

i=1 
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is finite, where the supremum is over all partitions a = x0 < x1 < 
· · · < xk = b of [a, b]. 

If f is increasing, then 

k kX X 
|f(xi) − f(xi−1)| = [f(xi) − f(xi−1] = f(xk) − f(x0), 

i=1 i=1 

so f is of bounded variation. It is easy to check that if f and g 
are of bounded variation and c ∈ R, then cf and f + g are also of 
bounded variation. 

f is Lipschitz continuous if there exists c1 > 0 such that 

|f(y) − f(x)| ≤ c1|y − x| (14.5) 

for all x and y. If f is Lipschitz continuous, then 

Xk kX 
|f(xi) − f(xi−1)| ≤ c1 |xi − xi−1| ≤ c1(b − a) 

i=1 i=1 

and f is thus of bounded variation. In particular, if f is continu-
ously differentiable on [a, b], then it is of bounded variation. 

The most important result of this section is the following, which 
says that a function of bounded variation can be written as the 
difference of two increasing functions. 

Lemma 14.10 If f is of bounded variation on [a, b], then f can be 
written as f = f1 − f2, the difference of two increasing functions 
on [a, b]. 

Proof. Define 

knX o 
f1(y) = sup [f(xi) − f(xi−1)]

+ (14.6) 
i=1 

and 
knX o 

f2(y) = sup [f(xi) − f(xi−1)]
− , (14.7) 

i=1 

where the supremum is over all partitions a = x0 < x1 < · · · < 
xk = y for y ∈ [a, b]. f1 and f2 are measurable since they are both 
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increasing. Since 

k kX X 
[f(xi) − f(xi−1)]

+ = [f(xi) − f(xi−1)]
− + f(y) − f(a), 

i=1 i=1 

taking the supremum over all partitions of [a, y] yields 

f1(y) = f2(y) + f(y) − f(a). 

Clearly f1 and f2 are increasing in y, and the result follows by 
solving for f(y). 

Using Lemma 14.10 and Theorem 14.8, we see that functions 
of bounded variation are differentiable a.e. Note that the converse 
is not true: the function sin(1/x) defined on (0, 1] is differentiable 
everywhere, but is not of bounded variation. 

Recall the definition of Vf [c, d] from (14.4). 

Lemma 14.11 If [c, d] ⊂ [a, b], then f1(d) − f1(c) ≤ Vf [c, d] and 
the same with f1 replaced by f2. 

Proof. Let a = x0 < x1 · · · < xn = d and call this partition P .P 
We write P to denote the sum from i = 1 to n. Let P0 be the 
partition P with the point c added, let P 0 be the points in P0 that 
are less than or equal to c, and let P 00 be the points in P0 that are 

+ +greater than c. Since (r + s)+ ≤ r + s , we have X 
[f(xi) − f(xi−1)]

+ 

P X 
≤ [f(xi) − f(xi−1)]

+ 

P0X X 
= [f(xi) − f(xi−1)]

+ + [f(xi) − f(xi−1)]
+ 

P 0 P 00 X X 
≤ [f(xi) − f(xi−1)]

+ + |f(xi) − f(xi−1)|
P 0 P 00 

≤ f1(c) + Vf [c, d]. 

Taking the supremum over all partitions P , we have 

f1(d) ≤ f1(c) + Vf [c, d], 
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and we conclude f1(d) − f1(c) ≤ Vf [c, d]. The proof for f2 is very 
similar. 

Remark 14.12 If we write a function f of bounded variation as 
the difference of two increasing functions f1 and f2 as in Lemma 
14.10, then the quantity (f1(b)+f2(b))−(f1(a)+f2(a)) is called the 
total variation of f on the interval [a, b]. We make the observation 
that if f is of bounded variation on the interval [a, b] and on the 
interval [b, c], then it is of bounded variation on the interval [a, c]. 

Remark 14.13 If f is an increasing function [a, b] that is continu-
ous from the right, we can write f = f1 +f2, where f1 is continuous 
and X 

f2(x) = (f(t) − f(t−)). 
a<t≤x 

Only countably many of the summands in the definition of f2 can be 
non-zero in view of Proposition 1.6, each summand is non-negative, 
and the sum is finite because it is bounded by f(x) − f(a). Using 
Lemma 14.10, we can similarly decompose any function of bounded 
variation that is continuous from the right. 

14.5 Absolutely continuous functions 

A real-valued function f is absolutely continuous on [a, b] if given εPk
there exists δ such that |f(bi)−f(ai)| < ε whenever {(ai, bi)}i=1 Pk
is a finite collection of disjoint intervals with |bi − ai| < δ.i=1 

It is easy to see that absolutely continuous functions are con-
tinuous and that the Cantor-Lebesgue function is not absolutely 
continuous. 

Lemma 14.14 If f is absolutely continuous, then it is of bounded 
variation. 

Proof. By the definition of absolutely continuous function withPk
ε = 1, there exists δ such that |f(bi) − f(ai)| < 1 whenever i=1Pk 

(bi −ai) ≤ δ and the (ai, bi) are disjoint open intervals. Hencei=1 
for each j the total variation of f on [a + jδ, a + (j + 1)δ] is less 
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than or equal to 1. Using Remark 14.12, we see the total variation 
of f on [a, b] is finite. 

Lemma 14.15 Suppose f is of bounded variation. Let us use 
Lemma 14.10 to decompose f as f = f1 − f2, where f1 and f2 

are defined in (14.6) and (14.7); recall that f1 and f2 are increas-
ing functions. If f is absolutely continuous, then so are f1 and 
f2. 

Pm
Proof. Given ε there exists δ such that |f(B`) − f(A`)| < εP `=1 

m
whenever (B` − A`) ≤ δ and the (A`, B`) are disjoint open `=1 
intervals. 

Let (a1, b1), . . . (ak, bk) be a collection of disjoint open intervals Pk Pk
with (bi −ai) < δ. We need to show |f1(bi)−f1(ai)| ≤ εi=1 i=1 
and the same with f1 replaced with f2. 

Partitioning each interval (ai, bi) into subintervals with ai = 
si0 < si1 < · · · < siJi = bi, then 

k Ji−1 kX X X 
(si,j+1 − sij ) = (bi − ai) ≤ δ. 

i=1 j=0 i=1 

Applying the first paragraph with the collection 

{(sij , si,j+1); i = 1, . . . , k, j = 0, . . . , Ji − 1}, 

we have 
k Ji −1X X 

|f(si,j+1) − f(sij )| ≤ ε. 
i=1 j=0 

Holding the ai and bi fixed and taking the supremum over all such 
partitions, 

kX 
Vf [ai, bi] ≤ ε. 

i=1 

Using Lemma 14.11 our conclusion for f1 follows. The proof for f2 

is the same. 

Here is the main theorem on absolutely continuous functions. 
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Theorem 14.16 If F is absolutely continuous, then F 0 exists a.e., 
is integrable, and Z b 

F 0(x) dx = F (b) − F (a). 
a 

Proof. By Lemma 14.15 it suffices to suppose F is increasing and 
absolutely continuous. Let ν be the Lebesgue-Stieltjes measure de-
fined in terms of F . Since F is continuous, F (d) − F (c) = ν((c, d)). 

Taking a limit as k →∞, we see that given ε there exists δ such P∞
that |F (bi) − F (ai)| ≤ ε whenever {(ai, bi)} is a collection ofi=1 P∞
disjoint intervals with (bi − ai) < δ. Since any open set G cani=1 
be written as the union of disjoint intervals {(ai, bi)}, this can be 
rephrased as saying, given ε there exists δ such that 

∞ ∞X X 
ν(G) = ν((ai, bi)) = (F (bi) − F (ai)) ≤ ε 

i=1 i=1 

whenever G is open and m(G) < δ. If m(A) < δ and A is Borel 
measurable, then there exists an open set G containing A such that 
m(G) < δ, and then ν(A) ≤ ν(G) ≤ ε. We conclude that ν � m. 

Hence there exists a non-negative integrable function f such 
that Z 

ν(A) = f dm 
A 

for all Borel measurable sets A. In particular, for each x ∈ [a, b], Z x 

F (x) − F (a) = ν((a, x)) = f(y) dy. 
a 

By Theorem 14.5, F 0 exists and is equal to f a.e. Setting x = b we 
obtain Z b 

F (b) − F (a) = F 0(y) dy 
a 

as desired. 

14.6 Exercises 

Exercise 14.1 (1) Show that if f and g are absolutely continuous 
on an interval [a, b], then the product fg is also. 
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(2) Prove the integration by parts formula: Z b Z b 

f(b)g(b) − f(a)g(a) = f(x)g 0(x) dx + f 0(x)g(x) dx. 
a a 

Exercise 14.2 If f is integrable and real-valued, a ∈ R, and Z x 

F (x) = f(y) dy, 
a 

prove that F is of bounded variation and is absolutely continuous. 

Exercise 14.3 Suppose that f is a real-valued continuous function 
on [0, 1] and that ε > 0. Prove that there exists a continuous 
function g such that g0(x) exists and equals 0 for a.e. x and 

sup |f(x) − g(x)| < ε. 
x∈[0,1] 

Exercise 14.4 Suppose f is a real-valued continuous function on 
[0, 1] and f is absolutely continuous on (a, 1] for every a ∈ (0, 1). Is 
f necessarily absolutely continuous on [0, 1]? If f is also of bounded 
variation on [0, 1], is f absolutely continuous on [0, 1]? If not, give 
counterexamples. 

Exercise 14.5 Prove that f is Lipschitz continuous with constant 
M (see (14.5)) if and only if f is absolutely continuous and |f 0| ≤ M 
a.e. 

Exercise 14.6 Suppose Fn is a sequence of increasing non-nega-
tive right continuous functions on [0, 1] such that supn Fn(1) < ∞.P∞
Let F = Fn and suppose F (1) < ∞. Prove that n=1 

∞X 
F 0(x) = F 0 (x)n 

n=1 

for almost every x. 

Exercise 14.7 Suppose f is absolutely continuous on [0, 1] and 
for A ⊂ [0, 1] we let f(A) = {f(x) : x ∈ A}. Prove that if A has 
Lebesgue measure 0, then f(A) has Lebesgue measure 0. 
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Exercise 14.8 If f is real-valued and differentiable at each point 
of [0, 1], is f necessarily absolutely continuous on [0, 1]? If not, find 
a counterexample. 

Exercise 14.9 Suppose f : Rn → R is Lebesgue measurable. 
Prove that if {x : f(x) 6= 0} has positive Lebesgue measure, then 
Mf is not integrable. 

Exercise 14.10 Find an increasing function f such that f 0 = 0 
a.e. but f is not constant on any open interval. 

Exercise 14.11 If f : [a, b] → R is continuous, let M(y) be the 
number of points x in [a, b] such that f(x) = y. M(y) may be 
finite or infinite. Prove that M is Borel measurable in the sense 
that {y : M (y) = k} is a Borel measurable subset of the reals 
when k is a non-negative integer and also when k = ∞. Prove thatR 
M(y) dy equals the total variation of f on [a, b]. 

Exercise 14.12 Let α ∈ (0, 1). Find a Borel subset E of [−1, 1] 
such that 

m(E ∩ [−r, r])
lim = α. 

r→0+ 2r 

Exercise 14.13 Suppose A ⊂ [0, 1] has Lebesgue measure zero. 
Find an increasing function f : [0, 1] → R that is absolutely con-
tinuous, but 

f(x + h) − f(x)
lim = ∞ 
h→0 h 

for each x ∈ A. 

Exercise 14.14 Suppose that µ is a measure on the Borel σ-
algebra on [0, 1] and for every f that is real-valued and continuously 
differentiable we have Z �Z 1 �1/2 

f 0(x) µ(dx) ≤ f(x)2 dx . 
0 

Show that µ is absolutely continuous with respect to Lebesgue mea-
sure on [0, 1]. 
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Exercise 14.15 We define the derivates of a real-valued function 
f at x by 

f(x + h) − f(x)
D+f(x) = lim sup ,

h 

f(x + h) − f(x) 
h→0+ 

D−f(x) = lim sup ,
h 

f(x + h) − f(x) 
h→0− 

D+f(x) = lim inf , 
h→0+ h 

f(x + h) − f(x)
D−f(x) = lim inf . 

h→0− h 

If all the derivates are equal, then f is differentiable at x and f 0(x) 
is the common value. 

Suppose f is a real-valued continuous function on [a, b] whose 
derivate D+f is non-negative on [a, b]. Prove that f(b) ≥ f(a). 



Chapter 15 

Lp spaces 

We introduce some spaces of functions, called the Lp spaces. We 
define the Lp norm of a function by �Z �1/p 

kfkp = |f(x)|p µ(dx) 

for 1 ≤ p < ∞. First we prove that k·kp is indeed a norm by proving 
Hölder’s inequality and Minkowski’s inequality. Then we prove 
completeness of the Lp spaces. After that we discuss convolutions. 
Finally we consider the set of bounded linear functionals on Lp. 
We assume throughout this chapter that the measure µ is σ-finite. 

15.1 Norms 

Let (X, A, µ) be a σ-finite measure space. For 1 ≤ p < ∞, define 
the Lp norm of f by �Z �1/p 

kfkp = |f(x)|p dµ . (15.1) 

For p = ∞, define the L∞ norm of f by 

kfk∞ = inf{M ≥ 0 : µ({x : |f(x)| ≥ M}) = 0}. (15.2) 

If no such M exists, then kfk∞ = ∞. Thus the L∞ norm of a 
function f is the smallest number M such that |f | ≤ M a.e. 

141 
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For 1 ≤ p ≤ ∞ the space Lp is the set {f : kfkp < ∞}. One 
can also write Lp(X) or Lp(µ) if one wants to emphasize the space 
or the measure. It is clear that kfkp = 0 if and only if f = 0 a.e. 

If 1 < p < ∞, we define q by 

1 1 
+ = 1 

p q 

and call q the conjugate exponent of p. If p = 1, set q = ∞, and if 
p = ∞, set q = 1. 

Basic to the study of Lp spaces is Hölder’s inequality (usually 
pronounced by English speakers as “Hel-der,” although “Herl-der” 
is a closer approximation). Note that when p = q = 2, this is the 
Cauchy-Schwarz inequality. 

−1 −1Proposition 15.1 If 1 < p, q < ∞, p + q = 1, and f and g 
are measurable, then Z 

|fg| dµ ≤ kfkpkgkq . 

This also holds if p = ∞ and q = 1 or if p = 1 and q = ∞. 

R R 
Proof. If M = kfk∞, then |f | ≤ M a.e. and |fg| ≤ M |g|. 
The case p = ∞ and q = 1 follows. 

Now let us assume 1 < p, q < ∞. If kfkp = 0, then f = 0 a.e.R 
and |fg| = 0, so the result is clear if kfkp = 0 and similarly if 
kgkq = 0. The result is immediate if kfkp or kgkq is infinite, so sup-
pose not. Let F (x) = |f(x)|/kfkp and G(x) = |g(x)|/kgkq. NoteR 
kF kp = 1 and kGkq = 1, and it suffices to show that F G dµ ≤ 1. 

The second derivative of the function et is again et , which is 
everywhere positive. Any function whose second derivative is ev-
erywhere non-negative is convex, so if 0 ≤ λ ≤ 1, we have 

b e λa+(1−λ)b ≤ λea + (1 − λ)e (15.3) 

for every pair of reals a ≤ b. If F (x), G(x) =6 0, let a = p log F (x), 
b = q log G(x), λ = 1/p, and 1 − λ = 1/q. We then obtain from 
(15.3) that 

F (x)p G(x)q 

F (x)G(x) ≤ + . 
p q 
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Clearly this inequality also holds if F (x) = 0 or G(x) = 0. Inte-
grating, Z kF kp kGkq 1 1 

F G dµ ≤ p 
+ q 

= + = 1. 
p q p q 

This completes the proof. 

One application of Hölder’s inequality is to prove Minkowski’s 
inequality, which is simply the triangle inequality for Lp. 

We first need the following lemma: 

Lemma 15.2 If a, b ≥ 0 and 1 ≤ p < ∞, then 

(a + b)p ≤ 2p−1 ap + 2p−1bp. (15.4) 

Proof. The cases p = 1 and a = 0 are obvious, so we assume p > 1 
and a > 0. Dividing both sides by ap, letting x = b/a, and setting 

f(x) = 2p−1 + 2p−1 xp − (1 + x)p, 

the inequality we want to prove is equivalent to showing f(x) ≥ 0 
for x ≥ 0. Note f(0) > 0, f(1) = 0, limx→∞ f(x) = ∞, and the 
only solution to f 0(x) = 0 on (0, ∞) is x = 1. We conclude that f 
takes its minimum at x = 1 and hence f(x) ≥ 0 for x ≥ 0. 

Here is Minkowski’s inequality. 

Proposition 15.3 If 1 ≤ p ≤ ∞ and f and g are measurable, 
then 

kf + gkp ≤ kfkp + kgkp. 

Proof. Since |(f + g)(x)| ≤ |f(x)| + |g(x)|, integrating gives the 
case when p = 1. The case p = ∞ is also easy. Now let us suppose 
1 < p < ∞. If kfkp or kgkp is infinite, the result is obvious, so we 
may assume both are finite. The inequality (15.4) with a = |f(x)|
and b = |g(x)| yields, after an integration, Z Z Z 

|(f + g)(x)|p dµ ≤ 2p−1 |f(x)|p dµ + 2p−1 |g(x)|p dµ. 

We therefore have kf +gkp < ∞. Clearly we may assume kf +gkp > 
0. 
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Now write 

|f + g|p ≤ |f | |f + g|p−1 + |g| |f + g|p−1 

and apply Hölder’s inequality with q = (1 − 1 )−1 . We obtain pZ �Z �Z�1/q �1/q 
|f + g|p ≤ kfkp |f + g|(p−1)q + kgkp |f + g|(p−1)q . 

−1 −1Since p + q = 1, then (p − 1)q = p, so we have � � 
kf + gkp/qkf + gkp ≤ kfkp + kgkp .p p 

p/q
Dividing both sides by kf +gkp and using the fact that p−(p/q) = 
1 gives us our result. 

Recall the definition of normed linear space from Chapter 1. 
We would like to say that by virtue of Minkowski’s inequality, Lp 

is a normed linear space. This is not quite right. The Lp norm of a 
function satisfies all the properties of a norm except that kfkp = 0 
does not imply that f is the zero function, only that f = 0 a.e. 
The procedure we follow to circumvent this is to say two functions 
are equivalent if they differ on a set of measure 0. This is an 
equivalence relation for functions. We then define the space Lp to 
be the set of equivalence classes with respect to this equivalence 
relation, and define kfkp to be the Lp norm of any function in the 
same equivalence class as f . We then have that k · kp is a norm on 
Lp. We henceforth keep this interpretation in the back of our minds 
when we talk about a function being in Lp; the understanding is 
that we identify functions that are equal a.e. 

When X is the positive integers and µ is counting measure, the 
space Lp is called `p. Thus if x = {xn} is a sequence, kxk`p = 
( 
P∞ |xn|p)1/p if 1 ≤ p < ∞. For p = ∞, kxk`∞ = sup |xn|. n=1 nR 
Recall Definition 10.1: fn converges to f in Lp if |fn −f |p → 0 

as n →∞. In terms of Lp norms, this is equivalent to kfn−fkp → 0p 
as n →∞. 

Related to the definition of L∞ is the following terminology. 
Given a real-valued measurable function f , the essential supremum 
and essential infimum are defined by 

ess sup f = inf{M : µ({x : f(x) > M}) = 0} 

and 
ess inf f = sup{m : µ({x : f(x) < m}) = 0}. 
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15.2 Completeness 

We show that the space Lp viewed as a metric space is complete. 

Theorem 15.4 If 1 ≤ p ≤ ∞, then Lp is complete. 

Proof. We will do only the case p < ∞ and leave the case p = ∞ 
as Exercise 15.1. 

Step 1. Suppose fn is a Cauchy sequence in Lp. Our first step is 
2−(j+1)to find a certain subsequence. Given ε = , there exists nj 

≤ 2−(j+1)such that if n, m ≥ nj , then kfn − fmkp . Without loss 
of generality we may assume nj ≥ nj−1 for each j. 

Step 2. Set n0 = 0 and define f0 to be identically 0. Our candidate P 
for the limit function will be ). In this step we m(fnm − fnm−1 

show absolute convergence of this series. Pj
Set gj (x) = |fnm (x) − fnm−1 (x)|. Of course, gj (x) in-m=1 

creases in j for each x. Let g(x), which might be infinite, be the 
limit. By Minkowski’s inequality 

jX 
kgj kp ≤ kfnm − fnm−1 kp 

m=1 

jX 
2−m≤ kfn1 − fn0 kp + 

m=2 
1≤ kfn1 kp + 2 . 

By Fatou’s lemma, Z Z 
|g(x)|p µ(dx) ≤ lim |gj (x)|p µ(dx)

j→∞ 

= lim kgj kp 
p

j→∞� �p
1≤ + kfn1 kp .2 

Hence g is finite a.e. This proves the absolute convergence for 
almost every x. 

Step 3. We define our function f . Set 

∞X 
f(x) = [fnm (x) − fnm−1 (x)]. 

m=1 
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We showed in Step 2 that this series is absolutely convergent for 
almost every x, so f is well defined for a.e. x. Set f(x) = 0 for any 
x where absolute convergence does not hold. We have 

KX 
f(x) = lim [fnm (x) − fnm−1 (x)] = lim fnK (x) 

K→∞ K→∞ 
m=1 

since we have a telescoping series. By Fatou’s lemma, Z Z 
kf − fnj kp = |f − fnj |p ≤ lim inf |fnK − fnj |p 

p 
K→∞ 

kp ≤ 2−(j+1)p= lim inf kfnK − fnj p . 
K→∞ 

Step 4. We have thus shown that kf − fnj kp → 0 as j →∞. It is 
standard that a Cauchy sequence with a convergent subsequence 
itself converges. Here is the proof in our case. Given ε > 0, there 
exists N such that kfn − fmkp < ε if m, n ≥ N . In particular, 
kfnj − fmkp < ε if j is large enough. By Fatou’s lemma, 

kf − fmkp ≤ lim inf kfnj − fmkp ≤ εp 
p p

j→∞ 

if m ≥ N . This shows that fm converges to f in Lp norm. 

Next we show: 

Proposition 15.5 The set of continuous functions with compact 
support is dense in Lp(R) for 1 ≤ p < ∞. 

R 
Proof. Suppose f ∈ Lp. We have |f − fχ[−n,n]|p → 0 as n →∞ 
by the dominated convergence theorem, the dominating function 
being |f |p. Hence it suffices to approximate functions in Lp that 
have compact support. By writing f = f+ − f− we may suppose 
f ≥ 0. Consider simple functions sm increasing to f ; then we R 
have |f − sm|p → 0 by the dominated convergence theorem, so 
it suffices to approximate simple functions with compact support. 
By linearity, it suffices to approximate characteristic functions with 
compact support. Given E, a Borel measurable set contained in a 
bounded interval, and ε > 0, we showed in Theorem 8.4 that there 
exists g continuous with compact support and with values in [0, 1]R R 
such that |g − χE | < ε. Since |g − χE | ≤ 1, then |g − χE |p ≤R 
|g − χE | < ε. This completes the proof. 
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The same proof shows the following corollary. 

Corollary 15.6 The set of continuous functions on [a, b] are dense 
in the space L2([a, b]) with respect to the L2([a, b]) norm. 

15.3 Convolutions 

In this section only, all functions are defined on Rn and we are 
using Lebesgue measure on Rn . 

The convolution of two measurable functions f and g is defined 
by Z 

f ∗ g(x) = f(x − y)g(y) dy, 

provided the integral exists. 

Let us address the measurability issues. Suppose f and g are 
both Borel measurable functions. If a ∈ R, then A = f−1((a, ∞)) 
is a Borel measurable subset of R. The mapping K : R2 → R 
defined by K(x, y) = x − y is Borel measurable. By Proposition 
5.11 with X = R2 and A the Borel σ-algebra on R2 , K−1(A) is in 
A. Therefore 

(f ◦ K)−1((a, ∞)) = K−1(f−1((a, ∞))) = K−1(A) 

is a Borel subset of R2 , and hence f ◦ K is Borel measurable. 
Thus, since g is also Borel measurable, the integrand is jointly 
measurable. Using Theorem 11.3(3), we see that f ∗ g is a Borel 
measurable function of x. R 
By a change of variables, f ∗g(x) is the same as f(y)g(x−y) dy, 

so f ∗ g = g ∗ f . 

Proposition 15.7 (1) If f, g ∈ L1 , then f ∗ g is in L1 and 

kf ∗ gk1 ≤ kfk1kgk1. (15.5) 

(2) If 1 < p ≤ ∞, f ∈ L1 , and g ∈ Lp, then 

kf ∗ gkp ≤ kfk1kgkp. (15.6) 

Proof. (1) We have Z Z Z 
|f ∗ g(x)| dx ≤ |f(x − y)| |g(y)| dy dx. (15.7) 
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Since the integrand on the right is non-negative, we can apply the 
Fubini theorem to see that the right hand side is equal to Z Z Z Z 

|f(x − y)| dx |g(y)| dy = |f(x)| dx |g(y)| dy (15.8) 

= kfk1kgk1. 

The first equality here follows by a change of variables (see Exercise 
8.1). This together with (15.7) proves (15.5). From (15.5) we 
conclude that f ∗ g is finite a.e. 

(2) The case p = ∞ is easy and left to the reader, so let us 
suppose p < ∞. Let q be the conjugate exponent to p. By Hölder’s 
inequality Z 

f(y)g(x − y) dy Z 
≤ |f(y)| q 

1 

|f(y)|1− q 
1 

|g(x − y)| dy �Z � 1 �Z � 1 
q p 

q≤ |f(y)| dy |f(y)|p(1− 1 )|g(x − y)|p dy . 

Then, using the Fubini theorem, Z Z �Z � p Z 
|f ∗ g(x)|p dx ≤ |f(y)| dy 

q |f(y)| |g(x − y)|p dy dx Z 
p/q

= kfk kgkp |f(y)| dy1 p 

1+ p 
q kgkp= kfk .1 p 

thTaking p roots gives our desired result. 

One application of convolutions is to approximate functions in 
Lp by smooth functions. This procedure is known by the name 
mollification. 

Let ϕ : Rn → R be infinitely differentiable with compact sup-
port, non-negative, and with integral equal to 1. An example of 
such a function is c exp(−1/(1 − |x|2))χ[0,1)(|x|) for appropriate c; 
cf. Exercise 15.29. Let 

ϕε(x) = ε−nϕ(x/ε). 
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Theorem 15.8 Suppose 1 ≤ p ≤ ∞ and f ∈ Lp. 
(1) For each ε > 0, f ∗ ϕε is infinitely differentiable. For each 
α1, α2, . . . , αn non-negative integers 

∂α1+···+αn (f ∗ ϕε) ∂α1+···+αn ϕε 
= f ∗ . 

∂xα1 · · · ∂xαn 
n ∂xα1 · · · ∂xαn 

n 
1 1 

We use the convention that the 0th order derivative of a function 
is just the function itself. 
(2) f ∗ ϕε → f a.e. as ε → 0. 
(3) If f is continuous, then f ∗ ϕε → f uniformly on compact sets 
as ε → 0. 
(4) If 1 ≤ p < ∞ and f ∈ Lp, then f ∗ ϕε → f in Lp. 

For other theorems along these lines, see Proposition 16.6 and 
Theorem 24.4. 

Proof. (1) Suppose ϕ has support in B(0, R). Let ei be the unit 
vector in the ith direction. Write 

f ∗ ϕε(x + hei) − f ∗ ϕε(x) (15.9)Z 
= f(y)[ϕε(x + hei − y) − ϕε(x − y)] dy. 

Since ϕε is continuously differentiable with compact support, there 
exists a constant c1 such that 

|ϕε(x + hei − y) − ϕε(x − y)| ≤ c1|h| 

for all x and y. We may then divide both sides of (15.9) by h, 
let h → 0, and use dominated convergence with the dominating 
function being c1|f(y)|χB(0,Rε+1)(y), provided |h| ≤ 1. This dom-
inating function is in L1 because f ∈ Lp. 

We conclude 

∂(f ∗ ϕε) ∂ϕε
(x) = f ∗ (x). 

∂xi ∂xi 

Since ∂ϕε/∂xi is also infinitely differentiable with compact support, 
we may continue and handle the higher order partial derivatives by 
induction. 
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(2) Since ϕ has integral 1, using a change of variables shows 
that ϕε does too. We then have Z 

f ∗ ϕε(x) − f(x) = [f(y) − f(x)]ϕε(x − y) dy (15.10) Z � �1 x − y 
= [f(y) − f(x)]ϕ dy. 
εn εB(x,Rε) 

This leads to 

|f ∗ ϕε(x) − f(x)|Z � �1 x − y≤ |f(y) − f(x)|ϕ dy
εn εB(x,Rε) Z 

1 ≤ kϕk∞m(B(0, R)) |f(y) − f(x)| dy. 
m(B(x, Rε)) B(x,Rε) 

The last line tends to 0 for almost every x by Theorem 14.4. 

(3) Let N > 0. Starting with (15.10), 

sup |f ∗ ϕε(x) − f(x)|
|x|≤N 

≤ kϕk∞m(B(0, R)) sup |f(y) − f(x)|. 
|x|≤N,|y−x|≤Rε 

This tends to 0 as ε → 0 because f is uniformly continuous on 
B(0, N + R). 

(4) Let ε > 0. If f ∈ Lp, let us take g bounded with compact 
support in B(0, N) so that kf − gkp < ε. We can do this by 
first looking at fN = fχB(0,N ) with N large. Using dominated 
convergence, kf − fN kp → 0, so take N sufficiently large such that 
kf − fN k < ε/2. We then let g be a simple function approximation 
to fN chosen so that kfN − gkp < ε/2. 

Since g ∈ L∞ , then g ∗ ϕε is bounded by kgk∞kϕεk1 = kgk∞. 
By part (2) we have almost everywhere convergence of g ∗ ϕε to 
g as ε → 0. Since ϕε has support in B(0, Rε) and g has support 
in B(0, N), we see by Exercise 15.13 that g ∗ ϕε will have support 
in B(0, N + Rε). We may therefore use dominated convergence to 
obtain that g ∗ ϕε → g in Lp as ε → 0. 

Now kf − gkp < ε and 

kf ∗ ϕε − g ∗ ϕεkp ≤ kf − gkpkϕεk1 < ε, 
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so kf ∗ ϕε − fkp ≤ 2ε + kg ∗ ϕε − gkp. Therefore 

lim sup kf ∗ ϕε − fkp ≤ 2ε. 
ε→0 

Since ε is arbitrary, (4) is proved. 

15.4 Bounded linear functionals 

We now return to general measure spaces rather than just Rn . 

A linear functional on Lp is a map H from Lp to R satisfying 

H(f + g) = H(f) + H(g), H(af) = aH(f) 

whenever f, g ∈ Lp and a ∈ R. (One can also have complex-valued 
linear functionals, but we do not consider them in this section. See, 
however, Exercise 15.30.) H is a bounded linear functional if 

kHk = sup{|Hf | : kfkp ≤ 1} (15.11) 

is finite. The dual space of Lp is the collection of all bounded linear 
functionals with norm given by (15.11). For examples of bounded 
linear functionals see Proposition 15.11. 

Our goal in this section is to identify the dual of Lp. 

We define the signum function or sign function by ⎧ ⎪−1, x < 0;⎨ 
sgn (x) = 0, x = 0;⎪⎩

1, x > 0. 

Note x sgn (x) = |x|. 

The following is very useful. 

−1 −1Theorem 15.9 For 1 < p < ∞ and p + q = 1, suppose 
f ∈ Lp. Then nZ o 

kfkp = sup fg dµ : kgkq ≤ 1 . (15.12) 

When p = 1, (15.12) holds if we take q = ∞, and if p = ∞, (15.12) 
holds if we take q = 1. 
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Proof. The right hand side of (15.12) is less than the left hand 
side by Hölder’s inequality. Thus we need only show that the right 
hand side is greater than the left hand side. 

Case 1: p = 1. Take g(x) = sgn f(x). Then |g| is bounded by 1 
and fg = |f |. This takes care of the case p = 1. 

Case 2: p = ∞. If kfk∞ = 0, the result is trivial, so suppose 
kfk∞ > 0. Since µ is σ-finite, there exist sets Fn increasing up to 
X such that µ(Fn) < ∞ for each n. If M = kfk∞, let a be any 
finite real less than M . By the definition of L∞ norm, the measure 
of An = {x ∈ Fn : |f(x)| > a} must be positive if n is sufficiently 
large. Let 

sgn (f(x))χAn (x) gn(x) = . 
µ(An) R R 

Then the L1 norm of gn is 1 and fgn = |f |/µ(An) ≥ a. Since
An 

a is arbitrary, the supremum on the right hand side of (15.12) must 
be M . 

Case 3: 1 < p < ∞. We may suppose kfkp > 0. Let Fn be 
measurable sets of finite measure increasing to X, qn a sequence of 
non-negative simple functions increasing to f+ , rn a sequence of 
non-negative simple functions increasing to f− , and 

sn(x) = (qn(x) − rn(x))χFn (x). 

Then sn(x) → f(x) for each x, |sn(x)| increases to |f(x)| for each 
x, each sn is a simple function, and ksnkp < ∞ for each n. Then 
ksnkp → kfkp by the monotone convergence theorem, whether or 
not kfkp is finite. For n sufficiently large, ksnkp > 0. 

Let 
|sn(x)|p−1 

gn(x) = (sgn f(x)) . 
p/qksnkp 

gn is again a simple function. Since (p − 1)q = p, then R p/q|(p−1)q)1/q( |sn ksnkpkgnkq = = = 1. 
p/q p/qksnkp ksnkp 

On the other hand, since |f | ≥ |sn|, Z R R 
|f | |sn|p−1 |sn|p 

kp−(p/q)fgn = ≥ = ksn p . 
p/q p/qksnkp ksnkp 
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R 
Since p−(p/q) = 1, then fgn ≥ ksnkp, which tends to kfkp. This 
proves the right hand side of (15.12) is at least as large as the left 
hand side. 

The proof of Theorem 15.9 also establishes 

−1 −1Corollary 15.10 For 1 < p < ∞ and p + q = 1, suppose fR 
is measurable and fg is defined for all simple g. Then nZ o 

kfkp = sup fg : kgkq ≤ 1, g simple . 

−1 −1Proposition 15.11 Suppose 1 < p < ∞, p + q = 1, andR 
g ∈ Lq. If we define H(f) = fg for f ∈ Lp, then H is a bounded 
linear functional on Lp and kHk = kgkq. 

Proof. The linearity is obvious. That kHk ≤ kgkq follows by 
Hölder’s inequality. Using Theorem 15.9 and writing Z Z 
kHk = sup |H(f)| = sup fg ≥ sup fg = kgkq 

kf kp≤1 kfkp≤1 kf kp≤1 

completes the proof. 

−1 −1Theorem 15.12 Suppose 1 < p < ∞, p + q = 1, and H is 
a real-valued bounded linear functional on Lp. Then there existsR 
g ∈ Lq such that H(f) = fg and kgkq = kHk. 

This theorem together with Proposition 15.11 allows us to iden-
tify the dual space of Lp with Lq. 

Proof. Suppose we are given a bounded linear functional H on Lp. 
First suppose µ(X) < ∞. Define ν(A) = H(χA). Note χA ∈ Lp by 
the finiteness of µ. We will show that ν is a signed measure, that 
ν � µ and that g = dν/dµ is the function we seek. 

If A and B are disjoint, then 

ν(A ∪ B) = H(χA∪B ) = H(χA + χB ) 

= H(χA) + H(χB ) = ν(A) + ν(B). 
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To show ν is countably additive, it suffices to show that if An ↑ A, 
then ν(An) → ν(A), and then use Exercise 3.1. But if An ↑ A, then 
χAn → χA in Lp, and so ν(An) = H(χAn ) → H(χA) = ν(A); we 
use here the facts that µ(X) < ∞ and p < ∞. We conclude that 
ν is a countably additive signed measure. Moreover, if µ(A) = 0, 
then χA = 0 a.e., hence ν(A) = H(χA) = 0. We use the Jordan 
decomposition theorem to write ν = ν+ − ν− , apply the Radon-

+ −Nikodym theorem to obtain g = dν+/dµ and g = dν−/dµ, and 
set g = g+−g− . We therefore have a real-valued integrable function R 
g such that ν(A) = g dµ for all sets A. P 

A 

If s = i aiχAi is a simple function, by linearity we have Z ZX X X 
H(s) = aiH(χAi ) = aiν(Ai) = ai gχAi = gs. 

i i i 
(15.13) 

By Corollary 15.10 and (15.13), nZ o 
kgkq = sup gs : kskp ≤ 1, s simple 

= sup{H(s) : kskp ≤ 1, s simple} ≤ kHk. 

If sn are simple functions tending to f in Lp (see Exercise 15.2), 
then H(sn) → H(f), while by Hölder’s inequality and the fact that 
g ∈ Lq 

Z Z Z 
sng − fg = (sn − f)g ≤ ksn − fkpkgkq → 0, 

R R R 
so sng → fg. We thus have H(f) = fg for all f ∈ Lp, and 
kgkq ≤ kHk. By Hölder’s inequality, kHk ≤ kgkq . 

In the case where µ is σ-finite, but not necessarily finite, let 
Fn ↑ X so that µ(Fn) < ∞ for each n. Define functionals Hn by 
Hn(f) = H(fχFn ). Clearly each Hn is a bounded linear functional 
on Lp. Applying the above argument, we see there exist gn ∈R 
Lq(Fn) such that Hn(f) = fgn and kgnkq = kHnk ≤ kHk. It 
is easy to see that gn is 0 if x ∈/ Fn. Moreover, by the uniqueness 
part of the Radon-Nikodym theorem, if n > m, then gn = gm 

on Fm. Define g by setting g(x) = gn(x) if x ∈ Fn. Then g is 
well defined. By Fatou’s lemma, g is in Lq with a norm bounded 
by kHk. Note fχFn → f in Lp by the dominated convergence 
theorem. Since H is a bounded linear functional on Lp, we have 
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Hn(f) = H(fχFn ) → H(f). On the other hand Z Z Z 
Hn(f) = fgn = fg → fg 

Fn Fn R 
by the dominated convergence theorem. Thus H(f) = fg. Again 
by Hölder’s inequality kHk ≤ kgkq. 

15.5 Exercises 

Exercise 15.1 Show that L∞ is complete. 

Exercise 15.2 Prove that the collection of simple functions is 
dense in Lp. 

Exercise 15.3 Prove the equality Z Z ∞ 
p−1|f(x)|p dx = pt m({x : |f(x)| ≥ t}) dt 

0 

for p ≥ 1. 

Exercise 15.4 Consider the measure space ([0, 1], B,m), where B 
is the Borel σ-algebra and m is Lebesgue measure, and suppose f 
is a measurable function. Prove that kfkp → kfk∞ as p →∞. 

Exercise 15.5 When does equality hold in Hölder’s inequality? 
When does equality hold in the Minkowski inequality? 

Exercise 15.6 Give an example to show that Lp 6⊂ Lq in general 
if 1 < p < q < ∞. Give an example to show that Lq 6⊂ Lp in 
general if 1 < p < q < ∞. 

Exercise 15.7 Suppose 1 ≤ r < p < s < ∞ and (X, A, µ) is a 
measure space. Prove that Lr(X) ∩ Ls(X) ⊂ Lp(X). 

Exercise 15.8 Prove that if p and q are conjugate exponents, 
fn → f in Lp, and g ∈ Lq, then Z Z 

fng → fg. 
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Exercise 15.9 Define 

gn(x) = nχ[0,n−3](x). 

(1) Show that if f ∈ L2([0, 1]), then Z 1 

f(x)gn(x) dx → 0 
0 

as n →∞. R 1
(2) Show that there exists f ∈ L1([0, 1]) such that f(x)gn(x) dx0 
6→ 0. 

Exercise 15.10 Suppose µ is a finite measure on the Borel subsets 
of R such that Z 

f(x) = f(x + t) µ(dt), a.e., 
R 

whenever f is real-valued, bounded, and integrable. Prove that 
µ({0}) = 1. 

Exercise 15.11 Suppose 1 < p < ∞ and q is the conjugate expo-
nent to p. Suppose fn → f a.e. and sup kfnkp < ∞. Prove thatn 
if g ∈ Lq, then Z Z 

lim fng = fg. 
n→∞ 

Does this extend to the case where p = 1 and q = ∞? If not, give 
a counterexample. 

Exercise 15.12 Suppose p ∈ (1, ∞) and q is its conjugate expo-
nent. Prove that if f ∈ Lp(R) and g ∈ Lq(R), then f ∗g is uniformly 
continuous and f ∗ g(x) → 0 as x →∞ and as x → −∞. 

Exercise 15.13 Show that if f and g have compact support, then 
f ∗ g has compact support. If in addition f and g are continuous, 
then f ∗ g will be continuous. 

Exercise 15.14 Suppose f ∈ L∞(R), fh(x) = f(x + h), and 

lim kfh − fk∞ = 0. 
h→0 

Prove that there exists a uniformly continuous function g on R such 
that f = g a.e. 
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Exercise 15.15 Let p ∈ [1, ∞) and suppose µ is a finite measure. 
Prove that f ∈ Lp(µ) if and only if 

∞X 
(2n)pµ({x : |f(x)| > 2n}) < ∞. 

n=1 

Exercise 15.16 Suppose µ(X) = 1 and f and g are non-negative 
functions such that fg ≥ 1 a.e. Prove that �Z ��Z � 

f dµ g dµ ≥ 1. 

Exercise 15.17 Suppose f : [1, ∞) → R, f(1) = 0, f 0 exists and is 
continuous and bounded, and f 0 ∈ L2([1, ∞)). Let g(x) = f(x)/x. 
Show g ∈ L2([1, ∞)). 

Exercise 15.18 Find an example of a measurable f : [1, ∞) → R 
such that f(1) = 0, f 0 exists and is continuous and bounded, f 0 ∈ 
L1([1, ∞)), but the function g(x) = f(x)/x is not in L1 . 

Exercise 15.19 Prove the generalized Minkowski inequality : If 
(X, A, µ) and (Y, B, ν) are measure spaces, f is measurable with 
respect to A× B, and 1 < p < ∞, then �Z �Z �p �1/p 

|f(x, y)| ν(dy) µ(dx) 
X Y Z �Z �1/p 

≤ |f(x, y)|p µ(dx) ν(dy). 
Y X 

This could be rephrased as 

kfkL1(ν) ≤ kfkLp(µ) . 
Lp(µ) L1(ν) 

Does this extend to the cases where p = 1 or p = ∞? If not, give 
counterexamples. 

If Y = {1, 2}, ν(dy) = δ1(dy)+δ2(dy), where δ1 and δ2 are point 
masses at 1 and 2, resp., and we let g1(x) = f(x, 1), g2(x) = f(x, 2), 
we recover the usual Minkowski inequality, Proposition 15.3. 



158 CHAPTER 15. LP SPACES 

Exercise 15.20 Let α ∈ (0, 1) and K(x) = |x|−α for x ∈ R. Note 
that K is not in Lp for any p ≥ 1. Prove that if f is non-negative, 
real-valued, and integrable on R and Z 

g(x) = f(x − t)K(t) dt, 

then g is finite a.e. 

Exercise 15.21 Suppose p > 1 and q is its conjugate exponent, 
f is an absolutely continuous function on [0, 1] with f 0 ∈ Lp, and 
f(0) = 0. Prove that if g ∈ Lq, then Z 1 � 1 �1/p 

|fg| dx ≤ kf 0kpkgkq . 
p0 

Exercise 15.22 Suppose f : R → R is in Lp for some p > 1 and 
also in L1 . Prove there exist constants c > 0 and α ∈ (0, 1) such 
that Z 

|f(x)| dx ≤ cm(A)α 

A 

for every Borel measurable set A ⊂ R, where m is Lebesgue mea-
sure. 

Exercise 15.23 Suppose f : R → R is integrable and there exist 
constants c > 0 and α ∈ (0, 1) such that Z 

|f(x)| dx ≤ cm(A)α 

A 

for every Borel measurable set A ⊂ R, where m is Lebesgue mea-
sure. Prove there exists p > 1 such that f ∈ Lp. 

Exercise 15.24 Suppose 1 < p < ∞, f : (0, ∞) → R, and f ∈ Lp 

with respect to Lebesgue measure. Define Z x1 
g(x) = f(y) dy. 

x 0 

Prove that 
pkgkp ≤ kfkp. 

p − 1 

This is known as Hardy’s inequality. 
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Exercise 15.25 Suppose (X, A, µ) is a measure space and suppose 
K : X × X → R is measurable with respect to A × A. Suppose 
there exists M < ∞ such that Z 

|K(x, y)| µ(dy) ≤ M 
X 

for each x and Z 
|K(x, y)| µ(dx) ≤ M 

X 

for each y. If f is measurable and real-valued, define Z 
Tf(x) = K(x, y)f(y) µ(dy) 

X 

if the integral exists. 
(1) Show that kTfk1 ≤ Mkfk1. 
(2) If 1 < p < ∞, show that kTfkp ≤ Mkfkp. 

Exercise 15.26 Suppose A and B are two Borel measurable sub-
sets of R, each with finite strictly positive Lebesgue measure. Show 
that χA ∗χB is a continuous non-negative function that is not iden-
tically equal to 0. 

Exercise 15.27 Suppose A and B are two Borel measurable sub-
sets of R with strictly positive Lebesgue measure. Show that 

C = {x + y : x ∈ A, y ∈ B} 

contains a non-empty open interval. 

Exercise 15.28 Let f(x) = χ[−1,1](x), let ε > 0, and let g(x) = 
1 χ[−ε,ε](x). Compute f ∗ g(x).2ε 

−1/|x|2 
Exercise 15.29 Define ϕ(x) = e if x =6 0, ϕ(0) = 0. Prove 
that ϕ is infinitely differentiable on Rn . The place where extra care 
is needed in the proof is for x = 0. 

Exercise 15.30 Suppose 1 < p < ∞ and q is the conjugate ex-
ponent of p. Prove that if H is a bounded complex-valued lin-
ear functional on Lp, then there exists a complex-valued measur-R 
able function g ∈ Lq such that H(f) = fg for all f ∈ Lp and 
kHk = kgkq. 
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Exercise 15.31 Suppose 1 ≤ p < ∞, f is absolutely continuous 
on each bounded interval, and f 0 ∈ Lp(R). Show that X 

|f(n + 1) − f(n)|p < ∞. 
n∈Z 

Exercise 15.32 Suppose f ∈ L1(R). Prove that for almost every 
x ∈ [0, 1] the sequence {f(x + n)} tends to 0 as n →∞. 



Chapter 16 

Fourier transforms 

Fourier transforms give a representation of a function in terms of 
frequencies. There is a great deal known about Fourier transforms 
and their applications. We give an introduction here. 

In the next section we define the Fourier transform of L1 func-
tions and present some of their basic properties. One of the two 
main results about Fourier transforms, presented in Section 16.2, is 
the inversion theorem, which gives a formula for recovering a func-
tion from its Fourier transform. The second main result, in Section 
16.3, is the Plancherel theorem, which says that the L2 norms of 
functions and their Fourier transforms are a fixed multiple of each 
other. 

16.1 Basic properties 

If f is a complex-valued function and f ∈ L1(Rn), define the 
Fourier transform fb to be the function with domain Rn and range 
C given by Z 

fb(u) = e iu·xf(x) dx, u ∈ Rn . (16.1) 
Rn 

We are using u · x for the standard inner product in Rn . Various 
books have slightly different definitions. Some put a negative sign 
and/or 2π before the iu · x, some have a (2π)−1 or a (2π)−1/2 in 
front of the integral. The basic theory is the same in any case. 
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Some basic properties of the Fourier transform are given by 

Proposition 16.1 Suppose f and g are in L1 . Then 
(1) fb is bounded and continuous; 

(2) (\f + g)(u) = fb(u) + gb(u); 
(3) (daf)(u) = afb(u) if a ∈ C; 

−iu·a b(4) if a ∈ Rn and fa(x) = f(x + a), then fb 
a(u) = e f(u); 

ia·x(5) if a ∈ Rn and ga(x) = e g(x), then bga(u) = gb(u + a); 
(6) if a is a non-zero real number and ha(x) = f(ax), then bha(u) = 
−n ba f(u/a). 

Proof. (1) fb is bounded because f ∈ L1 and |eiu·x| = 1. We have Z � � 
iu·xfb(u + h) − fb(u) = e i(u+h)·x − e f(x) dx. 

Then Z 
iu·x|fb(u + h) − fb(u)| ≤ e · e ih·x − 1 |f(x)| dx. 

The integrand is bounded by 2|f(x)|, which is integrable, and 
eih·x − 1 → 0 as h → 0. Thus the continuity follows by the domi-
nated convergence theorem. 

(2) and (3) are easy by a change of variables. (4) holds because Z Z 
−iu·a bfb 

a(u) = e iu·xf(x + a) dx = e iu·(x−a)f(x) dx = e f(u) 

by a change of variables. For (5), Z Z 
iu·x ia·xf(x) dx = bbga(u) = e e e i(u+a)·xf(x) dx = f(u + a). 

Finally for (6), by a change of variables, Z Z 
−n iu·(y/a)f(y) dybha(u) = e iu·xf(ax) dx = a e Z 

−n i(u/a)·yf(y) dy = a −n b= a e f(u/a), 

as required. 

One reason for the usefulness of Fourier transforms is that they 
relate derivatives and multiplication. 
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Proposition 16.2 Suppose f ∈ L1 and xj f(x) ∈ L1 , where xj is 
the jth coordinate of x. Then Z 

∂fb 
iu·x(u) = i e xj f(x) dx. 

∂uj 

Proof. Let ej be the unit vector in the jth direction. Then b Z � �f(u + hej ) − fb(u) 1 i(u+hej )·x − e iu·x = e f(x) dx 
h hZ � eihxj − 1 � 

iu·x = e f(x) dx. 
h 

Since � �1 ihxje − 1 ≤ |xj |
h R 

and xj f(x) ∈ L1 , the right hand side converges to eiu·xixj f(x) dx 
by the dominated convergence theorem. Therefore the left hand 
side converges. The limit of the left hand side is ∂ bf/∂uj . 

Proposition 16.3 Suppose f : R → R is integrable, f is absolutely 
continuous, and f 0 is integrable. Then the Fourier transform of f 0 

is −iufb(u). 
The higher dimensional version of this is left as Exercise 16.4. 

Proof. Since f 0 is integrable, Z y 

|f(y) − f(x)| ≤ |f 0(z)| dz → 0 
x 

as x, y →∞ by the dominated convergence theorem. This implies 
that f(yn) is a Cauchy sequence whenever yn → ∞, and we con-
clude that f(y) converges as y →∞. Since f is integrable, the only 
possible value for the limit is 0. The same is true for the limit as 
y → −∞. 

By integration by parts (use Exercise 14.1 and a limit argu-
ment), Z ∞ Z ∞ c iuxf 0(x) dx = − iueiuxf(x) dxf 0 (u) = e 

−∞ −∞ 

= −iufb(u), 
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as desired. 

Recall the definition of convolution given in Section 15.3. Recall 
also (15.8), which says that Z Z 

|f(x − y)| |g(y)| dx dy = kfk1kgk1. (16.2) 

Proposition 16.4 If f, g ∈ L1 , then the Fourier transform of f ∗g 
is fb(u)bg(u). 
Proof. We have Z Z 

iu·x[ e f(x − y)g(y) dy dx f ∗ g(u) = Z Z 
iu·(x−y)f(x − y) e iu·y= e g(y) dx dy Z b iu·y b= f(u)e g(y) dy = f(u)gb(u). 

We applied the Fubini theorem in the second equality; this is valid 
because as we see from (16.2), the absolute value of the integrand 
is integrable. We used a change of variables to obtain the third 
equality. 

16.2 The inversion theorem 

We want to give a formula for recovering f from fb . First we need 
to calculate the Fourier transform of a particular function. 

Proposition 16.5 (1) Suppose f1 : R → R is defined by 

21 −x /2f1(x) = √ e . 
2π 

2−u /2Then fb 
1(u) = e . 

(2) Suppose fn : Rn → R is given by 

1 −|x|2/2fn(x) = e . 
(2π)n/2 

−|u|2/2Then fb 
n(u) = e . 
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Proof. (1) may also be proved using contour integration, but let’s R 
iux −xgive a (mostly) real variable proof. Let g(u) = e e 

2/2 dx. 
Differentiate with respect to u. We may differentiate under the 

i(u+h)xintegral sign because (e − eiux)/h is bounded in absolute 
−x /2value by |x| and |x|e 2 

is integrable; therefore the dominated 
convergence theorem applies. We then obtain Z 

0(u) = i 
2iux −x g e xe /2 dx. 

By integration by parts (see Exercise 14.1) this is equal to Z 
iux −x−u e e 

2/2 dx = −ug(u). 

Solving the differential equation g0(u) = −ug(u), we have 

g0(u)
[log g(u)]0 = = −u, 

g(u) 

so log g(u) = −u2/2 + c1, and then 

2−u /2 g(u) = c2e . (16.3) R 2 √ √ −xBy Exercise 11.21, g(0) = e /2 dx = 2π, so c2 = 2π. Sub-√ 
stituting this value of c2 in (16.3) and dividing both sides by 2π 
proves (1). 

For (2), since fn(x) = f1(x1) · · · f1(xn) if x = (x1, . . . , xn), then Z Z P 
ifb 

n(u) = · · · e j uj xj f1(x1) · · · f1(xn) dx1 · · · dxn 

b b −|u|2/2 = f1(u1) · · · f1(un) = e . 

This completes the proof. 

One more preliminary is needed before proving the inversion 
theorem. 

R 
Proposition 16.6 Suppose ϕ is in L1 and ϕ(x) dx = 1. Let 
ϕδ (x) = δ−nϕ(x/δ). 

(1) If g is continuous with compact support, then g∗ϕδ converges 
to g pointwise as δ → 0. 
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(2) If g is continuous with compact support, then g∗ϕδ converges 
to g in L1 as δ → 0. 

(3) If f ∈ L1 , then kf ∗ ϕδ − fk1 → 0 as δ → 0. 

Proof. (1) We have by a change of variables (Exercise 8.1) thatR 
ϕδ(y) dy = 1. Then Z 

|g ∗ ϕδ (x) − g(x)| = (g(x − y) − g(x)) ϕδ(y) dy Z 
= (g(x − δy) − g(x)) ϕ(y) dy Z 
≤ |g(x − δy) − g(x)| |ϕ(y)| dy. 

Since g is continuous with compact support and hence bounded and 
ϕ is integrable, the right hand side goes to zero by the dominated 
convergence theorem, the dominating function being 2kgk∞ϕ. 

(2) We now use the Fubini theorem to write Z Z Z 
|g ∗ ϕδ(x) − g(x)| dx = (g(x − y) − g(x)) ϕδ(y) dy dx Z Z 

= (g(x − δy) − g(x)) ϕ(y) dy dx Z Z 
≤ |g(x − δy) − g(x)| |ϕ(y)| dy dx Z Z 
= |g(x − δy) − g(x)| dx |ϕ(y)| dy. 

Let Z 
Gδ(y) = |g(x − δy) − g(x)| dx. 

By the dominated convergence theorem, for each y, Gδ(y) tends to 
0 as δ → 0, since g is continuous with compact support. Moreover 
Gδ is bounded in absolute value by 2kgk1. Using the dominated 
convergence theorem again and the fact that ϕ is integrable, we seeR 
that Gδ(y) |ϕ(y)| dy tends to 0 as δ → 0. 

(3) Let ε > 0. Let g be a continuous function with compact 
support so that kf − gk1 < ε. Let h = f − g. A change of variables 
shows that kϕδ k1 = kϕk1. Observe 

kf ∗ ϕδ − fk1 ≤ kg ∗ ϕδ − gk1 + kh ∗ ϕδ − hk1. 
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Also 

kh ∗ ϕδ − hk1 ≤ khk1 + kh ∗ ϕδk1 ≤ khk1 + khk1kϕδ k1 < ε(1+ kϕk1) 

by Proposition 15.7. Therefore, using (2), 

lim sup kf ∗ ϕδ − fk1 ≤ lim sup kh ∗ ϕδ − hk1 ≤ ε(1 + kϕk1). 
δ→0 δ→0 

Since ε is arbitrary, we have our conclusion. 

Now we are ready to give the inversion formula. The proof seems 
longer than one might expect it to be, but there is no avoiding the 
introduction of the function Ha or some similar function. 

Theorem 16.7 Suppose f and fb are both in L1 . Then Z 
1 −iu·y bf(y) = e f(u) du, a.e. 

(2π)n 

Proof. If g(x) = a−nk(x/a), then the Fourier transform of g is bk(au). Hence the Fourier transform of 

2 21 1 −x /2a e 
an (2π)n/2 

2 2−a u /2is e . If we let 

21 −|x|2/2aHa(x) = e ,
(2π)n 

we have b (u) = (2π)−n/2 n −a 2 |u|2/2Ha a e . 

We write Z Z Z b −iu·y Ha 
iu·xf(x)e −iu·yHaf(u)e (u) du = e (u) dx du Z Z 
iu·(x−y)Ha = e (u) du f(x) dx Z b= Ha(x − y)f(x) dx. (16.4) 

We can interchange the order of integration because Z Z 
|f(x)| |Ha(u)| dx du < ∞ 
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and |eiu·x| = 1. The left hand side of the first line of (16.4) con-
verges to Z 

(2π)−n fb(u)e −iu·y dy 

as a → ∞ by the dominated convergence theorem since Ha(u) → 
(2π)−n and fb ∈ L1 . The last line of (16.4) is equal to Z b bHa(y − x)f(x) dx = f ∗ Ha(y), (16.5) 

busing that Ha is symmetric. But by Proposition 16.6, setting δ = 
−1 ba , we see that f ∗ Ha converges to f in L1 as a →∞. 

16.3 The Plancherel theorem 

The last topic that we consider is the Plancherel theorem. 

Theorem 16.8 Suppose f is continuous with compact support. 
Then fb ∈ L2 and 

kfk2 = (2π)−n/2kfbk2. (16.6) 

Proof. First note that if we combine (16.4) and (16.5), then Z b iu·yHa 
bf(u)e (u) du = f ∗ Ha(y). 

bNow take y = 0 and use the symmetry of Ha to obtain Z b bf(u)Ha(u) du = f ∗ Ha(0). (16.7) 

Let g(x) = f(−x), where a denotes the complex conjugate of a. 
Since ab = ab, Z Z bg(u) = e iu·xf(−x) dx = e−iu·xf(−x) dx Z 

= eiu·xf(x) dx = fb(u). 
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The third equality follows by a change of variables. By (16.7) with 
f replaced by f ∗ g, Z 

f[∗ g(u)Ha(u) du = f ∗ g ∗ Hb 
a(0). (16.8) 

b | bObserve that [ = f(u)b = f(u)|2 Thus the left handf ∗ g(u) g(u) . 
side of (16.8) converges by the monotone convergence theorem to Z 

(2π)−n |fb(u)|2 du 

as a → ∞. Since f and g are continuous with compact support, 
then by Exercise 15.13, f ∗ g is also, and so the right hand sideR R 
of (16.8) converges to f ∗ g(0) = f(y)g(−y) dy = |f(y)|2 dy by 
Proposition 16.6(2). 

Remark 16.9 We can use Theorem 16.8 to define fb when f ∈ L2 

so that (16.6) will continue to hold. The set of continuous functions 
with compact support is dense in L2 by Proposition 15.5. Given a 
function f in L2 , choose a sequence {fm} of continuous functions 
with compact support such that fm → f in L2 . Then kfm −fnk2 → 
0 as m, n →∞. By (16.6), {fb 

m} is a Cauchy sequence in L2 , and 
therefore converges to a function in L2 , which we call fb . 

Let us check that the limit does not depend on the choice of 
the sequence. If {f 0 } is another sequence of continuous functionsm 
with compact support converging to f in L2 , then {fm − f 0 } is am 
sequence of continuous functions with compact support converging 
to 0 in L2 . By (16.6), fb 

m − fb0 converges to 0 in L2 , and thereforem 

fc0 has the same limit as fb 
m. Thus fb is defined uniquely up tom 

almost everywhere equivalence. By passing to the limit in L2 on 
both sides of (16.6), we see that (16.6) holds for f ∈ L2 . 

16.4 Exercises 

Exercise 16.1 Find the Fourier transform of χ[a,b] and in partic-
ular, find the Fourier transform of χ[−n,n]. 

bExercise 16.2 Find a real-valued function f ∈ L1 such that f ∈/ 
L1 . 
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Exercise 16.3 Show that if f ∈ L1 and f is everywhere strictly 
positive, then |fb(y)| < fb(0) for y =6 0. 

Exercise 16.4 If f is integrable, real-valued, and all the partial 
derivatives fj = ∂f/∂xj are integrable, prove that the Fourier 
transform of fj is given by fb 

j (u) = −iuj fb(u). 
Exercise 16.5 Let S be the class of real-valued functions f on R 
such that for every k ≥ 0 and m ≥ 0, |x|m|f (k)(x)| → 0 as |x| → ∞, 
where f (k) is the kth derivative of f when k ≥ 1 and f (0) = f . The 
collection S is called the Schwartz class. Prove that if f ∈ S, then bf ∈ S. 

Exercise 16.6 The Fourier transform of a finite signed measure µ 
on Rn is defined by Z 

iu·x µb(u) = e µ(dx). 

Prove that if µ and ν are two finite signed measures on Rn (with 
respect to the completion of L × · · · × L, where L is the Lebesgue 
σ-algebra on R) such that µb(u) = νb(u) for all u ∈ Rn , then µ = ν. 

Exercise 16.7 If f is real-valued and continuously differentiable 
on R, prove that �Z �2 �Z �� Z � 

|f |2 dx ≤ 4 |xf(x)|2 dx |f 0|2 dx . 

Exercise 16.8 Prove Heisenberg’s inequality (which is very useful 
in quantum mechanics): there exists c > 0 such that if a, b ∈ R 
and f is in L2 , then �Z �� Z � 

(x − a)2|f(x)|2 dx (u − b)2|fb(u)|2 du �Z �2 
≥ c |f(x)|2 dx . 



Chapter 17 

Riesz representation 

In Chapter 4 we constructed measures on R. In this chapter we 
will discuss how to construct measures on more general topological 
spaces X. 

If X is a topological space, let B be the Borel σ-algebra and 
suppose µ is a σ-finite measure on (X, B). Throughout this chap-
ter we will restrict our attention to real-valued functions. If f is 
continuous on X, let us define 

Z 
L(f) = f dµ. 

X 

Clearly L is linear, and if f ≥ 0, then L(f) ≥ 0. The main topic 
of this chapter is to prove a converse, the Riesz representation 
theorem. 

We need more hypotheses on X than just that it is a topological 
space. For simplicity, throughout this chapter we suppose X is 
a compact metric space. In fact, with almost no changes in the 
proof, we could let X be a compact Hausdorff space, and with only 
relatively minor changes, we could even let X be a locally compact 
Hausdorff metric space. See Remark 17.1. But here we stick to 
compact metric spaces. 

We let C(X) be the collection of continuous functions from X 
to R. Recall that the support of a function f is the closure of 
{x : f(x) =6 0}. We write supp (f) for the support of f . If G is an 
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open subset of X, we define FG by 

FG = {f ∈ C(X) : 0 ≤ f ≤ 1, supp (f) ⊂ G}. 

Observe that if f ∈ FG, then 0 ≤ f ≤ χG, but the converse 
does not hold. For example, if X = [−2, 2], G = (−1, 1), and 
f(x) = (1 − x2)+ , then 0 ≤ f ≤ χG, but the support of f , which is 
[−1, 1], is not contained in G. 

In the next section we discuss partitions of unity, and in Section 
17.2 we prove the Riesz representation theorem for positive linear 
functionals. Section 17.3 establishes a regularity result, and in 
Section 17.4 we consider linear functionals that are not positive. 

17.1 Partitions of unity 

The reason we take our set X to be a metric space is that if K ⊂ 
G ⊂ X, where K is compact and G is open, then there exists 
f ∈ FG such that f is 1 on K. If we let � �+d(x, K)

f(x) = 1 − ,
δ/2 

where d(x, K) = inf{d(x, y) : y ∈ K} is the distance from x to K 
and δ = inf{d(x, y) : x ∈ K, y ∈ Gc}, then this f will do the job. 

Remark 17.1 If X is a compact Hausdorff space instead of a com-
pact metric one, we can still find such an f , that is, f ∈ FG with 
f ≥ χK when K ⊂ G, K is compact, and G is open. Urysohn’s 
lemma is the result from topology that guarantees such an f exists; 
see Section 20.6. (A Hausdorff space X is one where if x, y ∈ X, 
x 6= y, there exist disjoint open sets Gx and Gy with x ∈ Gx and 
y ∈ Gy . An example of a compact Hausdorff space that is not a 
metric space and cannot be made into a metric space is [0, 1]R with 
the product topology.) See Chapter 20 for details. 

We will need the following proposition. 

Proposition 17.2 Suppose K is compact and K ⊂ G1 ∪ · · · ∪ Gn, 
where the Gi are open sets. There exist gi ∈ FGi for i = 1, 2, . . . , n Pn
such that i=1 gi(x) = 1 if x ∈ K. 
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The collection {gi} is called a partition of unity on K, subordi-
nate to the cover {Gi}. 

Proof. Let x ∈ K. Then x will be in at least one Gi. Single points 
are always compact, so there exists hx ∈ FGi such that hx(x) = 1. 
Let Nx = {y : hx(y) > 0}. Since hx is continuous, then Nx is open, 
x ∈ Nx, and Nx ⊂ Gi. 

The collection {Nx} is an open cover for the compact set K, so 
there exists a finite subcover {Nx1 , . . . , Nxm }. For each i, let 

Fi = ∪{Nxj : Nxj ⊂ Gi}. 

Each Fi is closed, and since X is compact, Fi is compact. We have 
Fi ⊂ Gi. Let us choose fi ∈ FGi such that fi is 1 on Fi. 

Now define 

g1 = f1, 

g2 = (1 − f1)f2, 

· · · 
gn = (1 − f1)(1 − f2) · · · (1 − fn−1)fn. 

Clearly gi ∈ FGi . Note g1 + g2 = 1 − (1 − f1)(1 − f2), and an 
induction argument shows that 

g1 + · · · + gn = 1 − (1 − f1)(1 − f2) · · · (1 − fn). 

If x ∈ K, then x ∈ Nxj for some j, so x ∈ Fi for some i. ThenPn
fi(x) = 1, which implies k=1 gk(x) = 1. 

17.2 The representation theorem 

Let L be a linear functional mapping C(X) to R. Thus L(f + g) = 
L(f) + L(g) and L(af) = aL(f) if f, g ∈ C(X) and a ∈ R. L is a 
positive linear functional if L(f) ≥ 0 whenever f ≥ 0 on X. 

Here is the Riesz representation theorem. B is the Borel σ-
algebra on X, that is, the smallest σ-algebra that contains all the 
open subsets of X. 
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Theorem 17.3 Let X be a compact metric space and L a positive 
linear functional on C(X). Then there exists a measure µ on (X, B) 
such that Z 

L(f) = f(y) µ(dy), f ∈ C(X). (17.1) 

We often write Lf for L(f). Since X is compact, taking f identi-
cally equal to 1 in (17.1) shows that µ is a finite measure. 

Proof. If G is open, let 

`(G) = sup{Lf : f ∈ FG} 

and for E ⊂ X, let 

µ ∗ (E) = inf{`(G) : E ⊂ G, G open}. 

∗Step 1 of the proof will be to show µ is an outer measure. Step 
2 is to show that every open set is µ ∗-measurable. Step 3 is to 
apply Theorem 4.6 to obtain a measure µ. Step 4 establishes some 
regularity of µ and Step 5 shows that (17.1) holds. 

∗Step 1. We show µ is an outer measure. The only function in F∅ 

is the zero function, so `(∅) = 0, and therefore µ ∗(∅) = 0. Clearly 
µ ∗(A) ≤ µ ∗(B) if A ⊂ B. 

∗To show the countable subadditivity of µ , first let G1, G2, . . . 
be open sets. For any open set H we see that µ ∗(H) = `(H). Let 
G = ∪iGi and let f be any element of FG. Let K be the support of 
f . Then K is compact, {Gi} is an open cover for K, and therefore 
there exists n such that K ⊂ ∪n Gi. Let {gi} be a partition ofi=1 
unity for K subordinate to {Gi}n Since K is the support of f ,P i=1. 

n 
we have f = fgi. Since gi ∈ FGi and f is bounded by 1, then i=1 
fgi ∈ FGi . Therefore 

n n ∞X X X 
Lf = L(fgi) ≤ µ ∗ (Gi) ≤ µ ∗ (Gi). 

i=1 i=1 i=1 

Taking the supremum over f ∈ FG, 

∞X 
µ ∗ (G) = `(G) ≤ µ ∗ (Gi). 

i=1 
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If A1, A2, . . . are subsets of X, let ε > 0, and choose Gi open 
such that `(Gi) ≤ µ ∗(Ai) + ε2−i . Then 

∞ ∞X X 
µ ∗ (∪i 

∞ 
=1Ai) ≤ µ ∗ (∪i 

∞ 
=1Gi) ≤ µ ∗ (Gi) ≤ µ ∗ (Ai) + ε. 

i=1 i=1 

Since ε is arbitrary, countable subadditivity is proved, and we con-
∗clude that µ is an outer measure. 

Step 2. We show that every open set is µ ∗-measurable. Suppose G 
is open and E ⊂ X. It suffices to show 

µ ∗ (E) ≥ µ ∗ (E ∩ G) + µ ∗ (E ∩ Gc), (17.2) 

since the opposite inequality is true by the countable subadditivity 
∗of µ . 

First suppose E is open. Choose f ∈ FE∩G such that 

L(f) > `(E ∩ G) − ε/2. 

Let K be the support of f . Since Kc is open, we can choose 
g ∈ FE∩Kc such that L(g) > `(E ∩ Kc) − ε/2. Then f + g ∈ FE , 
and 

`(E) ≥ L(f + g) = Lf + Lg ≥ `(E ∩ G) + `(E ∩ Kc) − ε 

= µ ∗ (E ∩ G) + µ ∗ (E ∩ Kc) − ε 

≥ µ ∗ (E ∩ G) + µ ∗ (E ∩ Gc) − ε. 

Since ε is arbitrary, (17.2) holds when E is open. 

If E ⊂ X is not necessarily open, let ε > 0 and choose H open 
such that E ⊂ H and `(H) ≤ µ ∗(E) + ε. Then 

µ ∗ (E) + ε ≥ `(H) = µ ∗ (H) ≥ µ ∗ (H ∩ G) + µ ∗ (H ∩ Gc) 

≥ µ ∗ (E ∩ G) + µ ∗ (E ∩ Gc). 

Since ε is arbitrary, (17.2) holds. 

Step 3. Let B be the Borel σ-algebra on X. By Theorem 4.6, 
∗the restriction of µ to B, which we call µ, is a measure on B. In 

particular, if G is open, µ(G) = µ ∗(G) = `(G). 

Step 4. In this step we show that if K is compact, f ∈ C(X), and 
f ≥ χK , then L(f) ≥ µ(K). Let ε > 0 and define 

G = {x : f(x) > 1 − ε}, 
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which is open. If g ∈ FG, then g ≤ χG ≤ f/(1 − ε), so 

(1 − ε)−1f − g ≥ 0. 

Because L is a positive linear functional, 

L((1 − ε)−1f − g) ≥ 0, 

which leads to Lg ≤ Lf/(1 − ε). This is true for all g ∈ FG, hence 

Lf 
µ(K) ≤ µ(G) ≤ . 

1 − ε 

Since ε is arbitrary, µ(K) ≤ Lf . 

Step 5. We now establish (17.1). By writing f = f+ − f− and 
using the linearity of L, to show (17.1) for continuous functions 
we may suppose f ≥ 0. Since X is compact, then f is bounded, 
and multiplying by a constant and using linearity, we may suppose 
0 ≤ f ≤ 1. 

Let n ≥ 1 and let Ki = {x : f(x) ≥ i/n}. Since f is continuous, 
each Ki is a closed set, hence compact. K0 is all of X. Define ⎧ ⎪0, x ∈ Kc⎨ i−1; 

fi(x) = f(x) − i−1 , x ∈ Ki−1 − Ki;n⎪⎩ 1 , x ∈ Ki. n Pn
Note f = fi and χKi ≤ nfi ≤ χKi−1 .i=1 Therefore Z 

µ(Ki) ≤ 
µ(Ki−1)

fi dµ ≤ , 
n n 

and so 
nX1 Z n−1X1 
µ(Ki) ≤ f dµ ≤ µ(Ki). (17.3) 

n n 
i=1 i=0 

Let ε > 0 and let G be an open set containing Ki−1 such that 
µ(G) < µ(Ki−1) + ε. Then nfi ∈ FG, so 

L(nfi) ≤ µ(G) ≤ µ(Ki−1) + ε. 

Since ε is arbitrary, L(fi) ≤ µ(Ki−1)/n. By Step 4, L(nfi) ≥ 
µ(Ki), and hence 

n n−1X X1 1 
µ(Ki) ≤ L(f) ≤ µ(Ki). (17.4) 

n n 
i=1 i=0 
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Comparing (17.3) and (17.4) we see that Z 
µ(K0) − µ(Kn) µ(X)

L(f) − f dµ ≤ ≤ . 
n n 

Since, as we saw above, µ(X) = L(1) < ∞ and n is arbitrary, then 
(17.1) is established. 

Example 17.4 If f is continuous on [a, b], let L(f) be the Rie-
mann integral of f on the interval [a, b]. Then L is a positive linear 
functional on C([a, b]). In this case, the measure whose existence is 
given by the Riesz representation theorem is Lebesgue measure. 

Remark 17.5 Let X be a metric space, not necessarily compact. 
A continuous function f vanishes at infinity if given ε > 0 there 
exists a compact set K such that |f(x)| < ε if x ∈/ K. C0(X) is 
the usual notation for the set of continuous functions vanishing at 
infinity. There is a version of the Riesz representation theorem for 
C0(X). See [5] for details. 

17.3 Regularity 

We establish the following regularity property of measures on com-
pact metric spaces. 

Proposition 17.6 Suppose X is a compact measure space, B is 
the Borel σ-algebra, and µ is a finite measure on the measurable 
space (X, B). If E ∈ B and ε > 0, there exists K ⊂ E ⊂ G such 
that K is compact, G is open, µ(G − E) < ε, and µ(E − K) < ε. 
(K and G depend on ε as well as on E.) 

Proof. Let us say that a subset E ∈ B is approximable if given ε > 
0 there exists K ⊂ E ⊂ G with K compact, G open, µ(G − E) < ε, 
and µ(E −F ) < ε. Let H be the collection of approximable subsets. 
We will show H contains all the compact sets and H is a σ-algebra, 
which will prove that H = B, and thus establish the proposition. 

If K is compact, let Gn = {x : d(x, K) < 1/n}. Then the Gn are 
open sets decreasing to K, and if n is large enough, µ(Gn −K) < ε. 
Thus every compact set is in H. 
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If E is in H and ε > 0, then choose K ⊂ E ⊂ G with K compact, 
G open, µ(E −K) < ε, and µ(G−E) < ε. Then Gc ⊂ Ec ⊂ Kc , Gc 

is closed, hence compact, Kc is open, µ(Kc − Ec) = µ(E − K) < ε, 
and µ(Ec − Gc) = µ(G − E) < ε. Therefore H is closed under the 
operation of taking complements. 

Suppose E1, E2, . . . ∈ H. For each i choose Ki compact and Gi 

open such that Ki ⊂ Ei ⊂ Gi, µ(Gi −Ei) < ε2−i , and µ(Ei −Ki) < 
ε2−(i+1). Then ∪∞ 

i=1Ei, andi=1Gi is open, contains ∪∞ 

∞X 
µ(∪iGi − ∪iEi) ≤ µ(Gi − Ei) < ε. 

i=1 

We see that ∪∞ 
i=1 i=1Ki is contained in ∪∞ Ei and similarly, 

∞X 
µ(∪∞ 

i=1Ei − ∪∞ 
i=1Ki) ≤ µ(Ei − Ki) < ε/2. 

i=1 

Since ∪n
i=1Ki increases to ∪∞ 

i=1Ki, we can choose n large so that 

µ(∪∞ 
i=n+1Ki) < ε/2. 

Then ∪n Ki, being the finite union of compact sets, is compact,i=1 
is contained in ∪∞ Ei, andi=1 

µ(∪∞ 
i=1Ei − ∪n

i=1Ki) < ε. 

This proves that ∪iEi is in H. 

Since H is closed under the operations of taking complements 
and countable unions and ∩iEi = (∪iEi

c)c , then H is also closed 
under the operation of taking countable intersections. Therefore H 
is a σ-algebra. 

A measure is called regular if 

µ(E) = inf{µ(G) : G open, E ⊂ G} 

and 
µ(E) = sup{µ(K) : K compact,K ⊂ E} 

for all measurable E. An immediate consequence of what we just 
proved is that finite measures on (X, B) are regular when X is a 
compact metric space. 
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17.4 Bounded linear functionals 

We have proved the Riesz representation theorem for positive linear 
functionals on C(X). In Chapter 25 we will need a version for 
complex-valued bounded linear functionals. We do the real-valued 
case in this section; the complex-valued case follows relatively easily 
and is Exercise 17.10. 

The following proposition is key. We set kfk = supx∈X |f(x)|
for f ∈ C(X) and if I is a bounded linear functional on C(X), we 
let kIk = supkf k=1 |I(f)|. 

Proposition 17.7 Suppose I is a bounded linear functional on 
C(X). Then there exist positive bounded linear functionals J and 
K such that I = J − K. 

Proof. For g ∈ C(X) with g ≥ 0, define 

J(g) = sup{I(f) : f ∈ C(X), 0 ≤ f ≤ g}. 

Since I(0) = 0, then J(g) ≥ 0. Since |I(f)| ≤ kIk kfk ≤ kIk kgk if 
0 ≤ f ≤ g, then |J(g)| ≤ kIk kgk. Clearly J(cg) = cJ(g) if c ≥ 0. 

We prove that 

J(g1 + g2) = J(g1) + J(g2) (17.5) 

if g1, g2 ∈ C(X) are non-negative. If 0 ≤ f1 ≤ g1 and 0 ≤ f2 ≤ g2 

with each of the four functions in C(X), we have 0 ≤ f1 + f2 ≤ 
g1 + g2, so 

J(g1 + g2) ≥ I(f1 + f2) = I(f1) + I(f2). 

Taking the supremum over all such f1 and f2, 

J(g1 + g2) ≥ J(g1) + J(g2). (17.6) 

To get the opposite inequality, suppose 0 ≤ f ≤ g1 + g2 with 
each function non-negative and in C(X). Let f1 = f ∧ g1 and 
f2 = f − f1. Note f1, f2 ∈ C(X). Since f1 ≤ f , then f2 ≥ 
0. If f(x) ≤ g1(x), we have f(x) = f1(x) ≤ f1(x) + g2(x). If 
f(x) > g1(x), we have f(x) ≤ g1(x)+ g2(x) = f1(x)+ g2(x). Hence 
f ≤ f1 + g2, so f2 = f − f1 ≤ g2. Thus 

I(f) = I(f1) + I(f2) ≤ J(g1) + J(g2). 
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Taking the supremum over f ∈ C(X) with 0 ≤ f ≤ g1 + g2, 

J(g1 + g2) ≤ J(g1) + J(g2). 

Combining with (17.6) proves (17.5). 

If f ∈ C(X), define J(f) = J(f+) − J(f−). We have 

f+ − f− + f+ − f− = f1 + f2 = (f1 + f2)
+ − (f1 + f2)

− ,1 1 2 2 

so 
f+ + f+ + (f1 + f2)

− = (f1 + f2)
+ + f− + f− 

1 2 1 2 . 

Hence 

J(f+) + J(f+) + J((f1 + f2)
−) = J((f1 + f2)

+) + J(f−) + J(f−).1 2 1 2 

Rearranging, 
J(f1 + f2) = J(f1) + J(f2). 

Showing J(cf) = cJ(f) is easier, and we conclude J is a linear 
functional on C(X). 

We write 

|J(f)| = |J(f+) − J(f−)| ≤ J(f+) ∨ J(f−) 

≤ (kIk kf+k) ∨ (kIk kf−k) 
= kIk (kf+k ∨ kf−k) 
≤ kIk kfk. 

Thus J is a bounded linear functional. 

If f ≥ 0, then J(f) ≥ 0. Set K = J − I. If f ≥ 0, then 
I(f) ≤ J(f), so K(f) ≥ 0, and K is also a positive operator. 

We now state the Riesz representation theorem for bounded 
real-valued linear functionals. 

Theorem 17.8 If X is a compact metric space and I is a bounded 
linear functional on C(X), there exists a finite signed measure µ on 
the Borel σ-algebra such that Z 

I(f) = f dµ 

for each f ∈ C(X). 
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Proof. Write I = J − K as in Proposition 17.7. By the Riesz 
representation theorem for positive linear functionals there existR 

+ −positive finite measures µ and µ such that J(f) = f dµ+ andR −K(f) = f dµ− for every f ∈ C(X). Then µ = µ+ − µ will be 
the signed measure we seek. 

17.5 Exercises 

Exercise 17.1 Suppose F is a closed subset of [0, 1] and we define Z 1 

L(f) = fχF dx 
0 

for real-valued continuous functions f on [0, 1]. Prove that if µ is 
the measure whose existence is given by the Riesz representation 
theorem, then µ(A) = m(A ∩ F ), where m is Lebesgue measure. 

Exercise 17.2 Suppose X is a compact metric space and µ is a 
finite regular measure on (X, B), where B is the Borel σ-algebra. 
Prove that if f is a real-valued measurable function and ε > 0, 
there exists a closed set F such that µ(F c) < ε and the restriction 
of f to F is a continuous function on F . 

Exercise 17.3 Let C1([0, 1]) be the set of functions whose deriva-
tive exists and is continuous on [0, 1]. Suppose L is a linear func-
tional on C1([0, 1]) such that 

|L(f)| ≤ c1kf 0k + c2kfk 

for all f ∈ C1([0, 1]), where c1 and c2 are positive constants and the 
norm is the supremum norm. Show there exists a signed measure 
µ on the Borel subsets of [0, 1] and a constant K such that Z 

L(f) = f 0 dµ + Kf(0), f ∈ C1([0, 1]). 

Exercise 17.4 Suppose X and Y are compact metric spaces and 
F : X → Y is a continuous map from X onto Y . If ν is a finite 
measure on the Borel sets of Y , prove that there exists a measure 
µ on the Borel sets of X such that Z Z 

f dν = f ◦ F dµ 
Y X 
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for all f that are continuous on Y . 

Exercise 17.5 Let X be a compact metric space. Prove that C(X) 
has a countable subset B0 that separates points of X. That is, if 
x =6 y, x, y ∈ X, then there exists f ∈ B0 such that f(x) =6 f(y). 

Exercise 17.6 Let X be a compact metric space and let B be the 
Borel σ-algebra on X. Let µn be a sequence of finite measures 
on (X, B) and let µ be another finite measure on (X, B). Suppose 
µn(X) → µ(X). Prove that the following are equivalent: R R 
(1) f dµn → f dµ whenever f is a continuous real-valued func-
tion on X; 
(2) lim sup (F ) ≤ µ(F ) for all closed subsets F of X;n→∞ µn 

(3) lim infn→∞ µn(G) ≥ µ(G) for all open subsets G of X; 
(4) limn→∞ µn(A) = µ(A) whenever A is a Borel subset of X such 
that µ(∂A) = 0, where ∂A = A − Ao is the boundary of A. 

Exercise 17.7 Let X be a compact metric space and let B be the 
Borel σ-algebra on X. Let µn be a sequence of finite measures on 
(X, B) and suppose sup (X) < ∞.n µn 

(1) Prove that if f ∈ C(X), there is a subsequence {nj } such thatR 
f dµnj converges. 

(2) Let A be a countable dense subset of C(X). Prove that thereR 
is a subsequence {nj } such that f dµnj converges for all f ∈ A.R 
(3) With {nj } as in (2), prove that f dµnj converges for all f ∈ 
C(X). For this part you may assume C(X) is separable; see Exercise 
20.41. R 
(4) Let L(f) = limnj →∞ f dµnj . Prove that L(f) is a positive 
linear functional on C(X). Conclude that there exists a measure µ 
such that Z Z 

f dµnj → f dµ 

for all f ∈ C(X). 

Exercise 17.8 Prove that if X is a compact metric space, B is the 
Borel σ-algebra, and µ and ν are two finite positive measures on 
(X, B) such that Z Z 

f dµ = f dν 

for all f ∈ C(X), then µ = ν. 
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Exercise 17.9 Prove that if X is a compact metric space, B is 
the Borel σ-algebra, and µ and ν are two finite signed measures on 
(X, B) such that Z Z 

f dµ = f dν 

for all f ∈ C(X), then µ = ν. 

Exercise 17.10 State and prove a version of the Riesz represen-
tation theorem for complex measures. 

Exercise 17.11 Prove that if X is a compact metric space, B is 
the Borel σ-algebra, and µ is a complex measure on (X, B), then 
the total variation of µ, defined in Exercise 13.4, equals Z 

sup f dµ . 
f∈C(X),sup |f |≤1 
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Chapter 18 

Banach spaces 

Banach spaces are normed linear spaces that are complete. After 
giving some definitions we prove the Hahn-Banach theorem in Sec-
tion 18.2. The Hahn-Banach theorem guarantees a plentiful supply 
of bounded linear functionals. In Section 18.3 we prove the Baire 
category theorem. This is used to derive some remarkable results, 
including the uniform boundedness theorem and the open mapping 
theorem. 

18.1 Definitions 

The definition of normed linear space X over a field of scalars F , 
where F is either the real numbers or the complex numbers, was 
given in Chapter 1. Recall that a normed linear space is a metric 
space if we use the metric d(x, y) = kx − yk. 

Definition 18.1 We define a Banach space to be a normed lin-
ear space that is complete, that is, where every Cauchy sequence 
converges. 

A linear map is a map L from a normed linear space X to a 
normed linear space Y satisfying L(x + y) = L(x) + L(y) for all 
x, y ∈ X and L(αx) = αL(x) for all x ∈ X and α ∈ F . We will 
sometimes write Lx for L(x). Since L(0) = L(0+0) = L(0)+L(0), 
then L(0) = 0. 

185 
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Definition 18.2 A linear map f from X to R is a real linear func-
tional, a linear map from X to C a complex linear functional. f is 
a bounded linear functional if 

kfk = sup{|f(x)| : x ∈ X, kxk ≤ 1} < ∞. 

Proposition 18.3 The following are equivalent. 
(1) The linear functional f is bounded. 
(2) The linear functional f is continuous. 
(3) The linear functional f is continuous at 0. 

Proof. |f(x) − f(y)| = |f(x − y)| ≤ kfk kx − yk, so (1) implies (2). 
That (2) implies (3) is obvious. To show (3) implies (1), if f is not 
bounded, there exists a sequence xn ∈ X such that kxnk = 1 for 
each n, but |f(xn)| → ∞. If we let yn = xn/|f(xn)|, then yn → 0 
but |f(yn)| = 1 6→ 0, contradicting (3). 

18.2 The Hahn-Banach theorem 

We want to prove that there are plenty of linear functionals. First 
we state Zorn’s lemma, which is equivalent to the axiom of choice. 

If we have a set Y with a partial order “≤” (defined in Chapter 
1), a linear ordered subset X ⊂ Y is one such that if x, y ∈ X, then 
either x ≤ y or y ≤ x (or both) holds. A linearly ordered subset 
X ⊂ Y has an upper bound if there exists an element z of Y (but 
it is not necessary that z ∈ X) such that x ≤ z for all x ∈ X. An 
element z of Y is maximal if z ≤ y for y ∈ Y implies y = z. 

Here is Zorn’s lemma. 

Lemma 18.4 If Y is a partially ordered set and every linearly 
ordered subset of Y has an upper bound, then Y has a maximal 
element. 

A subspace of a normed linear space X is a subset M ⊂ X such 
that M is itself a normed linear space. 

We now give the Hahn-Banach theorem for real linear function-
als. 
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Theorem 18.5 If M is a subspace of a normed linear space X and 
f is a bounded real linear functional on M , then f can be extended 
to a bounded linear functional F on X such that kF k = kfk. 

Saying that F is an extension of f means that the domain of F 
contains the domain of f and F (x) = f(x) if x is in the domain of 
f . 

Proof. If kfk = 0, then we take F to be identically 0, so we 
may assume that kfk 6= 0, and then by multiplying by a constant, 
that kfk = 1. We first show that we can extend f by at least one 
dimension. 

Choose x0 ∈ X − M and let M1 be the vector space spanned 
by M and x0. Thus M1 consists of all vectors of the form x + λx0, 
where x ∈ M and λ is real. 

We have for all x, y ∈ M 

f(x) − f(y) = f(x − y) ≤ kx − yk ≤ kx − x0k + ky − x0k. 

Hence 
f(x) − kx − x0k ≤ f(y) + ky − x0k 

for all x, y ∈ M . Choose α ∈ R such that 

f(x) − kx − x0k ≤ α ≤ f(y) + ky − x0k 

for all x, y ∈ M . Define f1(x + λx0) = f(x) + λα. This is clearly 
an extension of f to M1. 

We need to verify that the norm of f1 is less than or equal to 
1. Let x ∈ M and λ ∈ R. By our choice of α, f(x) −kx − x0k ≤ α, 
or f(x) − α ≤ kx − x0k, and α ≤ f(x) + kx − x0k, or f(x) − α ≥ 
−kx − x0k. Thus 

|f(x) − α| ≤ kx − x0k. 
Replacing x by −x/λ and multiplying by |λ|, we get 

|λ| | − f(x)/λ − α| ≤ |λ| k − x/λ − x0k, 

or 
|f1(x + λx0)| = |f(x) + λα| ≤ kx + λx0k, 

which is what we wanted to prove. 

We now establish the existence of an extension of f to all of X. 
Let F be the collection of all linear extensions F of f satisfying 
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kF k ≤ 1. This collection is partially ordered by inclusion. That is, 
if f1 is an extension of f to a subspace M1 and f2 is an extension of 
f to a subspace M2, we say f1 ≤ f2 if M1 ⊂ M2. Since the union of 
any increasing family of subspaces of X is again a subspace, then 
the union of a linearly ordered subfamily of F lies in F . By Zorn’s 
lemma, F has a maximal element, say, F1. By the construction 
of the preceding two paragraphs, if the domain of F1 is not all of 
X, we can find an extension, which would be a contradiction to F1 

being maximal. Therefore F1 is the desired extension. 

To get a version for complex valued linear functionals is quite 
easy. Note that if f(x) = u(x) + iv(x), then the real part of f , 
namely, u = Re f , is a real valued linear functional. Also, u(ix) = 
Re f(ix) = Re if(x) = −v(x), so that v(x) = −u(ix), and hence 
f(x) = u(x) − iu(ix). 

Theorem 18.6 If M is a subspace of a normed linear space X 
and f is a bounded complex linear functional on M , then f can be 
extended to a bounded linear functional F on X such that kF k = 
kfk. 

Proof. Assume without loss of generality that kfk = 1. Let 
u = Re f . Note |u(x)| ≤ |f(x)| ≤ kxk. Now use the version of the 
Hahn-Banach theorem for real linear functionals to find a linear 
functional U that is an extension of u to X such that kUk ≤ 1. Let 
F (x) = U(x) − iU(ix). 

It only remains to show that the norm of F is at most 1. Fix 
iθx, and write F (x) = re . Then 

−iθF (x) = F (e −iθ|F (x)| = r = e x). 

Since this quantity is real and non-negative, 

−iθ −iθ|F (x)| = U(e x) ≤ kUk ke xk ≤ kxk. 

This holds for all x, so kF k ≤ 1. 

As an application of the Hahn-Banach theorem, given a sub-
space M and an element x0 not in M such that infx∈M kx−x0k > 0, 
we can define f(x + λx0) = λ for x ∈ M , and then extend this lin-
ear functional to all of X. Then f will be 0 on M but non-zero at 
x0. 
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Another application is to fix x0 6= 0, let f(λx0) = λkx0k, and 
then extend f to all of X. Thus there exists a linear functional f 
such that f(x0) = kx0k and kfk = 1. 

18.3 Baire’s theorem and consequences 

We turn now to the Baire category theorem and some of its con-
sequences. Recall that if A is a set, we use A for the closure of A 
and Ao for the interior of A. A set A is dense in X if A = X and 
A is nowhere dense if (A)o = ∅. 

The Baire category theorem is the following. Completeness of 
the metric space is crucial to the proof. 

Theorem 18.7 Let X be a complete metric space. 
(1) If Gn are open sets dense in X, then ∩nGn is dense in X. 
(2) X cannot be written as the countable union of nowhere dense 
sets. 

Proof. We first show that (1) implies (2). Suppose we can write 
X as a countable union of nowhere dense sets, that is, X = ∪nEn 

where (En)
o = ∅. We let Fn = En, which is a closed set, and then 

F o = ∅ and X = ∪nFn. Let Gn = F c , which is open. Since F o = ∅,n n n 
then Gn = X. Starting with X = ∪nFn and taking complements, 
we see that ∅ = ∩nGn, a contradiction to (1). 

We must prove (1). Suppose G1, G2, . . . are open and dense in 
X. Let H be any non-empty open set in X. We need to show there 
exists a point in H ∩ (∩nGn). We will construct a certain Cauchy 
sequence {xn} and the limit point, x, will be the point we seek. 

Let B(z, r) = {y ∈ X : d(z, y) < r}, where d is the metric. Since 
G1 is dense in X, H ∩G1 is non-empty and open, and we can find x1 

and r1 such that B(x1, r1) ⊂ H ∩ G1 and 0 < r1 < 1. Suppose we 
have chosen xn−1 and rn−1 for some n ≥ 2. Since Gn is dense, then 
Gn ∩ B(xn−1, rn−1) is open and non-empty, so there exists xn and 
rn such that B(xn, rn) ⊂ Gn ∩ B(xn−1, rn−1) and 0 < rn < 2−n . 
We continue and get a sequence xn in X. If m,n > N , then xm 

< 2−N+1and xn both lie on B(xN , rN ), and so d(xm, xn) < 2rN . 
Therefore xn is a Cauchy sequence, and since X is complete, xn 

converges to a point x ∈ X. 



190 CHAPTER 18. BANACH SPACES 

It remains to show that x ∈ H ∩ (∩nGn). Since xn lies in 
B(xN , rN ) if n > N , then x lies in each B(xN , rN ), and hence in 
each GN . Therefore x ∈ ∩nGn. Also, 

x ∈ B(xn, rn) ⊂ B(xn−1, rn−1) ⊂ · · · ⊂ B(x1, r1) ⊂ H. 

Thus we have found a point x in H ∩ (∩nGn). 

A set A ⊂ X is called meager or of the first category if it is 
the countable union of nowhere dense sets; otherwise it is of the 
second category. 

A linear map L from a normed linear space X into a normed 
linear space Y is a bounded linear map if 

kLk = sup{kLxk : kxk = 1} (18.1) 

is finite. 

An important application of the Baire category theorem is the 
Banach-Steinhaus theorem, also called the uniform boundedness 
theorem. 

Theorem 18.8 Suppose X is a Banach space and Y is a normed 
linear space. Let A be an index set and let {Lα : α ∈ A} be a 
collection of bounded linear maps from X into Y . Then either 
there exists a positive real number M < ∞ such that kLαk ≤ M 
for all α ∈ A or else supα kLαxk = ∞ for some x. 

Proof. Let `(x) = supα∈A kLαxk. Let Gn = {x : `(x) > n}. 
We argue that Gn is open. The map x → kLαxk is a continuous 
function for each α since Lα is a bounded linear map. This implies 
that for each α, the set {x : kLαxk > n} is open. Since x ∈ Gn if 
and only if for some α ∈ A we have kLαxk > n, we conclude Gn is 
the union of open sets, hence is open. 

Suppose there exists N such that GN is not dense in X. Then 
there exists x0 and r such that B(x0, r) ∩ GN = ∅. This can 
be rephrased as saying that if kx − x0k ≤ r, then kLα(x)k ≤ N 
for all α ∈ A. If kyk ≤ r, we have y = (x0 + y) − x0. Then 
k(x0 + y) − x0k = kyk ≤ r, and hence kLα(x0 + y)k ≤ N for all α. 
Also, of course, kx0 − x0k = 0 ≤ r, and thus kLα(x0)k ≤ N for all 
α. We conclude that if kyk ≤ r and α ∈ A, 

kLαyk = kLα((x0 + y) − x0)k ≤ kLα(x0 + y)k + kLαx0k ≤ 2N. 
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Consequently, supα kLαk ≤ M with M = 2N/r. 

The other possibility, by the Baire category theorem, is that 
every Gn is dense in X, and in this case ∩nGn is dense in X. But 
`(x) = ∞ for every x ∈ ∩nGn. 

The following theorem is called the open mapping theorem. It is 
important that L be onto. A mapping L : X → Y is open if L(U) 
is open in Y whenever U is open in X. For a measurable set A, we 
let L(A) = {Lx : x ∈ A}. 

Theorem 18.9 Let X and Y be Banach spaces. A bounded linear 
map L from X onto Y is open. 

Proof. We need to show that if B(x, r) ⊂ X, then L(B(x, r)) con-
tains a ball in Y . We will show L(B(0, r)) contains a ball centered 
at 0 in Y . Then using the linearity of L, L(B(x, r)) will contain 
a ball centered at Lx in Y . By linearity, to show that L(B(0, r)) 
contains a ball centered at 0, it suffices to show that L(B(0, 1)) 
contains a ball centered at 0 in Y . 

Step 1. We show that there exists r such that B(0, r2−n) ⊂ 
L(B(0, 2−n)) for each n. Since L is onto, Y = ∪n 

∞ 
=1L(B(0, n)). 

The Baire category theorem tells us that at least one of the sets 
L(B(0, n)) cannot be nowhere dense. Since L is linear, L(B(0, 1)) 
cannot be nowhere dense. Thus there exist y0 and r such that 
B(y0, 4r) ⊂ L(B(0, 1)). 

Pick y1 ∈ L(B(0, 1)) such that ky1 − y0k < 2r and let z1 ∈ 
B(0, 1) be such that y1 = Lz1. Then B(y1, 2r) ⊂ B(y0, 4r) ⊂ 
L(B(0, 1)). Thus if kyk < 2r, then y + y1 ∈ B(y1, 2r), and so 

y = −Lz1 + (y + y1) ∈ L(−z1 + B(0, 1)). 

Since z1 ∈ B(0, 1), then −z1 + B(0, 1) ⊂ B(0, 2), hence 

y ∈ L(−z1 + B(0, 1)) ⊂ L(B(0, 2)). 

By the linearity of L, if kyk < r, then y ∈ L(B(0, 1)). It follows 
by linearity that if kyk < r2−n , then y ∈ L(B(0, 2−n)). This can 
be rephrased as saying that if kyk < r2−n and ε > 0, then there 
exists x such that kxk < 2−n and ky − Lxk < ε. 

Step 2. Suppose kyk < r/2. We will construct a sequence {xj } by P∞
induction such that y = L( j=1 xj ). By Step 1 with ε = r/4, we 
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can find x1 ∈ B(0, 1/2) such that ky − Lx1k < r/4. Suppose we 
have chosen x1, . . . , xn−1 such that 

n−1X 
y − Lxj < r2−n . 

j=1 

Let ε = r2−(n+1). By Step 1, we can find xn such that kxnk < 2−n 

and 

n n−1 �X � X 
< r2−(n+1)y − Lxj = y − Lxj − Lxn . 

j=1 j=1 

We continue by induction to construct the sequence {xj }. LetPn 
wn = Since kxj k < 2−j , then wn is a Cauchy sequence.j=1 xj . 
Since X is complete, wn converges, say, to x. But then kxk <P∞ 

2−j = 1, and since L is continuous, y = Lx. That is, ifj=1 
y ∈ B(0, r/2), then y ∈ L(B(0, 1)). 

Remark 18.10 Suppose X and Y are Banach spaces and L is the 
collection of bounded linear maps from X into Y . If we define 
(L + M)x = Lx + Mx and (cL)x = c(Lx) for L, M ∈ L, x ∈ X, 
and c ∈ F , and if we define kLk by (18.1), then L itself is a normed 
linear space. Exercise 18.7 asks you to prove that L is a Banach 
space, i.e., that L with the norm given by (18.1) is complete. 

When Y = F , either the set of real numbers or the set of com-
plex numbers, then L is the set of bounded linear functionals on X. 
In this case we write X∗ instead of L and call X∗ the dual space 
of X. 

18.4 Exercises 

Exercise 18.1 Find a measure space (X, A, µ), a subspace Y of 
L1(µ), and a bounded linear functional f on Y with norm 1 such 
that f has two distinct extensions to L1(µ) and each of the exten-
sions has norm equal to 1. 

Exercise 18.2 Show that Lp([0, 1]) is separable, that is, there is a 
countable dense subset, if 1 ≤ p < ∞. Show that L∞([0, 1]) is not 
separable. 
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Exercise 18.3 For k ≥ 1 and functions f : [0, 1] → R that are k 
times differentiable, define 

kfkCk = kfk∞ + kf 0k∞ + · · · + kf (k)k∞, 

where f (k) is the kth derivative of f . Let Ck([0, 1]) be the collection 
of k times continuously differentiable functions f with kfkCk < ∞. 
Is Ck(0, 1]) complete with respect to the norm k · kCk ? 

Exercise 18.4 Let α ∈ (0, 1). For f a real-valued continuous 
function on [0, 1] define 

|f(x) − f(y)|kfkCα = sup |f(x)| + sup . 
|x − y|α 

x∈[0,1] x,y∈[0,1],x6=y 

Let Cα([0, 1]) be the set of functions f with kfkCα < ∞. Is 
Cα([0, 1]) complete with respect to the norm k · kCα ? 

Exercise 18.5 For positive integers n let n Z 1 o 
An = f ∈ L1([0, 1]) : |f(x)|2 dx ≤ n . 

0 

Show that each An is a closed subset of L1([0, 1]) with empty inte-
rior. 

Exercise 18.6 Suppose L is a linear functional on a normed linear 
space X. Prove that L is a bounded linear functional if and only 
if the set {x ∈ X : L(x) = 0} is closed. 

Exercise 18.7 Prove that L as defined in Remark 18.10 is a Ba-
nach space. 

Exercise 18.8 A set A in a normed linear space is convex if 

λx + (1 − λ)y ∈ A 

whenever x, y ∈ A and λ ∈ [0, 1]. 
(1) Prove that if A is convex, then the closure of A is convex. 
(2) Prove that the open unit ball in a normed linear space is convex. 
(The open unit ball is the set of x such that kxk < 1.) 
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Exercise 18.9 The unit ball in a normed linear space X is strictly 
convex if kλx + (1 − λ)yk < 1 whenever kxk = kyk = 1, x 6= y, 
and λ ∈ (0, 1). 
(1) Let (X, A, µ) be a measure space. Prove that if 1 < p < ∞, 
then the unit ball in Lp(µ) is strictly convex. 
(2) Now let X = [0, 1], A the Borel σ-algebra, and µ Lebesgue 
measure. Prove that the unit balls in L1 , L∞ , and C are not strictly 
convex. 

Exercise 18.10 Let fn be a sequence of continuous functions on 
R that converge at every point. Prove there exist an interval and a 
number M such that sup |fn| is bounded by M on that interval. n 

Exercise 18.11 Suppose k · k1 and k · k2 are two norms such that 
kxk1 ≤ kxk2 for all x in a vector space X, and suppose X is 
complete with respect to both norms. Prove that there exists a 
positive constant c such that 

kxk2 ≤ ckxk1 

for all x ∈ X. 

Exercise 18.12 Suppose X and Y are Banach spaces. 
(1) Let X × Y be the set of ordered pairs (x, y) with 

(x1 + x2, y1 + y2) = (x1, y1) + (x2, y2) 

for each x1, x2 ∈ X and y1, y2 ∈ Y and c(x, y) = (cx, cy) if x ∈ R. 
Define k(x, y)k = kxk + kyk. Prove that X × Y is a Banach space. 
(2) Let L be a linear map from X into Y such that if xn → x in 
X and Lxn → y in Y , then y = Lx. Such a map is called a closed 
map. Let G be the graph of L, defined by G = {(x, y) : y = Lx}. 
Prove that G is a closed subset of X × Y , hence is complete. 
(3) Prove that the function (x, Lx) → x is continuous, one-one, 
linear, and maps G onto X. 
(4) Prove the closed graph theorem, which says that if L is a linear 
map from one Banach space to another that is a closed map, then 
L is a continuous map. 

Exercise 18.13 Let X be the space of continuously differentiable 
functions on [0, 1] with the supremum norm and let Y = C([0, 1]). 
Define D : X → Y by Df = f 0 . Show that D is a closed map but 
not a bounded one. 
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Exercise 18.14 Let A be the set of real-valued continuous func-
tions on [0, 1] such that Z 1/2 Z 1 

f(x) dx − f(x) dx = 1. 
0 1/2 

Prove that A is a closed convex subset of C([0, 1]), but there does 
not exist f ∈ A such that 

kfk = inf kgk. 
g∈A 

Exercise 18.15 Let An be the subset of the real-valued continu-
ous functions on [0, 1] given by 

An = {f : there exists x ∈ [0, 1] such that 

|f(x) − f(y)| ≤ n|x − y| for all y ∈ [0, 1]}. 

(1) Prove that An is nowhere dense in C([0, 1]). 
(2) Prove that there exist functions f in C([0, 1]) which are nowhere 
differentiable on [0, 1], that is, f 0(x) does not exist at any point of 
[0, 1]. 
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Chapter 19 

Hilbert spaces 

Hilbert spaces are complete normed linear spaces that have an inner 
product. This added structure allows one to talk about orthonor-
mal sets. 

First we give definitions and and establish some basic prop-
erties such as the Cauchy-Schwarz inequality and the Minkowski 
inequality. After that, in Section 19.2, we discuss closed subpaces. 
Section 19.3 concerns orthonormal sets, bases, Bessel’s inequality, 
and Parseval’s identity. As an application of Hilbert space tech-
niqes we briefly discuss Fourier series. Section 19.4 defines Fourier 
series and establishes the fact that the trigonometric polynomials 
are dense in L2([0, 2π]). In Section 19.5 we gives conditions on 
a function that guarantee that the Fourier series of the function 
converges pointwise. 

19.1 Inner products 

Recall that if a is a complex number, then a represents the complex 
conjugate. When a is real, a is just a itself. 

Definition 19.1 Let H be a vector space where the set of scalars 
F is either the real numbers or the complex numbers. H is an 
inner product space if there is a map h·, ·i from H × H to F such 
that 
(1) hy, xi = hx, yi for all x, y ∈ H; 
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(2) hx + y, zi = hx, zi + hy, zi for all x, y, z ∈ H; 
(3) hαx, yi = αhx, yi, for x, y ∈ H and α ∈ F ; 
(4) hx, xi ≥ 0 for all x ∈ H; 
(5) hx, xi = 0 if and only if x = 0. 

We define kxk = hx, xi1/2 
, so that hx, xi = kxk2 . From the 

definitions it follows easily that h0, yi = 0 and hx, αyi = αhx, yi. 

The following is the Cauchy-Schwarz inequality. The proof is 
the same as the one usually taught in undergraduate linear algebra 
classes, except for some complications due to the fact that we allow 
the set of scalars to be the complex numbers. 

Theorem 19.2 For all x, y ∈ H, we have 

|hx, yi| ≤ kxk kyk. 

Proof. Let A = kxk2 , B = |hx, yi|, and C = kyk2 . If C = 0, then 
y = 0, hence hx, yi = 0, and the inequality holds. If B = 0, the 
inequality is obvious. Therefore we will suppose that C > 0 and 
B 6= 0. 

If hx, yi = Reiθ , let α = eiθ , and then |α| = 1 and αhy, xi = 
|hx, yi| = B. Since B is real, we have that αhx, yi also equals 
|hx, yi|. 

We have for real r 

0 ≤ kx − rαyk2 

= hx − rαy, x − rαyi 
= hx, xi − rαhy, xi − rαhx, yi + r 2hy, yi 
= kxk2 − 2r|hx, yi| + r 2kyk2 . 

Therefore 
A − 2Br + Cr2 ≥ 0 

for all real numbers r. Since we are supposing that C > 0, we may 
take r = B/C, and we obtain B2 ≤ AC. Taking square roots of 
both sides gives the inequality we wanted. 

From the Cauchy-Schwarz inequality we get the triangle in-
equality : 
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Proposition 19.3 For all x, y ∈ H we have 

kx + yk ≤ kxk + kyk. 

Proof. We write 

kx + yk2 = hx + y, x + yi = hx, xi + hx, yi + hy, xi + hy, yi 
≤ kxk2 + 2kxk kyk + kyk2 = (kxk + kyk)2 , 

as desired. 

The triangle inequality implies 

kx − zk ≤ kx − yk + ky − zk. 

Therefore k · k is a norm on H, and so if we define the distance 
between x and y by kx − yk, we have a metric space. 

Definition 19.4 A Hilbert space H is an inner product space that 
is complete with respect to the metric d(x, y) = kx − yk. 

Example 19.5 Let µ be a positive measure on a set X, let H = 
L2(µ), and define Z 

hf, gi = fg dµ. 

As is usual, we identify functions that are equal a.e. H is easily seen 
to be a Hilbert space. To show the completeness we use Theorem 
15.4. 

If we let µ be counting measure on the natural numbers, we 
get what is known as the space `2 . An element of `2 is a sequence 
a = (a1, a2, . . .) such that 

P∞ |an|2 < ∞ and if b = (b1, b2, . . .),n=1 
then 

∞X 
ha, bi = anbn. 

n=1 

We get another common Hilbert space, n-dimensional Euclidean 
space, by letting µ be counting measure on {1, 2, . . . , n}. 

Proposition 19.6 Let y ∈ H be fixed. Then the functions x → 
hx, yi and x → kxk are continuous. 
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Proof. By the Cauchy-Schwarz inequality, 

0 0|hx, yi − hx , yi| = |hx − x , yi| ≤ kx − x 0k kyk, 

which proves that the function x → hx, yi is continuous. By the 
triangle inequality, kxk ≤ kx − x0k + kx0k, or 

kxk − kx 0k ≤ kx − x 0k. 

The same holds with x and x0 reversed, so 

| kxk − kx 0k | ≤ kx − x 0k, 

and thus the function x → kxk is continuous. 

19.2 Subspaces 

Definition 19.7 A subset M of a vector space is a subspace if 
M is itself a vector space with respect to the same operations of 
addition and scalar multiplication. A closed subspace is a subspace 
that is closed relative to the metric given by h·, ·i. 

Example 19.8 For an example of a subspace that is not closed, 
consider `2 and let M be the collection of sequences for which 
all but finitely many elements are zero. M is clearly a subspace. 

1 1 1 1Let xn = (1, , . . . , , 0, 0, . . .) and x = (1, , , . . .). Then each 2 n 2 3 
xn ∈ M , x ∈/ M , and we conclude M is not closed because 

∞X 
kxn − xk2 = 

j 
1 
2 
→ 0 

j=n+1 

as n →∞. 

Since kx + yk2 = hx + y, x + yi and similarly for kx − yk2 , kxk2 , 
and kyk2 , a simple calculation yields the parallelogram law : 

kx + yk2 + kx − yk2 = 2kxk2 + 2kyk2 . (19.1) 

A set E ⊂ H is convex if λx +(1 − λ)y ∈ E whenever 0 ≤ λ ≤ 1 
and x, y ∈ E. 
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Proposition 19.9 Each non-empty closed convex subset E of H 
has a unique element of smallest norm. 

Proof. Let δ = inf{kxk : x ∈ E}. Dividing (19.1) by 4, if x, y ∈ E, 
then 

x + y 2 
1 1 1kx − yk2 = kxk2 + kyk2 − .4 2 2 2 

Since E is convex, if x, y ∈ E, then (x + y)/2 ∈ E, and we have 

kx − yk2 ≤ 2kxk2 + 2kyk2 − 4δ2 . (19.2) 

Choose yn ∈ E such that kynk → δ. Applying (19.2) with x 
replaced by yn and y replaced by ym, we see that 

kyn − ymk2 ≤ 2kynk2 + 2kymk2 − 4δ2 , 

and the right hand side tends to 0 as m and n tend to infinity. 
Hence yn is a Cauchy sequence, and since H is complete, it con-
verges to some y ∈ H. Since yn ∈ E and E is closed, y ∈ E. Since 
the norm is a continuous function, kyk = lim kynk = δ. 

0If y is another point with ky0k = δ, then by (19.2) with x 
0 0replaced by y we have ky − y0k = 0, and hence y = y . 

⊥We say x ⊥ y, or x is orthogonal to y, if hx, yi = 0. Let x , read 
“x perp,” be the set of all y in X that are orthogonal to x. If M is a 
subspace, let M⊥ be the set of all y that are orthogonal to all points 
in M . The subspace M⊥ is called the orthogonal complement of 
M . It is clear from the linearity of the inner product that x⊥ is a 
subspace of H. The subspace x⊥ is closed because it is the same 
as the set f−1({0}), where f(x) = hx, yi, which is continuous by 
Proposition 19.6. Also, it is easy to see that M⊥ is a subspace, 
and since 

M⊥ = ∩x∈M x ⊥ , 

M⊥ is closed. We make the observation that if z ∈ M ∩ M⊥ , then 

kzk2 = hz, zi = 0, 

so z = 0. 

Lemma 19.10 Let M be a closed subspace of H with M 6= H. 
Then M⊥ contains a non-zero element. 
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Proof. Choose x ∈ H with x ∈/ M . Let E = {w − x : w ∈ M}. It 
is routine to check that E is a closed and convex subset of H. By 
Proposition 19.9, there exists an element y ∈ E of smallest norm. 

Note y + x ∈ M and we conclude y 6= 0 because x ∈/ M . 

We show y ∈ M⊥ by showing that if w ∈ M , then hw, yi = 0. 
This is obvious if w = 0, so assume w 6= 0. We know y + x ∈ M , 
so for any real number t we have tw + (y + x) ∈ M , and therefore 
tw + y ∈ E. Since y is the element of E of smallest norm, 

hy, yi = kyk2 ≤ ktw + yk2 

= htw + y, tw + yi 
= t2hw, wi + 2tRe hw, yi + hy, yi, 

which implies 
t2hw, wi + 2tRe hw, yi ≥ 0 

for each real number t. Choosing t = −Re hw, yi/hw, wi, we obtain 

|Re hw, yi|2 

− ≥ 0,
hw, wi 

from which we conclude Re hw, yi = 0. 

Since w ∈ M , then iw ∈ M , and if we repeat the argument with 
w replaced by iw, then we get Re hiw, yi = 0, and so 

Im hw, yi = −Re (ihw, yi) = −Re hiw, yi = 0. 

Therefore hw, yi = 0 as desired. 

Remark 19.11 If in the proof above we set Px = y + x and 
Qx = −y, then Px ∈ M and Qx ∈ M⊥ , and we can write x = 
Px + Qx. We call Px and Qx the orthogonal projections of x onto 

0 0 ∈ M⊥M and M⊥ , resp. If x = z + z where z ∈ M and z , then 
Px − z = z0 − Qx is in both M and M⊥ , hence is 0, so z = Px and 
z0 = Qx. Therefore each element of H can be written as the sum 
of an element of M and an element of M⊥ in exactly one way. 

The following is sometimes called the Riesz representation theo-
rem, although usually that name is reserved for Theorem 17.3. To 
motivate the theorem, consider the case where H is n-dimensional 
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Euclidean space. Elements of Rn can be identified with n × 1 
matrices and linear maps from Rn to Rm can be represented by 
multiplication on the left by a m × n matrix A. For bounded linear 
functionals on H, m = 1, so A is 1 × n, and the y of the next 
theorem is the vector associated with the transpose of A. 

Theorem 19.12 If L is a bounded linear functional on H, then 
there exists a unique y ∈ H such that Lx = hx, yi. 

Proof. The uniqueness is easy. If Lx = hx, yi = hx, y0i, then 
0hx, y − y0i = 0 for all x, and in particular, when x = y − y . 

We now prove existence. If Lx = 0 for all x, we take y = 0. 
Otherwise, let M = {x : Lx = 0}, take z 6= 0 in M⊥ , and let 
y = αz where α = Lz/hz, zi. Notice y ∈ M⊥ , 

Lz 
Ly = Lz = |Lz|2/hz, zi = hy, yi,

hz, zi 
and y 6= 0. 

If x ∈ H and 
Lx 

w = x − y, 
hy, yi 

then Lw = 0, so w ∈ M , and hence hw, yi = 0. Then 

hx, yi = hx − w, yi = Lx 

as desired. 

19.3 Orthonormal sets 

A subset {uα}α∈A of H is orthonormal if kuαk = 1 for all α and 
huα, uβ i = 0 whenever α, β ∈ A and α 6= β. 

The Gram-Schmidt procedure from linear algebra also works in 
infinitely many dimensions. Suppose {xn}∞ is a linearly inde-n=1 
pendent sequence, i.e., no finite linear combination of the xn is 0. 
Let u1 = x1/kx1k and define inductively 

n−1X 
vN = xN − hxN , uiiui, 

i=1 

uN = vN /kvN k. 
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We have hvN , uii = 0 if i < N , so u1, . . . , uN are orthonormal. 

Proposition 19.13 If {uα}α∈A is an orthonormal set, then for 
each x ∈ H, X 

|hx, uαi|2 ≤ kxk2 . (19.3) 
α∈A 

This is called Bessel’s inequality. This inequality implies that 
only finitely many of the summands on the left hand side of (19.3) 
can be larger than 1/n for each n, hence only countably many of 
the summands can be non-zero. 

Proof. Let F be a finite subset of A. Let X 
y = hx, uαiuα. 

α∈F 

Then 
0 ≤ kx − yk2 = kxk2 − hx, yi − hy, xi + kyk2 . 

Now D X E X X 
hy, xi = hx, uαiuα, x = hx, uαihuα, xi = |hx, uαi|2 . 

α∈F α∈F α∈F 

Since this is real, then hx, yi = hy, xi. Also D X X E 
kyk2 = hy, yi = hx, uαiuα, hx, uβ iuβ 

α∈F β∈FX 
= hx, uαihx, uβ ihuα, uβ i 

α,β∈FX 
= |hx, uαi|2 , 

α∈F 

where we used the fact that {uα} is an orthonormal set. Therefore X 
0 ≤ ky − xk2 = kxk2 − |hx, uαi|2 . 

α∈F 

Rearranging, X 
|hx, uαi|2 ≤ kxk2 

α∈F 

when F is a finite subset of A. If N is an integer larger than nkxk2 , 
it is not possible that |hx, uαi|2 > 1/n for more than N of the α. 
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Hence |hx, uαi|2 =6 0 for only countably many α. Label those α’s 
as α1, α2, . . .. Then 

X ∞ JX X 
|hx, uαi|2 = |hx, uαj i|2 = lim |hx, uαj i|2 ≤ kxk2 , 

J→∞ 
α∈A j=1 j=1 

which is what we wanted. 

Proposition 19.14 Suppose {uα}α∈A is orthonormal. Then the 
following are equivalent. 
(1) If hx, uαi = 0 for each α ∈ A, then x = 0.P 
(2) kxk2 = |hx, uαi|2 for all x.α∈A P 
(3) For each x ∈ H, x = hx, uαiuα.α∈A 

We make a few remarks. When (1) holds, we say the orthonor-
mal set is complete. (2) is called Parseval’s identity. In (3) the 
convergence is with respect to the norm of H and implies that only 
countably many of the terms on the right hand side are non-zero. 
The proof will show that (1) or (2) imply that the sum in (3) con-
verges with any ordering of the summands and that if the sum in 
(3) converges with some ordering of the summands, then (1) and 
(2) hold. 

Proof. First we show (1) implies (3). Let x ∈ H. By Bessel’s 
inequality and the remarks following the statement of Proposition 
19.13 there can be at most countably many α such that |hx, uαi|2 6= 
0. Let α1, α2, . . . be an enumeration of those α. By Bessel’s in-P 
equality, the series |hx, uαi i|2 converges. Using that {uα} is ani 
orthonormal set, 

n nX 2 X 
hx, uαj iuαj = hx, uαj ihx, uαk ihuαj , uαk i 

j=m j,k=m 

nX 
= |hx, uαj i|2 → 0 

j=m Pn 
as m, n → ∞. Thus hx, uαj is a Cauchy sequence, andj=1 iuαjP∞
hence converges. Let z = j=1 hx, uαj iuαj . Then hz − x, uαj i = 0 
for each αj . By (1), this implies z − x = 0. 
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We see that (3) implies (2) because 

n nX X 2 
kxk2 − |hx, uαj i|2 = x − hx, uαj iuαj → 0. 

j=1 j=1 

That (2) implies (1) is clear. 

P 
Example 19.15 Take H = `2 = {x = (x1, x2, . . .) : |xi|2 < ∞}P 
with hx, yi = i xiyi. Then {ei} is a complete orthonormal sys-
tem, where ei = (0, 0, . . . , 0, 1, 0, . . .), i.e., the only non-zero coor-
dinate of ei is the ith one. 

If K is a subset of a Hilbert space H, the set of finite linear 
combinations of elements of K is called the span of K. 

A collection of elements {eα} is a basis for H if the set of finite 
linear combinations of the eα is dense in H. A basis, then, is a 
subset of H such that the closure of its span is all of H. 

Proposition 19.16 Every Hilbert space has an orthonormal basis. 

This means that (3) in Proposition 19.14 holds. 

Proof. If B = {uα} is orthonormal, but not a basis, let V be the 
closure of the linear span of B, that is, the closure with respect to 
the norm in H of the set of finite linear combinations of elements 
of B. Suppose V 6= H. Choose a non-zero x in V ⊥ , and if we let 
B0 = B ∪ {x/kxk}, then B0 is a basis that is strictly bigger than 
B. 

It is easy to see that the union of an increasing sequence of 
orthonormal sets is an orthonormal set, and so there is a maximal 
one by Zorn’s lemma. By the preceding paragraph, this maximal 
orthonormal set must be a basis, for otherwise we could find a 
larger orthonormal set. 

19.4 Fourier series 

An interesting application of Hilbert space techniques is to Fourier 
series, or equivalently, to trigonometric series. Fourier series are 
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used in partial differential equations, filtering, data compression, 
and digitization (e.g., jpeg and MP3 files). For our Hilbert space 
we take H = L2([0, 2π)) and let 

un = √ 
1 

e inx 

2π 

for n an integer. (n can be negative.) Recall that Z 2π 

hf, gi = f(x)g(x) dx 
0 

and kfk2 = 
R 2π |f(x)|2 dx.
0 

It is easy to see that {un} is an orthonormal set: Z 2π Z 2π 
inx −imx dx =e e e i(n−m)x dx = 0 

0 0 

if n 6= m and equals 2π if n = m. 

A finite linear combination of the un is called a trigonometric 
polynomial. Let F be the set of trigonometric polynomials, i.e., 
the span of {un}. We want to show that F is a dense subset of 
L2([0, 2π)). The first step is to show that the closure of F with 
respect to the supremum norm is equal to the set of continuous 
functions f on [0, 2π] with f(0) = f(2π). We do this by means of 
convolutions. 

Let ϕn(x) = cn(1 + cos x)n , where cn is chosen so that Z π 

ϕn(x) dx = 1. 
−π 

Note that ϕn ≥ 0 on [−π, π]. 

Lemma 19.17 (1) If f ∈ L1 , then f ∗ ϕn is a trigonometric poly-
nomial. 
(2) If δ ∈ (0, π), then Z 

ϕn(x) dx → 0 
δ≤|x|≤π 

as n →∞. 
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Proof. (1) First we argue that ϕn is itself a trigonometric poly-
nomial. This follows from the binomial theorem and the fact that 

i0x 1 ix 1 −ix)nϕn(x) = cn(e + e + e .2 2 Pn
Now if we write ϕn = bke

ikx , thenk=−n 

n Z nX X 
ikx f ∗ ϕ(x) = bk e ik(x−y)f(y) dy = akbke , 

k=−n k=−n R −ikyf(y) dy.where ak = e 

(2) Let Z δ 

αn = ϕn(x) dx 
−δ 

and Z 
βn = ϕn(x) dx. 

δ≤|x|≤π 

We will show βn/αn → 0 as n →∞. Since αn ≤ 1, this will prove 
(2). 

On [−π, π] − [−δ, δ] the function 1 + cos x takes its maximum at 
|x| = δ. On [−δ/2, δ/2] the function 1 + cos x takes its minimum R δ/2 
at |x| = δ/2. Then since αn ≥ ϕn(x) dx, we have −δ/2 

βn cn(2π)(1 + cos δ)n 

≤ 
αn cnδ(1 + cos(δ/2))n � �n2π 1 + cos δ 

= . 
δ 1 + cos(δ/2) 

The right hand side tends to 0 as n →∞ because 

1 + cos δ 
1 + cos(δ/2) 

is strictly less than 1. 

Theorem 19.18 Suppose f is continuous on [0, 2π] and f(0) = 
f(2π). Let ε > 0. There exists g ∈ F such that 

sup |f(x) − g(x)| < ε. 
0≤x≤2π 
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Proof. Given such a function f , first extend it periodically to 
[−4π, 4π] and then multiply it by a continuous function which is 1 
on [−3π, 3π] and has compact support. We will show that we can 
choose n large, independently of x, such that 

|f ∗ ϕn(x) − f(x)| < ε, |x| ≤ π, 

which will prove the theorem. 

Since f is continuous with compact support, there exists δ such 
that |f(x − y) − f(x)| < ε/2 if |y| ≤ δ. Let M = sup |f(x)|. ThenxR π
if |x| ≤ π, using that −π ϕn(y) dy = 1 we have Z 

|f ∗ ϕn(x) − f(x)| = [f(x − y) − f(x)]ϕn(y) dy Z δ 

≤ |f(x − y) − f(x)|ϕn(y) dy 
−δ Z 
+ 2M ϕn(y) dy. 

δ≤|y|≤π 

The next to last line is bounded by Z π 

(ε/2) ϕn(y) dy = ε/2, 
−π 

while the last line will be less than ε/2 if we take n large enough 
by Lemma 19.17. 

Theorem 19.19 F is dense in L2([0, 2π)). 

Proof. We want to first approximate a function f ∈ L2([0, 2π)) by 
a continuous function, but we need to do a small bit of extra work 
to make sure our continuous function’s values at 0 and 2π agree. 
If f ∈ L2([0, 2π)), then Z 

|f − fχ[1/m,2π−1/m]|2 → 0 

by the dominated convergence theorem as m → ∞. By Corollary 
15.6 any function in L2([1/m, 2π − 1/m]) can be approximated 
in L2 by continuous functions which have support in the interval 
[1/m, 2π − 1/m]. By what we showed above, a continuous function 
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with support in [1/m, 2π −1/m] can be approximated uniformly on 
[0, 2π) by elements of F . Finally, if g is continuous on [0, 2π) and 
gm → g uniformly on [0, 2π), then gm → g in L2([0, 2π)) by the 
dominated convergence theorem. Putting all this together proves 
that F is dense in L2([0, 2π)). 

It remains to show the completeness of the un. If f is orthogonal 
to each un, then it is orthogonal to every finite linear combination, 
that is, to every element of F . Since F is dense in L2([0, 2π)), we 
can find fn ∈ F tending to f in L2 . Then by Proposition 19.6 

kfk2 = hf, fi = lim hfn, fi = 0. 
n→∞ 

Therefore kfk2 = 0, or f = 0, hence the {un} are complete. This 
shows that {un} is a complete orthonormal system. 

Given f in L2([0, 2π)), write Z 2π Z 2π1 −inx dx,cn = hf, uni = fun dx = √ f(x)e 
0 2π 0 

the Fourier coefficients of f . Parseval’s identity says that X 
kfk2 = |cn|2 . 

n 

For any f in L2 we also have X 
cnun → f 

|n|≤N 

as N →∞ in the sense that X 
f − cnun → 0 (19.4) 

2 
|n|≤N 

as N →∞. 
inxUsing e = cos nx + i sin nx, we have 
∞ ∞ ∞X X X 

cne 
inx = A0 + Bn cos nx + Cn sin nx, 

n=−∞ n=1 n=1 

where A0 = c0, Bn = cn + c−n, and Cn = i(cn − c−n). Conversely, 
inx inx − e−inx)/2i,using cos nx = (e + e−inx)/2 and sin nx = (e 

∞ ∞ ∞X X X 
A0 + Bn cos nx + Cn sin nx = cne 

inx 

n=1 n=1 n=−∞ 
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if we let c0 = A0, cn = Bn/2 + Cn/2i for n > 0 and cn = Bn/2 − 
Cn/2i for n < 0. Thus results involving the un can be transferred 
to results for series of sines and cosines and vice versa. 

19.5 Convergence of Fourier series 

Let f : [0, 2π) → R be measurable and let X1 inxSN f(x) = √ cne , 
2π |n|≤N 

where Z 2π 

cn = √ 
1 

f(y)e −iny dy, 
2π 0 

assuming the integral exists. We saw in (19.4) that SN f → f in L2 

as N → ∞ provided f ∈ L2 . In this section we consider whether 
SN f(x) → f(x) as N →∞ for each x. 

Note that Theorem 19.18 says that we can find trigonometric 
polynomials converging to a continuous f whose values agree at 0 
and 2π. However that theorem does not say those trigonometric 
polynomials are the partial sums SN f . 

We begin with the Riemann-Lebesgue lemma, which says that 
the Fourier coefficients of an L1 function tend to 0. 

Lemma 19.20 If f ∈ L1([0, 2π)), then Z 2π 
−irx dx → 0f(x)e 

0 

as |r| → ∞. 

Proof. If f(x) = χ[a,b)(x) with 0 ≤ a < b ≤ 2π, then Z 2π −ira − e−irb e−irx dx =f(x)e → 0 
ir0 

as |r| → ∞, and we have the result we want for this particular f . 
By linearity, we have our result when f is a step function. 
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Now suppose f ∈ L1 and let ε > 0. First approximate f in L1 

by a continuous function (Proposition 8.4) and then approximate 
the continuous function by a step function g so that kf − gk1 < ε. 
Write Z 2π Z 2π Z 2π 

−irx dx = −irx dx + −irx dx.f(x)e (f(x) − g(x))e g(x)e 
0 0 0 

The first term on the right hand side is bounded by kf − gk1 < ε, 
while the second term on the right hand side tends to 0 as |r| → ∞ 
by the paragraph above. Therefore Z 2π 

−irx dxlim sup f(x)e ≤ ε. 
|r|→∞ 0 

Since ε is arbitrary, this completes the proof. 

We now investigate the convergence of SN f(x). First observe 
that X Z 2π1 inx −iny dySN f(x) = e f(y)e 

2π 0|n|≤N Z 2π X 
=
1 

f(y) e in(x−y) dy. 
2π 0 |n|≤N 

If we set X1 intDN (t) = e ,
2π 

|n|≤N 

then Z 2π 

SN f(x) = f(y)DN (x − y) dy. (19.5) 
0 

The function DN is called the Dirichlet kernel. Using the formula 
for the partial sum of a geometric series and the formula sin θ = 

iθ − e(e −iθ)/2i, we have 

X 2NX1 1int −iNt intDN (t) = e = e e (19.6)
2π 2π 

|n|≤N n=0 

1 
2 )t − e−i(N+ 1 

2 )ti(2N+1)t − 1 it/2 i(N+1 e e−iNt e1 
= e = 

eit − 1 eit/2 eit/2 − e−it/22π2π 
11 sin((N + )t)2= . 

2π sin(t/2) 
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intSince each of the functions e has period 2π, then DN has 
period 2π as well. If f is periodic with period 2π, using the sub-
stitution y = x − z we have Z 2π 

SN f(x) = f(z)DN (x − z) dz (19.7) 
0Z π+x 

= f(z)DN (x − z) dz 
−π+xZ −π 

= − f(x − y)DN (y) dy 
πZ π 

= f(x − y)DN (y) dy. 
−π 

If we let f0 be the function that is identically one, then all the√ 
Fourier coefficients of f0 are 0 except for c0, which is 2π, and 
hence SN f0(0) = 1. Replacing f by f0 in (19.7) shows that Z π 

1 = DN (y) dy. (19.8) 
−π 

Multiplying (19.8) by f(x) and subtracting from (19.7) yields Z π 

SN f(x) − f(x) = [f(x − y) − f(x)]DN (y) dy. (19.9) 
−π 

Theorem 19.21 Suppose f is bounded and measurable on [0, 2π). 
Using periodicity, extend the domain of f to all of R. Fix x ∈ 
[0, 2π). Suppose there exists c1 > 0 such that 

|f(x + h) − f(x)| ≤ c1|h| (19.10) 

for all h. Then 
lim SN f(x) = f(x). 

N→∞ 

Proof. Let 
1 f(x − y) − f(x) 

g(y) = . 
2π sin(y/2) 

For y ∈ [−π, π], we know that | sin(y/2)| ≥ (2/π)|y/2|, and so 

1 c1|y| c1|g(y)| ≤ = 
2π |y|/π 2 
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is bounded by a constant. Since Z π1 
SN f(x) − f(x) = g(y)(e 

2i −π 

i(N+ 1 
2 )y − e −i(N+ 1 

2 )y) dy, 

then SN f(x) − f(x) → 0 as N → ∞ by the Riemann-Lebesgue 
lemma, Lemma 19.20. 

Remark 19.22 If f is periodic with period 2π and f is continu-
ously differentiable, (19.10) is satisfied. The hypotheses of the theo-
rem are also satisfied if f is Lipschitz continuous (see (14.5)), which 
means that there exists c1 > 0 such that |f(x + h) − f(x)| ≤ c1|h|
for all x and h. 

Since |h|α−1 is integrable on [−π, π] if α > 0, the same proof 
shows that the conclusion of the theorem holds if there exist c1 > 0 
and α > 0 such that 

|f(x + h) − f(x)| ≤ c1|h|α (19.11) 

for all x and h. A function that satisfies (19.11) for α ∈ (0, 1) is 
called Hölder continuous of order α. 

Remark 19.23 It is not true that Snf(0) → f(0) for every con-
tinuous f . A very deep theorem is that Snf → f a.e. when 
f ∈ Lp([0, 2π)) for some p > 1; this is a celebrated theorem of 
Carleson for the case p = 2, extended by Hunt to the case of 
other p. On the other hand, Kolmogorov has shown there exists 
f ∈ L1([0, 2π)) such that SN f(x) diverges at every x. See [2] and 
[12] for details. 

19.6 Exercises 
R 1

Exercise 19.1 For f, g ∈ L2([0, 1]), let hf, gi = f(x)g(x) dx.
0 

Let H = C([0, 1]) be the functions that are continuous on [0, 1]. Is 
H a Hilbert space with respect to the norm defined in terms of the 
inner product h·, ·i? Justify your answer. 

Exercise 19.2 Suppose H is a Hilbert space with a countable ba-
sis. Suppose kxnk → kxk as n →∞ and hxn, yi → hx, yi as n →∞ 
for every y ∈ H. Prove that kxn − xk → 0 as n →∞. 
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Exercise 19.3 Prove that if M is a closed subspace of a Hilbert 
space H, then (M⊥)⊥ = M . Is this necessarily true if M is not 
closed? If not, give a counterexample. 

Exercise 19.4 Give an example of a subspace M of a Hilbert 
space H such that M 6= H but M⊥ = {0}. 

Exercise 19.5 Prove that if H is infinite-dimensional, that is, it 
has no finite basis, then the closed unit ball in H is not compact. 

Exercise 19.6 Suppose an is a sequence of positive real numbers 
such that 

∞X 
an|bn| < ∞ 

n=1 P∞ P∞
b2 2whenever < ∞. Prove that < ∞. n=1 n n=1 an 

Exercise 19.7 We say xn → x weakly if hxn, yi → hx, yi for every 
y in H. Prove that if xn is a sequence in H with sup kxnk ≤ 1,n 
then there is a subsequence {nj } and an element x of H with 
kxk ≤ 1 such that xnj converges to x weakly. 

Exercise 19.8 The purpose of Exercise 13.6 was to show that in 
proving the Radon-Nikodym theorem, we can assume that ν(A) ≤ 
µ(A) for all measurable A. Assume for the current problem that 
this is the case and that µ and ν are finite measures. We use this 
to give an alternative proof of the Radon-Nikodym theorem. 

For f real-valued and in L2 with respect to µ, define L(f) =R 
f dν. 

(1) Show that L is a bounded linear functional on L2(µ). 
(2) Conclude by Theorem 19.12 that there exists a real-valued R 
measurable function g in L2(µ) such that L(f) = fg dµ for all 
f ∈ L2(µ). Prove that dν = g dµ. 

Exercise 19.9 Suppose f is a continuous real-valued function on 
R such that f(x + 2π) = f(x) for every x. Let γ be an irrational 
number. Prove that 

n Z 2πX1 1 
lim f(jγ) = f(x) dx. 

n→∞ n 2π 0j=1 
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Exercise 19.10 If M is a closed subspace of a Hilbert space, let 
x + M = {x + y : y ∈ M}. 
(1) Prove that x + M is a closed convex subset of H. 
(2) Let Qx be the point of x+M of smallest norm and Px = x−Qx. 
P is called the projection of x onto M . Prove that P and Q are 
mappings of H into M and M⊥ , respectively. 
(3) Prove that P and Q are linear mappings. 
(4) Prove that if x ∈ M , then Px = x and Qx = 0. 
(5) Prove that if x ∈ M ⊥ , then Px = 0 and Qx = x. 
(6) Prove that 

kxk2 = kPxk2 + kQxk2 . 

Exercise 19.11 Suppose {en} is an orthonormal basis for a sep-
arable Hilbert space and {fn} is an orthonormal set such thatP 
ken − fnk < 1. Prove that {fn} is a basis. 

Exercise 19.12 Use Parseval’s identity with the function f(x) = 
x on [0, 2π) to derive the formula 

1 1 1 π2 

+ + + · · · = . 
12 22 32 6 

Exercise 19.13 Suppose f is bounded and measurable on [0, 2π), 
x0 ∈ (0, 2π), and L = limN→∞ SN f(x0) exists. Suppose g is also 
bounded and measurable on [0, 2π). Prove that if f and g agree on 
an open interval containing x0, then limN→∞ SN g(x0) = L. 

Exercise 19.14 Suppose f equals −1 on [−π, 0] and +1 on (0, π). 
Prove that SN f(x) → f(x) if x ∈ (−π, 0) ∪ (0, π) and that 

lim SN f(0) = 0. 
N→∞ 



Chapter 20 

Topology 

I have assumed up until now that you are familiar with metric 
spaces. This chapter studies more general topological spaces. Top-
ics include compactness, connectedness, separation results, embed-
dings, and approximation results. 

20.1 Definitions 

Definition 20.1 Let X be an arbitrary set. A topology T is a 
collection of subsets of X such that 
(1) X, ∅ ∈ T ; 
(2) if Gα ∈ T for each α in a non-empty index set I, then ∪α∈I Gα ∈ 
T ; 
(3) if G1, . . . , Gn ∈ T , then ∩n Gi ∈ T .i=1 
A topological space is a set X together with a topology T of subsets 
of X. 

Property (2) says that T is closed under the operation of arbi-
trary unions, while (3) says that T is closed under the operation 
of finite intersections. 

An open set G is an element of T . A set F is a closed set if F c 

is open. 

Example 20.2 Let X be a metric space with a metric d. A subset 
G of X is open in the metric space sense if whenever x ∈ G, there 
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exists r depending on x such that B(x, r) ⊂ G, where B(x, r) = 
{y : d(x, y) < r}. A metric space becomes a topological space if 
we let T be the collection of open sets. We call T the topology 
generated by the metric d. 

Example 20.3 If X is an arbitrary set and T is the collection of 
all subsets of X, then the topology T is called the discrete topology. 

Example 20.4 If X is an arbitrary set and T = {∅, X}, then the 
topology T is called the trivial topology. 

There are a large number of terms associated with topology. 
Let us start with some that have a geometric interpretation. Let 
A be a subset of a topological space (X, T ), but not necessarily an 
element of T . A point x is an interior point of A if there exists 
G ∈ T such that x ⊂ G ⊂ A. The interior of A, frequently denoted 
by Ao , is the set of interior points of A. 

A point x, not necessarily an element of A, is a limit point of 
A if every open set that contains x contains a point of A other 
than x. The set of limit points of A is sometimes denoted A0 . 
Another name for limit point is accumulation point. The closure 
of A, frequently denoted A, is the set A ∪ A0 . 

The boundary of A, sometimes written ∂A, is A − Ao . A point 
x ∈ A is an isolated point of A if x ∈ A − A0 , that is, it is a point 
of A that is not a limit point of A. 

If X is the real line, with the topology coming from the usual 
metric d(x, y) = |x − y| and A = (0, 1], then Ao = (0, 1), A0 = 
[0, 1], A = [0, 1], and ∂A = {0, 1}. A has no isolated points. If 

11 
3 

1 , , . . .}, then Bo = ∅, B0 
Each point of B is an isolated point of B. 

= {0}, B = {0, 1, 11B = {1, 
and ∂B 

, . . .}, 
If C is the 

, ,2 4 2 3 

= B. 
set of rationals in [0, 1], then C = [0, 1], Co = ∅, and ∂C = [0, 1]. 

A set A is a neighborhood of x if x ∈ Ao , that is, if there exists 
an open set G such that x ∈ G ⊂ A. Some authors require a 
neighborhood to be open, but this is not common usage. We will 
call A an open neighborhood when A is both a neighborhood and 
an open set. 

Let us prove two propositions which will give some practice with 
the definitions. 
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Proposition 20.5 (1) If F1, . . . , Fn are closed sets, then ∪n Fii=1 
is closed. 
(2) If Fα is a closed set for each α in a non-empty index set I, 
then ∩α∈I Fα is closed. 

Proof. (1) Since each Fi is closed, then each F c is open. Hencei 

(∪n = ∩n 
i=1Fi)

c
i=1Fi

c 

is open. Therefore ∪n Fi is closed.i=1 

(2) is similar. 

Proposition 20.6 (1) If A is a subset of X, then 

A = ∩{F : F closed, A ⊂ F }. (20.1) 

(2) A is closed. 

Proof. Let B denote the right hand side of (20.1). We first show 
that A ⊂ B by showing that if x ∈/ B, then x ∈/ A. If x ∈/ B, there 
exists a closed set F containing A such that x ∈/ F . Then F c is an 
open set containing x which is disjoint from A. Since x ∈ F c , then 
x ∈/ A and x is not a limit point of A, hence x ∈/ A. 

We finish the proof of (1) by showing B ⊂ A. Let x ∈ B. 
One possibility is that x ∈ A, in which case x ∈ A. The second 
possibility is that x ∈/ A. Let G be an open set containing x. If 
G is disjoint from A, then Gc is a closed set containing A that 
does not contain the point x, a contradiction to the definition of 
B. Therefore, in this second case where x ∈/ A, every open set 
containing x intersects A, which says that x is a limit point of A, 
hence x ∈ A. 

This proves (1). Since the intersection of closed sets is closed, 
(2) follows. 

Next let us discuss some situations where there are several 
topologies present. Let (X, T ) be a topological space and let Y 
be a subset of a set X. If we define U = {G ∩ Y : G ∈ T }, then it 
is routine to check that U is a topology of subsets of Y . The space 
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(Y, U) is a subspace of (X, T ). We say an element of U is relatively 
open and call U the relative topology. 

As an example, let X = [0, 1] with the usual metric and let 
Y = [1/2, 1]. The set A = [1/2, 3/4) is relatively open but is not 
an open subset of X. 

Given two topologies T and T 0 on a set X with T ⊂ T 0 , we say 
T is weaker or coarser than T 0 and T 0 is stronger or finer than T . 
A stronger topology has more open sets. 

Suppose (X, T ) is a topological space and ∼ is an equivalence 
relation for X. Let X be the set of equivalence classes and let 
E : X → X be defined by setting E(x) equal to the equivalence 
class containing x. Define U = {A ⊂ X : E−1(A) ∈ T }, where 
E−1(A) = {x : E(x) ⊂ A}. Then U is called the quotient topology 
on X. 

Next we discuss bases, subbases, and the product topology. 

A subcollection B of T is an open base if every element of T 
is a union of sets in B. A subcollection S of T is a subbase if the 
collection of finite intersections of elements of S is an open base for 
T . 

As an example, consider R2 with the topology generated by the 
metric 

d((x1, y1), (x2, y2)) = (|x1 − x2|2 + |y1 − y2|2)1/2 , 

the usual Euclidean metric. If B(x, r) = {y ∈ R2 : d(x, y) < r}, 
then the collection of balls {B(x, r) : x ∈ R2, r > 0} forms an open 
base for T . The set of rectangles {(x, y) : a < x < b, c < y < d}
where a < b, c < d also forms an open base. To give an example of 
a subbase, let 

C1 = {(x, y) : a < x < b, y ∈ R}, C2 = {(x, y) : x ∈ R, c < y < d}, 

and then let S = C1∪C2. Every set in S is open, and any rectangle is 
the intersection of an element of C1 with an element of C2. Therefore 
the finite intersections of elements in S form a base, and therefore 
S is a subbase. 

Any collection C of subsets of a set X generates a topology 
T on X by letting T be the smallest topology that has C as a 
subbase. This means that we first take the collection B of all finite 
intersections of elements of C, and then let T be the collection of 
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arbitrary unions of elements of B. It is easy to see that T is a 
topology which has C as a subbase. 

Suppose I is a non-empty index set and for each α ∈ I, (Xα, Tα) 
is a topological set. (We will always take our index sets to be Q
non-empty.) Let X = α∈I Xα, the product set. Let πα be the 
projection of X onto Xα. 

When all the Xα are equal to the same space X, we use the nota-Q
tion XI for Xα. We remark that just as n-tuples (x1, . . . , xn)α∈I 
can be viewed as functions from {1, . . . , n} into a set and sequences 
can be viewed as functions from {1, 2, . . .} into a set, then elements 
of XI can be viewed as functions from I into X. 

Let {Xα}, α ∈ I, be a non-empty collection of topological Q 
spaces, let Tα be the topology on Xα, let X = Xα, andα∈I 
let πα be the projection of X onto Xα. Set 

Cα = {π−1(A) : A ∈ Tα}.α 

The product topology is the topology generated by ∪α∈I Cα. 

This is a bit confusing, so let us look at the special case where 
I = {1, 2, . . . , n}. Then X is the set of n-tuples {x1, x2, . . . , xn}, 
where xi ∈ Xi. If x = (x1, x2, . . . , xn), then πi(x) = xi, the ith 

coordinate. The collection Ci is the collection of sets of the form � i−1 nY � � Y � 
Xj × A × Xj , 

j=1 j=i+1 

where A is open in Xi. Let S = ∪n Ci and let B be the collection i=1 
of finite intersections of elements of S. A set in B will be of the 
form A1 × · · · × An, where Ai is open in Xi for each i. (Nothing 
prevents some of the Ai being all of Xi.) The product topology is 
then the set of arbitrary unions of sets in B. 

A subcollection Bx of open sets containing the point x is an 
open base at the point x if every open set containing x contains an 
element of Bx. 

We discuss some terms connected to infinite sets. A set A ⊂ X 
is dense in X if A = X. The set A is nowhere dense if the closure 
of A has empty interior, that is, (A)o = ∅. A space X is separable if 
there exists a countable subset of X that is dense in X. A space X 
is second countable if it has a countable base. A topological space 
is first countable if every point x has a countable open base at x. 
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A sequence {x1, x2, . . .} converges to a point y if whenever G 
is an open set containing y, there exists N such that xn ∈ G if 
n ≥ N . If there exists a subsequence of {x1, x2, . . .} that converges 
to a point y, then y is called a subsequential limit of the sequence. 
Another name for a subsequential limit point is cluster point. 

Proposition 20.7 Let X be a metric space. Then X is second 
countable if and only if it is separable. 

Proof. Suppose X is second countable, and B = {G1, G2, . . .} is a 
countable base. Pick a point xi ∈ Gi for each i. Clearly A = {xi} is 
countable, and we claim that it is dense in X. If y ∈ X and H is an 
open set containing y, then by the definition of base, y ∈ Gj ⊂ H 
for some j. Therefore H contains xj , and so intersects A. Since H 
is arbitrary, this shows y ∈ A. Since y is arbitrary, X = A. Note 
that this part of the proof did not use the fact that X is a metric 
space. 

Now suppose X is a separable metric space with {xi} a count-
able dense subset of X. Let 

B = {B(xi, r) : r rational, r > 0, i = 1, 2, . . .}. 

Note that B is countable and we show that B is a base. It suffices 
to show that if y ∈ X and G is an open set of X containing y, 
then there exists an element of B containing y and contained in 
G. Since G is open, there exists s such that y ∈ B(y, s) ⊂ G. 
Since {xi} is separable, there exists j such that B(y, s/4) contains 
xj . Take r rational with s/4 < r < s/2. Then B(xj , r) ∈ B. 
Since d(xj , y) < s/4, then y ∈ B(xj , r). Since d(xj , y) < s/4 and 
B(y, s) ⊂ G, then B(xj , r) ⊂ G. 

We next define nets. A set I is a directed set if there exists an 
ordering “≤” satisfying 
(1) α ≤ α for all α ∈ I; 
(2) if α ≤ β and β ≤ γ, then α ≤ γ; 
(3) if α and β are in I, there exists γ ∈ I such that α ≤ γ and 
β ≤ γ. 

Here are two examples. For the first, let I = {1, 2, . . .} and 
say j ≤ k if j is less than or equal to k in the usual sense. For the 
second, let x be a point in a topological space, let I be the collection 
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of open neighborhoods of x, and say N1 ≤ N2 if N2 ⊂ N1. Note 
that this ordering is the reverse of the usual inclusion ordering. 

A net is a mapping from a directed set I into a topological space 
X. A net hxαi, α ∈ I, converges to a point y if for each open set G 
containing y there is an α0 ∈ I such that xα ∈ G whenever α ≥ α0. 

If I is the first example of directed sets, namely, the positive in-
tegers, the notion of convergence is the same as that for a sequence 
to converge. 

Proposition 20.8 Let E be a subset of a topological space. If 
there is a net consisting of infinitely many different points in E 
that converges to y, then y is a limit point of E. If y is a limit 
point of E, then there is a net taking values in E that converges to 
y. 

Proof. It is easy to see that if there is an infinite net {xα} taking 
values in E that converges to y, then y is a limit point of E. Sup-
pose y is a limit point of E. We take as a directed set I our second 
example, the collection of all open neighborhoods of y, ordered by 
reverse inclusion. For each Gα in this collection, we choose (the 
axiom of choice is used here) an element xα of Gα ∩ E different 
than x. Such a point xα exists because y is a limit point of E. 

It now remains to show that hxαi converges to y, and that is a 
matter of checking the definitions. If G is an open set containing y, 
then G is equal to Gα0 for some α0 ∈ I. If α ≥ α0, then Gα ⊂ Gα0 , 
so xα ∈ Gα ⊂ Gα0 = G. This is what it means for the net hxαi to 
converge to the point y. 

Exercise 20.19 shows why the convergence of nets is more useful 
for general topological spaces than the convergence of sequences. 

Remark 20.9 We have talked quite a bit in this book about al-
most every convergence. One might ask whether one can construct 
a topology which is in some sense consistent with this type of con-
vergence. The answer is no. 

To see this, recall Example 10.7 where we had a sequence of 
bounded measurable functions {fn} converging to 0 in measure 
but not almost everywhere. If there were a topology consistent 
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with almost everywhere convergence, then there would be a neigh-
borhood A of the function 0 such that fn ∈/ A for infinitely many 
n. We can thus extract a subsequence {fnj } such that no fnj is in 
A. However the subsequence {fnj } still converges in measure to 0, 
hence there is a further subsequence {fnjk 

} which converges almost 
everywhere to 0 by Proposition 10.2. This implies that fnjk 

∈ A 
for all k sufficiently large, contradicting the fact that no fnj is in 
the neighborhood A of 0. 

Finally we talk about continuous functions. Suppose (X, T ) 
and (Y, U) are two topological spaces. A function f : X → Y is 
continuous if f−1(G) ∈ T whenever G ∈ U . The function f is 
open if f(H) is in U whenever H ∈ T . A homeomorphism between 
X and Y is a function f that is one-to-one, onto, continuous, and 
open. In this case, since f is one-to-one and onto, then f−1 exists, 
and saying f is open is the same as saying f−1 is continuous. 

Suppose f is a continuous function from X into Y and F is 
closed in Y . Then (f−1(F ))c = f−1(F c) will be open in X since 
F c is open in Y , and therefore f−1(F ) is closed in X. Thus the 
inverse image of a closed set under a continuous function is closed. 

Conversely, suppose the inverse image of every closed set in Y 
is closed in X and G is open in Y . Then (f−1(G))c = f−1(Gc) will 
be closed in X, and so the inverse image of G is open in X. This 
implies that f is continuous. 

Given a topological space (Y, U) and a non-empty collection of 
functions {fα}, α ∈ I, from X to Y , the topology on X generated 
by the fα is defined to be the topology generated by 

{f−1(G) : G ∈ U , α ∈ I}.α 

Proposition 20.10 Suppose f is a function from a topological 
space (X, T ) to a topological space (Y, U). Let S be a subbase for 
Y . If f−1(G) ∈ T whenever G ∈ S, then f is continuous. 

Proof. Let B be the collection of finite intersections of elements 
of S. By the definition of subbase, B is a base for Y . Suppose 
H = G1 ∩ G2 ∩ · · · ∩ Gn with each Gi ∈ S. Since f−1(H) = 
f−1(G1) ∩ · · · ∩ f−1(Gn) and T is closed under the operation of 
finite intersections, then f−1(H) ∈ T . If J is an open subset of 
Y , then J = ∪α∈I Hα, where I is a non-empty index set and each 
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Hα ∈ B. Then f−1(J) = ∪α∈I f
−1(Hα), which proves f−1(J) ∈ T . 

That is what we needed to show. 

20.2 Compactness 

Let X be a topological space. Let A be a subset of X. An open 
cover of A is a non-empty collection {Gα}, α ∈ I, of open subsets 
of X such that A ⊂ ∪α∈I Gα. A subcover is a subcollection of {Gα}
that is also a cover of A. A is compact if every open cover of A has 
a finite subcover. 

We will develop several characterizations of compactness. For 
now, observe that every finite set is compact. 

It is easier to give examples of sets that are not compact. If 
X = R with the usual metric, then X is not compact. To see this, 
notice that {(n, n + 2)}, n an integer, covers R, but any finite sub-
collection can cover at most a bounded set. For another example, 
let A = (0, 1/4]. If we let Gi = (2−i−2 , 2−i), i = 1, 2, . . ., then 
{Gi} covers A but if {Gi1 , . . . Gin } is any finite subcollection, the 
interval (0, 2−I−2] will not be covered, where I = i1 ∨ · · · ∨ in. 

Proposition 20.11 If A ⊂ B, B is compact, and A is closed, then 
A is compact. 

Proof. Let G = {Gα}, α ∈ I, be an open cover for A. Add 
to this collection the set Ac , which is open. This larger collection, 
H = G∪{Ac}, will be an open cover for B, and since B is compact, 
there is a finite subcover H0 . If Ac is in H0 , discard it, and let 
G0 = H0 −{Ac}. Then G0 is finite, is a subset of G and covers A. 

Proposition 20.12 Let X and Y be topological spaces, f a con-
tinuous function from X into Y , and A a compact subset of X. 
Then f(A) = {f(x) : x ∈ A} is a compact subset of Y . 

Proof. Let {Gα}, α ∈ I, be an open cover for f(A). Then 
{f−1(Gα)}, α ∈ I, will be an open cover for A. We used here 
the fact that since f is continuous, the inverse image of an open 
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set is open. Since A is compact, there exist finitely many sets 
{f−1(Gα1 ), . . . , f

−1(Gαn )} that cover A. Then {Gα1 , . . . , Gαn } is 
a finite subcover for f(A). 

A collection of closed subsets of X has the finite intersection 
property if every finite subcollection has non-empty intersection. 

Proposition 20.13 A topological space X is compact if and only 
if any collection of closed sets with the finite intersection property 
has non-empty intersection. 

Proof. Suppose X is compact and {Fα}, α ∈ I, is a non-empty 
collection of closed sets with the finite intersection property. If 
∩α∈I Fα = ∅, then {Fα

c} is an open cover for X. Thus there exist 
finitely many sets {F c , . . . , F c } which form a finite subcover forα1 αn 

X. This means that ∩n Fαi = ∅, which contradicts the finitei=1 
intersection property. 

Conversely, suppose any collection of closed sets with the fi-
nite intersection property has non-empty intersection. If {Gα}, 
α ∈ I, is an open cover for X, then {Gc

α} has empty intersection. 
Hence there must exist {Gc

α1 
, . . . , Gc } which has empty intersec-αn 

tion. Then {Gα1 , . . . , Gαn } is a finite subcover. Therefore X is 
compact. 

Here are a few more definitions. A set A is precompact if A is 
compact. A set A is σ-compact if there exist K1,K2, . . . compact 

∪∞such that A = i=1Ki. A set A is countably compact if every 
countable cover of A has a finite subcover. 

A set A is sequentially compact if every sequence of elements in 
A has a subsequence which converges to a point of A. A set A has 
the Bolzano-Weierstrass property if every infinite subset of A has 
a limit point in A. 

20.3 Tychonoff’s theorem 

Tychonoff’s theorem says that the product of compact spaces is 
compact. We will get to this theorem in stages. We will need Zorn’s 
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lemma to prove Tychonoff’s theorem; this cannot be avoided, since 
it is known that Tychonoff’s theorem implies the axiom of choice. 

Let (X, T ) be a topological space, let B be a basis for T , and 
let S be a subbasis. Naturally enough, if A is a subset of X and 
{Gα} is an open cover for A such that each Gα ∈ B, then {Gα}
is called a basic open cover , while if each Gα ∈ S, then {Gα} is a 
subbasic open cover . 

Proposition 20.14 Suppose A is a subset of X and every basic 
open cover of A has a finite subcover. Then A is compact. 

Proof. Let {Gα} be an open cover for A; we only assume here that 
Gα ∈ T . If x ∈ A, there exists αx such that x ∈ Gαx , and by the 
definition of basis, there exists Bx ∈ B such that x ∈ Bx ⊂ Gαx . 
Then {Bx}, x ∈ A, is a basic open cover of A. By hypothesis there 
is a basic open subcover {Bx1 , . . . Bxn }. Since Bxi ⊂ Gαxi 

, then 
{Gαx1 

, . . . , Gαxn 
} will be a finite subcollection of {Gα} that covers 

A. Thus every open cover of A has a finite subcover, and hence A 
is compact. 

Much harder is the fact that for A to be compact, it suffices 
that every subbasic open cover have a finite subcover. First we 
prove the following lemma, which is where Zorn’s lemma is used. 

Lemma 20.15 Let A be a subset of X. Suppose C ⊂ E are two 
collections of open subsets of X and suppose that no finite subcol-
lection of C covers A. Then there exists a maximal subset D of E 
that contains C and such that no finite subcollection of D covers A. 

Saying that D is maximal means that if D ⊂ D0 ⊂ E and no finite 
subcollection of D0 covers A, then D0 must equal D. 

Proof. Let B be the class of all subcollections B of E such that 
B contains C and no subcollection of B covers A. We order B by 
inclusion. If we prove that every totally ordered subset of B has an 
upper bound in B, our lemma will follow by Zorn’s lemma. 

Let B0 be a totally ordered subset of B. Let 

B = ∪{Bα : Bα ∈ B0}. 
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Clearly C ⊂ B ⊂ E , and we must show that no finite subcollection 
of B covers A. 

Suppose there exist B1, . . . , Bn in B such that A ⊂ ∪n 
i=1Bi. 

For each i, there exists αi such that Bi ∈ Bαi for some Bαi ∈ B0 . 
Since B0 is totally ordered, one of the Bαi contains all the others. 
Let us suppose it is Bαn , since otherwise we can relabel. But then 
Bi ∈ Bαi ⊂ Bαn for each i, contradicting that Bαn has no finite 
subcollection that covers A. We conclude that B is an upper bound 
for B0 . 

Theorem 20.16 Suppose A is a subset of X and every subbasic 
open cover of A has a finite subcover. Then A is compact. 

Proof. Let B be a basis for T , the topology on X, and let S be 
a subbasis. We will show that every basic open cover of A has a 
finite subcover and then apply Proposition 20.14. We will achieve 
this by supposing that C is a basic open cover of A having no finite 
subcover and show that this leads to a contradiction. 

Step 1. The first step is to enlarge C. Since C ⊂ B and no finite 
subcover of C covers A, by Lemma 20.15 there exists a maximal D 
such that C ⊂ D ⊂ B and no finite subcover of D covers A. 

Step 2. We write D = {Bα : α ∈ I}, where I is an index set and 
each Bα ∈ B. Fix α for now. By the definition of subbase, we can 
find n ≥ 1 and S1, . . . , Sn ∈ S such that Bα = S1 ∩ · · · ∩ Sn. 

We claim that at least one of the Si in in D. Suppose not. Let 
i ≤ n. Since Si is a subbasic open set, it is also a basic open set, 
and therefore C ⊂ D ∪ {Si} ⊂ B. By the maximality property of 
D, the collection D ∪ {Si} must have a finite subcover of A. Thus 
there exist Bi1, . . . , Biki ∈ D such that 

A ⊂ Si ∪ Bi1 ∪ · · · ∪ Biki . (20.2) 

This holds for each i. 

If x ∈ A, one possibility is that x ∈ Bij for some i ≤ n, j ≤ ki. 
The other possibility is that x ∈/ Bij for any i ≤ n, j ≤ ki. In 
this second case, (20.2) implies that x ∈ Si for each i, and hence 
x ∈ S1 ∩ · · · ∩ Sn = Bα. 
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Under either possibility we have that {Bij : i ≤ n, j ≤ ki} ∪ 
{Bα} is a finite subcollection of D that covers A. This is a con-
tradiction. We conclude that at least one of the Si is in D. We 
rename Si as Sα. 

Step 3. Now we no longer fix α and we do the above argument for 
each α, obtaining a collection of subbasic open sets {Sα}. Since 
{Sα} ⊂ D, then {Sα} has no finite subcover of A. On the other 
hand, Bα ⊂ Sα, so A ⊂ ∪αBα ⊂ ∪αSα. Therefore {Sα} is a 
subbasic open cover of A. By the hypothesis of the theorem, {Sα}
has a finite subcover. This is our contradiction. We conclude that 
{Bα} must have a finite subcover, and thus A is compact. 

We now state and prove the Tychonoff theorem. 

Theorem 20.17 The non-empty product of compact topological 
spaces is compact. 

Proof. Suppose we have a non-empty family {Xα}, α ∈ I, ofQ
compact topological spaces, and we let X = α∈I Xα. A subbase 
for X is the collection {π−1(Gα)}, where α ∈ I, Gα is an open α 
subset of Xα, and πα is the projection of X onto Xα. 

Let H = {Hβ } be a collection of subbasic open sets for X that 
covers X. Assume that H has no finite subcover. 

Fix α for the moment. Let Hα = H ∩ Cα, where 

Cα = {π−1(Gα) : Gα is open in Xα}.α 

Thus Hβ ∈ Hα if Hβ ∈ H and there exists an open set Gαβ in Xα 

such that Hβ = π−1 
α (Gαβ ). 

If {πα(Hβ ) : Hβ ∈ Hα} covers Xα, then since Xα is compact, 
there exists a finite subcover {πα(Hβ1 ), . . . , πα(Hβn )} of Xα. But 
then {Hβ1 , . . . ,Hβn } is a finite cover of X, a contradiction. There-
fore there exists xα ∈ Xα such that xα / πα(Hβ ).∈ ∪Hβ ∈Hα 

We do this for each α. Let x be the point of X whose αth 

coordinate is xα, that is, πα(x) = xα for each α. If x ∈ Hβ for 
some Hβ ∈ H, then x ∈ π−1(Gαβ ) for some α ∈ I and some Gαβα 
open in Xα. But then xα = πα(x) ∈ Gαβ , a contradiction to the 
definition of xα. Therefore x ∈/ ∪Hβ ∈HHβ , or H is not a cover of 
X, a contradiction. 
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We conclude that our assumption that H had no finite subcover 
is wrong, and a finite subcover does indeed exist. Then X is com-
pact by Theorem 20.16. 

Remark 20.18 Consider X = [−1, 1]N , where N = {1, 2, . . .}.Q∞
This means X = i=1 Xi where each Xi = [−1, 1]. By the Ty-
chonoff theorem, X is compact when furnished with the product 
topology. 

This does not contradict Exercise 19.5, which says that the 
closed unit ball in an infinite-dimensional Hilbert space is never 
compact. The reason is that there are two different topologies in-
volved. If we consider [−1, 1]N as a Hilbert space, the metric is 
given by 

∞�X �1/2 
d(x, y) = |xi − yi|2 . 

i=1 

thLet en be the point whose coordinates are zero except for the n 
coordinate, which is 1. Then {en} is a sequence in X that does not 
converge to 0 when X has the topology inherited as a metric space 
with the metric d. However, πi(en) → 0 as n →∞ for each i, and 
so by Exercise 20.18, en → 0 in the product topology. Therefore 
the two topologies are different. 

20.4 Compactness and metric spaces 

Most undergraduate classes do not deal with compactness in metric 
spaces in much detail. We will provide that detail here. 

Let X be a metric space with metric d. A set A is a bounded 
set if there exists x0 ∈ X and M > 0 such that A ⊂ B(x0,M). 

Proposition 20.19 If A is a compact subset of a metric space X, 
then A is closed and bounded. 

Proof. To show boundedness, choose x0 ∈ A and notice that 
{B(x0, n)}, n ≥ 1, is an open cover for X and hence for A. Since 
A is compact, it has a finite subcover, and boundedness follows. 
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To show A is closed, let x be a limit point of A and suppose 
x ∈/ A. For each y ∈ A, let ry = d(x, y)/4. Observe that {B(y, ry)}, 
y ∈ A, is an open cover for A, and hence there is a finite subcover 
{B(y1, ry1 ), . . . , B(yn, ryn )}. Then 

F = ∪n
i=1B(yi, ryi ) 

will be a closed set (recall C is the closure of C) containing A but 
not containing x. Therefore F c is an open set containing x but no 
point of A, contradicting that x is a limit point of A. 

Recall that A has the Bolzano-Weierstrass property if every 
infinite set in A has a limit point in A and A is sequentially compact 
if every sequence in A has a subsequence which converges to a point 
in A. 

Proposition 20.20 Let X be a metric space. A subset A has the 
Bolzano-Weierstrass property if and only if it is sequentially com-
pact. 

Proof. First suppose that A has the Bolzano-Weierstrass property. 
If {xi} is a sequence in A, one possibility is that there are only 
finitely many distinct points. In that case one of the points must 
appear in the sequence infinitely often, and those appearances form 
a subsequence that converge to a point in A. The other possibility 
is that {xi} is an infinite set. Then there exists y that is a limit 
point of this set. Let i1 = 1. For each n, choose in > in−1 such 
that d(xin , y) < 2−n . It is possible to choose such a number in 

because if not, we can find r < 2−n small enough so that B(y, r) 
does not contain any point of {xi} other than possibly y itself, 
which contradicts that y is a limit point. The subsequence {xin }
is the subsequence we seek. 

Now suppose that A is sequentially compact. Let B be an 
infinite subset of A. We can choose distinct points x1, x2, . . . in B. 
If y is a subsequential limit point of this sequence that is in A, then 
y will be a limit point of B that is in A. 

A bit harder is the following theorem. 

Theorem 20.21 Let X be a metric space and let A be a subset of 
X. The following are equivalent. 
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(1) A is compact; 
(2) A is sequentially compact; 
(3) A has the Bolzano-Weierstrass property. 

Proof. We already know (2) and (3) are equivalent. We first prove 
that (1) implies (3). Let B be an infinite subset of A. If B has 
no limit point in A, then for each y ∈ A we can find ry such that 
B(y, ry) contains no point of B except possibly y itself. Choose 
a finite subcover B(y1, ry1 ), . . . , B(yn, ryn ) of A. Then B ⊂ A ⊂ 
∪n
i=1B(yi, ryi ), but at the same time, the union contains at most n 
points of B, contradicting that B is infinite. 

We next prove (2) implies (1). Let {Gα}, α ∈ I, be an open 
cover of A. First we show that there exists ε > 0 with the property 
that if x ∈ A, then there exists αx ∈ I such that x ∈ B(x, ε) ⊂ Gαx . 
If not, for all n large enough there exist xn such that B(xn, 1/n) 
is not contained in any Gα. Let y be a subsequential limit point of 
{xn}. y is in some Gβ , and since Gβ is open, there exists δ > 0 such 
that y ∈ B(y, δ) ⊂ Gβ . However y is a subsequential limit point of 
{xn}, and so there exists m > 2/δ such that d(xm, y) < δ/2. Then 

xm ∈ B(xm, 1/m) ⊂ B(xm, δ/2) ⊂ B(y, δ) ⊂ Gβ , 

a contradiction to how the xn were chosen. 

Now we can prove that if (2) holds, then A is compact. Let 
{Gα} be an open cover of A and let ε be chosen as in the previous 
paragraph. Pick x1 ∈ A. If B(x1, ε) covers A, stop. If not, choose 
x2 ∈ A − B(x1, ε). If {B(x1, ε), B(x2, ε)} covers A, stop. If not, 
choose x3 ∈ A−B(x1, ε)−B(x2, ε). Continue. This procedure must 
stop after finitely many steps, or else we have an infinite sequence 
{xn} such that d(xi, xj ) ≥ ε if i 6= j, and such a sequence cannot 
have a convergent subsequence. Therefore we have a collection 
{B(x1, ε), . . . , B(xn, ε)} that covers A. For each xi choose Gαi 

such that xi ∈ B(x,ε) ⊂ Gαi ; this is possible by our choice of ε. 
Then {Gα1 , . . . , Gαn } is the desired subcover. 

As a corollary we get the Heine-Borel theorem, although there 
are easier proofs. 

Theorem 20.22 A subset of Rn is compact if and only if it is 
closed and bounded. 
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Proof. We have already shown that compact sets are closed and 
bounded. Since closed subsets of compact sets are compact, to 
show the converse it suffices to show that [−M, M ]n is compact for 
each integer M , since any bounded set A will be contained in such 
a set if M is large enough. By the Tychonoff theorem, it suffices 
to show [−M, M ] is compact in R. 

Let B be an infinite subset of [−M, M ]. Let J1 = [a1, b1] = 
[−M, M ]. One of the two intervals [a1, (a1 + b1)/2], [(a1 + b1)/2, b1] 
must contain infinitely many points of B (perhaps both inter-
vals do). Choose one that has infinitely many points and call 
it J2 = [a2, b2]. At least one of the intervals [a2, (a2 + b2)/2], 
[(a2 + b2)/2, b2] contains infinitely many points of B. Choose it 
and call it J3 = [a3, b3]. Continue. The sequence a1, a2, a3, . . . is 
an increasing sequence of real numbers bounded by M , and so this 
sequence has a least upper bound z. Let ε > 0. Since B(z, ε) con-
tains Jn for all n sufficiently large, then B(z, ε) contains infinitely 
many points of B, and hence z is a limit point of B. Therefore 
[−M, M ] has the Bolzano-Weierstrass property, and so is compact. 

Given a set A, an ε-net for A is a subset {x1, x2, . . .} such that 
{B(xi, ε)} covers A. A is totally bounded if for each ε there ex-
ists a finite ε-net. Recall that a set A is complete if every Cauchy 
sequence in A converges to a point in A. (The notion of Cauchy 
sequence makes sense only in metric spaces, not in general topo-
logical spaces.) 

Theorem 20.23 A subset A of a metric space is compact if and 
only if it is both complete and totally bounded. 

Proof. First suppose A is compact. If ε > 0, then {B(x, ε)}, 
x ∈ A, is an open cover of A. Choosing a finite subcover shows 
that A has a finite ε-net. Since ε is arbitrary, A is totally bounded. 

Let {xn} be a Cauchy sequence in A. Since A is compact, by 
Theorem 20.21 there is a subsequence {xnj } that converges, say 
to y ∈ A. If ε > 0, there exists N such that d(xn, xm) < ε/2 if 
n, m ≥ N . Choose nj > N such that d(xnj , y) < ε/2. Then if 
n ≥ N , 

d(xn, y) ≤ d(xn, xnj ) + d(xnj , y) < ε. 
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Therefore the entire sequence converges to y, which proves that A 
is complete. 

Now suppose that A is totally bounded and complete. We let B 
= {x1, x2, . . .} be a sequence in A. If the set is finite, clearly there is 
a convergent subsequence, so we suppose there are infinitely many 
distinct points. Since A is totally bounded, it has a finite 1/2-net, 
and there exist balls B(y11, 1/2), . . ., B(y1n1 , 1/2) that cover A. 
Choose one, call it B1 

0 , that contains infinitely many of the xi and 
let C1 = B1 

0 ∩ B. Since A is totally bounded, it has a finite 1/4-
net and there exist balls B(y21, 1/4), . . . , B(y2n2 , 1/4) that cover 
A. At least one of these, call it B2 

0 , must contain infinitely many 
points of C1; let C2 = B2 

0 ∩ C1. Continue to obtain a sequence 
C1 ⊃ C2 ⊃ · · · so that each Ci contains infinitely many points of 
B. Choose ni > ni−1 such that xni ∈ Ci. 

We claim {xni } is a Cauchy sequence. Let ε > 0 and choose N 
such that 2−N+1 < ε. If N ≤ i < j, then xnj ∈ Cj ⊂ Ci, xni ∈ Ci, 
and Ci is contained in a ball of radius 2−i , hence 

) ≤ 2 · 2−i ≤ 2−N+1d(xni , xnj < ε. 

Therefore {xni } is a Cauchy sequence. 

Since A is complete, then {xni } converges to a point in A. This 
implies that B has a subsequence that converges, and we conclude 
by Theorem 20.21 that A is compact. 

If X and Y are metric spaces with metrics dX and dY , resp., 
then f : X → Y is uniformly continuous if given ε, there exists δ 
such that dY (f(x), f(y)) < ε whenever dX (x, y) < δ. 

Proposition 20.24 If X is a compact metric space, Y is a metric 
space, and f : X → Y is continuous, then f is uniformly continu-
ous. 

Proof. Let ε > 0. For each x ∈ X, there exists rx such that if 
y ∈ B(x, 2rx), then dY (f(x), f(y)) < ε/2. Choose a finite subcover 

{B(x1, rx1 ) . . . , B(xn, rxn )} 

0of X. Let δ = min(rx1 , . . . , rxn ). If z, z ∈ X with dX (z, z0) < δ, 
then z ∈ B(xi, rxi ) for some i. By our choice of δ, z0 ∈ B(xi, 2rxi ). 
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Then 

dY (f(z), f(z 
0)) ≤ dY (f(z), f(xi)) + dY (f(xi), f(z 

0)) < ε, 

which is what we wanted. 

The final topic we discuss in this section is the completion of a 
metric space. If X and Y are metric spaces, a map ϕ : X → Y is 
an isometry if dY (ϕ(x), ϕ(y)) = dX (x, y) for all x, y ∈ X, where 
dX is the metric for X and dY the one for Y . A metric space X∗ 

is the completion of a metric space X is there is an isometry ϕ of 
X into X∗ such that ϕ(X) is dense in X∗ and X∗ is complete. 

Theorem 20.25 If X is a metric space, then it has a completion 
X∗ . 

Of course, if X is already complete, its completion is X itself and 
ϕ is the identity map. 

Proof. Step 1. We define X∗ and a metric d∗ . To do this, we 
introduce the set X 0 consisting of the set of Cauchy sequences in 
X. Thus {xn} ∈ X 0 if {xn} is a Cauchy sequence with respect to 
the metric d of X. Let us say {xn} ∼ {yn} if limn→∞ d(xn, yn) = 0. 
It is routine to check that this is an equivalence relation between 
elements of X 0 . We let X∗ be the set of equivalence classes in X 0 . 
We denote the equivalence class containing {xn} ∈ X 0 by xn. 

Let us define 

d ∗ (xn, yn) = lim d(xn, yn). 
n→∞ 

This will be our metric for X∗ , but before we prove that it is a 
metric, we first need to make sure that the limit in the definition 
exists. If {xn} and {yn} are Cauchy sequences in X, given ε there 
exists N such that d(xm, xn) < ε and d(ym, yn) < ε if m, n ≥ N . 
For m, n ≥ N , 

d(xn, yn) ≤ d(xn, xN ) + d(xN , yN ) + d(yN , yn) ≤ 2ε + d(xN , yN ) 

and 

d(xN , yN ) ≤ d(xN , xn) + d(xn, yn) + d(yn, yN ) ≤ 2ε + d(xn, yn). 
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Thus 
|d(xn, yn) − d(xN , yN )| ≤ 2ε, 

and the same holds with n replaced by m. Therefore 

|d(xm, ym) − d(xn, yn)| ≤ |d(xm, ym) − d(xN , yN )| 
+ |d(xn, yn) − d(xN , yN )|

≤ 4ε. 

This proves that {d(xn, yn)} is a Cauchy sequence of real numbers. 
Since R is complete, then d(xn, yn) has a limit as n →∞. 

0Step 2. We prove that d∗ is a metric. First of all, if {xn} ∼ {x },n 
then 

0 0lim |d(xn, yn) − d(x , yn)| ≤ lim d(xn, x ) = 0,n n 

and the definition of d∗ does not depend on what representative of 
xn we choose. 

It is routine to check that d∗(xn, yn) ≥ 0, that d∗(xn, yn) equals 
d∗(yn, xn), and that 

d ∗ (xn, zn) ≤ d ∗ (xn, yn) + d ∗ (yn, zn). 

If d∗(xn, yn) = 0, then lim d(xn, yn) = 0, so {xn} ∼ {yn}, and 
hence xn = yn. Therefore d∗ is a metric. 

Step 3. We define the isometry ϕ and show that ϕ(X) is dense 
in X∗ . If x ∈ X, let ϕ(x) be the equivalence class containing the 
sequence (x, x, . . .), that is, the sequence where each element is x. 
It is clear that this is a map from X into X∗ and that it is an 
isometry. 

If xn is an element of X∗ and ε > 0, then {xn} is a Cauchy 
sequence in X and there exists N such that d(xn, xn0 ) < ε/2 if 
n, n0 ≥ N . We see that 

d ∗ (ϕ(xN ), xn) = lim d(xN , xn) ≤ ε/2. 
n→∞ 

Therefore the ball of radius ε about xn contains a point of ϕ(X). 
Since xn and ε were arbitrary, ϕ(X) is dense in X∗ . 

Step 4. It remains to show that X∗ is complete. Let {zn} be a 
Cauchy sequence in X∗ . By Step 3, for each n there exists yn ∈ 
ϕ(X) such that d∗(zn, yn) < 1/n. Since 

d ∗ (ym, yn) ≤ d ∗ (ym, zm) + d ∗ (zm, zn) + d ∗ (zn, yn) 

≤ d ∗ (zm, zn) + 
1 
+
1 
, 

m n 
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we conclude that {yn} is also a Cauchy sequence in X∗ . 

Each element yn ∈ ϕ(X) is of the form yn = (xn, xn, . . .) for 
some xn ∈ X. Because ϕ is an isometry, then {xn} is a Cauchy 
sequence in X. Given ε there exists N such that d(xm, xn) < ε if 
m, n ≥ N . Let x = xn ∈ X∗ . We have 

d ∗ (ym, x) = lim d(xm, xn) ≤ ε 
n→∞ 

if m ≥ N . Thus ym converges to x with respect to the metric d∗ . 
Finally, 

lim sup d ∗ (zn, x) ≤ lim sup d ∗ (zn, yn) + lim sup d ∗ (yn, x) = 0, 
n→∞ n→∞ n→∞ 

and we conclude that zn converges to x with respect to the metric 
d∗ . Therefore X∗ is complete. 

20.5 Separation properties 

We define some types of topological spaces. Each successive defi-
nition implies the existence of a larger class of open sets and con-
sequently are spaces that can be the domain of more continuous 
functions. 

A topological space X is a T1 space if whenever x 6= y, there 
exists an open set G such that x ∈ G and y ∈/ G. X is a Hausdorff 
space if whenever x 6= y, there exist open sets G and H such that 
x ∈ G, y ∈ H, and G ∩ H = ∅. We say that x and y are separated 
by the open sets G and H. 

A space X is a completely regular space if X is a T1 space and 
whenever F is a closed subset of X and x ∈/ F , there exists a 
continuous real-valued function f taking values in [0, 1] such that 
f(x) = 0 and f(y) = 1 for all y ∈ F . Finally, a space X is a normal 
space if X is a T1 space and whenever E and F are disjoint closed 
sets in X, there exist disjoint open sets G and H such that E ⊂ G 
and F ⊂ H. 

Clearly Hausdorff spaces are T1 spaces. If X is completely reg-
ular and x and y are distinct points, let F = {y}. We will see 
in a moment that F is closed. Let f be a continuous function 
such that f(x) = 0 and f = 1 on F , i.e., f(y) = 1. If we let 
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G = f−1((−∞, 1/2)) and H = f−1((1/2, ∞)), then G and H are 
open sets separating x and y. Therefore, except for showing that F 
is closed, we have shown that completely regular spaces are Haus-
dorff spaces. Finally, as a consequence of Urysohn’s lemma in Sec-
tion 20.6, we will see that normal spaces are completely regular 
spaces. 

Let us develop a few of the properties of these spaces. 

Proposition 20.26 If X is a T1 space and y ∈ X, then {y} is a 
closed set. 

Proof. Let F = {y}. If x ∈ F c , there exists an open set G such 
that x ∈ G and y ∈/ G. Therefore x is not a limit point of F . This 
proves F is closed. 

If X is a metric space and x, y ∈ X, set r = d(x, y) and then 
G = B(x, r/2) and H = B(y, r/2) are open sets separating x and 
y. Therefore metric spaces are Hausdorff spaces. 

Proposition 20.27 The product of a non-empty class of Haus-
dorff spaces is a Hausdorff space. 

Proof. Let {Xα}, α ∈ I, be a non-empty collection of Hausdorff Q 
spaces and let X = Xα. If x, y ∈ X are distinct points, α∈I 
then πα(x) 6= πα(y) for at least one index α, where we recall that 
πα is the projection of X onto Xα. Then there exist open sets 
G0, H0 in Xα that separate πα(x) and πα(y). The sets π−1(G0)α 
and π−1(H0) are open sets in X, in fact they are subbasic open α 
sets, which separate x and y. 

Proposition 20.28 Let X be a Hausdorff space, F a compact sub-
set of X, and x ∈/ F . There exist disjoint open sets G and H such 
that x ∈ G and F ⊂ H. 

Proof. For each y ∈ F choose disjoint open sets Gy and Hy such 
that x ∈ Gy and y ∈ Hy. The collection {Hy}, y ∈ F , is an 
open cover for F . Let {Hy1 , . . . ,Hyn } be a finite subcover. Then 
F ⊂ H = ∪n and H is open, and x ∈ G = ∩n and G isi=1Hyi i=1Gyi 

open. Moreover G and H are disjoint. 
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Corollary 20.29 Compact subsets of a Hausdorff space are closed. 

Proof. If F is compact and x ∈/ F , construct G and H as in 
Proposition 20.28. Then G is an open set containing x disjoint 
from F , hence x is not a limit point of F . It follows that F is 
closed. 

Finally we prove 

Theorem 20.30 If X is a compact Hausdorff space, then X is a 
normal space. 

Proof. Let E and F be disjoint closed subsets of X. Since X 
is compact, then E and F are compact. Using Proposition 20.28, 
if x ∈ E, find disjoint open sets Gx and Hx such that x ∈ Gx 

and F ⊂ Hx. Then {Gx}, x ∈ E, is an open cover for E. Let 
{Gx1 , . . . , Gxn } be a finite subcover. Then G = ∪n

i=1Gxi is an open 
set containing E that is disjoint from the open set H = ∩n Hxii=1 
which contains F . 

Compact Hausdorff spaces, and their close cousins locally com-
pact Hausdorff spaces, share many of the same properties as metric 
spaces and are often as useful. 

20.6 Urysohn’s lemma 

We prove Urysohn’s lemma, which shows that normal spaces have 
a plentiful supply of continuous functions. In particular, disjoint 
closed subsets of compact Hausdorff spaces can be separated by 
continuous functions. Another consequence is that normal spaces 
are completely regular spaces. 

Lemma 20.31 Let E and F be disjoint closed subsets of a nor-
mal space X. There exists a continuous real-valued function taking 
values in [0, 1] such that f = 0 on E and f = 1 on F . 

Proof. By the definition of normal space, there exist disjoint open 
sets G and H such that E ⊂ G and F ⊂ H. Let N1/2 = G. Notice 
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that no point of F is a limit point of N1/2, so N1/2 ⊂ F c . We thus 
have 

E ⊂ N1/2 ⊂ N1/2 ⊂ F c . 

Now similarly, E and N1 
c
/2 are disjoint closed sets, so there 

exists an open set, call it N1/4, such that 

E ⊂ N1/4 ⊂ N1/4 ⊂ N1/2. 

In the same way there exists an open set called N3/4 such that 

N1/2 ⊂ N3/4 ⊂ N3/4 ⊂ F c . 

We continue in this way, finding Nt for each dyadic rational 
t (that is, each rational of the form m/2n for some n ≥ 1 and 
1 ≤ m ≤ 2n − 1) such that if s < t are dyadic rationals, then 

E ⊂ Ns ⊂ Ns ⊂ Nt ⊂ Nt ⊂ F c . 

Define f(x) = 0 if x is in every Nt and 

f(x) = sup{t ≤ 1 : t a dyadic rational, x ∈/ Nt} 

otherwise. Clearly f takes values in [0, 1], f is 0 on E and f is 1 
on F . We need to show that f is continuous. 

We show that {x : f(x) < a} = ∪t<aNt, where the union is over 
the dyadic rationals. First, suppose f(x) < a. If there does not 
exist a dyadic rational t less than a with x ∈ Nt, then x ∈/ Nt for 
all t < a and then f(x) ≥ a, a contradiction. Thus {x : f(x) < a}
is contained in ∪t<aNt. On the other hand, if x ∈ Nt for some 
t < a, then f(x) ≤ t < a. We then have 

f−1((−∞, a)) = {x : f(x) < a} = ∪t<aNt, 

which is the union of open sets, and therefore f−1((−∞, a)) is an 
open set. 

If f(x) > a, then x ∈/ Nt for some t > a, hence x ∈/ Ns for some 
s > a. If x ∈/ Nt for some t > a, then x ∈/ Nt, and so f(x) > a. 
Therefore 

f−1((a, ∞)) = {x : f(x) > a} = ∪t>a(N t)
c , 

which again is open. 
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The collection of sets of the form (−∞, a) and (a, ∞) form a 
subbase for the topology of the real line. That f is continuous 
follows by Proposition 20.10. 

One may think of ∂Nt as being the contour line of level t for 
the graph of f . 

Corollary 20.32 If X is a compact Hausdorff space, K is a com-
pact subset of X, and G is an open subset of X containing K, then 
there exists a continuous function f that is 1 on K and such that 
the support of f is contained in G. 

Recall that the support of a function f is the closure of the set 
{y : f(y) 6= 0}. 

Proof. K and Gc are disjoint compact subsets of X, and by 
Urysohn’s lemma there exists a continuous function f0 that is 0 on 
Gc and 1 on K. If we let f = 2(f0 − 1 )+ , then f is 1 on K.2 

If x is in the support of f , then every neighborhood of x in-
1tersects the set {y : f(y) > 0} = {y : f0(y) > }. Since f0 is2 

continuous, then f0(x) ≥ 1 , which implies x is not in Gc . Thus, if2 
x is in the support of f , then x ∈ G. 

Remark 20.33 If we want our function to take values in [a, b] and 
be equal to a on E and b on F , we just let f be the function given 
by Urysohn’s lemma and then use 

g(x) = (b − a)f(x) + a. 

Remark 20.34 In Chapter 17 we proved the Riesz representation 
theorem, which identifies the positive linear functionals on C(X). 
We proved the theorem there under the assumption that X was 
a compact metric space. In fact, the theorem still holds if X is 
a compact Hausdorff space. We use Corollary 20.32 to guarantee 
that given a compact set K contained in an open set G, there exists 
a continuous function f with support in G that is equal to 1 on K. 
Once we have the existence of such functions, the rest of the proof 
in Chapter 17 goes through without change. 
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20.7 Tietze extension theorem 

Let C be the Cantor set and let A = C × C. If f is a continuous 
function mapping A to [0, 1], can we extend f to a continuous 
function mapping [0, 1]2 to [0, 1]? In this case, one can construct 
an extension by hand, but what about similar extensions in more 
abstract settings? This question arises frequently in analysis, and 
the Tietze extension theorem is a result that allows one to do this 
extension in many cases. 

Theorem 20.35 Let X be a normal space, F a closed subspace, 
and f : F → [a, b] a continuous function. There exists a continuous 
function f : X → [a, b] which is an extension of f , that is, f |F = f . 

Proof. The proof is trivial if a = b, and we may therefore suppose 
a < b and also that [a, b] is the smallest closed interval containing 
the range of f . By considering the function 

f(x) − a 
2 − 1,

b − a 

we may without loss of generality assume a = −1 and b = 1. 

We will define f as the limit of an infinite sum of functions gi. 
To define the sum, let f0 = f and let A0 = {x ∈ F : f(x) ≤ −1/3}, 
B0 = {x ∈ F : f(x) ≥ 1/3}. Since F is closed and f is a continuous 
function on F , then A0 and B0 are disjoint closed subsets of X. 
By Urysohn’s lemma and Remark 20.33, there exists a continuous 
function g0 : X → [−1/3, 1/3] such that g0 is equal to −1/3 on A0 

and g0 is equal to 1/3 on B0. 

Define f1 = f0 − g0 on F . Then f1 is continuous on F and 
observe that f1 : F → [−2/3, 2/3]. Let A1 be the set {x ∈ F : 
f1(x) ≤ −2/9}, let B1 = {x ∈ F : f1(x) ≥ 2/9}, and use Remark 
20.33 to find g1 : X → [−2/9, 2/9] that is continuous and such that 
g1 equals −2/9 on A1 and g1 equals 2/9 on B1. 

Let f2 = f1 − g1 = f0 − (g0 + g1) on F . Note f2 : F → 
[−4/9, 4/9]. We define A2, B2 and continue. We observe that 
the function g2 we obtain from Remark 20.33 will take values in 
[−4/27, 4/27]. We set f3 = f2 − g2 = f0 − (g0 + g1 + g2). 

We obtain a sequence g0, g1, g2, . . . of continuous functions on 
X such that |gi(x)| ≤ (1/3)(2/3)i . Therefore 

P∞ 
converges i=0 gi 
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uniformly on X. The uniform limit of continuous functions is con-
tinuous, so the sum, which we call f , is continuous on X. Since� �iP∞ 1 2 = 1, f takes values in [−1, 1].i=0 3 3 

It remains to prove that f is an extension of f . We had |f1(x)| ≤ 
2/3, |f2(x)| ≤ 4/9, and in general |fi(x)| ≤ (2/3)i for each i and 
each x ∈ F . Since 

fi = f0 − (g0 + g1 + · · · + gi−1) 

and |fi(x)| → 0 uniformly over x ∈ F , then we conclude f =P∞ 
= f0 = f on F .i=0 gi 

The condition that F be closed cannot be omitted. For example, 
if X = [0, 1], F = (0, 1], and f(x) = sin(1/x), there is no way to 
extend f continuously to X. 

20.8 Urysohn embedding theorem 

We alluded earlier to the fact that compact Hausdorff spaces can 
sometimes substitute for metric spaces. In fact, a second countable 
compact Hausdorff space can be made into a metric space. That 
is the essential content of the Urysohn embedding theorem, also 
known as the Urysohn metrization theorem. 

Let (X, T ) be a topological space. X is metrizable if there exists 
a metric d such that a set is open with respect to the metric d if 
and only if it is in T . To be a bit more precise, if x ∈ G ∈ T , there 
exists r such that B(x, r) ⊂ G and also B(x, r) ∈ T for each x and 
r > 0. 

We will embed second countable normal spaces into [0, 1]N , 
where N = {1, 2, . . .}. We define a metric on [0, 1]N by 

∞X 
ρ(x, y) = 2−i|xi − yi| (20.3) 

i=1 

if x = (x1, x2, . . .) and y = (y1, y2, . . .). 

Theorem 20.36 Let X be a second countable normal space. There 
exists a homeomorphism ϕ of X onto a subset of [0, 1]N . In partic-
ular, X is metrizable. 
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Proof. The proof is almost trivial if X is finite; just take a fi-
nite subset of [0, 1]N . Therefore we assume X is infinite. Let 
{G1, G2, . . .} be a countable base. We may assume none of these 
is equal to ∅ or X. The set of pairs (Gi, Gj ) such that Gi ⊂ Gj 

is countably infinite, and we label these pairs P1, P2, . . .. For each 
pair Pn there exists a continuous function fn taking values in [0, 1] 
such that fn is 0 on Gi and 1 on Gj

c; this follows by Urysohn’s 
lemma. If x ∈ X, define ϕ(x) = (f1(x), f2(x), . . .). Clearly ϕ maps 
X into [0, 1]N . 

If x 6= y, there exists an open set G in the countable base such 
that x ∈ G and y ∈/ G. Since X is normal, there exist disjoint 
open sets H1 and H2 such that {x} ⊂ H1 and Gc ⊂ H2. Then 
x ∈/ H2 and there exists K in the countable base such that x ∈ K 
and K ∩ H2 = ∅. If follows that K ∩ H2 = ∅, or K ⊂ H2 

c . If z ∈ K, 
then z ∈ Hc = H2 

c ⊂ G, using the fact that Hc is closed. We then2 2 
have K ⊂ G, and the pair (K, G) will be a Pn for some n. Since 
fn(x) = 0 and fn(y) = 1, then ϕ(x) =6 ϕ(y), or ϕ is one-to-one. 

We next prove that ϕ is continuous. Let ε > 0 and let x ∈ X. 
By Exercise 20.9 it suffices to prove that there exists an open set G 
containing x such that if y ∈ G, then ρ(ϕ(x), ϕ(y)) < ε. Choose MP∞ 

2−nlarge enough so that < ε/2. It therefore is enoughn=M+1 
to find G such that |fn(x) − fn(y)| < ε/2 if n ≤ M . Each fn is 
continuous, so there exists Gn open and containing x such that 
|fn(x) − fn(y)| < ε/2 if y ∈ Gn. We then let G = ∩M 

n=1Gn. 

Finally we need to show that ϕ−1 is continuous on ϕ(X). It 
suffices to show that if x ∈ X and G is an open set containing x, 
there exists δ such that if ρ(ϕ(x), ϕ(y)) < δ, then y ∈ G. We may 
suppose that there is a pair Pn = (Gi, Gj ) such that x ∈ Gi ⊂ 
Gi ⊂ Gj ⊂ G. If we choose δ small enough so that 2nδ < 1/2, then 
|fn(x) − fn(y)| < 1/2. Since x ∈ Gi, then fn(x) = 0. Since fn = 1 
on Gc

j , then we cannot have y ∈ Gc , or else |fn(x) − fn(y)| ≥ 1/2.n 
Therefore y ∈ Gj ⊂ G. 

Remark 20.37 Exercise 20.17 asks you to prove that the topology 
on [0, 1]N arising from the metric ρ is the same as the product 
topology. By the Tychonoff theorem, [0, 1]N is compact. Therefore 
our proof additionally shows that we can embed X as a subset of 
[0, 1]N , a compact set. This is often useful. For example, every 
metric space is normal (Exercise 20.28) and every separable metric 
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space is second countable, so every separable metric space can be 
embedded in a compact metric space. 

20.9 Locally compact Hausdorff spaces 

A topological space is locally compact if each point has a neigh-
borhood with compact closure. In this section we consider locally 
compact Hausdorff spaces, often abbreviated as LCH . We will show 
that one can add a point at infinity to make these into compact 
Hausdorff spaces. This allows one to provide more general versions 
of the Riesz representation theorem, the Ascoli-Arzelà theorem, 
and the Stone-Weierstrass theorem; see [5] for details as to these 
applications. 

Let (X, T ) be a locally compact Hausdorff space. Let ∞ denote 
a point not in X and let X∗ = X ∪ {∞}. Define T ∗ to consist of 
X∗ , all elements of T , and all sets G ⊂ X∗ such that Gc is compact 
in (X, T ). We can easily check that T ∗ is a topology. 

Theorem 20.38 (X∗ , T ∗) is a compact Hausdorff space. 

The space X∗ is known as the Alexandroff one-point compacti-
fication of X. Sometimes it is called simply the one-point compact-
ification of X. The point ∞ is referred to as the point at infinity. 

Proof. First we show X∗ is compact. We make the observation 
that if G is open in (X∗ , T ∗), then G ∩ X is open in (X, T ). If 
{Gα} is an open cover for X∗ , there will be at least one β such 
that ∞ ∈ Gβ . Then Gc will be compact with respect to (X, T ).β 
The collection {Gα ∩ X} will be an open cover (with respect to 
(X, T )) of Gc

β , so there is a finite subcover {Gα1 ∩ X, . . . , Gαn ∩ X}
of X. Then {Gβ , Gα1 , . . . , Gαn } is an open cover for X∗ . 

Secondly we show X∗ is Hausdorff. Any two points in X can 
be separated by open sets in T , which are open in T ∗ . Thus we 
need only to show that we can separate any point x ∈ X and the 
point ∞. If x ∈ X, then x has a neighborhood A whose closure 
is compact. Then (A)c will be an open set in (X∗ , T ∗) containing 
∞ which is disjoint from A. Since A is a neighborhood of x, there 
exists a set G that is open in T such that x ∈ G ⊂ A. Then (A)c 

and G are open sets in T ∗ separating x and ∞. 
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20.10 Stone-Čech compactification 

In this section we give another, more complicated, compactifica-
tion. Given a completely regular space X, we find a compact 
Hausdorff space X such that X is dense in X and every bounded 
continuous function on X can be extended to a bounded continuous 
function on X. The space X is called the Stone-Čech compactifi-
cation of X, and is traditionally written β(X). 

This is an amazing theorem. Suppose X = (0, 1]. This is a met-
ric space, hence a normal space, hence a completely regular space. 
The function f(x) = sin(1/x) cannot be extended to have domain 
[0, 1], so evidently β(X) 6= [0, 1]. Yet there is a compactification of 
(0, 1] for which sin(1/x) does have a continuous extension. 

Here is the theorem. 

Theorem 20.39 Let X be a completely regular space. There exists 
a compact Hausdorff space β(X) and a homeomorphism ϕ mapping 
X into a dense subset of β(X) such that if f is a bounded continu-
ous function from X to R, then f ◦ ϕ−1 has a bounded continuous 
extension to β(X). 

Before proving this theorem, let us sort out what the theorem 
says. Let Y = ϕ(X) ⊂ β(X). Since ϕ is a homeomorphism, every 
bounded continuous function f on X corresponds to a bounded 
continuous function fe on Y . The relationship is given by fe(y) = 
f ◦ ϕ−1(y). The assertion is that fe has a bounded continuous 
extension to β(X). 

Proof. Let I be the collection of bounded continuous functions on 
X and if f ∈ I, let Jf = [− infx∈X f(x), supx∈X f(x)], the rangeQ
of f . Each Jf is a finite closed interval. Let X∗ = Jf . Then f∈I 
X∗ will be a compact Hausdorff space. Define ϕ : X → X∗ by 
πf (ϕ(x)) = f(x); in other words, ϕ(x) is in the product space, and 
its f th coordinate is f(x). Thinking through the definitions, note 
that we have 

πf ◦ ϕ = f. 

Finally, let β(X) be the closure of ϕ(X) in X∗ . Since X∗ is compact 
and β(X) is closed, then β(X) is compact. Subspaces of Hausdorff 
spaces are Hausdorff. 
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Now that we have defined β(X), the rest of the proof will follow 
fairly easily from the definitions. First we prove that ϕ is one-to-
one. If x 6= y, then since X is completely regular, there exists f ∈ I 
such that f(x) =6 f(y). This means πf (ϕ(x)) =6 πf (ϕ(y)), which 
proves ϕ(x) 6= ϕ(y). 

Next we show ϕ is continuous. We let G be a subbasic open set 
in X∗ and prove that ϕ−1(G ∩ ϕ(X)) is open in X. The continuity 
will then follow by Proposition 20.10. If G is a subbasic open set 
in X∗ , then G = π−1(H) for some open set in R. Notef 

ϕ−1(G ∩ ϕ(X)) = {x ∈ X : ϕ(x) ∈ G} = {x ∈ X : πf ◦ ϕ(x) ∈ H} 
= {x ∈ X : f(x) ∈ H} = f−1(H). 

However, f−1(H) is open because H is open in R and f is contin-
uous. 

We show ϕ−1 is continuous on ϕ(X). Let ϕ(x) ∈ ϕ(X) and 
let H be an open set in X containing x. To prove continuity, we 
show there exists an open set G in X∗ such that if ϕ(y) ∈ G, then 
y ∈ H. We will then apply Exercise 20.9. 

Let x be a point in X and Hc a closed set in X not containing x. 
Since X is completely regular, there exists f ∈ I such that f(x) = 0 
and f = 1 on Hc . Let G = {z ∈ X∗ : πf (x) < 1/2}. Since the 
projection πf is continuous and (−∞, 1/2) is an open set in R, then 
G is open in X∗ . If ϕ(y) ∈ G, then f(y) = πf ◦ ϕ(y) < 1/2. This 
implies that y ∈/ Hc , hence y ∈ H, which is what we wanted. 

It remains to prove the assertion about the extension. We have 
f = πf ◦ϕ. Therefore on ϕ(X), we have f ◦ϕ−1 = πf ◦ϕ◦ϕ−1 = πf . 
Clearly πf has a bounded continuous extension to X∗ , hence to 
β(X). 

We remark that there can only be one bounded continuous ex-
tension of each function in I because X (or more precisely, its image 
ϕ(X)) is dense in β(X). 

20.11 Ascoli-Arzelà theorem 

Let X be a compact Hausdorff space and let C(X) be the set of 
continuous functions on X. Since X is compact, f(X) is compact 
and hence bounded if f ∈ C(X). 
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We make C(X) into a metric space by setting 

d(f, g) = sup |f(x) − g(x)|, 
x∈X 

the usual supremum norm. In this section we characterize the 
compact subsets of C(X). 

A subset F of C(X) is equicontinuous if given ε and x there 
is an open set G containing x such that if y ∈ G and f ∈ F , 
then |f(y) − f(x)| < ε. What makes equicontinuity stronger than 
continuity is that the same G works for every f ∈ F . 

Here is the Ascoli-Arzelà theorem. You may have seen this in 
an undergraduate analysis class; the novelty here is that we allow 
X to be a compact Hausdorff space and the proof avoids the use 
of the “diagonalization procedure.” 

Theorem 20.40 Let X be a compact Hausdorff space and let C(X) 
be the set of continuous functions on X. A subset F of C(X) is 
compact if and only if the following three conditions hold: 
(1) F is closed; 
(2) supf ∈F |f(x)| < ∞ for each x ∈ X; 
(3) F is equicontinuous. 

In (2), we require supf ∈F |f(x)| to be finite, but the size can depend 
on x. 

Proof. First we show that if (1), (2), and (3) hold, then F is com-
pact. Since C(X) is a metric space, which is complete by Exercise 
20.23, and F is a closed subset of C(X), then F is complete. We 
will show F is compact by showing it is totally bounded and then 
appealing to Theorem 20.23. 

Let ε > 0. For each x ∈ X there is an open set Gx such that if 
y ∈ Gx and f ∈ F , then |f(y) − f(x)| < ε/3. Since {Gx}, x ∈ X, is 
an open cover of X and X is compact, we can cover X by a finite 
subcover {Gx1 , . . . , Gxn }. Since supf∈F |f(xi)| is bounded for each 
i, we can find M such that 

sup |f(xi)| ≤ M. 
f ∈F,1≤i≤n 

Let a1, . . . , ar be real numbers such that every point in [−M, M ] 
is within ε/3 of one of the aj . If {aj1 , . . . , ajn } is a subset of 
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{a1, . . . , ar}, let 

H(aj1 , . . . , ajn ) = {f ∈ F : |f(xi) − aji | < ε/3, 1 ≤ i ≤ n}. 
nThere are at most r sets of this form. For each one that is non-

empty, select an element gaj1 ,...,ajn 
∈ H(aj1 , . . . , ajn ). We claim 

this collection of functions is an ε-net for F . 

If f ∈ F , choose aj1 , . . . , ajn such that |aji − f(xi)| < ε/3 for 
each 1 ≤ i ≤ n. The set H(aj1 , . . . , ajn ) is non-empty because it 
contains f . If y ∈ X, then y ∈ Gxi0 

for some i0. Then 

|f(y) − gaj1 ,...,ajn 
(y)| ≤ |f(y) − f(xi0 )| + |f(xi0 ) − gaj1 ,...,ajn 

(xi0 )| 
+ |gaj1 ,...,ajn 

(xi0 ) − gaj1 ,...,ajn 
(y)|. 

The first and third terms on the right hand side of the inequality 
are less than ε/3 because f and gaj1 ,...,ajn 

are in F and y ∈ Gxi0 
. 

The second term is less than ε/3 because gaj1 ,...,ajn 
(xi0 ) = aji0 

and 
we chose aji0 

to be within ε/3 of f(xi0 ). This proves that 

sup |f(y) − gaj1 ,...,ajn 
(y)| < ε. 

y∈X 

Therefore {gaj1 ,...,ajn 
} is a finite ε-net, and hence F is totally 

bounded. 

Now suppose F is compact. (1) follows because C(X) is a metric 
space and compact subsets of a metric space are closed. Fix x. The 
map τx : C(X) → R given by τxf = f(x) is continuous, so {f(x)}, 
f ∈ F , is the image under τx of F . Since F is compact and τx 

is continuous, then τx(F) is compact and hence bounded, which 
proves (2). 

Finally, let ε > 0. Since F is a compact subset of a metric 
space, there exists a finite ε/3-net: {f1, . . . , fn}. If x ∈ X, for 
some i between 1 and n there exists an open set Gi such that 
|fi(y) − fi(x)| < ε/3 if y ∈ Gi. Let G = ∩n Gi. If y ∈ G andi=1 
g ∈ F , there exists i such that d(g, fi) < ε/3, and so 

|g(y) − g(x)| ≤ |g(y) − fi(y)| + |fi(y) − fi(x)| + |fi(x) − g(x)| < ε. 

This proves that F is equicontinuous. 

The most useful consequence of the Ascoli-Arzelà theorem is 
that if (2) and (3) hold for a family F , then any sequence in F has a 
subsequence which converges uniformly (the limit is not necessarily 
in F unless we also assume F is closed). 
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20.12 Stone-Weierstrass theorems 

The Stone-Weierstrass theorems are a pair of theorems, one for 
real-valued functions and one for complex-valued functions, that 
allow one to approximate continuous functions. 

First we prove the Weierstrass approximation theorem, which 
allows one to approximate real-valued functions on a compact in-
terval. 

There are a number of different proofs. We give one that uses 
some ideas from Section 15.3, although we prove what we need here 
from scratch. 

Theorem 20.41 Let [a, b] be a finite subinterval of R, g a contin-
uous function on [a, b], and ε > 0. Then there exists a polynomial 
P (x) such that 

sup |g(x) − P (x)| < ε. 
x∈[a,b] 

Proof. Let 
21 −x /2β2 

ϕβ (x) = √ e . 
2πβ R 

We saw in Exercise 11.21 that R ϕ1(x) dx = 1, and by a change ofR 
variables, R ϕβ (x) dx = 1 for every β > 0. Also, again by a change 
of variables and the dominated convergence theorem, if δ > 0, Z Z 

ϕβ (x) dx = ϕ1(x) dx → 0 
[−δ,δ]c |x|>δ/β 

as β → 0. 

Without loss of generality we may assume that g is not identi-
cally zero. Extend g to all of R by setting g(x) = 0 if x < a − 1 
or x > b + 1 and letting g be linear on [a − 1, a] and on [b, b + 1]. 
Then g has compact support and is continuous on R. 

Step 1. We prove that Z 
g ∗ ϕβ (x) = g(x − y)ϕβ (y) dy 

will be close to g(x), uniformly over x ∈ R, if β is small enough. 
Let ε > 0 and choose δ such that |g(z) − g(z0)| < ε/4 if |z − z0| < δ. 
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Since the integral of ϕβ is 1, we have Z 
|g ∗ ϕβ (x) − g(x)| = [g(x − y) − g(x)]ϕβ (y) dy (20.4) Z 

≤ |g(x − y) − g(x)|ϕβ (y) dy 
|y|>δZ 
+ |g(x − y) − g(x)|ϕβ (y) dy. 

|y|≤δ 

The term on the second line of (20.4) is less than or equal to Z 
2kgk∞ ϕβ (y) dy, 

|y|>δ 

which will be less than ε/4 if we take β small enough. The term 
on the last line of (20.4) is less than or equal to Z Z 

(ε/4) ϕβ (y) dy ≤ (ε/4) ϕβ (y) dy = ε/4 
|y|≤δ R 

by our choice of δ. Therefore 

|g ∗ ϕβ (x) − g(x)| ≤ ε/2 

uniformly over x ∈ R if we take β small enough. 

Step 2. Next we approximate ϕβ (x) by a polynomial. Let N = 
x2[|a| + |b| + 1]. For every M > 0, the Taylor series for e about 

0 converges uniformly on [−M, M ]. To see this, we see that the 
remainder term satisfies 

∞ ∞X xk X Mk 

≤ → 0 
k! k! 

k=n+1 k=n+1 

as n → ∞. Thus, by replacing x by −x2/2β2 in the Taylor series 
for ex and taking n large enough, there is a polynomial Q such that 

ε 
sup |Q(x) − ϕβ (x)| < . 

−N ≤x≤N 4Nkgk∞ 

Now Z 
|g ∗ ϕβ (x) − g ∗ Q(x)| = g(x − y)[ϕβ (y) − Q(y)] dy (20.5) Z 

≤ |g(x − y)| |ϕβ (y) − Q(y)| dy. 
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If x ∈ [a, b], then g(x−y) will be non-zero only if x−y ∈ [a−1, b+1], 
which happens only if |y| ≤ 2[|a| + |b| + 1]. Thus the last line of 
(20.5) is bounded by Z N 

kgk∞ |ϕβ (y) − Q(y)| dy ≤ ε/2. 
−N 

Step 3. Finally, by a change of variables, Z 
g ∗ Q(x) = g(y)Q(x − y) dy. 

Since Q is a polynomial, then Q(x − y) is a polynomial in x and y, 
and we can write 

n nXX 
Q(x − y) = cjkx

j y k 

j=0 k=0 

for some constants cjk. Then 

nn �Z X �X 
g ∗ Q(x) = cjky k g(y) dy xj , 

j=0 k=0 

which is a polynomial. Therefore we have approximated g on [a, b] 
by a polynomial g ∗ Q to within ε, uniformly on the interval [a, b]. 

For an alternate proof, see Theorem 21.13. 

Let X be a topological space and let C(X) be the set of real-
valued continuous functions on X. Let A be a subset of C(X). 
We say A is an algebra of functions if f + g, cf , and fg are in A 
whenever f, g ∈ A and c is a real number. We say A is a lattice 
of functions if f ∧ g and f ∨ g are in A whenever f, g ∈ A. Recall 
f ∧ g(x) = min(f(x), g(x)) and f ∨ g(x) = max(f(x), g(x)). 

We say A separates points if whenever x 6= y are two points in 
X, there exists f ∈ A (depending on x and y) such that f(x) = 
f(y). We say A vanishes at no point of X if whenever x ∈ X, there 
exists g ∈ A (depending on x) such that g(x) 6= 0. 

Lemma 20.42 Suppose A is an algebra of functions in C(X) such 
that A separates points and vanishes at no point. If x and y are 

6
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two distinct points in X and a, b are two real numbers, there exists 
a function f ∈ A (depending on x, y, a, b) such that f(x) = a and 
f(y) = b. 

Proof. Let g be a function in A such that g(x) 6= g(y). Let hx and 
hy be functions in A such that hx(x) =6 0 and hy(y) 6= 0. Define u 
and v ∈ A by 

u(z) = g(z)hx(z) − g(y)hx(z) 

and 
v(z) = g(z)hy (z) − g(x)hy(z). 

Note that u(x) =6 0, u(y) = 0, v(x) = 0, and v(y) =6 0. Now set 

a b 
f(z) = u(z) + v(z). 

u(x) v(y) 

This f is the desired function. 

Theorem 20.43 Let X be a compact Hausdorff space and let A be 
a lattice of real-valued continuous functions with the property that 
whenever x 6= y and a, b ∈ R, then there exists f ∈ A (depending 
on x, y, a, and b) such that f(x) = a and f(y) = b. Then A is 
dense in C(X). 

Saying A is dense in C(X) is equivalent to saying that if ε > 0 
and f ∈ C(X), there exists g ∈ A such that supx∈X |f(x) − g(x)| < 
ε. Thus we can approximate any continuous function in C(X) by 
an element of A. 

Proof. Let ε > 0 and let f ∈ C(X). Fix x ∈ X for the moment. 
If y 6= x, let hy be an element of A such that hy(x) = f(x) and 
hy (y) = f(y). Choose an open set Gy containing y such that 
hy (z) < f(z) + ε for all z ∈ Gy. This is possible because f and 
hy are continuous; we use Exercise 20.9. The collection {Gy}, 
y ∈ X, is an open cover for X, hence there is a finite subcover 
{Gy1 , . . . , Gyn }. Define 

kx(z) = hy1 (z) ∧ · · · ∧ hyn (z). 

Note that kx ∈ A, kx(x) = f(x), and kx(z) < f(z) + ε for every 
z ∈ X. We used the fact that A is a lattice of functions. 
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We construct such a function kx for each x ∈ X. Let Hx be an 
open set containing x such that kx(z) > f(z) − ε for each z ∈ Hx. 
This is possible because kx and f are continuous, kx(x) = f(x), 
and Exercise 20.9. The collection {Hx}, x ∈ X, is an open cover 
of X. Let {Hx1 , . . . ,Hxm } be a finite subcover. Let 

g(z) = kx1 (z) ∨ · · · ∨ kxm (z). 

Then g ∈ A and g(z) > f(z) − ε for each z. Moreover, since 
kxi < f + ε for each i, then g(z) < f(z) + ε for each z. Therefore 
supz∈X |g(z) − f(z)| < ε. This proves A is dense in C(X). 

Here is the version of the Stone-Weierstrass theorem for real-
valued functions. 

Theorem 20.44 Suppose X is a compact Hausdorff space and 
A is an algebra of real-valued continuous functions that separates 
points and vanishes at no point. Then A is dense in C(X). 

Proof. We make the observation that if A is an algebra, then A, 
the closure of A, is also an algebra. In view of Theorem 20.43, we 
need only show A is also a lattice of functions. Since A is closed, 
if it is dense in C(X), it must equal C(X). 

Thus we need to show that if f1, f2 ∈ A, then f1 ∧f2 and f1 ∨f2 

are also in A. Since 
1 1f1 ∧ f2 = (f1 + f2 −|f1 − f2|), f1 ∨ f2 = (f1 + f2 + |f1 − f2|),2 2 

it is enough to show that if f ∈ A, then |f | ∈ A. 

Let ε > 0 and suppose f ∈ A. Then there exists g ∈ A such 
that supx∈X |f(x) − g(x)| < ε/4. Let M = kgk∞. Since the 
function x → |x| is continuous, by the Weierstrass approximation 
theorem (Theorem 20.41), there exists a polynomial P such that 
supy∈[−M,M ] |P (y) − |y| | < ε/4. In particular, |P (0)| < ε/4. If we 
let R(y) = P (y) − P (0), then R is a polynomial with zero constant 
term such that 

sup |R(y) − |y| | < ε/2. 
y∈[−M,M ] 

2 3Since A is an algebra, then g, g , g , etc. are in A, and hence 
R(g) ∈ A. Here R(g) is the function defined by R(g)(x) = R(g(x)). 
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We have 
sup |R(g)(x) − |g(x)| | < ε/2. 
x∈X 

We know that |f(x) − g(x)| < ε/4 for all x ∈ X, hence 

| |f(x)| − |g(x)| | < ε/4. 

We conclude that 

sup |R(g)(x) − |f(x)| | < ε. 
x∈X 

We have thus found an element of A, namely, R(g), that is within 
ε of |f |, uniformly over x ∈ X. Since ε is arbitrary, we conclude 
that |f | ∈ A, and the proof is complete. 

The above theorem has an extension to complex-valued func-
tions. Let C(X, C) be the set of complex-valued continuous func-
tions on a topological space X. As usual we use f for the complex 
conjugate of f . When we say that A is an algebra of complex-
valued functions, we require that f + g, fg, and cf be in A when 
f, g ∈ A and c is a complex number. 

We now present the version of the Stone-Weierstrass theorem 
for complex-valued functions. 

Theorem 20.45 Suppose X is a compact Hausdorff space and 
C(X, C) is the set of complex-valued continuous functions on X. 
Let A be an algebra of continuous complex-valued functions that 
separates points and vanishes at no point. Suppose in addition that 
f is in A whenever f is in A. Then the closure of A is C(X, C). 

Proof. Let R be the set of real-valued functions in A. Clearly R 
is an algebra of continuous functions, that is, f + g, fg, and cf are 
in R whenever f, g ∈ R and c is a real number. If f ∈ A, then 
f ∈ A, and therefore Re f = (f + f)/2 and Im f = (f − f)/2i are 
in A. Hence if f ∈ A, then the real part and imaginary parts of f 
are in R. 

If x ∈ X, there exists f ∈ A such that f(x) =6 0. This means 
that either Re f or Im f (or both) are non-zero, and hence R van-
ishes at no point of X. If x =6 y are two points in X, there ex-
ists a function g such that g(x) 6= g(y). Therefore at least one 
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Re g(x) 6= Re g(y) or Im g(x) =6 Im g(y) (or perhaps both hold). 
This implies that R separates points. 

By the real-valued version of the Stone-Weierstrass theorem, 
Theorem 20.44, R is dense in the collection of real-valued contin-
uous functions on X. If f ∈ C(X, C), we can approximate Re f to√ √ 
within ε/ 2 by a function k1 ∈ R and also Im f to within ε/ 2 by 
a function k2 ∈ R. Then k1 + ik2 will be in A and approximates f 
to within ε. 

Example 20.46 The assumption that the complex conjugate of 
every function in A be in A cannot be eliminated. To see this, you 
need to know the following fact from complex analysis. This can 
be proved in a number of ways. Using Morera’s theorem (see, e.g., 
[9]) gives a quick proof. 

If fn is a sequence of complex-valued functions that are analytic 
in the open unit disk in the complex plane and continuous on the 
closed unit disk and fn converges uniformly to a function f on the 
closed unit disk, then f is analytic in the open unit disk as well. 

To see why this example shows that the inclusion of complex 
conjugates is necessary, let A be the collection of complex-valued 
functions that are analytic in the open unit disk in the plane and 
continuous on the closed unit disk. Since the function 1 and the 
function z are in A, then A vanishes at no point and separates 
points. Clearly A is an algebra of functions. The function z is 
not in the closure of A because it is not analytic in the open unit 
disk (or anywhere else); it doesn’t satisfy the Cauchy-Riemann 
equations. 

20.13 Connected sets 

If X is a topological space, X is disconnected if there exist two 
disjoint non-empty open sets G and H such that X = G ∪ H. The 
space X is connected if X is not disconnected. A subset A of X 
is connected if there do not exist two disjoint open sets G and H 
such that A ⊂ G ∪ H, A ∩ G =6 ∅, and A ∩ H =6 ∅. 

A subset A is connected if A, viewed as a topological space with 
the relative topology, is connected. 
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The most obvious example of connected sets are intervals in R, 
but there is something to prove. Note that J being an interval can 
be characterized by the fact that if x ≤ z are in J and x ≤ y ≤ z, 
then y ∈ J . 

Proposition 20.47 A subset A of the real line with the usual 
topology is connected if and only if A is an interval. 

Proof. First we prove that if A is not an interval, then A is not 
connected. If A is not an interval, there exists x < z ∈ A and 
y ∈/ A such that x < y < z. If we let G = (−∞, y) and H = (y, ∞), 
the sets G and H are our two disjoint open sets that show A is not 
connected. 

Now we show that if A is an interval, then A is connected. 
Suppose not. Then there exist disjoint open sets G and H whose 
union contains A and which each intersect A. Pick a point x ∈ A∩G 
and a point y ∈ A ∩ H. We may assume x < y, for if not, we 
reverse the labels of G and H. Let t = sup{s : s ∈ [x, y] ∩ G}. 
Since x ≤ t ≤ y, then t ∈ A. If t ∈ G, then since G is open, there 
exists a point u ∈ (t, y) that is in G. Since A is an interval and 
x ≤ t < u < y, then u ∈ A. This contradicts t being an upper 
bound. If t ∈ H, then since H is open, there exists ε < t − x such 
that (t − ε, t] ⊂ H. This contradicts t being the least upper bound. 
Therefore we have found a point t ∈ A that is not in G ∪ H, a 
contradiction, and therefore A is connected. 

Analogously to the situation with compact spaces, continuous 
functions map connected spaces to connected spaces. 

Theorem 20.48 Suppose f is a continuous function from a con-
nected topological space X onto a topological space Y . Then Y is 
connected. 

Proof. If Y is not connected, there exist disjoint open sets G 
and H whose union is Y . Then since f is continuous, f−1(G) and 
f−1(H) are disjoint open sets whose union is X, contradicting that 
X is connected. Therefore Y must be connected. 

A corollary of Theorem 20.48 and Proposition 20.47 is the in-
termediate value theorem. 
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Corollary 20.49 Suppose f is a continuous function from a con-
nected topological space X into the reals, a < b ∈ R, and there exist 
points x and y in X such that f(x) = a and f(y) = b. If a < c < b, 
there exists a point z ∈ X such that f(z) = c. 

Proof. By Theorem 20.48, f(X) is connected. By Proposition 
20.47, f(X) must be an interval. Since a, b ∈ f(X) and a < c < b, 
then c ∈ f(X). 

We now prove that the product of connected topological spaces 
is connected. We begin with a lemma. 

Lemma 20.50 Suppose {Aα}, α ∈ I, is a non-empty collection of 
connected subsets of X such that ∩α∈I Aα 6= ∅. Then A = ∪α∈I Aα 

is connected. 

Proof. If A is not connected, there exist disjoint open sets G and 
H which both intersect A and whose union contains A. Let x be 
any point of ∩α∈I Aα. Suppose x ∈ G, the other case being similar. 
If α ∈ I, then Aα is connected and x ∈ Aα ∩ G. Since Aα ⊂ A ⊂ 
G ∪ H, we must have Aα ⊂ G, or else we get a contradiction to Aα 

being connected. This is true for each α ∈ I, so A = ∪α∈I Aα ⊂ G. 
This contradicts A having a non-empty intersection with H, and 
we conclude that A is connected. 

We do the case of finite products of connected topological spaces 
separately; we will need this result for the general proof. 

Lemma 20.51 Suppose X1, . . . , Xn are finitely many connected Qn
topological spaces. Then X = Xj is connected. j=1 

Proof. Suppose X is not connected. Then there exist disjoint non-
empty open sets G and H whose union is X. Pick x ∈ G and y ∈ H. 

kFor k = 0, . . . , n, let z be the point whose first k coordinates 
are the same as those of x and whose remaining coordinates are 

k k kthe same as y. Thus if z = (z1 , . . . , z ), x = (x1, . . . , xn), andn 
k ky = (y1, . . . , yn), then z = xi if i ≤ k and zi = yi if i > k.i 
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0 nSince z = x ∈ G and z = y ∈ H, there exists k < n such that 
k+1 ∈ H.zk ∈ G and z Let 

F = {x1} × · · · × {xk} × Xk+1 × {yk+2} × · · · × {yn}. 

It is routine to check that F is homeomorphic to Xk+1, so there 
exists a continuous function f such that F = f(Xk+1), and by 

k+1 ∈ F ∩H,Theorem 20.48, F is connected. But zk ∈ F ∩G and z 
so F ∩G and F ∩ H are two non-empty disjoint relatively open sets 
whose union is F , contradicting that F is connected. 

Theorem 20.52 Suppose {Xα}, α ∈ I, is a non-empty collection Q
of connected topological spaces. Then X = α∈I Xα is connected. 

Proof. The idea of the proof is to find a set E that is a connected 
subset of X and such that E is equal to X. 

Fix x ∈ X. Define D(x; αi1 , . . . αin ) to be the set of points 
y of X all of whose coordinates agree with the corresponding co-
ordinates of x except for the αi1 , . . . , αin ones. That is, if α ∈/ 
{αi1 , . . . , αin }, then πα(x) = πα(y). Note that D(x; αi1 , . . . , αin )Q Qn
is homeomorphic to ( Xαj ) × ( α6 ,...,αin 

{πα(x)}). As inj=1 =αi1 

the proof of Lemma 20.51, D(x, αi1 , . . . , αin ) is connected. 

Let 
En(x) = ∪αi1 ,...,αin ∈I D(x; αi1 , . . . , αin ). 

We see that En(x) is the set of points y in X such that at most 
n coordinates of y differ from the corresponding coordinates of x. 
Since x is in each D(x; αi1 , . . . , αin ), then by Lemma 20.50, En(x) 
is connected. Let E = ∪n≥1En(x). By Lemma 20.50 again, since 
x ∈ En(x) for each n, then E is connected. 

We now show that E is dense in X. Let z ∈ X and let G be an 
open set containing x. We must prove that G contains a point of E. 
By the definition of the product topology, there exists a basic open 
set H such that x ∈ H ⊂ G, where H = πα 

− 
1 

1 · · ∩ π−1(Kn),(K1) ∩ · αn 

n ≥ 1, each αi ∈ I, and each Ki is open in Xαi . Pick yαi ∈ Ki for 
each i, and let y be the point whose αth coordinate is yαi for i ≤ ni 
and all its other coordinates agree with the corresponding coordi-
nates of x. Thus παi (y) = yαi for i ≤ n and if α =6 α1, . . . , αn, 
then πα(y) = πα(x). The point y is thus in En(x) and also in H, 
therefore y ∈ H ⊂ G and y ∈ En(x) ⊂ E. 
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We finish the proof by showing X is connected. If not, X = 
G ∪ H, where G and H are disjoint non-empty open subsets of X. 
Since E is connected, either E ∩G or E ∩H is empty; let us assume 
the latter. Choose x ∈ H. Then H is an open set containing x 
that does not intersect G, hence x ∈/ E. However E is dense in X, 
a contradiction. We conclude X is connected. 

20.14 Exercises 

Exercise 20.1 If X is a non-empty set and T1 and T2 are two 
topologies on X, prove that T1 ∩ T2 is also a topology on X. 

Exercise 20.2 If G is open in a topological space X and A is 
dense in X, show that G = G ∩ A. 

Exercise 20.3 Let X be R2 with the usual topology and say that 
x ∼ y if x = Aθy for a matrix Aθ of the form � � 

cos θ − sin θ 
Aθ = ,

sin θ cos θ 

with θ ∈ R. Geometrically, x ∼ y if x can be obtained from y by a 
rotation of R2 about the origin. 
(1) Show that ∼ is an equivalence relationship. 
(2) Show that the quotient space is homeomorphic to [0, ∞) with 
the usual topology. 

Exercise 20.4 Prove that every metric space is first countable. 

Exercise 20.5 Let X be an uncountable set of points and let T 
consist of all subsets A of X such that Ac is finite and let T also 
contain the empty set. Prove that X is a topological space that is 
not first countable. 

Exercise 20.6 Give an example of a metric space which is not 
second countable. 

Exercise 20.7 Prove that a subset A of X is dense if and only if 
A intersects every open set. 
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Q
Exercise 20.8 Let X = α∈I Xα, where I is a non-empty index 
set. Prove that a net hxβ i in X converges to x if and only if the 
net hπα(xβ )i converges to πα(x) for each α ∈ I. 

Exercise 20.9 Let f map a topological space X into a topological 
space Y . Prove that f is continuous if and only if whenever x ∈ X 
and G is an open set in Y containing f(x), there exists an open set 
H in X containing x such that f(y) ∈ G whenever y ∈ H. 

Exercise 20.10 Let X and Y be topological spaces and y0 ∈ Y . 
Prove that X ×{y0}, with the relative topology derived from X ×Y , 
is homeomorphic to X. 

Exercise 20.11 Let X, Y , and Z be topological spaces. Suppose 
f : X → Y and g : Y → Z are continuous functions. Prove that 
g ◦ f is a continuous function from X to Z. 

Exercise 20.12 Suppose that X and Y are topological spaces and 
f : X → Y is such that f(xn) converges to f(x) whenever xn con-
verges to x. Is f necessarily continuous? If not, give a counterex-
ample. 

Exercise 20.13 Prove that f : X → Y is continuous if and only if 
the net hf(xα)i converges to f(x) whenever the net hxαi converges 
to x. 

Exercise 20.14 Let X be the collection of Lebesgue measurable 
functions on [0, 1] furnished with the topology of pointwise conver-
gence. Say that f ∼ g for f, g ∈ X if f = g a.e. Describe the 
quotient topology. 

Exercise 20.15 A set A has the Lindelöf property if every open 
cover of A has a countable subcover. Prove that a metric space X 
has the Lindelöf property if and only if X is separable. 

Exercise 20.16 Find an example of a compact set that is not 
closed. 

Exercise 20.17 Show that the product topology on [0, 1]N and 
the topology generated by the metric ρ of (20.3) are the same. 
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Exercise 20.18 Let {Xα}, α ∈ I be a non-empty collection ofQ
topological spaces and let X = Xα. A sequence {xn} in Xα∈I 
converges pointwise to x if πα(xn) → πα(x) for each α ∈ I. Prove 
that xn converges to x pointwise if and only if xn converges to x 
with respect to the product topology of X. 

Exercise 20.19 This exercise illustrates why the notion of se-
quences is not that useful for general topological spaces. Let X 
be the space of real-valued bounded functions on [0, 1]. X can be 
identified with R[0,1] and we furnish X with the product topology. 
Let E be the set of Borel measurable functions on [0, 1]. 
(1) Show that E is dense in X. 
(2) Let N be a set in [0, 1] that is not Borel measurable. Let 
f = χN . Prove that there does not exist a sequence in E that 
converges to f , but that every neighborhood of f contains points 
of E. 

Exercise 20.20 Prove that if I is a non-empty countable set andQ
each Xα, α ∈ I, is second countable, then α∈I Xα is second 
countable. 

Exercise 20.21 If X is a metric space, define 

Aδ = {x ∈ X, d(x, A) < δ}, 

where d(x, A) = infy∈A d(x, y). For closed subsets of X, define 

dH (E, F ) = inf{δ : E ⊂ F δ and F ⊂ Eδ}. 

(1) Prove that dH is a metric. (This is called the Hausdorff metric.) 

(2) Suppose X is compact. Is the set of closed subsets with metric 
dH necessarily compact? Prove, or else give a counterexample. 

Exercise 20.22 Prove that if {xn} is a Cauchy sequence in a met-
ric space X and a subsequence of {xn} converges to a point x, then 
the full sequence converges to x. 

Exercise 20.23 Prove that if X is a topological space, then C(X) 
is a complete metric space. 

Exercise 20.24 Prove that a sequence {xn} converges to a point 
x if and only if every subsequence {xnj } has a further subsequence 
which converges to x. 
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Exercise 20.25 Let A be a subset of a metric space X. Prove 
that if A is totally bounded, then A is also totally bounded. 

Exercise 20.26 Let X be a topological set such that the set {y}
is closed for each y ∈ X. Prove that X is a T1 space. 

Exercise 20.27 Find two disjoint closed subsets E and F of R 
such that infx∈E,y∈F |x − y| = 0. 

Exercise 20.28 Prove that every metric space is a normal space. 

Exercise 20.29 Prove that a space X is a Hausdorff space if and 
only if every net converges to at most one point. 

Exercise 20.30 Show that a closed subspace of a normal space is 
normal. 

Exercise 20.31 Prove that [0, 1][0,1] with the product topology is 
not metrizable. 

Exercise 20.32 Prove that if X is metrizable and I is countable 
and non-empty, then XI is metrizable. 

Exercise 20.33 Let X be a locally compact Hausdorff space and 
X∗ its one point compactification. A continuous function f map-
ping X to R is said to vanish at infinity if given ε > 0 there exists 
a compact set K such that |f(x)| < ε for x ∈/ K. Prove that f van-
ishes at infinity if and only if f is the restriction of a continuous 
function f : X∗ → R with f(∞) = 0. 

Exercise 20.34 Prove that the one-point compactification of Rn 

is homeomorphic to the n-sphere {x ∈ Rn+1 : kxk = 1}. 

Exercise 20.35 A sequence {fn} in C(X) is said to converge uni-
formly on compact sets to a function f ∈ C(X) if {fn} converges 
to f uniformly on K whenever K is a compact subset of X. 
(1) Give an example of a sequence {fn} in C(R) that converges uni-
formly to 0 on compact sets but such that {fn} does not converge 
uniformly to 0 on R. 
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(2) Let X be a locally compact Hausdorff space, M > 0, and {fn}
an equicontinuous sequence in C(X) such that |fn(x)| ≤ M for all 
x ∈ X and all n. Suppose there exist compact sets Kj that increase 
to X. Prove there exists a subsequence that converges uniformly 
on compact sets. 

Exercise 20.36 Show that RN is not locally compact. 

Exercise 20.37 Show that C([0, 1]) is not locally compact. 

Exercise 20.38 Prove that if {Xα}, α ∈ I, is a non-empty col-Q
lection of Hausdorff spaces such that α∈I Xα is locally compact, 
then each Xα is also locally compact. 

Exercise 20.39 A real-valued function f on a subset X of R is 
Hölder continuous of order α if there exists M such that 

|f(x) − f(y)| ≤ M |x − y|α 

for each x, y ∈ X. Suppose 0 < α ≤ 1 and let X = [0, 1]. Prove 
that n 

H = f ∈ C([0, 1]) : sup |f(x)| ≤ 1, 
x∈[0,1] o|f(x) − f(y)|
sup ≤ 1 

|x − y|α 
x,y∈[0,1],x6=y 

is compact in C([0, 1]). 

Exercise 20.40 Let K : [0, 1]2 → R be continuous and let L 
be the set of Lebesgue measurable functions f on [0, 1] such thatR 1kfk∞ ≤ 1. For f ∈ L, define Tf(x) = K(x, y)f(y) dy. Prove 

0 
that {Tf ; f ∈ L} is an equicontinuous family in C([0, 1]). 

Exercise 20.41 Prove that if X is a compact metric space, then 
C(X) is separable. 

Exercise 20.42 Let X = [0, ∞] be the one point compactification 
of [0, ∞), the non-negative real numbers with the usual metric. Let 
A be the collection of all finite linear combinations 

nX 
−λj x aj e , 

j=1 
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where the aj are real and each λj ≥ 0. 
(1) Prove that A is a dense subset of C(X). 
(2) Prove that if f1 and f2 are two continuous integrable functions 
from [0, ∞) to R that vanish at infinity and which have the sameR ∞ R ∞
Laplace transform, that is, e−λxf1(x) dx = e−λxf2(x) dx0 0 
for all λ ≥ 0, then f1(x) = f2(x) for all x. 

Exercise 20.43 Suppose X and Y are compact Hausdorff spaces. 
Let A be the collection of real-valued functions in C(X × Y ) of the 
form 

nX 
aigi(x)hi(y), 

i=1 

where n ≥ 1, each ai ∈ R, each gi ∈ C(X), and each hi ∈ C(Y ). 
Prove that A is dense in C(X × Y ). 

Exercise 20.44 Let X be a compact Hausdorff space and suppose 
A is an algebra of continuous functions that separates points. Prove 
that either A is dense in C(X) or else there exists a point x ∈ X 
such that A = {f ∈ C(X) : f(x) = 0}. 

Exercise 20.45 Prove that if f : [0, 1] → R and g : [0, 1] → R are 
continuous functions such that Z 1 Z 1 

f(x)x n dx = g(x)x n dx 
0 0 

for n = 0, 1, 2, . . ., then f = g. 

Exercise 20.46 Let X be the closed unit disk in the complex 
plane. A polynomial in z and z is a function of the form 

n nXX 
P (z) = ajkz

j z k , 
j=0 k=0 

where ajk are complex numbers. Prove that if f is a function in 
C(X, C), then f can be uniformly approximated on the closed unit 
disk by polynomials in z and z. 

Exercise 20.47 Prove that if B is a Banach space, then B is con-
nected. 



266 CHAPTER 20. TOPOLOGY 

Exercise 20.48 Prove that if A is a convex subset of a Banach 
space, then A is connected. 

Exercise 20.49 A topological space X is arcwise connected if 
whenever x, y ∈ X, there exists a continuous function f from [0, 1] 
into X such that f(0) = x and f(1) = y. 
(1) Prove that if X is arcwise connected, then X is connected. 
(2) Let A1 = {(x, y) ∈ R2 : y = sin(1/x), 0 < x ≤ 1} and 
A2 = {(x, y) ∈ R2 : x = 0, −1 ≤ y ≤ 1}. Let X = A1 ∪ A2 with the 
relative topology derived from R2 . Prove that X is connected but 
not arcwise connected. 

Exercise 20.50 If X is a topological space, a component of X is a 
connected subset of X that is not properly contained in any other 
connected subset of X. Prove that each x ∈ X is contained in a 
unique component of X. 

Exercise 20.51 A topological space X is totally disconnected if 
the components are all single points. 
(1) Prove that the Cantor set with the relative topology derived 
from the real line is totally disconnected. 
(2) Prove that if {Xα}, α ∈ I, is a non-empty collection of totallyQ
disconnected spaces, then X = α∈I Xα is totally disconnected. 

Exercise 20.52 Prove that a topological space X is connected if 
and only if for each pair x, y ∈ X there is a connected subspace of 
X containing both x and y. 

Exercise 20.53 Let X be a connected space. Suppose f : X → R 
is continuous and non-constant. Prove that X is uncountable. 

Exercise 20.54 Suppose {Aα}, α ∈ I, is a non-empty collection of 
connected subsets of a topological space X with the property that 
Aα ∩ Aβ 6= ∅ for each α, β ∈ I. Prove that ∪α∈I Aα is connected. 



Chapter 21 

Probability 

Although some of the terminology and concepts of probability the-
ory derive from its origins in gambling theory and statistics, the 
mathematical foundations of probability are based in real analysis. 
For example, a probability is just a measure with total mass one, 
and one of the main theorems, the strong law of large numbers, is 
an assertion about almost everywhere convergence. 

In this chapter we introduce some of the major concepts of prob-
ability theory, including independence, the laws of large numbers, 
conditional expectation, martingales, weak convergence, character-
istic functions, and the central limit theorem. We finish by con-
structing two different types of probabilities on infinite dimensional 
spaces. 

21.1 Definitions 

A probability space is a triple (Ω, F , P), where Ω is an arbitrary set, 
F is a σ-field of subsets of Ω, and P is a probability on (Ω, P). A 
σ-field is exactly the same thing as a σ-algebra. A probability or 
probability measure is a positive measure whose total mass is 1, so 
that P(Ω) = 1. Elements of F are called events. Elements of Ω are 
often denoted ω. 

Instead of saying a property occurs almost everywhere, we talk 
about properties occurring almost surely, written a.s. Real-valued 
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measurable functions from Ω to R are called random variables and 
are usually denoted by X or Y or other capital letters. Often one 
sees “random variable” abbreviated by “r.v.” 

The Lebesgue integral of a random variable X with respect to 
a probability measure P is called the expectation or the expected R 
value of X, and we write E X for X dP. The notation E [X; A]R 
is used for 

A X dP. 

The random variable 1A is the function that is one if ω ∈ A and 
zero otherwise. It is called the indicator of A since the term char-
acteristic function in probability refers to the Fourier transform. 
Events such as {ω : X(ω) > a} are almost always abbreviated by 
(X > a). An expression such as 

(X > a, Y > b) 

means {ω : X(ω) > a and Y (ω) > b}; the comma means “and.” 

Given a random variable X, the σ-field generated by X, denoted 
σ(X) is the collection of events (X ∈ A), A a Borel subset of 
R. If we have several random variables: X1, X2, . . . , Xn, we write 
σ(X1, . . . , Xn) for the σ-field generated by the collection of events 

{(Xi ∈ A) : A a Borel subset of R, i = 1, . . . , n.} 

This definition is extended in the obvious way when there are in-
finitely many random variables Xi. 

Given a random variable X, we can define a probability on 
(R, B) where B is the Borel σ-field on R, by 

PX (A) = P(X ∈ A), A ∈ B. (21.1) 

The probability PX is called the law of X or the distribution of X. 
We define FX : R → [0, 1] by 

FX (x) = PX ((−∞, x]) = P(X ≤ x). (21.2) 

The function FX is called the distribution function of X. Note 
that FX is an increasing function whose corresponding Lebesgue-
Stieltjes measure is PX . 

Proposition 21.1 The distribution function FX of a random vari-
able X satisfies: 
(1) FX is increasing; 
(2) FX is right continuous with limits from the left existing; 
(3) limx→∞ FX (x) = 1 and limx→−∞ FX (x) = 0. 
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Proof. These follow directly from elementary properties of mea-
sures. For example, if x ≤ y, then (X ≤ x) ⊂ (X ≤ y), and 
(1) follows. If xn ↓ x, then (X ≤ xn) ↓ (X ≤ x), and so 
FX (xn) = P(X ≤ xn) → P(X ≤ x) = FX (x), since P(X ≤ x1) ≤ 1. 
This proves that FX is right continuous. Since FX is increasing, 
limy→x− FX (y) exists. This proves (2). The proof of (3) is left to 
the reader. 

Any function F : R → [0, 1] satisfying (1)-(3) of Proposition 
21.1 is called a distribution function, whether or not it comes from 
a random variable. 

Proposition 21.2 Suppose F is a distribution function. There 
exists a random variable X such that F = FX . 

Proof. Let Ω = [0, 1], F the Borel σ-field, and P Lebesgue mea-
sure. Define X(ω) = sup{y : F (y) < ω}. If X(ω) ≤ x, then 
F (y) > ω for all y > x. By right continuity, F (x) ≥ ω. On the 
other hand, if ω ≤ F (x), then x ∈/ {y : F (y) < ω}, so X(ω) ≤ x. 
Therefore {ω : X(ω) ≤ x} = {ω : 0 ≤ ω ≤ F (x)}, and we conclude 
FX (x) = F (x). 

In the above proof, essentially X = F −1 . However F may have 
jumps or be constant over some intervals, so some care is needed 
in defining X. 

Certain distributions or laws appear very often. We list some 
of them. 

(1) Bernoulli. A random variable X is a Bernoulli random variable 
with parameter p if P(X = 1) = p, P(X = 0) = 1 − p for some 
p ∈ [0, 1]. 

(2) Binomial. A random variable X is a binomial random variable � � 
n 

with parameters n and p if P(X = k) = pk(1 − p)n−k , where 
k � � 

n 
n is a positive integer, 0 ≤ k ≤ n, and p ∈ [0, 1]. Here = 

k 
n!/k!(n − k)!. 

(3) Geometric. A random variable X is a geometric random vari-
kable with parameter p if P(X = k) = (1 − p)p , where p ∈ (0, 1) 

and k is a non-negative integer. 
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(4) Poisson. If P(X = k) = e−λλk/k! for k a non-negative inte-
ger and λ > 0, then X is called a Poisson random variable with 
parameter λ. 

If F is absolutely continuous, we call f = F 0 the density of F . 
Some examples of distributions characterized by densities are the 
following. 

(5) Exponential. Let λ > 0. For x > 0 let f(x) = λe−λx . If X has 
a distribution function whose density is equal to f , then X is said 
to be an exponential random variable with parameter λ. 

2 
√1 −x /2(6) Standard normal. Define f(x) = e . If the distribu-
2π 

tion function of X has f as its density, then X is a standard normal 
random variable. Thus Z 

2−xP(X ∈ A) = PX (A) = √ 
1 

e /2 dx. 
2π A 

Exercise 11.21 shows that PX has total mass 1 and so is a proba-
bility measure. 

We can use the law of a random variable to calculate expecta-
tions. 

Proposition 21.3 Suppose g is Borel measurable and suppose g 
is either bounded or non-negative. Then Z 

E g(X) = g(x) PX (dx). 

Proof. If g is the indicator of an event A, this is just the definition 
of PX . By linearity, the result holds for simple functions g. By 
approximating a non-negative measurable function from below by 
simple functions and using the monotone convergence theorem, the 
result holds for non-negative functions g, and by linearity again, it 
holds for bounded and measurable g. 

If FX has a density fX , then PX (dx) = fX (x) dx. If X is 
integrable, that is, E |X| < ∞, we have Z 

E X = xfX (x) dx 
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and in any case we have Z 
E X2 = x 2fX (x) dx, 

although both sides of the equality might be infinite. 

We define the mean of a random variable to be its expectation, 
and the variance of a random variable is defined by 

Var X = E (X − E X)2 . 

The square root of the variance of X is called the standard deviation 
of X. From the definition of variance, it is clear that Var (X + c) = 
Var X for any constant c. 

Note 

Var X = E [X2 − 2X · E X + (E X)2] = E X2 − (E X)2 . (21.3) 

Immediate consequences of this are that Var X ≤ E X2 and that 
Var (cX) = c2Var X for any constant c. 

It is an exercise in calculus to see that the mean of a standard 
normal random variable is zero and its variance is one; use the fact 

2−x /2that xe is an odd function to see that the mean is zero and 
use integration by parts to calculate the variance. 

An equality that is useful is the following. 

Proposition 21.4 If X ≥ 0 a.s. and p > 0, then Z ∞ 

E Xp = pλp−1P(X > λ) dλ. 
0 

The proof will show that this equality is also valid if we replace 
P(X > λ) by P(X ≥ λ). 

Proof. Use the Fubini theorem and write Z ∞ Z ∞ 

pλp−1P(X > λ) dλ = E pλp−11(λ,∞)(X) dλ 
0 0Z X 

= E pλp−1 dλ = E Xp. 
0 

This completes the proof. 
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We have already seen Chebyshev’s inequality in Lemma 10.4. In 
probability notation, Chebyshev’s inequality says 

E X
P(X ≥ a) ≤ 

a 

if X ≥ 0. 

If we apply this to X = (Y − E Y )2 , we obtain 

P(|Y − E Y | ≥ a) = P((Y − E Y )2 ≥ a 2) ≤ Var Y/a2 . (21.4) 

Remark 21.5 Observe that if g is a convex function and and x0 

is in the domain of g, then there is a line through (x0, g(x0)) such 
that the graph of g lies above this line. When g is differentiable at 
x0, the tangent line is the one we want, but such a line exists even 
at points where g is not differentiable. 

This remark allows us to prove Jensen’s inequality, not to be 
confused with the Jensen formula of complex analysis. 

Proposition 21.6 Suppose g is convex and X and g(X) are both 
integrable. Then 

g(E X) ≤ E g(X). 

Proof. If x0 ∈ R, we have 

g(x) ≥ g(x0) + c(x − x0) 

for some constant c by Remark 21.5. Set x = X(ω) and take 
expectations to obtain 

E g(X) ≥ g(x0) + c(E X − x0). 

Now choose x0 equal to E X. 

21.2 Independence 

Let us say two events A and B are independent if P(A ∩ B) = 
P(A)P(B). The events A1, . . . , An are independent if 

P(Ai1 ∩ Ai2 ∩ · · · ∩ Aij ) = P(Ai1 )P(Ai2 ) · · · P(Aij ) 
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whenever 1 ≤ i1 < . . . < ij ≤ n. When n is three, for example, not 
only must P(A1 ∩A2 ∩A3) factor properly, but so must P(A1 ∩A2), 
P(A1 ∩ A3), and P(A2 ∩ A3). 

Proposition 21.7 If A and B are independent, then Ac and B 
are independent. 

Proof. We write 

P(Ac ∩ B) = P(B) − P(A ∩ B) = P(B) − P(A)P(B) 
= P(B)(1 − P(A)) = P(B)P(Ac), 

which proves the proposition. 

We say two σ-fields F and G are independent if A and B are 
independent whenever A ∈ F and B ∈ G. Two random variables 
X and Y are independent if the σ-field generated by X and the σ-
field generated by Y are independent. We define the independence 
of n σ-fields or n random variables in the obvious way. 

If we have an infinite sequence of events {An}, we say they 
are independent if every finite subset of them is independent. We 
define independence for an infinite sequence of random variables 
similarly. 

Remark 21.8 If f and g are Borel functions and X and Y are 
independent, then f(X) and g(Y ) are independent. This follows 
because the σ-field generated by f(X) is a sub-σ-field of the one 
generated by X, and similarly for g(Y ). 

If {An} is a sequence of events, define (An i.o.), read “An in-
finitely often,” by 

(An i.o.) = ∩∞ 
n=1 ∪∞ 

i=n Ai. 

This set consists of those ω that are in infinitely many of the An. 

We now state one of the most useful tools in probability theory, 
the Borel-Cantelli lemma. Note for the first part of the lemma that 
no assumption of independence is made. Also note that we have 
used the proof of the first part of the Borel-Cantelli lemma several 
times already without calling it by that name; see, e.g., the proofs 
of Proposition 13.2 and Theorem 15.4. 
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Lemma 21.9 (Borel-Cantelli lemma) Let {An} be a sequence of 
events.P 
(1) If P(An) < ∞, then P(An i.o.) = 0. n 
(2) Suppose in addition that the An are independent events. IfP 

P(An) = ∞, then P(An i.o.) = 1. n 

Proof. (1) We have 

P(An i.o.) = lim P(∪∞ Ai).i=n 
n→∞ 

However, 
∞X 

P(∪∞ Ai) ≤ P(Ai),i=n 
i=n 

and the right hand side tends to zero as n →∞. 

(2) Write 

N NY Y 
P(∪N Ai) = 1 − P(∩N Ac

i ) = 1 − P(Ac
i ) = 1 − (1 − P(Ai)).i=n i=n 

i=n i=n 

−x −xBy the mean value theorem, 1 − e ≤ x, or 1 − x ≤ e , so we 
have that the right hand side is greater than or equal to 

N� X � 
1 − exp − P(Ai) . 

i=n 

As N → ∞, this tends to 1, so P(∪∞ Ai) = 1. This holds for alli=n 
n, which proves the result. 

The following is known as the multiplication theorem. 

Theorem 21.10 If X, Y , and XY are integrable and X and Y 
are independent, then E [XY ] = (E X)(E Y ). 

Proof. First suppose that X and Y are both non-negative and 
bounded by a positive integer M . Let 

MX2n 

k 
Xn =

2n 
1[k/2n ,(k+1)/2n)(X), 

k=0 



275 21.2. INDEPENDENCE 

and define Yn similarly. We see that 1[k/2n ,(k+1)/2n)(X) is inde-
pendent of 1[j/2n ,(j+1)/2n)(Y ) for each j and k by Remark 21.8. 
Then 

E [XnYn] 
M2n M2nX X k j 

= · E [1[k/2n ,(k+1)/2n )(X)1[j/2n ,(j+1)/2n)(Y )]
2n 2n 

k=0 j=0 

M2n M2nX X k j 
= · P(X ∈ [k/2n , (k + 1)/2n),

2n 2n 
k=0 j=0 

Y ∈ [j/2n , (j + 1)/2n)) 
M2n M2nX X k j 

= · P(X ∈ [k/2n , (k + 1)/2n))
2n 2n 

k=0 j=0 

× P(Y ∈ [j/2n , (j + 1)/2n)) � MX2n 

k � 
=

2n 
E [1[k/2n ,(k+1)/2n)(X)] 

k=0 � MX2n � 
× 

2 
j 
n 
E [1[j/2n ,(j+1)/2n)(Y )] 

j=0 

= (E Xn)(E Yn). 

If we let n → ∞, by the dominated convergence theorem, we ob-
tain our theorem in the case when X and Y are non-negative and 
bounded by M . 

If X and Y are non-negative but not necessarily bounded, use 
Remark 21.8 to see that X ∧ M and Y ∧ M are independent, so 

E [(X ∧ M)(Y ∧ M)] = E [X ∧ M ] E [Y ∧ M ]. 

Letting M → ∞ and using the monotone convergence theorem, 
we have E [XY ] = (E X)(E Y ) when X and Y are non-negative. 
Finally, writing X = X+ − X− and Y = Y + − Y − , we obtain the 
multiplication theorem for the general case by linearity. 

Remark 21.11 If X1, . . . , Xn are independent, then so are the 
random variables X1 − E X1, . . . , Xn − E Xn. Assuming all the 
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random variables are integrable, 

E [(X1 − E X1) + · · · (Xn − E Xn)]
2 

= E (X1 − E X1)
2 + · · · + E (Xn − E Xn)

2 , 

using the multiplication theorem to show that the expectations of 
the cross product terms are zero. We have thus shown 

Var (X1 + · · · + Xn) = Var X1 + · · · + Var Xn. (21.5) 

In words, if the Xi are independent, then the variance of the sum 
is equal to the sum of the variances. 

21.3 Weak law of large numbers 

Suppose Xn is a sequence of independent random variables. Sup-
pose also that they all have the same distribution, that is, PXn = 
PX1 for all n. This situation comes up so often it has a name, 
independent and identically distributed, which is abbreviated i.i.d. 
In this case, P(Xn ∈ A) = P(X1 ∈ A) for all n and all Borel sets 
A. We also see that E Xn = E X1, Var Xn = Var X1, and so on. Pn
Define Sn = Xi. is called a partial sum process. Sn/ni=1 Sn 

is the average value of the first n of the Xi’s. We say a sequence of 
random variables {Yn} converges in probability to a random vari-
able Y if it converges in measure with respect to the measure P. 
Recall that this means that for each ε > 0, 

P(|Yn − Y | > ε) → 0 

as n →∞. 

The weak law of large numbers (we will do the strong law of 
large numbers in Section 21.4) is a version of the law of averages. 

Theorem 21.12 Suppose the Xi are i.i.d. and E X2 < ∞. Then1 
Sn/n → E X1 in probability. 

Proof. Since the Xi are i.i.d., they all have the same expectation, 
and so E Sn = nE X1. Hence E (Sn/n − E X1)2 is the variance of 
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Sn/n. If ε > 0, by (21.4), 

P(|Sn/n − E X1| > ε) = P((Sn/n − E X1)
2 > ε2) (21.6) 

Var (Sn/n)≤ . 
ε2 

Using Remark 21.11, the right hand side is equal to Pn 
i=1 Var Xi nVar X1 

= . (21.7) 
n2ε2 n2ε2 

Since E X2 < ∞, then Var X1 < ∞, and the result follows by 1 
letting n →∞. 

A nice application of the weak law of large numbers is a proof of 
the Weierstrass approximation theorem. Recall from undergradu-
ate probability that the sum of n i.i.d. Bernoulli random variables 
with parameter p is a binomial random variable with parameters n 
and p. To see this, if Sn is the sum of i.i.d. Bernoulli random vari-
ables X1, . . . , Xn, then Sn is the number of the Xi that are equal to 
1. The probability that the first k of the Xi’s are 1 and the rest 0 
is pk(1 − p)n−k , using independence. The probability that the last 
k of the Xi’s are 1 and the rest 0 is the same, and we get the same 
probability for any configuration of k ones and n − k zeroes. There� � � � 

n n 
are such configurations, so P(Sn = k) = pk(1 − p)n−k . 

k k 
For another proof of this fact, see Remark 21.42. 

An easy computation shows that Var X1 = p(1 − p), and so, 
using Remark 21.11, Var Sn = np(1 − p). 

Theorem 21.13 Suppose f is a continuous function on [0, 1] and 
ε > 0. There exists a polynomial P such that 

sup |f(x) − P (x)| < ε. 
x∈[0,1] 

Proof. Let 
n � �X n 

Pn(x) = f(k/n) x k(1 − x)n−k . 
k 

k=0 

Clearly P is a polynomial. Since f is continuous, there exists M 
such that |f(x)| ≤ M for all x ∈ [0, 1] and there exists δ such that 
|f(x) − f(y)| < ε/2 whenever |x − y| ≤ δ. 
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Let Xi be i.i.d. Bernoulli random variables with parameter x. 
Then Sn, the partial sum, is a binomial random variable, and hence 
Pn(x) = E f(Sn/n). The mean of Sn/n is x. We have 

|Pn(x) − f(x)| = |E f(Sn/n) − f(E X1)|
≤ E |f(Sn/n) − f(E X1)| 
= E [ |f(Sn/n) − f(E X1)|; |Sn/n − E X1| ≤ δ] 

+ E [ |f(Sn/n) − f(E X1)|; |Sn/n − E X1| > δ] 

≤ ε/2 + 2MP(|Sn/n − x| > δ). 

By (21.6) and (21.7) the second term on the last line will be less 
than or equal to 

2MVar X1/nδ
2 ≤ 2Mx(1 − x)/nδ2 ≤ 2Mnδ2 , 

which will be less than ε/2 if n is large enough, uniformly in x. 

In the next section we prove the strong law of large numbers. 
There we get a stronger result than Theorem 21.12 with weaker 
hypotheses. There are, however, versions of the weak law of large 
numbers that have weaker hypotheses than Theorem 21.16. 

21.4 Strong law of large numbers 

The strong law of large numbers is the mathematical formulation 
of the law of averages. If one tosses a fair coin over and over, 
the proportion of heads should converge to 1/2. Mathematically, 
if Xi is 1 if the ith toss turns up heads and 0 otherwise, then we 
want Sn/n to converge with probability one to 1/2, where Sn = 
X1 + · · · + Xn. 

Before stating and proving the strong law of large numbers, we 
need three facts from calculus. First, recall that if bn → b are real 
numbers, then 

b1 + · · · + bn → b. (21.8) 
n 

Second, there exists a constant c1 such that 

∞X 1 c1≤ . (21.9)
k2 n 

k=n 
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(To prove this, recall the proof of the integral test and compare the R ∞ 
sum to x−2 dx when n ≥ 2.) Third, suppose a > 1 and kn is n−1 

nthe largest integer less than or equal to a . Note kn ≥ an/2. Then X X1 4 4 1 ≤ ≤ · (21.10)
k2 a2n j2 −21 − an{n:kn≥j} {n:an≥j} 

by the formula for the sum of a geometric series. 

We also need two probability estimates. 

Lemma 21.14 If X ≥ 0 a.s. and E X < ∞, then 

∞X 
P(X ≥ n) < ∞. 

n=1 

Proof. Since P(X ≥ x) increases as x decreases, 

∞ ∞ Z nX X 
P(X ≥ n) ≤ P(X ≥ x) dx 

n−1n=1 n=1Z ∞ 

= P(X ≥ x) dx = E X, 
0 

which is finite. 

Lemma 21.15 Let {Xn} be an i.i.d. sequence with each Xn ≥ 0 
a.s. and E X1 < ∞. Define 

Yn = Xn1(Xn≤n). 

Then 
∞X Var Yk 

< ∞. 
k2 

k=1 

Proof. Since Var Yk ≤ E Yk 
2 , 

∞ ∞ ∞X X E Y 2 XVar Yk k 1 ≤ = E [Xk 
2; Xk ≤ k]

k2 k2 k2 
k=1 k=1 k=1 
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∞ Z ∞X 1 
= 

k2 
1(x≤k)2xP(Xk > x) dx 

0k=1 Z ∞ ∞X 1 
= 

k2 
1(x≤k)2xP(X1 > x) dx 

0 k=1Z ∞ 1 ≤ c1 · 2xP(X1 > x) dx 
x0Z ∞ 

= 2c1 P(X1 > x) dx = 2c1E X1 < ∞. 
0 

We used the fact that the Xk are i.i.d., the Fubini theorem, Propo-
sition 21.4, and (21.9). 

We now state and prove the strong law of large numbers. 

Theorem 21.16 Suppose {Xi} is an i.i.d. sequence with E |X1|Pn 
< ∞. Let Sn = i=1 Xi. Then 

Sn → E X1, a.s. 
n 

Proof. By writing each Xn as X+ − X− and considering then n 
positive and negative parts separately, it suffices to suppose each Pn
Xn ≥ 0. Define Yk = Xk1(Xk ≤k) and let Tn = Yi. The maini=1 
part of the argument is to prove that Tn/n → E X1 a.s. 

Step 1. Let a > 1 and let kn be the largest integer less than or 
nequal to a . Let ε > 0 and let �� |Tkn − E Tkn |An = > ε . 

kn 

By (21.4) Pkn
Var (Tkn /kn) Var Tkn j=1 Var YjP(An) ≤ = = . 

ε2 k2 ε2 k2 ε2 
n n 

Then 

X XX∞ ∞ kn Var YjP(An) ≤ 
k2 ε2 
nn=1 n=1 j=1 
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∞X X1 1 
= Var Yj
ε2 k2 

nj=1 {n:kn≥j} 

∞
4(1 − a−2)−1 X Var Yj≤ 

ε2 j2 
j=1 P∞

by (21.10). By Lemma 21.15, P(An) < ∞, and by the Borel-n=1 
Cantelli lemma, P(An i.o.) = 0. This means that for each ω except 
for those in a null set, there exists N(ω) such that if n ≥ N(ω), then 
|Tkn (ω)−ETkn |/kn < ε. Applying this with ε = 1/m, m = 1, 2, . . ., 
we conclude 

Tkn − E Tkn → 0, a.s. 
kn 

Step 2. Since 

E Yj = E [Xj ; Xj ≤ j] = E [X1; X1 ≤ j] → E X1 

by the dominated convergence theorem as j →∞, then by (21.8) PknE Tkn j=1 E Yj 
= → E X1. 

kn kn 

Therefore Tkn /kn → E X1 a.s. 

Step 3. If kn ≤ k ≤ kn+1, then 

Tk Tkn+1 kn+1≤ · 
k kn+1 kn 

since we are assuming that the Xk are non-negative. Therefore 

Tk
lim sup ≤ aE X1, a.s. 

k 

Similarly, lim infk→∞ Tk/k ≥ (1/a)E X1 a.s. Since a > 1 is arbi-
trary, 

k→∞ 

Tk → E X1, a.s. 
k 

Step 4. Finally, 

∞ ∞ ∞X X X 
P(Yn =6 Xn) = P(Xn > n) = P(X1 > n) < ∞ 

n=1 n=1 n=1 
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by Lemma 21.14. By the Borel-Cantelli lemma, P(Yn 6= Xn i.o.) = 
0. In particular, Yn − Xn → 0 a.s. By (21.8) we have 

nXTn − Sn (Yi − Xi) 
= → 0, a.s., 

n n 
i=1 

hence Sn/n → E X1 a.s. 

21.5 Conditional expectation 

It is fairly common in probability theory for there to be more than 
one σ-field present. For example, if X1, X2, . . . is a sequence of 
random variables, one might let Fn = σ(X1, . . . , Xn), which means 
that Fn is the σ-field generated by the collection of sets (Xi ∈ A) 
for i = 1, 2, . . . , n and A a Borel subset of R. 

If F ⊆ G are two σ-fields and X is an integrable G measurable 
random variable, the conditional expectation of X given F , written 
E [X | F ] and read as “the expectation (or expected value) of 
X given F ,” is any F measurable random variable Y such that 
E [Y ; A] = E [X; A] for every A ∈ F . The conditional probability 
of A ∈ G given F is defined by P(A | F) = E [1A | F ]. When 
F = σ(Y ), one usually writes E [X | Y ] for E [X | F ]. 

If Y1, Y2 are two F measurable random variables such that 
E [Y1; A] = E [Y2; A] for all A ∈ F , then Y1 = Y2 a.s. by Proposi-
tion 8.2. In other words, conditional expectation is unique up to 
a.s. equivalence. 

In the case X is already F measurable, E [X | F ] = X. This 
follows from the definition. 

If X is independent of F , E [X | F ] = E X. To see this, if 
A ∈ F , then 1A and X are independent, and by the multiplication 
theorem 

E [X; A] = E [X1A] = (E X)(E 1A) = E [E X; A]. 

For another example which ties this definition with the one used 
in elementary probability courses, suppose {Ai} is a finite collection 
of disjoint sets whose union is Ω, P(Ai) > 0 for all i, and F is the 
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σ-field generated by the Ai’s. Then X P(A ∩ Ai)P(A | F) = 1Ai .P(Ai)i 

This follows since the right-hand side is F measurable and its ex-
pectation over any set Aj is P(A ∩ Aj ) because hX iP(A ∩ Ai) P(A ∩ Aj )E 1Ai ; Aj = E [1Aj ; Aj ] = P(A ∩ Aj ).P(Ai) P(Aj )i 

For a very concrete example, suppose we toss a fair coin inde-
pendently 5 times and let Xi be 1 or 0 depending whether the ith 

toss was a heads or tails. Let A be the event that there were 5 heads 
and let Fi = σ(X1, . . . , Xi). Then P(A) = 1/32 while P(A | F1) is 
equal to 1/16 on the event (X1 = 1) and 0 on the event (X1 = 0). 
P(A | F2) is equal to 1/8 on the event (X1 = 1, X2 = 1) and 0 
otherwise. 

Proposition 21.17 If F ⊂ G and X is integrable and G measur-
able, then 

E [E [X | F ] ] = E X. 

Proof. We write 

E [E [X | F ] ] = E [E [X | F ]; Ω] = E [X; Ω] = E X, 

using the definition of conditional expectation. 

The following is easy to establish and is left to the reader. 

Proposition 21.18 (1) If X ≥ Y are both integrable, then 

E [X | F ] ≥ E [Y | F ], a.s. 

(2) If X and Y are integrable and a ∈ R, then 

E [aX + Y | F ] = aE [X | F ] + E [Y | F ], a.s. 

It is easy to check that limit theorems such as the monotone con-
vergence and dominated convergence theorems have conditional ex-
pectation versions, as do inequalities like Jensen’s and Chebyshev’s 
inequalities. Thus, for example, we have the following. 
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Proposition 21.19 (Jensen’s inequality for conditional expecta-
tions) If g is convex and X and g(X) are integrable, 

E [g(X) | F ] ≥ g(E [X | F ]), a.s. 

A key fact is the following. 

Proposition 21.20 If X and XY are integrable and Y is mea-
surable with respect to F , then 

E [XY | F ] = Y E [X | F ]. (21.11) 

Proof. If A ∈ F , then for any B ∈ F , 

E [1AE [X | F ]; B] = E [E [X | F ]; A ∩ B] = E [X; A ∩ B] 

= E [1AX; B]. 

Since 1AE [X | F ] is F measurable, this shows that (21.11) holds 
when Y = 1A and A ∈ F . 

Using linearity shows that (21.11) holds whenever Y is F mea-
surable and is a simple random variable. Taking limits and using 
the dominated convergence theorem, the equality holds when Y is 
non-negative, F measurable, and X and XY are integrable. Fi-
nally, using linearity again, we have (21.11) when Y is F measur-
able and X and XY are integrable. 

We have two other equalities. 

Proposition 21.21 If E ⊂ F ⊂ G, then 

E [E [X | F ] | E ] = E [X | E ] = E [E [X | E ] | F ]. 

Proof. The second equality holds because E [X | E ] is E measur-
able, hence F measurable. To show the first equality, let A ∈ E . 
Then since A is also in F , 

E [E [E [X | F ] | E ]; A] = E [E [X | F ]; A] = E [X; A] 

= E [E [X | E ]; A]. 

Since both sides are E measurable, the equality follows. 

To show the existence of E [X | F ], we proceed as follows. 
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Proposition 21.22 If X is integrable, then E [X | F ] exists. 

Proof. Using linearity, we need only consider X ≥ 0. Define a 
measure Q on F by Q(A) = E [X; A] for A ∈ F . This is clearly 
absolutely continuous with respect to P|F , the restriction of P to 
F . Let Y = E [X | F ] be the Radon-Nikodym derivative of Q with 
respect to P|F . Recalling the statement of the Radon-Nikodym the-
orem (Theorem 13.4), we see that the Radon-Nikodym derivative 
of Q with respect to P|F is F measurable. Then if A ∈ F , Z Z 

E [X; A] = Q(A) = Y dP|F = Y dP = E [Y ; A]. 
A A 

The third equality holds because both Y and A are F measurable. 
Thus Y is the desired random variable. 

21.6 Martingales 

In this section we consider martingales. These are a very useful 
tool in probability. They also have applications to real analysis, 
and they are fundamental to the theory of financial mathematics. 

Let F be a σ-field and let {Fn} be an increasing sequence of 
σ-fields, each of which is contained in F . That is, F1 ⊂ F2 ⊂ · · · 
and Fn ⊂ F for each n. A sequence of random variables Mn is 
adapted to {Fn} if for each n, Mn is Fn measurable. 

Mn is a martingale with respect to an increasing family of σ-
fields {Fn} if Mn is adapted to Fn, Mn is integrable for each n, 
and 

E [Mn+1 | Fn] = Mn, a.s., n = 1, 2, . . . . (21.12) 

When the σ-fields are not specified and we talk about Mn being a 
martingale, it is understood that Fn = σ(M1, . . . ,Mn). 

If Xn is a sequence of adapted integrable random variables with 

E [Xn+1 | Fn] ≥ Xn, a.s., n = 1, 2, . . . , (21.13) 

we call Xn a submartingale. If instead we have 

E [Xn+1 | Fn] ≤ Xn, a.s., n = 1, 2, . . . , 



286 CHAPTER 21. PROBABILITY 

we call Xn a supermartingale. 

Let us look at some examples. If Xi is a sequence of mean zero 
integrable i.i.d. random variables and Sn is the partial sum process, 
then Mn = Sn is a martingale, since 

E [Mn+1 | Fn] = Mn + E [Mn+1 − Mn | Fn] 

= Mn + E [Mn+1 − Mn] = Mn, 

using independence and the fact that Sn is measurable with respect 
to Fn. 

If the Xi’s have variance one and Mn = S2 − n, thenn 

E [Sn 
2
+1 | Fn] = E [(Sn+1 − Sn)

2 | Fn] + 2SnE [Sn+1 | Fn] 

− S2 
n 

= 1 + S2 ,n 

using independence. It follows that Mn is a martingale. 

Another example is the following: suppose X ∈ L1 and define 
Mn = E [X | Fn]. Then Mn is a martingale. 

If Mn is a martingale, g is a convex function, and g(Mn) is 
integrable for each n, then by Jensen’s inequality for conditional 
expectations, 

E [g(Mn+1) | Fn] ≥ g(E [Mn+1 | Fn]) = g(Mn), 

or g(Mn) is a submartingale. Similarly if g is convex and increasing 
on [0, ∞) and Mn is a positive submartingale, then g(Mn) is a 
submartingale because 

E [g(Mn+1) | Fn] ≥ g(E [Mn+1 | Fn]) ≥ g(Mn). 

We next want to talk about stopping times. Suppose we have an 
increasing sequence of σ-fields {Fn} contained in a σ-field F . Let 
F∞ = σ(∪∞ 

n=1Fn). A random variable N (which is F measurable) 
from Ω to {0, 1, 2, . . .} ∪ {∞} is called a stopping time if for each 
finite n, (N ≤ n) ∈ Fn. A stopping time is also called an optional 
time . 

The intuition is that if Fn is what you know at time n, then at 
each n you know whether to stop or not. For example, if X1, X2, . . . 
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is a sequence of random variables adapted to the increasing family 
of σ-fields Fn and A is a Borel subset of R, then 

N = min{k ≥ 0 : Xk ∈ A} 

is a stopping time. In words, N is the first time that one of the Xn 

is in the set A. To show that N is a stopping time, we write 

(N ≤ n) = ∪n 
k=1(Xk ∈ A). 

On the other hand, if L = max{k ≤ 9 : Xk ∈ A} ∧ 9, the last 
time Xk is in A up to time 9, and Fn = σ(X1, . . . , Xn), it can be 
shown that L is not a stopping time. The intuition here is that one 
cannot know whether (L ≤ 2) without looking into the future at 
X3, . . . , X9. 

Proposition 21.23 (1) Fixed times n are stopping times. 
(2) If N1 and N2 are stopping times, then so are N1 ∧ N2 and 
N1 ∨ N2. 
(3) If Nn is an increasing sequence of stopping times, then so is 
N = sup Nn.n 
(4) If Nn is a decreasing sequence of stopping times, then so is 
N = infn Nn. 
(5) If N is a stopping time, then so is N + n. 

Proof. We prove (2) and (3) and leave the remaining assertions 
to the reader. Since 

(N1 ∧ N2 ≤ n) = (N1 ≤ n) ∪ (N2 ≤ n) 

and 
(N1 ∨ N2 ≤ n) = (N1 ≤ n) ∩ (N2 ≤ n), 

then (N1 ∧ N2 ≤ n) and (N1 ∨ N2 ≤ n) are in Fn for each n, and 
we obtain (2). We see (3) holds because 

(sup Ni ≤ n) = ∩i(Ni ≤ n) ∈ Fn 
i 

for each n. 

Note that if one takes expectations in (21.12), one has E Mn = 
E Mn−1, and by induction E Mn = E M0. The optional stopping 
theorem of Doob says that the same is true if we replace n by a 
stopping time N . When we write MN , we first evaluate N(ω), and 
then we look at Mn(ω) if n = N(ω). 
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Theorem 21.24 Let {Fn} be an increasing family of σ-fields, each 
contained in a σ-field F . Let Mn be a martingale with respect to 
{Fn} and let N be a stopping time bounded by a positive integer 
K. Then E MN = E MK . 

Proof. We write 

K KX X 
E MN = E [MN ; N = k] = E [Mk; N = k]. 

k=0 k=0 

Note (N = k) = (N ≤ k) − (N ≤ k − 1) is Fj measurable if j ≥ k, 
so 

E [Mk; N = k] = E [Mk+1; N = k] 

= E [Mk+2; N = k] 

= . . . = E [MK ; N = k]. 

Hence 

KX 
E MN = E [MK ; N = k] = E MK = E M0. 

k=0 

This completes the proof. 

The assumption that N be bounded cannot be entirely dis-
pensed with. For example, let Mn be the partial sums of a se-
quence of i.i.d. random variable that take the values ±1, each with 

1probability 2 . If N = min{i : Mi = 1}, we will see in Remark 
21.30 later on that N < ∞ a.s., but E MN = 1 =6 0 = E M0. 

The same proof as that in Theorem 21.24 gives the following 
corollary. 

Corollary 21.25 If N is bounded by K and Mn is a submartin-
gale, then E MN ≤ E MK . 

The first interesting consequence of the optional stopping the-
orems is Doob’s inequality. If Mn is a martingale, denote M∗ = n 
maxi≤n |Mi|. 

Theorem 21.26 If Mn is a martingale or a positive submartin-
gale, 

P(M ∗ ≥ a) ≤ E |Mn|/a.n 
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Proof. Let N = min{j : |Mj | ≥ a}∧n. Since g(x) = |x| is convex, 
|Mn| is a submartingale. If A = (M∗ ≥ a), then by the optionaln 
stopping theorem, 

E |Mn| ≥ E |MN | ≥ E [ |MN |; A] ≥ aP(A). 

Dividing both sides by a gives the desired inequality. 

Note that if |Mn| is bounded by a real number K, then 

|Mn−1| ≤ E [ |Mn| | Fn−1] ≤ K, 

and by induction |Mj | ≤ K for each j. Hence kM∗k∞ ≤ kMnk∞.n 
By the Marcinkiewicz interpolation theorem (Theorem 24.1, which 
we will prove in Chapter 24) and Theorem 21.26, we see that for 
each p ∈ (1, ∞) there exists a constant cp such that 

kMn 
∗ kp ≤ cpkMnkp. (21.14) 

This can also be proved by a variation of the proof of Theorem 
21.26. The inequalities (21.14) are also referred to as Doob’s in-
equalities. 

The martingale convergence theorem is another important con-
sequence of optional stopping. The main step is the upcrossing 
lemma. The number of upcrossings of an interval [a, b] is the num-
ber of times a sequence of random variables crosses from below a 
to above b. 

To be more exact, let 

S1 = min{k : Xk ≤ a}, T1 = min{k > S1 : Xk ≥ b}, 

and 

Si+1 = min{k > Ti : Xk ≤ a}, Ti+1 = min{k > Si+1 : Xk ≥ b}. 

The number of upcrossings Un before time n is 

Un = max{j : Tj ≤ n}. 

Lemma 21.27 (Upcrossing lemma) If Xk is a submartingale, 

E [(Xn − a)+]
E Un ≤ . 

b − a 
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Proof. The number of upcrossings of [a, b] by Xk is the same as the 
number of upcrossings of [0, b −a] by Yk = (Xk −a)+ . Moreover Yk 

E −[Y Y0 0S Ti 

is still a submartingale. If we obtain the inequality for the number 
of upcrossings of the interval [0, b − a] by the process Yk, we will 
have the desired inequality for upcrossings of X. 

i 

Thus we may assume a = 0. Fix n and define Yn+1 = Yn. This 
will still be a submartingale. Define the Si, Ti as above, and let 
S0 = Si ∧ (n + 1), T 0 = Ti ∧ (n + 1). Since Ti+1 > Si+1 > Ti, theni i 
Tn 
0 
+1 = n + 1. 

We write 

n+1 n+1X X 
E Yn+1 = E YS0 1 

E −[Y Y0 0T Si i 
+ ] + ]. 

+1 

−upcrossing, Y Y0 0T Sjj 

i=0 i=0 

All the summands in the third term on the right are non-negative 

−b while Ya 0, Tj 

For the jthsince Yk is a submartingale. ≥ 
−Y 0Sj

is always greater than or equal to 0. Therefore 

∞X 
−(Y Y0 0T Sii 

n 

i=0 

and then 
E Un ≤ E Yn+1/(b − a) (21.15) 

as desired. 

This leads to the martingale convergence theorem. 

Theorem 21.28 If Xn is a submartingale such that sup E X+ <n n 
∞, then Xn converges a.s. as n →∞. 

Proof. Let U(a, b) = limn→∞ Un. For each a, b rational, by the 
monotone convergence theorem, 

E U(a, b) ≤ sup E (Xn − a)+/(b − a) < ∞. 

Thus U(a, b) < ∞ a.s. If Na,b is the set of ω such that U(a, b) = ∞, 
then P(Na,b) = 0. Let N = ∪a,b∈Q,a<bNa,b. If ω ∈/ N , then the 
sequence Xn(ω) cannot have lim sup Xn(ω) > lim inf Xn(ω); if this 
held, we could find rationals a and b such that lim inf Xn(ω) < a < 

) ≥ (b − a)Un, 
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b < lim sup Xn(ω), and then the number of upcrossings of [a, b] 
would be infinite. Therefore Xn converges a.s., although we still 
have to rule out the possibility of the limit being infinite. Since Xn 

is a submartingale, E Xn ≥ E X0, and thus 

E |Xn| = E X+ + E X− = 2E X+ − E Xn ≤ 2E X+ − E X0.n n n n 

By Fatou’s lemma, E limn |Xn| ≤ sup E |Xn| < ∞, or Xn con-n 
verges a.s. to a finite limit. 

We show how one can use martingales to find certain hitting 
probabilities. If one is gambling and wins $1 with probability 1/2 
and loses $1 with probability 1/2 on each play, what are the chances 
that one will reach $1,000 before going broke if one starts with $10? 

Proposition 21.29 Suppose the Y1, Y2, . . . are i.i.d. with 

P(Y1 = 1) = 1/2, P(Y1 = −1) = 1/2, Pn
and Sn = Yi. Suppose a and b are positive integers. Let i=1 

N−a = min{k : Sk = −a}, Nb = min{k : Sk = b}, 

and N = N−a ∧ Nb. Then 

b a
P(N−a < Nb) = , P(Nb < N−a) = . 

a + b a + b 

In addition, E N = ab. 

Proof. S2 − n is a martingale, son 

E S2 = E (n ∧ N)n∧N 

by the optional stopping theorem. Let n → ∞. The right hand 
side converges to E N by the monotone convergence theorem. Since 
Sn∧N is bounded in absolute value by a + b, the left hand side 
converges by the dominated convergence theorem to E SN 

2 , which 
is finite. It follows that E N is finite, hence N is finite almost surely. 

Sn is a martingale, so E Sn∧N = E S0 = 0. By the domi-
nated convergence theorem and the fact that N < ∞ a.s., we have 
Sn∧N → SN , and so E SN = 0, or 

−aP(SN = −a) + bP(SN = b) = 0. 
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We also have 

P(SN = −a) + P(SN = b) = 1. 

Solving these two equations for P(SN = −a) and P(SN = b) yields 
our first result. Since 

E N = E S2 = a 2P(SN = −a) + b2P(SN = b),N 

substituting gives the second result. 

Remark 21.30 Based on this proposition, if we let a → ∞, we 
see that P(Nb < ∞) = 1 and E Nb = ∞. 

21.7 Weak convergence 

We will see in Section 21.9 that if the Xi are i.i.d. random variables Pn
that are mean zero and have variance one and Sn = i=1 Xi, then√ 
Sn/ n converges in the sense that 

√ 
P(Sn/ n ∈ [a, b]) → P(Z ∈ [a, b]), 

where Z is a standard normal random variable. We want to set up 
the framework for this type of convergence. 

We say distribution functions Fn converges weakly to a distribu-
tion function F if Fn(x) → F (x) for all x at which F is continuous. 
We say Xn converges weakly to X if FXn converges weakly to FX . 
We sometimes say Xn converges in distribution or converges in law 
to X. Probabilities µn on R with the Borel σ-field converge weakly 
if their corresponding distribution functions converges, that is, if 
Fµn (x) = µn(−∞, x] converges weakly. If x is a point at which F 
is continuous, then x is called a continuity point of F . A warning: 
weak convergence in probability is not the same as weak conver-
gence in functional analysis; see Exercise 21.28. 

An example that illustrates why we restrict the convergence 
to continuity points of F is the following. Let Xn = 1/n with 
probability one, and X = 0 with probability one. Then FXn (x) is 
0 if x < 1/n and 1 otherwise. FXn (x) converges to FX (x) for all x 
except x = 0. 
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Proposition 21.31 The random variables Xn converge weakly to 
X if and only if E g(Xn) → E g(X) for all g bounded and continu-
ous. 

The idea that E g(Xn) converges to E g(X) for all g bounded 
and continuous makes sense for any metric space and is used as 
a definition of weak convergence for Xn taking values in general 
metric spaces. 

Proof. First suppose E g(Xn) converges to E g(X) for all bounded 
and continuous g. Let x be a point where FX is continuous, let 
ε > 0, and choose δ such that |F (y) − F (x)| < ε if |y − x| < δ. 
Choose g continuous such that g is one on (−∞, x], takes values 
between 0 and 1, and is 0 on [x + δ, ∞). Then 

lim sup FXn (x) ≤ lim sup E g(Xn) 
n→∞ n→∞ 

= E g(X) ≤ FX (x + δ) 

≤ F (x) + ε. 

Similarly, if h is a continuous function taking values between 0 
and 1 that is 1 on (−∞, x − δ] and 0 on [x, ∞), 

lim inf FXn (x) ≥ lim inf E h(Xn) = E h(X) ≥ FX (x−δ) ≥ F (x)−ε. 
n→∞ n→∞ 

Since ε is arbitrary, FXn (x) → FX (x). 

Now suppose Xn converges weakly to X. If a and b are points 
at which F and also each of the FXn are continuous, then 

E 1(a,b](Xn) = P(a < Xn ≤ b) = P(Xn ≤ b) − P(Xn ≤ a) 

= FXn (b) − FXn (a) → F (b) − F (a) 

= P(X ≤ b) − P(X ≤ a) 

= P(a < X ≤ b) = E 1(a,b](X). 

By taking linear combinations, we have E g(Xn) → E g(X) for ev-
ery g which is a step function where the end points of the intervals 
are continuity points for all the FXn and for FX . The set of points 
that are not a continuity point for some FXn or for FX is countable. 
Since we can approximate any continuous function uniformly on an 
interval by step functions which jump only at points that are con-
tinuity points for all the Fn and for F , we have E g(Xn) → E g(X) 
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for all g such that the support of g is contained in a closed interval 
whose endpoints are continuity points of FX and g is continuous 
on its support. 

Let ε > 0 and choose M large such that FX (M) > 1 − ε and 
FX (−M) < ε and so that M , M + 1, −M , and −M − 1 are conti-
nuity points of FX and of the FXn . Let h be a bounded continuous 
functions that agrees with g on [−M, M ], has support contained 
in [−M − 1,M + 1], and khk∞ ≤ kgk∞. By the above argument, 
E h(Xn) → E h(X). The difference between E h(X) and E g(X) is 
bounded by 

kgk∞P(X ∈/ [−M, M ]) ≤ 2εkgk∞. 

Similarly, when X is replaced by Xn, the difference is bounded by 

kgk∞P(Xn ∈/ [−M, M ]) → kgk∞P(X ∈/ [−M, M ]). 

So for n large, the difference between E g(Xn) and E g(X) is less 
than 

3εkgk∞ + ε. 

Since ε is arbitrary, E g(Xn) → E g(X) whenever g is bounded and 
continuous. 

Let us examine the relationship between weak convergence and 
convergence in probability. 

Proposition 21.32 (1) If Xn converges to X in probability, then 
Xn converges weakly to X. 
(2) If Xn converges weakly to a constant, then Xn converges in 
probability. 
(3) If Xn converges weakly to X and Yn converges weakly to a 
constant c, then Xn + Yn converges weakly to X + c and XnYn 

converges weakly to cX. 

Part (3) is known as Slutsky’s theorem. 

Proof. To prove (1), let g be a bounded and continuous function. 
If nj is any subsequence, then there exists a further subsequence 
such that X(njk ) converges almost surely to X. (We sometimes 
write X(n) for Xn here.) Then by the dominated convergence 
theorem, E g(X(njk )) → E g(X). That suffices to show E g(Xn) 
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converges to E g(X). Hence by Proposition 21.31 we see that Xn 

converges weakly to X. 

For (2), if Xn converges weakly to c, 

P(Xn − c > ε) = P(Xn > c + ε) = 1 − P(Xn ≤ c + ε) 

→ 1 − P(c ≤ c + ε) = 0. 

We use the fact that if Y is identically equal to c, then c + ε is 
a point of continuity for FY . Similarly P(Xn − c ≤ −ε) → 0, so 
P(|Xn − c| > ε) → 0. 

We now prove the first part of (3), leaving the second part for 
the reader. Let x be a point such that x − c is a continuity point of 
FX . Choose ε so that x − c + ε is again a continuity point. Then 

P(Xn + Yn ≤ x) ≤ P(Xn + c ≤ x + ε) + P(|Yn − c| > ε) 

→ P(X ≤ x − c + ε). 

Thus lim sup P(Xn + Yn ≤ x) ≤ P(X + c ≤ x + ε). Since ε can be 
as small as we like and x − c is a continuity point of FX , then 

lim sup P(Xn + Yn ≤ x) ≤ P(X + c ≤ x). 

The lim inf is done similarly. 

Example 21.33 We give an example where Xn converges weakly 
but does not converge in probability. Let {Xn} be an i.i.d. sequence 
of Bernoulli random variable with parameter 1/2. Clearly Xn con-
verges weakly to a Bernoulli random variable with parameter 1/2 
since FXn is constant in n. If Xn converges in probability, then 
there exists a subsequence {Xnj } that converges a.s by Proposi-
tion 10.2. But if Aj = (Xn2j = 0, Xn2j+1 = 1), the independence 
of the Xn’s tells us that P(Aj ) = 1/4 for each j. By the definition 
of Aj , we see that the Aj are independent, so by the Borel-Cantelli 
lemma, P(Aj i.o.) = 1. This contradicts the assertion that Xnj 

converges a.s. 

We say a sequence of distribution functions {Fn} is tight if 
for each ε > 0 there exists M such that Fn(M) ≥ 1 − ε and 
Fn(−M) ≤ ε for all n. A sequence of random variables is tight 
if the corresponding distribution functions are tight; this is equiv-
alent to P(|Xn| ≥ M) ≤ ε. The following theorem is known as 
Helly’s theorem. 
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Theorem 21.34 Let Fn be a sequence of distribution functions 
that is tight. There exists a subsequence nj and a distribution func-
tion F such that Fnj converges weakly to F . 

If Xn is identically equal to n, then FXn → 0. However, the 
constant function 0 is not a distribution function. This does not 
contradict Helly’s theorem since the Xn are not tight. 

Proof. Let qk be an enumeration of the rationals. Since Fn(qk) ∈ 
[0, 1], any subsequence has a further subsequence that converges. 
Use Cantor’s diagonalization method (see Remark 21.35) so that 
Fnj (qk) converges for each qk and call the limit F (qk). F is in-
creasing, and define F (x) = inf{k:qk≥x} F (qk). We see that F is 
right continuous and increasing. 

If x is a point of continuity of F and ε > 0, then there exist r 
and s rational such that r < x < s and F (s)−ε < F (x) < F (r)+ε. 
Then 

lim inf Fnj (x) ≥ lim inf Fnj (r) = F (r) > F (x) − ε 
j→∞ j→∞ 

and 

lim sup Fnj (x) ≤ lim sup Fnj (s) = F (s) < F (x) + ε. 
j→∞ j→∞ 

Since ε is arbitrary, Fnj (x) → F (x). 

Since the Fn are tight, there exists M such that Fn(−M) < ε. 
Then F (−M) ≤ ε, which implies limx→−∞ F (x) = 0. Showing 
limx→∞ F (x) = 1 is similar. Therefore F is in fact a distribution 
function. 

Remark 21.35 Cantor’s diagonalization method may be familiar 
to you from the proof of the Ascoli-Arzelà theorem from under-
graduate analysis. In our context it works as follows. The se-
quence {Fn(q1)} is a sequence of real numbers bounded between 0 
and 1, and so {Fn} has a subsequence, which we label as {F1,j }, 
j = 1, 2, . . ., such that F1,j (q1) converges as j →∞. Next the sub-
sequence {F1,j (q2)} is a sequence of real numbers bounded between 
0 and 1, so there exists a further subsequence {F2,j }, j = 1, 2, . . . 
such that F2,j (q2) converges. Since {F2,j } is a subsequence of 
{F1,j }, then F1,j (q1) still converges. Take a further subsequence 
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of {F2,j }, which we will call {F3,j }, such that F3,j (q3) converges. 
Continue. 

We note that Fm,j (qi) converges whenever i ≤ m. We now con-
sider the subsequence {Fm,m}. This is a subsequence of our original 
sequence {Fn}. Furthermore, for each k, {Fm,m}, m = k, k +1, . . ., 
is a subsequence of {Fk,j }. (The first k − 1 elements of {Fm,m}
might not be elements of {Fk,j }.) Therefore Fm,m(qk) converges. 
We have thus found a subsequence of our original sequence {Fn}
that converges at each qk. 

We conclude this section by giving an easily checked criterion 
for tightness. 

Proposition 21.36 Suppose there exists ϕ : [0, ∞) → [0, ∞) that 
is increasing and ϕ(x) → ∞ as x → ∞. If sup E ϕ(|Xn|) < ∞,n 
then the Xn are tight. 

Proof. Let ε > 0 and let c = sup E ϕ(|Xn|). Choose M such that n 
ϕ(x) ≥ c/ε if x > M . Then Z 

ϕ(|Xn|) ε
P(|Xn| > M) ≤ 1(|Xn|>M) dP ≤ E ϕ(|Xn|) ≤ ε. 

c/ε c 

Thus the Xn are tight. 

21.8 Characteristic functions 

We define the characteristic function of a random variable X by 
ϕX (u) = E eiux for u ∈ R. R 
Note that ϕX (u) = eiux PX (dx). Therefore if X and Y have 

the same law, they have the same characteristic function. Also, 
if the law of X has a density, that is, PX (dx) = fX (x) dx, thenR 
ϕX (u) = eiuxfX (x) dx, so in this case the characteristic function 
is the same as the Fourier transform of fX . 

Proposition 21.37 ϕ(0) = 1, |ϕ(u)| ≤ 1, ϕ(−u) = ϕ(u), and ϕ 
is uniformly continuous. 
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Proof. Since |eiux| ≤ 1, everything follows immediately from the 
definitions except the uniform continuity. For that we write 

i(u+h)X − E e|ϕ(u + h) − ϕ(u)| = |E e iuX | 
≤ E |e iuX (e ihX − 1)| = E |e ihX − 1|. 

Observe that |eihX − 1| tends to 0 almost surely as h → 0, so the 
right hand side tends to 0 by the dominated convergence theorem. 
Note that the right hand side is independent of u. 

The definitions also imply 

ϕaX (u) = ϕX (au) 

and 
iubϕX (u).ϕX+b(u) = e 

Proposition 21.38 If X and Y are independent, then 

ϕX+Y (u) = ϕX (u)ϕY (u). 

Proof. We have 

iu(X+Y ) iuX iuY ] = (E e iuX )(E e iuY )E e = E [e e 

by the multiplication theorem. 

Let us look at some examples of characteristic functions. 

(1) Bernoulli : By direct computation, this is peiu + (1 − p) = 
1 − p(1 − eiu). 

(2) Poisson: Here we have 

∞ 
λkX 

iuX iuk −λE e = e e 
k! 

k=0 X (λeiu)k 
λeiu−λ −λ = e = e e 

k! 
λ(e iu−1)= e . 
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(3) Binomial : 

n � �X niuX iukE e = e p k(1 − p)n−k 

k 
k=0 
n � �X n 

= (pe iu)k(1 − p)n−k = (pe iu + 1 − p)n 

k 
k=0 

by the binomial theorem. 

(4) Exponential : Z ∞ Z ∞ λ 
λeiux −λx dx = λ (iu−λ)xdx =e e . 

λ − iu0 0 

(5) Standard normal : We evaluated the Fourier transform of 
−x√1 e 

2/2 in Proposition 16.5, and obtained 
2π Z ∞ 

2 2iux −x −u /2ϕ(u) = √ 
1 

e e /2 dx = e . 
2π −∞ 

We proceed to the inversion formula, which gives a formula for 
the distribution function in terms of the characteristic function. 

Theorem 21.39 Let µ be a probability measure and let ϕ(u) =R 
iuxe µ(dx). If a < b, then Z T −iua − e−iub1 e 

lim ϕ(u) du (21.16)
T →∞ 2π iu−T 

= µ(a, b) + 1 µ({a}) + 1 µ({b}).2 2 

If µ is point mass at 0, so ϕ(u) = 1, then the integrand in this 
case is 2 sin u/u, which is not integrable. This shows that taking a 
limit cannot be avoided. 

Proof. By the Fubini theorem, Z T Z T Z−iua − e−iub −iua − e−iube e iuxϕ(u) du = e µ(dx) du 
iu iu−T −TZ Z T −iua − e−iube 

= e iux du µ(dx). 
iu−T 
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To justify this, we bound the integrand by b − a, using the mean 
value theorem. 

−iub −iuaExpanding e and e in terms of sines and cosines using 
iθEuler’s formula, that is, e = cos θ + i sin θ, and using the fact that 

cosine is an even function and sine an odd one, we are left with Z h Z T Z T isin(u(x − a)) sin(u(x − b))
2 du − du µ(dx). 

u u0 0 

By Exercise 11.14 and the dominated convergence theorem, this 
tends to Z 

[π sgn (x − a) − π sgn (x − b)] µ(dx), 

which is equal to the right hand side of (21.16). 

A corollary to the inversion formula is the uniqueness theorem. 

Corollary 21.40 If ϕX (u) = ϕY (u) for all u, then PX = PY . 

Proof. If a and b are points such that PX ({a}) = 0, PX ({b}) = 
0, and the same for PY , then the inversion formula shows that 
PX ((a, b]) = PY ((a, b]), which is the same as saying 

FX (b) − FX (a) = FY (b) − FY (a). 

Taking a limit as a → −∞ but avoiding points that are not conti-
nuity points of both FX and FY (there are only countably many of 
these), we have FX (b) = FY (b) if b is a continuity point of both FX 

and FY . Since FX and FY are right continuous, given x, we can 
take b decreasing to x but avoiding points that are not continuity 
points of both FX and FY , and we obtain FX (x) = FY (x) for all 
x. Since PX is the Lebesgue-Stieltjes measure associated with FX 

and this is uniquely determined by FX , we conclude PX = PY . 

A random variable X is a normal random variable with mean 
µ and variance σ2 if it has the density 

iµx−x /2σ2 

(2πσ2)−1/2 e 
2 

. 

A normal random variable is also known as a Gaussian random 
variable. Some calculus shows if X is a normal random variable 
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with mean µ and variance σ2 , then (X − µ)/σ is a standard normal 
random variable, and conversely, if Z is a standard normal random 
variable, then µ + σZ is a normal random variable with mean µ 
and variance σ2 . If X is a normal random variable with mean µ 
and variance σ2 , then X has characteristic function 

iuX iuµE e i(uσ)Z iuµ−σ2 u /2E e = e = e 
2 

, 

where Z is a standard normal random variable. 

The following proposition can be proved directly, but the proof 
using characteristic functions is much easier. 

Proposition 21.41 (1) If X and Y are independent, X is a nor-
mal random variable with mean a and variance b2 , and Y is a 
normal random variable with mean c and variance d2 , then X + Y 
is normal random variable with mean a + c and variance b2 + d2 . 
(2) If X and Y are independent, X is a Poisson random vari-
able with parameter λ1, and Y is a Poisson random variable with 
parameter λ2, then X + Y is a Poisson random variable with pa-
rameter λ1 + λ2. 
(3) If X and Y are independent, X is a binomial random variable 
with parameters m and p, and Y is a binomial random variable with 
parameters n and p, then X +Y is a binomial random variable with 
parameters m + n and p. 

Proof. For (1), using Proposition 21.38, 

2 2 2iau−b2 u /2 icu−c u /2ϕX+Y (u) = ϕX (u)ϕY (u) = e e 
2i(a+c)u−(b2+d2 )u /2 = e . 

Now use the uniqueness theorem. 

Parts (2) and (3) are proved similarly. 

Remark 21.42 Since a Bernoulli random variable with parameter 
p is the same as a binomial random variable with parameters 1 
and p, then Proposition 21.41 and an induction argument shows 
that the sum of n independent Bernoulli random variables with 
parameter p is a binomial random variable with parameters n and 
p. 
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We will need the following result in our proof of the central limit 
theorem. 

Proposition 21.43 If E |X|k < ∞ for an integer k, then ϕX has 
a continuous derivative of order k and Z 

iux PX (dx).ϕ(k)(u) = (ix)k e 

In particular, 
ϕ(k)(0) = ikE Xk . (21.17) 

Proof. Write Z i(u+h)x − eiuxϕ(u + h) − ϕ(u) e 
= P(dx). 

h h R 
The integrand on the right is bounded by |x|. If |x| PX (dx) < 
∞, we can use the dominated convergence theorem to obtain the 
desired formula for ϕ0(u). As in the proof of Proposition 21.37, we 
see ϕ0(u) is continuous. We do the case of general k by induction. 
Evaluating ϕ(k) at 0 gives (21.17). 

We will use the following theorem in the proof of the central 
limit theorem. 

Theorem 21.44 Suppose {Xn} is a tight sequence of random vari-
ables, X is another random variable, and ϕXn (u) → ϕX (u) for each 
u ∈ R as n →∞. Then Xn converges weakly to X. 

Proof. If Xn does not converge weakly to X, there is a con-
tinuity point x for FX such that FXn (x) does not converge to 
FX (x). Helly’s theorem, Theorem 21.34, shows there is subse-
quence {Xnj } which converges weakly, say to the random vari-
able Y . By Proposition 21.31, ϕXnj 

(u) = E exp(iuXnj ) converges 
to E exp(iuY ) = ϕY (u) for each u. Therefore ϕY (u) = ϕX (u) 
for all u, and by the uniqueness theorem, FY = FX . But then 
FXnj 

(x) → FX (x), a contradiction. 

An n-dimensional vector X = (X1, . . . , Xn) is a random vec-
tor if X : Ω → Rn is a measurable map. Here this means that 
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X−1(A) ∈ F whenever A ∈ Bn, where Bn is the Borel σ-field of 
Rn . The joint law or joint distribution is the probability PX on 
(Rn , Bn) given by PX (A) = P(X ∈ A) for A ∈ Bn. As in Proposi-
tion 21.31, we have Z 

E g(X) = g(x) PX (dx) 
Rn 

whenever g is measurable and either non-negative or bounded. 

iu·XIf X is a random vector, ϕX (u) = E e for u ∈ Rn is called 
the joint characteristic function of X, where x · y denotes the usual 
inner product in Rn . 

If Xk is an n-dimensional random vector for each k and each 
coordinate Xk of Xk converges to Yi in probability, then the dom-i 
inated convergence theorem shows that 

iu·Xk iu·YϕXk (u) = E e → E e = ϕY (u) (21.18) 

for each u, where Y = (Y1, . . . , Yn). 

Proposition 21.45 Suppose that X = (X1, . . . , Xn) is an n-dim-
ensional random vector. Then 

nY 
ϕX (u) = ϕXj (uj ), u = (u1, . . . , un), (21.19) 

j=1 

for all u ∈ Rn if and only if the Xi are independent. 

Proof. If the Xi are independent, then we see that the characteris-
tic function of X factors into the product of characteristic functions 
by using the multiplication theorem and writing 

h n i 
iu·X i uj Xj iuj Xj 

P Y 
ϕX (u) = E e = E e 

n
j=1 = E e (21.20) 

j=1 

n nY Y 
iuj Xj= E e = ϕXj (uj ). 

j=1 j=1 

Suppose (21.19) holds for all u. Let Y1, . . . , Yn be independent 
random variables such that Yi has the same law as Xi for each i; see 
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Exercise 21.39 for how to construct such Yi. Let Y = (Y1, . . . , Yn). 
Then using the independence as in (21.20) we have 

nY 

Since Yj has the same law as Xj , then this is equal to ϕXj (uj ). 

ϕY (u) = ϕYj (uj ). 
j=1 Qn 

j=1 
By (21.19) this in turn is equal to ϕX (u). Therefore ϕY (u) = 
ϕX (u) for all u. 

If f is a C∞ function with compact support, then fb , the Fourier 
transform of f , will be integrable by Exercise 16.5. By the Fubini 
theorem, Z 

E f(X) = (2π)−n fb(u)E e −iu·X du 
RnZ 

= (2π)−n fb(u)ϕX (−u) du 
RnZ 

= (2π)−n fb(u)ϕY (−u) du 
RnZ 

= (2π)−n fb(u)E e −iu·Y du = E f(Y ). 
Rn 

By a limit argument, P(X ∈ A) = E 1A(X) = E 1A(Y ) = P(Y ∈ A) 
when A is a rectangle of the form (a1, b1) × · · · × (an, bn). The 
collection of sets A for which P(X ∈ A) = P(Y ∈ A) is easily seen 
to be a σ-field, and since it contains rectangles of the above form, 
it contains all Borel subsets of Rn . Thus X and Y have the same 
law. In particular, the Xi are independent because the Yi are. 

A collection {X1, . . . , Xn} of random variables is called jointly 
normal or jointly Gaussian if there exist i.i.d. standard normal 
random variables Z1, . . . , Zm and real numbers bij and ai such that 

mX 
Xi = bij Zj + ai, i = 1, 2, . . . , n. 

j=1 

Given two random variables X and Y , the covariance of X and 
Y is defined by 

Cov (X, Y ) = E [(X − E X)(Y − E Y )]. 
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In the case of a random vector X, we define the covariance matrix 
Σ by letting Σ be the matrix whose (i, j) entry is Cov (Xi, Xj ). In 
the case of jointly normal random variables, 

mh m m i XXX 
Cov (Xi, Xj ) = E bikbj`ZkZ` = bikbjk, 

k=1 `=1 k=1 

using the fact that E ZkZ` is zero unless k = `, in which case it is 
one. If we let B be the matrix whose (i, j) entry is bij and use CT 

to denote the transpose of a matrix C, we obtain 

Σ = BBT . 

Let us compute the characteristic function of a jointly normal 
random vector when all the ai are zero. If Z = (Z1, . . . , Zm) are 
i.i.d. standard normal random variables, then 

m mY Y 2−u /2 −|u|2/2ϕZ (u) = ϕZj (uj ) = e j = e , 
j=1 j=1 Pm 2where u = (u1, . . . , um) and |u| = ( j=1 uj )

1/2 . When all the ai 
are 0, we then have 

P P n m 

ϕX (u) = E e iu·BZ = E e i j=1 k=1 uj bjk Zk (21.21) 

i(uB)·Z −uBBT u /2 = E e = ϕZ (uB) = e 
T 

. 

21.9 Central limit theorem 

The simplest case of the central limit theorem (CLT ) is the case 
when the Xi are i.i.d. random variables with mean zero and vari-√ 
ance one, and then the central limit theorem says that Sn/ n 
converges weakly to a standard normal. We prove this case. The 
more complicated cases consider when the random variables are no 
longer identically distributed or independent. 

We need the fact that if cn are complex numbers converging 
cto c, then (1 + (cn/n))n → e . We leave the proof of this to the 

reader, with the warning that any proof using logarithms needs to 
be done with some care, since log z is a multi-valued function when 
z is complex. 
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We also use the fact that if f : R → R is twice continuously 
differentiable, then 

f(x) − f(a) − f 0(a)(x − a) − f 00(a)(x − a)2/2 → 0 (21.22)
(x − a)2 

as x → a. This follows, for example, by applying l’Hôpital’s rule 
twice. 

Theorem 21.46 Suppose the Xi are i.i.d. random variables withP √n 
mean zero and variance one and Sn = Then Sn/ ni=1 Xi. 
converges weakly to a standard normal random variable. 

Proof. Since X1 has finite second moment, then ϕX1 has a con-
tinuous second derivative by Proposition 21.43. By (21.22), 

ϕX1 (u) = ϕX1 (0) + ϕ0 (0)u + ϕ00 (0)u 2/2 + R(u),X1 X1 

where |R(u)|/u2 → 0 as |u| → 0. Hence using (21.22) 

ϕX1 (u) = 1 − u 2/2 + R(u). 

Then 
√ √ √ 

√ iuSn/ nϕSn/ n(u) = E e = ϕSn (u/ n) = (ϕX1 (u/ n))n h 2 i u √ n 
= 1 − + R(u/ n) ,

2n 
√ 

where we used (21.17). Since u/ n converges to zero as n → ∞, 
we have 

2 √ −u /2ϕSn/ n(u) → e . 

Now apply Theorem 21.44. 

If the Xi are i.i.d., but don’t necessarily have mean 0 with 
variance 1, we have 

Sn − E Sn√ √ 
Var X1 n 

converges weakly to a standard normal random variable. This 
follows from Theorem 21.46 by looking at the random variables √ 
(Xi − E X1)/ Var X1. 

We give another example of the use of characteristic functions 
to obtain a limit theorem. 
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Proposition 21.47 Suppose that {Xn} is a sequence of indepen-
dent random variables such that Xn is a binomial random variable 
with parameters n and pn. If npn → λ, then Xn converges weakly 
to a Poisson random variable with parameter λ. 

Proof. We write � �n 
ϕXn (u) = 1 + pn(e 

iu − 1) � �nnpn iu − 1) λ(e iu−1)= 1 + (e → e . 
n 

Now apply Theorem 21.44. 

21.10 Kolmogorov extension theorem 

The goal of this section is to show how to construct probability mea-
sures on RN = R×R×· · · . We may view RN as the set of sequences 
(x1, x2, . . .) of elements of R. Given an element x = (x1, x2, . . .) of 
RN , we define τn(x) = (x1, . . . , xn) ∈ Rn . A cylindrical set in RN 

is a set of the form A × RN , where A is a Borel subset of Rn for 
some n ≥ 1. Another way of phrasing this is to say a cylindrical 
set is one of the form τ−1(A), where n ≥ 1 and A is a Borel sub-n 
set of Rn . We furnish RN with the product topology; see Section 
20.1. Recall that this means we take the smallest topology that 
contains all cylindrical sets. We use the σ-field on RN generated 
by the cylindrical sets. Thus the σ-field we use is the same as the 
Borel σ-field on RN . We use Bn to denote the Borel σ-field on Rn . 

We suppose that for each n we have a probability measure µn 

defined on (Rn , Bn). The µn are consistent if µn+1(A × R) = 
µn(A) whenever A ∈ Bn. The Kolmogorov extension theorem is 
the following. 

Theorem 21.48 Suppose for each n we have a probability measure 
µn on (Rn , Bn). Suppose the µn are consistent. Then there exists 
a probability measure µ on RN such that µ(A × RN) = µn(A) for 
all A ∈ Bn. 

Proof. Define µ on cylindrical sets by µ(A × RN) = µm(A) if 
A ∈ Bm. By the consistency assumption, µ is well defined. If 
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A0 is the collection of cylindrical sets, it is easy to see that A0 is 
an algebra of sets and that µ is finitely additive on A0. If we can 
show that µ is countably additive on A0, then by the Carathéodory 
extension theorem, Theorem 4.17, we can extend µ to the σ-field 
generated by the cylindrical sets. By Exercise 3.2 it suffices to show 
that whenever An ↓ ∅ with An ∈ A0, then µ(An) → 0. 

Suppose that An are cylindrical sets decreasing to ∅ but µ(An) 
does not tend to 0; by taking a subsequence we may assume without 
loss of generality that there exists ε > 0 such that µ(An) ≥ ε for 
all n. We will obtain a contradiction. 

It is possible that An might depend on fewer or more than n 
coordinates. It will be more convenient if we arrange things so that 
An depends on exactly n coordinates. We want An = τn 

−1(Ae 
n) for 

some Ae 
n a Borel subset of Rn . Suppose An is of the form 

= τ−1An (Dn)jn 

for some Dn ⊂ Rjn ; in other words, An depends on jn coordi-
nates. By letting A0 = RN and replacing our original sequence by 
A0, . . . , A0, A1, . . . , A1, A2, . . . , A2, . . ., where we repeat each Ai 

sufficiently many times, we may without loss of generality suppose 
= τ −1that jn ≤ n. On the other hand, if jn < n and An (Dn), we jn 

may write An = τ −1(Db 
n) with Db 

n = Dn × Rn−jn . Thus we may n 
without loss of generality suppose that An depends on exactly n 
coordinates. 

We set Ae 
n = τn(An). For each n, choose Be 

n ⊂ Ae 
n so that 

Be 
n is compact and µ(Ae 

n − Be 
n) ≤ ε/2n+1 . To do this, first we 

choose M such that µn(([−M, M ]n)c) < ε/2n+2 , and then we use 
Proposition 17.6 to find a compact subset Be 

n of Ae 
n ∩ [−M, M ]n 

such that µ(Ae 
n ∩ [−M, M ]n − Be 

n) ≤ ε/2n+2 . Let Bn = τ−1(Be 
n)n 

and let Cn = B1 ∩ . . . ∩ Bn. Hence Cn ⊂ Bn ⊂ An, and Cn ↓ ∅, 
but 

nX 
µ(Cn) ≥ µ(An) − µ(Ai − Bi) ≥ ε/2, 

i=1 

and Ce 
n = τn(Cn), the projection of Cn onto Rn , is compact. 

We will find x = (x1, . . . , xn, . . . ) ∈ ∩nCn and obtain our con-
tradiction. For each n choose a point y(n) ∈ Cn. The first co-
ordinates of {y(n)}, namely, {y1(n)}, form a sequence contained 
in Ce1, which is compact, hence there is a convergent subsequence 
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{y1(nk)}. Let x1 be the limit point. The first and second coordi-enates of {y(nk)} form a sequence contained in the compact set C2, 
so a further subsequence {(y1(nkj ), y2(nkj ))} converges to a point 
in Ce2. Since {nkj } is is a subsequence of {nk}, the first coordinate 
of the limit is x1. Therefore the limit point of {(y1(nkj ), y2(nkj ))}
is of the form (x1, x2), and this point is in Ce 

2. We continue this 
procedure to obtain x = (x1, x2, . . . , xn, . . .). By our construction, 
(x1, . . . , xn) ∈ Ce 

n for each n, hence x ∈ Cn for each n, or x ∈ ∩nCn, 
a contradiction. 

A typical application of this theorem is to construct a count-
able sequence of independent random variables. We construct 
X1, . . . , Xn to be an independent collection of n independent ran-
dom variables using Exercise 21.39. Let µn be the joint law of 
(X1, . . . , Xn); it is easy to check that the µn form a consistent 
family. We use Theorem 21.48 to obtain a probability measure µ 
on RN . To get random variables out of this, we let Xi(ω) = ωi if 
ω = (ω1, ω2, . . .). 

21.11 Brownian motion 

In this section we construct Brownian motion and define Wiener 
measure. 

Let (Ω, F , P) be a probability space and let B be the Borel σ-
field on [0, ∞). A stochastic process, denoted X(t, ω) or Xt(ω) or 
just Xt, is a map from [0, ∞) × Ω to R that is measurable with 
respect to the product σ-field of B and F . 

Definition 21.49 A stochastic process Xt is a one-dimensional 
Brownian motion started at 0 if 
(1) X0 = 0 a.s.; 
(2) for all s ≤ t, Xt − Xs is a mean zero normal random variable 
with variance t − s; 
(3) the random variables Xri −Xri−1 , i = 1, . . . , n, are independent 
whenever 0 ≤ r0 ≤ r1 ≤ · · · ≤ rn; 
(4) there exists a null set N such that if ω ∈/ N , then the map 
t → Xt(ω) is continuous. 

Let us show that there exists a Brownian motion. We give the 
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Haar function construction, which is one of the quickest ways to 
the construction of Brownian motion. 

For i = 1, 2, . . ., j = 1, 2, . . . , 2i−1 , let ϕij be the function on 
[0, 1] defined by ⎧ h � 

2(i−1)/2 2j−2 2j−1⎪ , x ∈ 2i , 2i ;⎨ h �ϕij = 
−2(i−1)/2 2j−1 2j , x ∈ , ;2i 2i⎪⎩ 
0, otherwise. 

Let ϕ00 be the function that is identically 1. The ϕij are called 
the Haar functions. If h·, ·i denotes the inner product in L2([0, 1]),R 1
that is, hf, gi = f(x)g(x)dx, note the ϕij are orthogonal and0 
have norm 1. It is also easy to see that they form a complete 
orthonormal system for L2: ϕ00 ≡ 1; 1[0,1/2) and 1[1/2,1) are both 
linear combinations of ϕ00 and ϕ11; 1[0,1/4) and 1[1/4,1/2) are both 
linear combinations of 1[0,1/2), ϕ21, and ϕ22. Continuing in this 
way, we see that 1[k/2n ,(k+1)/2n ) is a linear combination of the ϕij 

for each n and each k ≤ 2n . Since any continuous function can 
be uniformly approximated by step functions whose jumps are at 
the dyadic rationals, linear combinations of the Haar functions are 
dense in the set of continuous functions, which in turn is dense in 
L2([0, 1]). R t
Let ψij (t) = ϕij (r) dr. Let Yij be a sequence of independent0 

identically distributed standard normal random variables. Set 

2i−1X 
V0(t) = Y00ψ00(t), Vi(t) = Yij ψij (t), i ≥ 1. 

j=1 

We need one more preliminary. If Z is a standard normal ran-
−x /2dom variable, then Z has density (2π)−1/2e 

2 
. Since Z 

4 −x x e 
2/2 dx < ∞, 

then E Z4 < ∞. We then have 

E Z4 

P(|Z| > λ) = P(Z4 > λ4) ≤ . (21.23)
λ4 P∞

Theorem 21.50 Vi(t) converges uniformly in t a.s. If wei=0 
call the sum Xt, then Xt is a Brownian motion started at 0. 
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Proof. Step 1. We first prove convergence of the series. Let 

Ai = (|Vi(t)| > i−2 for some t ∈ [0, 1]). P∞
We will show P(Ai) < ∞. Then by the Borel–Cantelli lemma, i=1 
except for ω in a null set, there exists i0(ω) such that if i ≥ i0(ω), we 
have supt |Vi(t)(ω)| ≤ i−2 . This will show 

PI 
Vi(t)(ω) converges i=0 

as I →∞, uniformly over t ∈ [0, 1]. Moreover, since each ψij (t) is 
continuous in t, then so is each Vi(t)(ω), and we thus deduce that 
Xt(ω) is continuous in t. 

Now for i ≥ 1 and j1 6= j2, for each t at least one of ψij1 (t) and 
ψij2 (t) is zero. Also, the maximum value of ψij is 2−(i+1)/2 . Hence 

P(|Vi(t)| > i−2 for some t ∈ [0, 1]) 

≤ P(|Yij |ψij (t) > i−2 for some t ∈ [0, 1], some 0 ≤ j ≤ 2i−1) 

≤ P(|Yij |2−(i+1)/2 > i−2 for some 0 ≤ j ≤ 2i−1) 

2i−1X 
≤ P(|Yij |2−(i+1)/2 > i−2) 

j=0 

= (2i−1 + 1)P(|Z| > 2(i+1)/2i−2) 

where Z is a standard normal random variable. Using (21.23), we 
conclude P(Ai) is summable in i. 

Step 2. Next we show that the limit, Xt, satisfies the definition of 
Brownian motion. It is obvious that each Xt has mean zero and 
that X0 = 0. In this step we show that Xt − Xs is a mean zero 
normal random variable with variance t − s. 

If f ∈ L2([0, 1]), Parseval’s identity says that X 
hf, fi = hϕij , fi2 . 

i,j 

Let 
kX 

W k = Vi(t).t 
i=0 

Fix s < t and set d2 = Var (W k − W k). We will use the notationk t sPk P 
to mean that the sum over j is from 1 to 2i−1 when i > 0i=0 j 

and the sum over j is from 0 to 0, i.e., a single summand with 
j = 0, when i = 0. Since 

ψij (t) − ψij (s) = hϕij , 1[s,t]i, 
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then 
k XX 

W k − W k = Yij hϕij , 1[s,t]i.t s 
i=0 j 

Since the Yij are independent with mean zero and variance one, 
E [Yij Y`m] = 1 if i = ` and j = m and otherwise is equal to 0. 
Thus 

d2 = E (W k − W k)2 (21.24)k t s 

k khXX XX i 
= E Yij hϕij , 1[s,t]i Y`mhϕ`m, 1[s,t]i 

i=0 j `=0 m Xk X X∞ X 
= hϕij , 1[s,t]i

2 → hϕij , 1[s,t]i
2 

i=0 j i=0 j 

= h1[s,t], 1[s,t]i = t − s. 

Since W k − W k is a finite linear combination of standard normalt s 
random variables, it is normal random variable with mean zero and 
variance d2 

k, and therefore its characteristic function is e−dk 
2 u 2/2 . 

Since Wt
k − W k → Xt − Xs a.s. and d2 

k → t − s, then by (21.18),s 
−(t−s)u /2the characteristic function of Xt − Xs is e 

2 
. This proves 

that Xt − Xs is a normal random variable with mean zero and 
variance t − s. 

Step 3. We prove that if 0 ≤ r0 < r1 < · · · < rn, then the random 
variables Xr1 − Xr0 , . . . , Xrn − Xrn−1 are independent. P 
For f, g ∈ L2([0, 1]) we have f = hϕij , fiϕij and g =P i,j 

i,j hϕij , giϕij , hence X 
hf, gi = hϕij , fihϕij , gi. 

i,j 

Therefore for 1 ≤ I, J ≤ n, 

E [XrI −XrI−1 )(XrJ − XrJ−1 )]h�X ��X �i 
= E Yij hϕij , 1[rI−1,rI ]i Yk`hϕk`, 1[rJ−1 ,rJ ]i 

i,j k,` X 
= hϕij , 1[rI−1,rI ]ihϕij , 1[rJ−1 ,rJ ]i 

i,j 

= h1[rI−1,rI ], 1[rJ−1 ,rJ ]i. 
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This last inner product is 0, and the covariance of XrI − XrI−1 and 
XrJ − XrJ−1 is zero, unless I = J , in which case the covariance is 
the same as the variance and is equal to rI − rI−1. 

Let Uk = (W k − W k , . . . ,Wr
k 
n 
− W k ). This is a collectionr1 r0 rn−1 

of jointly normal random variables, each with mean zero. Its joint 
characteristic function will be 

T−u Σku/2ϕUk (u) = e , 

where Σk is the covariance matrix for Uk . As in Step 2, we see 
that Σk → Σ, where Σ is a diagonal matrix whose (j, j) entry is 
rj − rj−1. Since Uk converges almost surely to 

U = (Xr1 − Xr0 , . . . , Xrn − Xrn−1 ), 

then the joint characteristic function of U is 
T−u Σu/2ϕU (u) = e . Qn

Since ϕU (u) factors as (uj ), then the components j=1 ϕXrj −Xrj−1 

of U are independent by Proposition 21.45. 

The stochastic process Xt induces a measure on C([0, 1]). We 
say A ⊂ C([0, 1]) is a cylindrical set if 

A = {f ∈ C([0, 1]) : (f(r1), . . . , f(rn)) ∈ B} 

for some n ≥ 1, r1 ≤ · · · ≤ rn, and B a Borel subset of Rn . For 
A a cylindrical set, define µ(A) = P({X·(ω) ∈ A}, where X is a 
Brownian motion and X·(ω) is the function t → Xt(ω). We extend 
µ to the σ-field generated by the cylindrical sets. If B is in this 
σ-field, then µ(B) = P(X· ∈ B). The probability measure µ is 
called Wiener measure. 

We defined Brownian motion for t ∈ [0, 1]. To define Brownian 
motion for t ∈ [0, ∞), take a sequence {Xn} of independent Brow-t 
nian motions on [0, 1] and piece them together as follows. Define 
Xt = Xt 

1 for 0 ≤ t ≤ 1. For 1 < t ≤ 2, define Xt = X1 + Xt 
2 
−1. For 

2 < t ≤ 3, let Xt = X2 + Xt 
3 
−2, and so on. 

21.12 Exercises 

Exercise 21.1 Show that if X has a continuous distribution func-
tion FX and Y = FX (X), then Y has a density fY (x) = 1[0,1](x). 
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Exercise 21.2 Find an example of a probability space and three 
events A, B, and C such that P(A ∩ B ∩ C) = P(A)P(B)P(C), but 
A, B, and C are not independent events. 

Exercise 21.3 Suppose that 

P(X ≤ x, Y ≤ y) = P(X ≤ x)P(Y ≤ y) 

for all x, y ∈ R. Prove that X and Y are independent random 
variables. 

Exercise 21.4 Find a sequence of events {An} such that 

∞X 
P(An) = ∞ 

n=1 

but P(An i.o.) = 0. 

Exercise 21.5 A random vector X = (X1, . . . , Xn) has a jointR 
density fX if P(X ∈ A) = fX (x) dx for all Borel subsets A of

A 
Rn . Here the integral is with respect to n dimensional Lebesgue 
measure. 
(1) Prove that if the joint density of X factors into the product ofQn
densities of the Xj , i.e., fX (x) = (xj ), for almost every j=1 fXj 

x = (x1, . . . , xn), then the Xj are independent. 
(2) Prove that if X has a joint density and the Xj are independent, 
then each Xj has a density and the joint density of X factors 
into the product of the densities of the Xj for almost every x = 
(x1, . . . , xn). 

Exercise 21.6 Suppose {An} is a sequence of events, not necessar-P∞
ily independent, such that P(An) = ∞. Suppose in addition n=1 
that there exists a constant c such that for each N ≥ 1, 

N � NX X �2 
P(Ai ∩ Aj ) ≤ c P(Ai) . 

i,j=1 i=1 

Prove that P(An i.o.) > 0. 

Exercise 21.7 Suppose X and Y are independent, E |X|p < ∞ 
for some p ∈ [1, ∞), E |Y | < ∞, and E Y = 0. Prove that 

E (|X + Y |p) ≥ E |X|p. 
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Exercise 21.8 Suppose that Xi are independent random variables 
such that Var Xi/i → 0 as i → ∞. Suppose also that E Xi → 
a. Prove that Sn/n converges in probability to a, where Sn =Pn 

Xi. We do not assume that the Xi are identically distributed. i=1 

Exercise 21.9 Suppose {Xi} is a sequence of independent mean 
zero random variables, not necessarily identically distributed. Sup-
pose that supi E X4 < ∞.P i 

n
(1) If Sn = Xi, prove there is a constant c such that E S4 ≤i=1 n 
2cn . 

(2) Prove that Sn/n → 0 a.s. 

Exercise 21.10 Suppose {Xi} is an i.i.d. sequence of random vari-Pn
ables such that Sn/n converges a.s., where Sn = i=1 Xi. 
(1) Prove that Xn/n → 0 a.s.P 
(2) Prove that P(|Xn| > n) < ∞. n 
(3) Prove that E |X1| < ∞. 

Exercise 21.11 Suppose {Xi} is an i.i.d. sequence of random vari-
ables with E |X1| < ∞. Prove that the sequence {Sn/n} is uni-
formly integrable; see Exercise 7.21 for the definition of uniformly 
integrable. Conclude by Theorem 7.22 that E Sn/n converges to 
E X1. 

Exercise 21.12 Suppose {Xi} is an i.i.d. sequence of random vari-
ables with E |X1| < ∞ and E X1 = 0. Prove that 

max1≤k≤n |Sk| → 0, a.s. 
n 

Exercise 21.13 Suppose that {Xi} is a sequence of independent P 
random variables with mean zero such that i Var Xi < ∞. Prove Pn
that Sn converges a.s. as n →∞, where Sn = i=1 Xi. 

Exercise 21.14 Let {Xi} be a sequence of random variables. The 
tail σ-field is defined to be T = ∩n≥1σ(Xn, Xn+1, . . .). Let Sn =Pn 

i=1 Xi. 
(1) Prove that the event (Sn converges) is in T . 
(2) Prove that the event (lim infn→∞ Sn/n > a) is in T for each 
real number a. 
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Exercise 21.15 Let {Xi} be a sequence of independent random 
variables and let T be the tail σ-field. 
(1) Prove that if A ∈ T , then A is independent of σ(X1, . . . , Xn) 
for each n. 
(2) Prove that if A ∈ T , then A is independent of itself, and hence 
P(A) is either 0 or 1. This is known as the Kolmogorov 0-1 law. 

Exercise 21.16 Let {Xi} be an i.i.d. sequence. Prove that if 
E X+ = ∞ and E X− < ∞, then Sn/n → +∞ a.s., where Sn =P 1 1 

n 
i=1 Xi. 

Exercise 21.17 Let F ⊂ G be two σ-fields. Let H be the Hilbert 
space of G measurable random variables Y such that E Y 2 < ∞ 
and let M be the subspace of H consisting of the F measurable 
random variables. Prove that if Y ∈ H, then E [Y | F ] is equal to 
the projection of Y onto the subspace M . 

Exercise 21.18 Suppose F ⊂ G are two σ-fields and X and Y are 
bounded G measurable random variables. Prove that 

E [XE [Y | F ] ] = E [Y E [X | F ] ]. 

Exercise 21.19 Let F ⊂ G be two σ-fields and let X be a bounded 
G measurable random variable. Prove that if 

E [XY ] = E [XE [Y | F ] ] 

for all bounded G measurable random variables Y , then X is F 
measurable. 

Exercise 21.20 Suppose F ⊂ G are two σ-fields and that X is 
G measurable with E X2 < ∞. Set Y = E [X | F ]. Prove that if 
E X2 = E Y 2 , then X = Y a.s. 

Exercise 21.21 Suppose N is a positive integer and F0 ⊂ F1 ⊂ 
F2 ⊂ · · · ⊂ FN are σ-fields. Suppose Ai is a sequence of random 
variables adapted to {Fi} such that 0 = A0 ≤ A1 ≤ A2 ≤ · · · ≤ AN 

and Ai+1 − Ai ≤ 1 a.s. for each i. Suppose that 

E [AN − Ai | Fi] ≤ 1, a.s. 
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for each i. 
(1) Let ak = Ak+1 − Ak. Show that 

N−1 NX X 
2A2 = 2 aN (AN − Ak)ak − k. 

k=0 k=0 

(2) Show that E [AN − Ak | Fk+1] ≤ 2. 
(3) Prove that E A2 ≤ 8.N 

Exercise 21.22 Let {Xi} be an i.i.d. sequence of random variables 
n1 P

with P(X1 = 1) = P(X1 = −1) = . Let Sn = Xi. The2 i=1 
sequence {Sn} is called a simple random walk. Let 

L = max{k ≤ 9 : Sk = 1} ∧ 9. 

Prove that L is not a stopping time with respect to the family of 
σ-fields Fn = σ(S1, . . . , Sn). 

Exercise 21.23 Let F1 ⊂ F2 ⊂ · · · be an increasing family of 
σ-fields and let F∞ = σ(∪∞ 

n=1Fn). If N is a stopping time, define 

FN = {A ∈ F∞ : A ∩ (N ≤ n) ∈ Fn for all n}. 

(1) Prove that FN is a σ-field. 
(2) If M is another stopping time with M ≤ N a.s., and we define 
FM analogously, prove that FM ⊂ FN . 
(3) If Xn is a martingale with respect to {Fn} and N is a stopping 
time bounded by the real number K, prove that E [XK | FN ] = 
XN . 

Exercise 21.24 Let {Xi} be a sequence of bounded i.i.d. randomPn
variables with mean 0. Let Sn = i=1 Xi. Prove that there exists 

Sn −c1 na constant c1 such that Mn = e is a martingale. 

Exercise 21.25 Let {Xi} be a sequence of i.i.d. standard normalPn
random variables. Let Sn = i=1 Xi. 

aSn−a(1) Prove that for each a > 0, Mn = e 
2 n/2 is a martingale. 

(2) Show 
−λ2/2nP( max Sn > λ) ≤ e 

1≤k≤n 

for all λ > 0. 
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Exercise 21.26 Let {Xn} be a submartingale. Let 

nX 
An = (E [Xi | Fi−1] − Xi−1). 

i=2 

Prove that Mn = Xn − An is a martingale. This is known as the 
Doob decomposition of a submartingale. 

Exercise 21.27 Suppose Mn is a martingale. Prove that if 

sup E M2 < ∞,n 
n 

then Mn converges a.s. and also in L2 . 

Exercise 21.28 Set (Ω, F , P) equal to ([0, 1], B,m), where B is the 
Borel σ-field on [0, 1] and m is Lebesgue measure. Define ⎧ h �⎪ 2k 2k+1⎨1, ω ∈ , for some k ≤ 2n−1;2n 2n 

Xn(ω) = h �⎪ 2k+1 2k+2⎩−1, ω ∈ , for some k ≤ 2n−1 .2n 2n 

(1) Prove that Xn converges weakly (in the probabilistic sense) to 
a non-zero random variable. 
(2) Prove that Xn converges to 0 with respect to weak convergence 
in L2(m), that is, E [XnY ] → 0 for all Y ∈ L2 . 

Exercise 21.29 Suppose Xn is a sequence of random variables 
that converges weakly to a random variable X. Prove that the 
sequence {Xn} is tight. 

Exercise 21.30 Suppose Xn → X weakly and Yn → 0 in proba-
bility. Prove that XnYn → 0 in probability. 

Exercise 21.31 Given two probability measures P and Q on [0, 1] 
with the Borel σ-field, define n Z Z 

d(P, Q) = sup f dP − f dQ : f ∈ C1 , kfk∞ ≤ 1, o 
kf 0k∞ ≤ 1 . 
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Here C1 is the collection of continuously differentiable functions 
and f 0 is the derivative of f . 
(1) Prove that d is a metric. 
(2) Prove that Pn → P weakly if and only if d(Pn, P) → 0. 
This metric makes sense only for probabilities defined on [0, 1]. 
There are other metrics for weak convergence that work in more 
general situations. 

Exercise 21.32 Suppose Fn → F weakly and every point of F is 
a continuity point. Prove that Fn converges to F uniformly over 
x ∈ R: 

sup |Fn(x) − F (x)| → 0. 
x∈R 

Exercise 21.33 Suppose {Xn} is a collection of random variables 
that is tight. Prove that {ϕXn } is equicontinuous on R. 

Exercise 21.34 Suppose Xn → X weakly. Prove that ϕXn con-
verges uniformly to ϕX on each bounded interval. 

Exercise 21.35 Suppose Xn → X weakly, Yn → Y weakly, and 
Xn and Yn are independent for each n. Suppose X 0 has the same 
distribution as X, Y 0 has the same distribution as Y 0 , and X 0 and 
Y 0 are independent. Prove that Xn + Yn → X 0 + Y 0 weakly. 

Exercise 21.36 X is said to be a gamma random variable with 
parameters t and λ if X has density 

1 t−1λt x e −λx 1(0,∞)(x),
Γ(t) R ∞ t−1where Γ(t) = y e−y dy is the Gamma function.

0 
(1) Prove that an exponential random variable with parameter λ 
is also a gamma random variable with parameters 1 and λ. 
(2) Prove that if X is a standard normal random variable, then X2 

is a gamma random variable with parameters 1/2 and 1/2. 
(3) Prove that if X is a gamma random variable with parameters 
s and λ, Y is a gamma random variable with parameters t and 
λ, and X and Y are independent, then X + Y is also a gamma 
random variable; determine the parameters of X + Y . You may 
use the fact that the characteristic function for a gamma random 
variable is ϕ(u) = (1 − iuλ)−t . 
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Exercise 21.37 Suppose Xn is a sequence of independent random 
variables, not necessarily identically distributed, with sup E |Xn|3 

n √ 
< ∞ and E Xn = 0 and Var Xn = 1 for each n. Prove that Sn/ n 
converges weakly to a standard normal random variable, wherePn
Sn = i=1 Xi. 

Exercise 21.38 Suppose that Xn a Poisson random variable with √ 
parameter n for each n. Prove that (Xn − n)/ n converges weakly 
to a standard normal random variable as n →∞. 

Exercise 21.39 In this exercise we show how to construct a ran-
dom vector whose law is a given probability measure on Rn . 
(1) Let P be a probability measure on the Borel subsets of Rn . If 
ω = (ω1, . . . , ωn) ∈ Rn , define Xn(ω) = ωn. Let X = (X1, . . . , Xn). 
Prove that the law PX of X is equal to P. 
(2) If P is a product measure, prove that the components of X are 
independent. 

Exercise 21.40 Prove that if Xt is a Brownian motion and a is a 
positive real number, then Yt = aXa2 t is also a Brownian motion. 

Exercise 21.41 Let Xt be a Brownian motion. Let n ≥ 1 and let 
Mk = Xk/2n . Let Fk be the σ-field generated by M1, . . . ,Mk. 
(1) Prove that Mk is a martingale. 

aMk−a (k/2n 
(2) Prove that if a ∈ R, then e 

2 )/2 is a martingale. 
(3) Prove that 

−λ2/2rP(sup Xt ≥ λ) ≤ e . 
t≤r 

Exercise 21.42 Let Xt be a Brownian motion. Let p
An = ( sup Xt > 6 · 2n log log 2n). 

t≤2n+1 

P∞
(1) Prove that P(An) < ∞. n=1 
(2) Prove that 

Xt
lim sup √ < ∞, a.s. 
t→∞ t log log t 

This is part of what is known as the law of the iterated logarithm 
or LIL for Brownian motion. 
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Exercise 21.43 Let Xt be a Brownian motion. Let M > 0, t0 > 
0, and 

Bn = (Xt0+2−n − Xt0+2−n−1 > M2−n−1). P∞
(1) Prove that P(Bn) = ∞. n=1 
(2) Prove that the function t → Xt(ω) is not differentiable at t = t0. 
(3) Prove that except for ω in a null set, the function t → Xt(ω) 
is not differentiable at almost every t (with respect to Lebesgue 
measure on [0, ∞).) 
This can actually be strengthened, via a different proof, to the fact 
that except for a set of ω in a null set, the function t → Xt(ω) is 
nowhere differentiable. 

Exercise 21.44 Let Xt be a Brownian motion and let qn = n−n . 
Let 

√ √ 
An = (Xqn − Xqn+1 > 4 qn) and Bn = (|Xqn+1 | > qn). 

(1) Prove that P(An i.o.) = 1. 
(2) Prove that P(Bn i.o.) = 0. √ 
(3) Prove that almost surely Xt/ t > 1 infinitely often as t → 0√ 
and Xt/ t < −1 infinitely often as t → 0. This says that Brownian 
motion started at 0 cannot stay negative for a time. Similarly it 
cannot stay positive for a time; the paths of Xt must oscillate quite 
a bit near 0. 

Exercise 21.45 Let Xt be a Brownian motion on [0, 1]. Prove 
that Yt = tX1/t is also a Brownian motion. 
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Chapter 22 

Harmonic functions 

Harmonic functions are important in complex analysis, partial dif-
ferential equations, mathematical physics, and probability theory, 
as well as in real analysis. In this chapter we present some of their 
basic properties. 

22.1 Definitions 

Recall that a C2 function is one whose second partial derivatives 
are continuous and a domain is an open set in Rn . If f is a C2 

function in a domain D, the Laplacian of f , written Δf , is the 
function 

nX ∂2f 
Δf(x) = (x), x ∈ D. 

∂x2 
ii=1 

A real-valued function h is harmonic on a domain D if h is C2 in 
D and Δh(x) = 0 for all x ∈ D. 

In one dimension, the linear functions h(x) = ax + b are har-
monic in any interval, and any harmonic function is linear in each 
open interval on which it is defined, since h00(x) = 0. 

When we turn to two dimensions, we can identity R2 with the 
complex plane C. If D is a domain in C and f is analytic in D, 
that is, f is differentiable at each point of D, then the real and 
imaginary parts of f are harmonic in D. This is a consequence of 

323 
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the Cauchy-Riemann equations. If f = u + iv, then the Cauchy-
Riemann equations from complex analysis say that ∂u/∂x = ∂v/∂y 
and ∂u/∂y = −∂v/∂x. Since an analytic function is infinitely 
differentiable, it follows that 

∂2u ∂2u ∂2v ∂2v 
Δu = + = − = 0,

∂x2 ∂y2 ∂x∂y ∂y∂x 

and similarly Δv(x) = 0. 

In particular, the real part of the logarithm function is harmonic 
iθas long as we are not at 0. If z = re ∈ C − {0}, then log z = 

log r + iθ, so the real part of f(z) = log z is u(z) = log r = log |z|. 
We conclude that the function f(x) = log |x| is harmonic for x ∈ 

2 2R2 − {0}, where |x| = (x1 + x2)
1/2 . Alternatively, this can be 

verified by computing the Laplacian of log |x|. 

When the dimension n is greater than or equal to 3, the function 
h(x) = |x|2−n is seen by a direct calculation of the partial deriva-
tives to be harmonic in Rn − {0}, where |x| = (x12 + · · · + x2 )1/2 .n 
When doing the calculation, it is helpful to write 

∂ ∂ 2 2 2xi xi|x| = (x · · + x )1/2 = = .n∂xi ∂xi 
1 + · 

2(x21 + · · · + x2 )1/2 |x|n 

22.2 The averaging property 

Recall the divergence theorem from undergraduate analysis: if D 
is a nice domain such as a ball, then Z Z 

div F (x) dx = F · n(y) σ(dy), (22.1) 
D ∂D 

where F = (F1, . . . , Fn) : Rn → Rn is a vector field, div F =Pn 
∂Fi/∂xi is the divergence of F , ∂D is the boundary of D,i=1 

n(y) is the outward pointing unit normal vector at y, and σ(dy) is 
surface measure on ∂D. 

If u and v are two real-valued functions on Rn and we let F = 
urv, where rv is the gradient of v, then 

n � � n nX ∂ ∂v X ∂2v X ∂u ∂v 
div F = u = u + 

∂xi ∂xi ∂xi 2 ∂xi ∂xii=1 i=1 i=1 

= uΔv + ru · rv 
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and 
∂v 

F · n = u ,
∂n 

where ∂v/∂n is the normal derivative. Substituting into the diver-
gence theorem we get Green’s first identity : Z Z Z 

∂v 
uΔv dx + ru · rv dx = u dσ. (22.2)

∂n D D ∂D 

If we reverse the roles of u and v in Green’s first identity and 
take the difference, we get Green’s second identity : Z Z � �∂v ∂u 

(uΔv − vΔu) dx = u − v dσ. (22.3)
∂n ∂n D ∂D 

Each of the two following theorems are known as the mean value 
property or the averaging property of harmonic functions. 

Theorem 22.1 Suppose h is harmonic in a domain D, x0 ∈ D, 
and r < dist (x0, Dc). Then Z 

1 
h(x0) = h(y) σ(dy), (22.4)

σ(∂B(x0, r)) ∂B(x0,r) 

where σ is surface measure on ∂B(x0, r). 

Proof. By looking instead at h(x − x0) − h(x0), we may suppose 
without loss of generality that x0 = 0 and h(x0) = 0. 

If s ≤ r and we apply Green’s first identity with v = h and u 
identically equal to one, we see that Z 

∂h 
(y) σ(dy) = 0, (22.5)

∂n ∂B(0,s) 

since ru = 0 and Δv = 0 in B(0, s). 

Now let ε > 0 and choose δ such that |h(x)| < ε if |x| ≤ δ. 
This can be done because h is continuous at 0 and h(0) = 0. If 
n ≥ 3, let v be a C2 function on Rn such that v(x) = |x|2−n if 
|x| ≥ δ/2. If n = 2, let v be a C2 function such that v(x) = log |x|
if |x| ≥ δ/2. We now apply Green’s second identity with u = h 
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and v as just described in each of the balls B(0, r) and B(0, δ) and 
take the difference: Z 
0 = (uΔv − vΔu) 

B(0,r)−B(0,δ)Z Z 
∂v ∂u 

= u(y) (y) σ(dy) − v(y) (y) dy
∂n ∂n ∂B(0,r) ∂B(0,r)Z Z 

∂v ∂u − u(y) (y) σ(dy) + v(y) (y) σ(dy)
∂n ∂n ∂B(0,δ) ∂B(0,δ) 

= I1 − I2 − I3 + I4. 

We used that Δu = 0 and Δv = 0 in B(0, r) − B(0, δ). We then 
have 

I1 = I2 + I3 − I4. 

For y ∈ ∂B(0, r) and for y ∈ ∂B(0, δ), we see that n(y) = y/|y|. 
A calculation shows that rv(y) = c1y/|y|n for y on the boundary 
of either of those sets, where c1 is a constant depending only on 
the dimension n, and we conclude 

∂v c1
(y) = 

∂n |y|n−1 

on the boundary of either of those sets. Therefore Z 
c2

I1 = u(y) σ(dy) 
rn−1 

∂B(0,r) 

is equal to a constant times the right hand side of (22.4). We also 
have 

c2|I3| ≤ sup |u(y)| σ(∂B(0, δ)) ≤ c3ε. 
δn−1 

y∈∂B(0,δ) 

I2 and I4 are both zero by (22.5) and the fact that v is constant 
on ∂B(0, r) and is constant on ∂B(0, δ). We conclude that the right 
hand side of (22.4) is bounded in absolute value by a constant times R 
ε. Since ε is arbitrary, this proves that h(y) σ(dy) = 0,

∂B(0,r) 
which yields the theorem. 

The previous theorem says that the value of a harmonic function 
at the center of a ball contained in the domain is equal to the 
average of the values of the harmonic function on the boundary 
of the ball. The next theorem says that the value at the center is 
equal to the average of the values inside the ball. 
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Theorem 22.2 Suppose h is harmonic in D, x0 ∈ D, and r < 
dist (x0, Dc). Then Z 

1 
h(x0) = h(y) dy, (22.6) 

m(B(0, r)) B(x0,r) 

where m is Lebesgue measure. 

Proof. This result follows easily from Theorem 22.1 by changing to 
polar coordinates. Again we may suppose x0 = 0. If y ∈ B(0, r), we 
may write y = sv, where s = |y| ∈ (0, r) and v = y/|y| ∈ ∂B(0, 1). 
If σs(dy) is surface measure on ∂B(0, s), then Z Z Zr 

h(y) dy = h(vs) σs(dv) ds 
B(x0 ,r) 0 ∂B(0,s)Z r 

= h(0) σs(∂B(0, s)) ds 
0 

= h(0)m(B(0, r)), 

where we used Theorem 22.1 for the second equality. 

22.3 Maximum principle 

The following theorem is known as the maximum principle for har-
monic functions. 

Theorem 22.3 Suppose D is a connected domain and h is har-
monic in D. If h takes its maximum inside D, then h is constant 
in D. 

Proof. Let M = supx∈D h(x). Suppose h(x0) = M for some 
x0 ∈ D and let r < dist (x, Dc). If h(x) < M for some x ∈ B(x0, r), 
then by the continuity of h, we see that h < M for a ball contained 
in B(x0, r). Then Z 

1 
h(x0) = M > h(y) dy = h(x0), 

m(B(x0, r)) B(x0,r) 

a contradiction. Therefore h is identically equal to M on B(x0, r) 
if h(x0) = M and B(x0, r) ⊂ D. Thus {y ∈ D : h(y) = M } is 
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open. Since h is continuous, then {y ∈ D : h(y) < M} is also open. 
Since D is connected, either {y ∈ D : h(y) = M} must be empty 
or must be equal to D. 

If D is a bounded connected domain, h is harmonic in D, and 
h is continuous on D, then Theorem 22.3 says that h takes its 
maximum on ∂D. The hypothesis that D be bounded is essential. 
If we consider 

D = {(x, y) ∈ R2 : y > 0} 

and let h(x, y) = y, then h is harmonic, but does not takes its 
maximum on ∂D. 

22.4 Smoothness of harmonic functions 

In this section we prove that harmonic functions are C∞ in the 
domain in which they are defined, and then show that functions 
satisfying the averaging property are harmonic. 

Theorem 22.4 Suppose D is a domain and h is bounded on D 
and satisfies the averaging property (22.6) for each x0 ∈ D and 
each r < dist (x0, Dc). Then h is C∞ in D. 

Remark 22.5 Suppose for each x ∈ D there is an open subset Nx 

of D containing x on which h is bounded. We can apply the above 
theorem to Nx and conclude that h is C∞ on each set Nx, and 
hence is C∞ on D. 

Since harmonic functions are C2 functions and satisfy the aver-
aging property, they are C∞ in their domain. 

Proof. Suppose z0 ∈ D, 8r < dist (z0, Dc), x ∈ B(z0, 2r), x ∈ 
B(z0, 3r), and r > |ε| > |x − x0|. Suppose |h| is bounded by M . 
Applying the averaging property, Z 

1 
h(x) = h(y) dy 

m(B(0, r)) B(x,r) 

0 
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and similarly with x replaced by x0 . Taking the difference, Z 
1 |h(x) − h(x 0)| ≤ |h(y)| dy 

m(B(0, r)) 0B(x,r)4B(x ,r) 

c1M 0≤ m(B(x, r)4B(x , r)), 
rn 

where A4B = (A − B) ∪ (B − A). Some easy geometry shows that 

0B(x, r)4B(x , r) ⊂ B(x, r + ε) − B(x, r − ε), 

so 

|h(x) − h(x 0)| ≤ c1Mr−n m(B(x, r + ε) − B(x, r − ε)) 

= c2Mr−n[(r + ε)n − (r − ε)n], 

which in turn is bounded by 

c3Mr−n(r n−1ε). 

We used here the inequality 

n−1(a − b)n = (a − b)(a + a n−2b + · · · + abn−2 + bn−1) 

≤ n(a − b)(a ∨ b)n−1 . 

This is true for each |ε| > |x − x0|, and therefore 

|h(x) − h(x0)| M ≤ c3 . (22.7)
|x − x0| r 

One conclusion we draw from this is that h is continuous. 

Now let e1 = (1, 0, . . . , 0) be the unit vector in the x1 direction. 
Let 

h(x + εe1) − h(x)
Fε(x) = . 

ε 

We have seen that |Fε(x)| is bounded by c3M/r if x ∈ B(z0, 2r) and 
|ε| < r. Applying the averaging property and doing some algebra, Z 

1 
Fε(x) = Fε(y) dy. (22.8) 

m(B(0, r)) B(x,r) 

Just as in the derivation of (22.7), 

M |Fε(x) − Fε(x 0)| ≤ c4 |x − x 0|. 
r 
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This implies that {Fε(x)} is an equicontinuous family of functions 
of x on B(z0, r). 

Fix x2, . . . , xn. In view of (22.7), 

H(x1) = h(x1, . . . , xn) 

is of bounded variation in the x1 variable, and hence is differentiable 
for almost every x1. Therefore Gε(x1) = Fε(x1, . . . , xn) has a limit 
as ε → 0 for almost every x1 such that (x1, . . . , xn) ∈ B(z0, r). This 
and the equicontinuity of the family {Fε} imply that Gε(x1) has 
a limit for every such x1. Thus, for each (x1, . . . , xn) ∈ B(z0, r), 
the partial derivative of h with respect to x1 exists. Moreover, 
∂h/∂x1 is bounded in B(z0, r). Since z0 ∈ D is arbitrary, we see 
that ∂h/∂x1 exists at each point of D and a compactness argument 
shows that it is bounded on each bounded subdomain D0 of D such 
that D0 ⊂ D. 

Passing to the limit in (22.8), we obtain Z 
∂h 1 ∂h 
(x) = (y) dy. 

∂x1 m(B(0, r)) ∂x1B(x,r) 

Thus ∂h/∂x1 also satisfies the averaging property and is bounded 
in each bounded subdomain D0 of D such that D0 ⊂ D. Hence 
it is continuous. These facts also apply to each of the first partial 
derivatives of h. 

Repeating the argument and using Remark 22.5, we see each 
second partial derivative ∂2h/∂xi ∂xj satisfies the averaging prop-
erty, hence is continuous, and so on. Therefore h is a C∞ function 
in D. 

We now have the following converse of the averaging property. 

Theorem 22.6 If D is a domain and h is bounded on D and sat-
isfies (22.6), then h is harmonic in D. 

Proof. Let x0 ∈ D. We may take x0 = 0 and h(0) = 0 without 
loss of generality. By Taylor’s theorem, 

n nX X∂h 1 ∂2h 
h(y) = h(0) + (0)yi + (0)yiyj + R(y),2∂xi ∂xi∂xji=1 i,j=1 
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where the remainder R satisfies |R(y)|/|y|2 → 0 as |y| → 0. Inte-
grating over B(0, r) and using that the integrals of yi and of yiyj 

over B(0, r) are zero unless i = j, we obtain 

n Z ZX ∂2h 20 = h(0) = (0)yi dy + R(y) dy. 
B(0,r) i B(0,r)∂x2 

i=1 

Therefore given ε, Z 
c1r 

3|Δh(0)| ≤ ε |y|2 dy 
B(0,r) 

3if r is small enough. Dividing both sides by r , we have 

|Δh(0)| ≤ c2ε, 

and since ε is arbitrary, then Δh(0) = 0. 

Now that we know that harmonic functions are C∞ in their 
domain, then ∂h/∂xi ∈ C2 and � �∂h ∂(Δh)

Δ (x) = (x) = 0,
∂xi ∂xi 

so ∂h/∂xi is also harmonic. This could also be deduced from the 
fact that ∂h/∂xi satisfies the averaging property by the proof of 
Theorem 22.4. 

22.5 Poisson kernels 

Let H ⊂ Rn+1 be defined by H = Rn × (0, ∞) and denote points 
of H by (x, y). Define 

cny
P (x, y) = ,

(|x|2 + y2)(n+1)/2 

where 
Γ((n + 1)/2) 

cn = 
π(n+1)/2 

and Γ is the Gamma function: Z ∞ 
x−1Γ(x) = t e −t dt. 

0 

P (x, y) is called the Poisson kernel for the half space H. 
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Proposition 22.7 The function (x, y) → P (x, y) is harmonic in 
H. Moreover, for each y, Z 

P (x, y) dx = 1. 
Rn 

Proof. This is just calculus. Calculating derivatives shows that 
the Laplacian is zero. A trigonometric substitution shows that the 
integral is equal to one. 

If 1 ≤ p ≤ ∞ and f ∈ Lp(Rn), define Z 
u(x, y) = P (x − t, y)f(t) dt. 

u is called the Poisson integral of f and also the harmonic extension 
of f . 

Proposition 22.8 (1) If 1 ≤ p ≤ ∞ and f ∈ Lp(Rn), then the 
harmonic extension of f in H is harmonic. 
(2) If f is bounded and continuous, then 

lim u(x0, y) = f(x0) 
y→0 

for each x0 ∈ Rn . 

Proof. The first follows from Proposition 22.7 and the dominated 
convergence theorem. To prove (2), by looking at f(x−x0)−f(x0)R 
and using the fact that P (x, y) dx = 1, it suffices to prove this 
when x0 = 0 and f(0) = 0. 

Given ε, choose δ such that |f(x)| ≤ ε if |x| ≤ δ. We have Z Z 
u(0, y) = P (t, y)f(t) dt + P (t, y)f(t) dt. 

|t|≤δ |t|>δ 

The first integral on the right is bounded in absolute value by Z 
ε P (t, y) dt = ε. 

The second integral on the right is bounded in absolute value by Z 
sup |f(t)| P (t, y) dt. 
t∈Rn |t|>δ 
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By a change of variables, Z Z 
c 

P (t, y) dt = dt,
(1 + t2)(n+1)/2 

|t|>δ |t|>δ/y 

which tends to 0 as y → 0 by the dominated convergence theorem. 
Since ε is arbitrary, 

lim sup |u(0, y)| = 0, 
y→0 

which proves (2). 

If D = B(0, r), the Poisson kernel for the ball D is given by 

r2 − |x|2 

Pr(x, y) = c , x ∈ D, y ∈ ∂D, 
r|x − y|n 

where c = 1/σ(∂B(0, 1)) and σ(dy) is surface area on ∂D. 

If f is a continuous function on ∂B(0, r), then Z 
u(x) = Pr(x, y)f(y) σ(dy) 

is harmonic in D, u has a continuous extension to B(0, r) and 

lim u(x) = f(y), y ∈ ∂B(0, r). 
x→y,u∈D 

These facts can be shown by some not-so-easy calculus, and an 
argument similar to the proof of (2) of Proposition 22.8. 

How does one arrive at the formula for the Poisson kernel for 
the ball? If you are good at calculations, you can show by tedious 
calculations that if h is harmonic in a domain E not containing zero, 
then |x|2−nh(x/|x|2) is harmonic in the domain {y ∈ Rn : y/|y|2 ∈ 
E}. The Poisson kernel formula is obvious when x = 0 and r = 1. 
By a simple change of variables, one can get the Poisson kernel for 
E = B(e1, 1), where e1 is the unit vector in the x1 direction. We 
then apply the transformation y → y/|y|2 to get the Poisson kernel 
for the half space H 0 = {y : y1 > 1/2} with x = e1. By another 
simple change of variables we get the Poisson kernel for H 0 with x 
any point of H 0 . Finally we do another inversion x → x/|x|2 to get 
the Poisson kernel for the unit ball, and do yet another change of 
variables to get the Poisson kernel for the ball of radius r. See [3] 
or [4] for details. 
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Remark 22.9 The Dirichlet problem for a ball D = B(0, r) from 
partial differential equations is the following: given a continuous 
function f on the boundary of the ball, find a function u that is 
C2 in D and continuous on D such that Δu(x) = 0 for x ∈ D and 
u(x) = f(x) for x ∈ ∂D. By the above, Z 

u(x) = Pr(x, y)f(y) σ(dy) 
∂B(0,r) 

provides the solution. 

22.6 Harnack inequality 

The following theorem is known as the Harnack inequality. 

Theorem 22.10 Suppose h ≥ 0 is harmonic in B(0, R) and r < 
R. Let � �R2 nR + r 

c(r, R) = . 
R2 − r2 R − r 

Then 
h(x) ≤ c(r, R)h(x 0), x, x 0 ∈ B(0, r). 

Proof. Suppose first that h is harmonic in B(0, R) and continuous 
on B(0, R). If Z 

g(x) = PR(x, y)h(y) σ(dy), 
∂B(0,R) 

then g is harmonic in B(0, R) and agrees with h on ∂B(0, R). So 
g − h is harmonic in B(0, R) and equal to 0 on the boundary of 
B(0, R). By the maximum principle, g is identically equal to h. 

Using the formula for the Poisson kernel, 

PR(x, y) R2 − |x|2 |x0 − y|n 

= · ≤ c(r, R)
PR(x0, y) R2 − |x0|2 |x − y|n 

if x, x0 ∈ B(0, r) and y ∈ ∂B(0, R). Then Z 
h(x) = PR(x, y)h(y) σ(dy) 

∂B(0,R)Z 
0≤ c(r, R) PR(x , y)h(y) σ(dy) = h(x 0) 

∂B(0,R) 
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for x, x0 ∈ B(0, r). 

We apply this with R replaced by R − ε for 0 < ε < R − r 
and let ε → 0 to remove the restriction that h be continuous on 
B(0, R). 

22.7 Exercises 

Exercise 22.1 Suppose h is harmonic in a domain and g(x) = 
x · rh(x). Prove that g is harmonic in the domain. 

Exercise 22.2 Prove that if u, v are harmonic in a domain D, 
then uv is harmonic in D if and only ru(x) · rv(x) = 0 in D. 

Exercise 22.3 Suppose D connected and h and h2 are harmonic 
in D. Prove that h is constant in D. 

Exercise 22.4 Let D be a bounded connected domain. Suppose 
that h is harmonic in D and C1 in D. Prove that if ∂h/∂n = 0 
everywhere on the boundary of D, then h is constant. 

Exercise 22.5 Suppose that h is bounded and harmonic in a do-
main D, x0 ∈ D, and r > dist (x0, Dc). Prove there exists a 
constant ck depending only on k such that if g is any of the kth 

partial derivatives of h, then 

ck|g(x0)| ≤ sup |h(x)|. 
rk x∈D 

Exercise 22.6 Prove that if h is harmonic in a domain D not 
containing 0 and 

g(x) = |x|2−nh(x/|x|2), 

then g is harmonic in {y : y/|y|2 ∈ D}. 

Exercise 22.7 Prove that if f is continuous on ∂B(0, r) and Z 
h(x) = Pr(x, y)f(y) σ(dy), 

∂B(0,r) 
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where Pr(x, y) is the Poisson kernel for the ball, then 

lim h(x) = f(z), z ∈ ∂B(0, r). 
x→z,x∈B(0,r) R 

You may use the fact that Pr(x, y) σ(dy) = 1 for all x ∈
∂B(0,r) 

B(0, r). 

Exercise 22.8 Prove that if h is harmonic in a domain D and 
x0 ∈ D, then h has a Taylor series that converges in a neighborhood 
of x0. 

Exercise 22.9 Suppose that D is a bounded connected domain, 
x0 ∈ D, and that h and all of its partial derivatives are equal to 0 
at x0. Prove that h is identically zero. 

Exercise 22.10 Prove Liouville’s theorem: if h is harmonic and 
non-negative in Rn , then h is constant. 



Chapter 23 

Sobolev spaces 

For some purposes, particularly when studying partial differential 
equations, one wants to study functions which only have a deriva-
tive in the weak sense. We look at spaces of such functions in this 
chapter, and prove the important Sobolev inequalities. 

23.1 Weak derivatives 

Let C∞ be the set of functions on Rn that have compact support K 
and have partial derivatives of all orders. For j = (j1, . . . , jn), write 

∂j1+···+jn f 
Dj f = ,

j1 jn 
x1 xn ∂ · · · ∂ 

and set |j| = j1 + · · · + jn. We use the convention that ∂0f/∂x0 isi 
the same as f . 

Let f, g be locally integrable. We say that Dj f = g in the weak 
sense or g is the weak jth order partial derivative of f if Z Z 

f(x) Dj ϕ(x) dx = (−1)|j| g(x)ϕ(x) dx 

for all ϕ ∈ CK 
∞ . Note that if g = Dj f in the usual sense, then 

integration by parts shows that g is also the weak derivative of f . 

Let 

W k,p(Rn) = {f : f ∈ Lp, Dj f ∈ Lp for each j such that |j| ≤ k}. 

337 
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Set X 
kfkW k,p = kDj fkp, 

{j:0≤|j|≤k} 

where we set D0f = f . 

Theorem 23.1 The space W k,p is complete. 

Proof. Let fm be a Cauchy sequence in W k,p. For each j such 
that |j| ≤ k, we see that Dj fm is a Cauchy sequence in Lp. Let gj 

be the Lp limit of Dj fm. Let f be the Lp limit of fm. Then Z Z Z 
fm D

j ϕ = (−1)|j| (Dj fm)ϕ → (−1)|j| gj ϕ 

R R 
for all ϕ ∈ CK 

∞ . On the other hand, fm D
j ϕ → f Dj ϕ. There-

fore Z Z 
(−1)|j| gj ϕ = f Dj ϕ 

for all ϕ ∈ CK 
∞ . We conclude that gj = Dj f a.e. for each j such 

that |j| ≤ k. We have thus proved that Dj fm converges to Dj f 
in Lp for each j such that |j| ≤ k, and that suffices to prove the 
theorem. 

23.2 Sobolev inequalities 

Lemma 23.2 If k ≥ 1 and f1, . . . , fk ≥ 0, then Z �Z �Z�1/k �1/k
1/k 1/k
f · · · f ≤ · · · .1 k f1 fk 

Proof. We will prove �Z �k �Z � �Z � 
1/k 1/k
f · · · f ≤ · · · . (23.1)1 k f1 fk 

We will use induction. The case k = 1 is obvious. Suppose (23.1) 
holds when k is replaced by k − 1 so that �Z �k−1 �Z � �Z � 

1/(k−1) 1/(k−1)
f · · · f ≤ f1 · · · . (23.2)1 k−1 fk−1 
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−1 −1Let p = k/(k − 1) and q = k so that p + q = 1. Using Hölder’s 
inequality, Z 

1/k 1/k 1/k
(f · · ·f )f1 k−1 k �Z �Z�(k−1)/k �1/k

1/(k−1) 1/(k−1)≤ f · · · f fk .1 k−1 

Taking both sides to the kth power, we obtain �Z �k
1/k 1/k 1/k

(f · · ·f )f1 k−1 k �Z �(k−1)�Z � 
1/(k−1) 1/(k−1)≤ f · · · f .1 k−1 fk 

Using (23.2), we obtain (23.1). Therefore our result follows by 
induction. 

Let C1 be the continuously differentiable functions with com-K 
pact support. The following theorem is sometimes known as the 
Gagliardo-Nirenberg inequality. 

Theorem 23.3 There exists a constant c1 depending only on n 
such that if u ∈ CK 

1 , then 

kukn/(n−1) ≤ c1k |ru| k1. 

We observe that u having compact support is essential; oth-
erwise we could just let u be identically equal to one and get a 
contradiction. On the other hand, the constant c1 does not depend 
on the support of u. 

Proof. For simplicity of notation, set s = 1/(n − 1). Let Kj1 ···jm 

be the integral of |ru(x1, . . . , xn)| with respect to the variables 
xj1 , . . . , xjm . Thus Z 

K1 = |ru(x1, . . . , xn)| dx1 

and Z Z 
K23 = |ru(x1, . . . , xn)| dx2 dx3. 
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Note K1 is a function of (x2, . . . , xn) and K23 is a function of 
(x1, x4, . . . , xn). 

If x = (x1, . . . , xn) ∈ Rn , then since u has compact support, Z x1 ∂u |u(x)| = (y1, x2, . . . , xn) dy1 Z −∞ ∂x1 

≤ |ru(y1, x2, . . . , xn)| dy1 
R 

= K1. 

The same argument shows that |u(x)| ≤ Ki for each i, so that 

|u(x)|n/(n−1) = |u(x)|ns ≤ K1 
sKs · · · Ks .2 n 

Since K1 does not depend on x1, Lemma 23.2 shows that Z Z 
|u(x)|ns dx1 ≤ Ks Ks Ks · · 1 2 · n dx1 �Z � �Z �s s 

≤ Ks K2 dx1 · · · dx1 .1 Kn 

Note that Z Z �Z � 
K2 dx1 = |ru(x1, . . . , xn)| dx2 dx1 = K12, 

and similarly for the other integrals. Hence Z 
|u|ns dx1 ≤ K1 

sKs · · Ks .12 · 1n 

Next, since K12 does not depend on x2, Z Z 
Ks Ks|u(x)|ns dx1 dx2 ≤ Ks 
1 K

s · · dx212 13 · 1n �Z � �Z � �Z �s s s 
≤ Ks 

12 K1 dx2 K13 dx2 · · · K1n dx2 

= Ks · · Ks .12K12 
s K123 

s · 12n 

We continue, and get Z 
|u(x)|ns dx1 dx2 dx3 ≤ Ks 

123K
s 

1234 · · · Ks 
123K

s 
123K

s 
123n 
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and so on, until finally we arrive at Z � �n 
= Kns|u(x)|ns dx1 Ks · · · dxn ≤ .12···n 12···n 

If we then take the ns = n/(n − 1) roots of both sides, we get the 
inequality we wanted. 

From this we can get the Sobolev inequalities. 

Theorem 23.4 Suppose 1 ≤ p < n and u ∈ CK 
1 . Then there exists 

a constant c1 depending only on n such that 

kuknp/(n−p) ≤ c1k |ru| kp. 

Proof. The case p = 1 is the case above, so we assume p > 1. The 
case when u is identically equal to 0 is obvious, so we rule that case 
out. Let 

p(n − 1) 
r = 

n − p 
, 

and note that r > 1 and 

np − n 
r − 1 = . 

n − p 

Let w = |u|r . Since r > 1, then x → |x|r is continuously differen-
tiable, and so w ∈ CK 

1 . We observe that 

|rw| ≤ c2|u|r−1|ru|. 

Applying Theorem 23.3 to w and using Hölder’s inequality with 
q = p , we obtain p−1 

n−1�Z � Z 
|w|n/(n−1) n ≤ c3 |rw|Z 

|u|(np−n)/(n−p)|ru|≤ c4 �Z � p−1 �Z �1/p 
≤ c5 |u|np/(n−p) p |ru|p . 

The left hand side is equal to 

n−1 
n 

�Z �
|u|np/(n−p) . 
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Divide both sides by �Z � p−1 
p|u|np/(n−p) . 

Since 
n − 1 p − 1 1 1 n − p− = − = , 
n p p n pn 

we get our result. 

We can iterate to get results on the Lp norm of f in terms of the 
Lq norm of Dkf when k > 1. The proof of the following theorem 
is left as Exercise 23.8. 

Theorem 23.5 Suppose k ≥ 1. Suppose p < n/k and we define q 
1 1by = − k . Then there exists c1 such that q p n X 

kfkq ≤ c |Dj f | . 
p

{j:|j|=k} 

Remark 23.6 It is possible to show that if p > n/k and f ∈ W k,p, 
then f is Hölder continuous. 

23.3 Exercises 

Exercise 23.1 Prove that if p1, . . . , pn > 1, 
nX 1 

= 1, 
pii=1 

and µ is a σ-finite measure, then Z 
|f1 . . . fn| dµ ≤ kf1kp1 · · · kfnkpn . 

This is known as the generalized Hölder’s inequality. 

Exercise 23.2 Suppose 1 ≤ p < ∞. Prove that if there exist fm 

such that 
(1) fm ∈ CK 

∞; 
(2) kf − fmkp → 0; 
(3) for all |j| ≤ k, Dj fm converges in Lp, 
then f ∈ W k,p. 
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Exercise 23.3 Suppose 1 ≤ p < ∞. Prove that if f ∈ W k,p, then 
there exist fm such that 
(1) fm ∈ CK 

∞; 
(2) kf − fmkp → 0; 
(3) for all |j| ≤ k, Dj fm converges in Lp. 

1 1Exercise 23.4 Suppose 1 = + − 1. Prove that r p q 

kf ∗ gkr ≤ kfkpkgkq . 

This is known as Young’s inequality. 

Exercise 23.5 (1) Prove that W k,2 can be regarded as a Hilbert 
space. (It is common to write Hk for W k,2.) 
(2) Suppose k ≥ 1. Prove that f ∈ W k,2 if and only if Z 

(1 + |u|2)k|fb(u)|2 du < ∞. 

Exercise 23.6 If s is a real number, define Zn o 
Hs = f : (1 + |u|2)s|fb(u)|2 du < ∞ . 

Prove that if s > n/2 and f ∈ Hs , then fb is in L1 . Conclude that 
f is continuous. 

Exercise 23.7 Does the product formula hold for weak deriva-
is fg ∈ W 1,p/2tives? That is, if p ≥ 2 and f, g ∈ W 1,p, with 

D(fg) = f(Dg) + (Df)g? Prove or give a counterexample. 

Exercise 23.8 Prove Theorem 23.5. 

Exercise 23.9 Let ψ be a CK 
1 function on R2 that is equal to one 

on B(0, 1) and let 

2x1f(x1, x2) = ψ(x1, x2) . 
x1
2 + x2 

2 

Prove that f ∈ W 1,p(R2) for 1 ≤ p < 2, but that f is not con-
tinuous. (The function ψ is introduced only to make sure f has 
compact support.) 
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Exercise 23.10 Suppose the dimension n = 1. 
(1) Prove that if f ∈ W 1,1(R), then f can be modified on a set of 
Lebesgue measure 0 to be continuous, that is, there exists f∗ that 
is continuous and f = f∗ a.e. 
(2) Prove that if f ∈ W 1,p(R) for some p > 1, then f can be 
modified on a set of Lebesgue measure 0 to be Hölder continuous, 
that is, there exist c1 > 0 and α ∈ (0, 1) such that |f(x) − f(y)| ≤ 
c1|x − y|α for all x and y. 

Exercise 23.11 Prove that if f ∈ CK 
1 , then 

n ZX ∂f yj
f(x) = c1 (x − y) dy, 

∂xj |y|n 
j=1 

where c −1 is equal to the surface measure of ∂B(0, 1).1 

Exercise 23.12 Suppose n ≥ 3. Prove the Nash inequality : �Z �1+2/n �Z ��Z �4/n 
|f |2 ≤ c1 |rf |2 |f | 

if f ∈ C1 (Rn), where the constant c1 depends only on n. (TheK 
Nash inequality is also true when n = 2.) 



Chapter 24 

Singular integrals 

This chapter is concerned with the Hilbert transform, which is the 
prototype for more general singular integrals. The Hilbert trans-
form of a function f is defined by Z 

1 f(x − y)
Hf(x) = lim dy, 

ε→0,N →∞ π ε<|y|<N y 

and is thus a principal value integral. Remarkably, H is a bounded 
operator on Lp(R) for 1 < p < ∞. 

In preparation for the study of the Hilbert transform, we also in-
vestigate the Marcinkiewicz interpolation theorem and delve more 
deeply into properties of the maximal function, which was defined 
in Chapter 14. 

24.1 Marcinkiewicz interpolation theo-
rem 

Let (X, A, µ) be a measure space. An operator T mapping a col-
lection of real-valued measurable functions on X to real-valued 
measurable functions on X is sublinear if 

|T (f + g)(x)| ≤ |Tf(x)| + |Tg(x)| 

345 
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for all x ∈ X and for all measurable functions f and g in the 
collection. Recall that the Lp norm of a function is given by �Z �1/p 

kfkp = |f(x)|p µ(dx) 
X 

if 1 ≤ p < ∞. We say that an operator T is bounded on Lp or is 
of strong-type p-p if there exists a constant c1 such that 

kTfkp ≤ c1kfkp 

for every f ∈ Lp. We say that an operator T is of weak-type p-p if 
there exists a constant c2 such that 

kfkp 
p

µ({x : |Tf(x)| ≥ λ}) ≤ c2 
λp 

for all λ > 0. An operator that is bounded on Lp is automatically 
of weak-type p-p. This follows by Chebyshev’s inequality (Lemma 
10.4): 

µ({x : |Tf(x)| > λ}) = µ({x : |Tf(x)|p > λp})Z 
1 ≤ |Tf(x)|p µ(dx)
λp 

p1 c1 = kTfkpp ≤ kfkp.pλp λp 

The Marcinkiewicz interpolation theorem says that if 1 ≤ p < 
r < q ≤ ∞ and a sublinear operator T is of weak-type p-p and of 
weak-type q-q, then T is a bounded operator on Lr . A more general 
version considers operators that are what are known as weak-type 
p-q, but we do not need this much generality. 

Theorem 24.1 Suppose 1 ≤ p < r < q ≤ ∞. Let T be a sublinear 
operator defined on {f : f = f1 + f2, f1 ∈ Lp, f2 ∈ Lq}. 
(1) If T is of weak-type p-p and T is a bounded operator on L∞ , 
then T is a bounded operator on Lr . 
(2) If q < ∞, T is of weak-type p-p, and T is of weak-type q-q, 
then T is a bounded operator on Lr . 

Proof. (1) Suppose kTgk∞ ≤ c1kgk∞ if g ∈ L∞ . Let f ∈ Lr 

and define f1(x) = f(x) if |f(x)| > λ/(2c1) and 0 otherwise. Let 
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f2 = f − f1. This implies that |f2(x)| is bounded by λ/2c1 and Z Z 
|f1(x)|p dx = |f(x)|p dx 

|f(x)|>λ/2c1Z� �r−pλ ≤ |f(x)|r dx < ∞. 
2c1 

Because T is a bounded operator on L∞ , then |Tf2(x)| is bounded 
by λ/2. By the sublinearity of T , 

|Tf(x)| ≤ |Tf1(x)| + |Tf2(x)| ≤ |Tf1(x)| + λ/2, 

and hence 

{x : |Tf(x)| > λ} ⊂ {x : |Tf1(x)| > λ/2}. 

We therefore have 

µ({x : |Tf(x)| > λ}) ≤ µ({x : |Tf1(x)| > λ/2}). 

Since T is of weak-type p-p, there exists a constant c2 not depending 
on f such that the right hand side is bounded by Z Zkf1kp c22

p c22
p 

p
c2 = |f1(x)|p µ(dx) = |f(x)|p µ(dx). 
(λ/2)p λp λp 

|f |>λ/2c1 

We then write, using Exercise 15.3 and the Fubini theorem, Z Z ∞ 

|Tf(x)|r µ(dx) = rλr−1 µ({x : |Tf(x)| > λ}) dλ 
0Z ∞ Z 

≤ rλr−1 c22
p 

|f(x)|p µ(dx) dλ 
0 λp 

|f |>λ/(2c1)Z ∞ Z 
= c22

pr λr−p−1χ(|f |>λ/2c1 )(x)|f(x)|
p µ(dx) dλ 

0Z Z 2c1 |f(x)| 
= c22

pr λr−p−1 dλ |f(x)|p µ(dx) Z 0 

2pr 
= c2 |f(x)|r−p|f(x)|p µ(dx) 

r − p Z 
2pr 

= c2 |f(x)|r µ(dx). 
r − p 

This is exactly what we want. 
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(2) Let λ > 0, let f ∈ Lr , and let f1 = f(x) if |f(x)| > λ 
and 0 otherwise, and let f2(x) = f(x) − f1(x). Since |Tf(x)| ≤ 
|Tf1(x)| + |Tf2(x)|, we have 

{|Tf(x)| > λ} ⊂ {|Tf1(x)| > λ/2} ∪ {|Tf2(x)| > λ/2}. 

Since T is of weak-type p-p and weak-type q-q, there exist constants 
c3 and c4 so that 

µ({|Tf(x)| > λ}) ≤ µ({|Tf1(x)| > λ/2}) + µ({|Tf2(x)| > λ/2})Z Z 
c3 c4≤ |f1|p + |f2|q 

(λ/2)p (λ/2)q Z Z 
= c32

pλ−p |f |p + c42
qλ−q |f |q. 

|f |>λ |f |≤λ 

Therefore Z Z ∞ 

|Tf(x)|r µ(dx) = rλr−1 µ({|Tf(x)| > λ}) dλ 
0Z ∞ Z 

≤ c32
pr λr−p−1 |f |p µ(dx) dλ 

0 |f |>λZ ∞ Z 
+ c42

q r λr−q−1 |f |q µ(dx) dλ 
0 |f |≤λ Z Z |f(x)| 

= c32
pr |f |p λr−p−1 dλ µ(dx) 

0Z Z ∞ 

+ c42
q r |f |q λr−q−1 dλ µ(dx) 

|f (x)|Z Z 
2p 2qr r ≤ c3 |f |p|f |r−p µ(dx) + c4 |f |q|f |r−q µ(dx) 
r − p q − rZ 

= c5 |f |r µ(dx), 

where c5 = c32pr/(r − p) + c42q r/(q − r). 

An application of the Marcinkiewicz interpolation theorem is 
the following, although a proof using Hölder’s inequality is also 
possible; cf. Proposition 15.7. 

Theorem 24.2 Suppose 1 ≤ p ≤ ∞. There exists a constant c 
such that if g ∈ L1 and f ∈ Lp, then f ∗ g ∈ Lp and kf ∗ gkp ≤ 
ckfkpkgk1. 
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Proof. By linearity we may suppose kgk1 = 1. The case p = 1 is 
Proposition 15.7. If f ∈ L∞ , then Z Z 
|f ∗ g(x)| ≤ |f(x − y)| |g(y)| dy ≤ kfk∞ |g(y)| dy = kfk∞kgk1, 

which takes care of the case p = ∞. If we define the operator 
Tf = f ∗ g, then we have shown T is a bounded operator on 
L1 and on L∞ . Therefore it is a bounded operator on Lp for all 
1 < p < ∞ by the Marcinkiewicz interpolation theorem. 

24.2 Maximal functions 

In Chapter 14 we defined Z 
1 

Mf(x) = sup |f(y)| dy (24.1) 
r>0 m(B(x, r)) B(x,r) 

for locally integrable functions on Rn and called Mf the maximal 
function of f . Here m is n-dimensional Lebesgue measure. Note 
Mf ≥ 0 and Mf(x) might be infinite. 

The main goal in this section is to relate the size of Mf as 
measured by the Lp norm to the size of f . 

Theorem 24.3 The operator M is of weak-type 1-1 and bounded 
on Lp for 1 < p ≤ ∞. More precisely, 
(1) m({x : Mf(x) > λ}) ≤ c1kfk1/λ for λ > 0 and f ∈ L1 . The 
constant c1 depends only on the dimension n. 
(2) If 1 < p ≤ ∞, then kMfkp ≤ c2kfkp. The constant c2 depends 
only on p and the dimension n. 

In this theorem and the others that we will consider, it is im-
portant to pay attention to the range of p for which it holds. Fre-
quently theorems hold only for 1 < p < ∞. In this theorem, we 
have boundedness on Lp for p > 1 and including p = ∞. For the 
p = 1 case we only have a weak-type 1-1 estimate. 

In the course of the proof of Theorem 24.3 we will show that 
Mf(x) exists for almost every x if f ∈ Lp for some 1 ≤ p ≤ ∞. 

Recall from Section 14.1 that M is not a bounded operator on 
L1 . 
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Proof. (1) This is just Theorem 14.2. 

(2) It is obvious from the definition that Mf(x) ≤ kfk∞, and 
so M is a bounded operator on L∞ . It is clear that M is sublinear. 
If we write f ∈ Lp as fχ(|f |>1) + fχ(|f |≤1), then the first summand 
is in L1 and the second is in L∞; the sublinearity then shows that 
Mf is finite almost everywhere. 

By Theorem 24.1(1), assertion (2) follows. 

24.3 Approximations to the identity 

Let ϕ be integrable on Rn and let ϕr(x) = r−dϕ(x/r). Let ψ : 
[0, ∞) → [0, ∞) be a decreasing function and suppose Z 

c1 = ψ(|x|) dx < ∞. 
Rn 

Suppose also that |ϕ(x)| ≤ ψ(|x|) for all x. Recall that the convo-R 
lution of f and g is defined by f ∗ g(x) = f(x − y)g(y) dy. We 
continue to let m be n-dimensional Lebesgue measure. 

Theorem 24.4 (Approximation to the identity) (1) If f ∈ Lp, 
1 ≤ p ≤ ∞, then 

sup |f ∗ ϕr(x)| ≤ c1Mf(x). 
r>0 R 

(2) If f ∈ Lp, 1 ≤ p < ∞, and ϕ(x) dx = 1, then kf∗ϕr−fkp → 0 
as r → 0. R 
(3) If f ∈ Lp, 1 ≤ p ≤ ∞ and ϕ(x) dx = 1, then 

lim(f ∗ ϕr)(x) = f(x), a.e. 
r→0 

Proof. In proving (1), by a change of variables, we need only show 
that |f ∗ ϕ(0)| ≤ c1Mf(0). First suppose ψ is piecewise constant: 
there exist a1 ≤ a2 ≤ . . . ≤ ak and A1 ≥ A2 ≥ . . . ≥ Ak such 
that ψ(y) = A1 for y ∈ [0, a1], ψ(y) = Ai for y ∈ (ai−1, ai], and 
ψ(y) = 0 for |x| > ak. Then Z 
|f∗ϕ(0)| = f(x)ϕ(−x) dx 
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≤ |f(x)|ψ(|x|) dx Z Z 
= A1 |f | + A2 |f | + · · · 

B(0,a1) B(0,a2)−B(0,a1)Z 
+ Ak |f |

B(0,ak )−B(0,ak−1)Z Z Zh i 
= A1 |f | + A2 |f | − A2 |f |

B(0,a1) B(0,a2) B(0,a1)Z Zh i 
+ · · · + Ak |f | − Ak |f |

B(0,ak ) B(0,ak−1)Z Z 
= (A1 − A2) |f | + (A2 − A3) |f |

B(0,a1) B(0,a2)Z Z 
+ · · · + (Ak−1 − Ak) |f | + Ak |f |

B(0,ak−1) B(0,ak )h 
≤ (A1 − A2)m(B(0, a1)) + · · · + (Ak−1 − Ak)m(B(0, ak−1)) i 

+ Akm(B(0, ak)) Mf(0) h 
= A1m(B(0, a1)) + A2m(B(0, a2) − B(0, a1)) + · · · i 

+ Akm(B(0, ak) − B(0, ak−1)) Mf(0). 

Observe that the coefficient of Mf(0) in the last expression is justR 
ψ(|x|) dx. To handle the general case where ψ is not piecewise 

constant, we approximate ψ by piecewise constant ψj of the above 
form and take a limit. 

Turning to (2), by a change of variables 

Z 
f ∗ ϕr(x) − f(x) = [f(x − y) − f(x)]ϕr(y) dy, (24.2) Z 

= [f(x − ry) − f(x)]ϕ(y) dy. 

Let ε > 0 and write f = g + h where g is continuous with com-
pact support and khkp < ε. By (24.2) with f replaced by g, 
g ∗ ϕr(x) − g(x) → 0 as r → 0 by the dominated convergence 
theorem. Using that g is bounded with compact support and the 
dominated convergence theorem again, kg ∗ ϕr − gkp → 0. By 
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Theorem 24.2 

kh ∗ ϕr − hkp ≤ khkpkϕrk1 + khkp 

= khkpkϕk1 + khkp 

≤ ε(1 + c1). 

Therefore 
lim sup kf ∗ ϕr − fkp ≤ ε(1 + c1). 

r→0 

Since ε is arbitrary, (2) follows. 

Finally we prove (3). If p < ∞, we proceed exactly as in the 
proof of Theorem 14.3, using part (1). We let β > 0 and let ε > 0. 
We write f = g + h, where g is continuous with compact support 
and khkp < ε. As in the proof of (2), g ∗ ϕr(x) − g(x) → 0. For 
each r we have 

sup |h ∗ ϕr(x) − h(x)| ≤ sup |h ∗ ϕr(x)| + |h(x)| ≤ c1Mh(x)+ |h(x)|
r r 

by (1). Therefore by Theorem 14.2 and Chebyshev’s inequality 
(Lemma 10.4), 

m({x : lim sup |h ∗ ϕr(x) − h(x)| > β}) 
r→0 

≤ m({x : c1Mh(x) > β/2}) + m({x : |h(x)| > β/2}) 
khk1 khk1≤ c1c2 + 
β/2 β/2 

≤ (2c1c2 + 2)ε/β, 

where c2 is a constant depending only on the dimension n. Since 

lim sup |f ∗ ϕr(x) − f(x)| ≤ lim sup |h ∗ ϕr(x) − h(x)|
r→0 r→0 

and ε is arbitrary, then lim supr→0 |f ∗ϕr(x)−f(x)| ≤ β for almost 
every x. Since β is arbitrary, we conclude f ∗ ϕr(x) → f(x) a.e. 

There remains the case p = ∞. It suffices to let R be arbitrary 
and to show that f ∗ ϕr(x) → f(x) a.e. for x ∈ B(0, R). Write 
f = fχB(0,2R) + fχB(0,2R)c . Since f is bounded, fχB(0,2R) is in L1 

and we obtain our result for this function by the p = 1 result. Set 
h = fχB(0,2R)c . If x ∈ B(0, R), then h(x) = 0, and Z Z 

|h ∗ ϕr(x)| = h(x − y)ϕr(y) dy ≤ ϕr(y) dy khk∞, 
|y|≥R 
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since h(x − y) = 0 if x ∈ B(0, R) and |y| < R. Note now that 
khk∞ ≤ kfk∞ and Z Z 

ϕr(y) dy = ϕ(y) dy → 0 
|y|≥R |y|≥R/r 

as r → 0 by the dominated convergence theorem. 

We will need the following in Section 24.4. 

For each integer k, let Rk be the collection of closed cubes 
with side length 2−k such that each coordinate of each vertex is an 
integer multiple of 2−k . If x ∈ Rn , x = (x1, . . . , xn), and ji/2k ≤ 
xi < (ji + 1)/2k for each i, let 

Sk(x) = [j1/2
k , (j + 1)/2k] × · · · [jn/2k , (jn + 1)/2k]. 

Thus Sk(x) is an element of Rk containing x. 

Theorem 24.5 If f ∈ L1 , then Z 
1 

f(y) dy → f(x) 
m(Sk(x)) Sk (x) 

as k →∞ for a.e. x. 

Proof. The proof is similar to that of Theorems 14.3 and 24.4. 
First we show that there exists c1 not depending on f such that Z 

1 |f(y)| dy ≤ c1Mf(x). (24.3) 
m(Sk(x)) Sk (x) 

√ 

|f(y)| dy 
m(B(x, 2−k 

Note Sk(x) ⊂ B(x, 2−k n). Hence the left hand side of (24.3) 
is bounded by 

√ 
m(B(x, 2−k n)) · 1 √ 

Z 

m(Sk(x)) n)) √ 
B(x,2−k n) 

≤ c1Mf(x), 

where c1 = m(B(x, 2−k
√ 
n))/m(Sk(x)) does not depend on x or k. 

Once we have (24.3), we proceed as in Theorems 14.3 and 24.4. 
We let β > 0 and ε > 0 and we write f = g + h, where g is 
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continuous with compact support and khk1 < ε. The average of 
g over Sk(x) converges to g(x) since g is continuous, while (24.3) 
guarantees that the averages of h are small. Since the proof is so 
similar to those of Theorems 14.3 and 24.4 we leave the details to 
the reader. 

Here is an important application of Theorem 24.4. Recall from 
Chapter 22 that for x ∈ Rn and y > 0, we defined 

y Γ((n + 1)/2)
P (x, y) = cn , cn = . (24.4)

(|x|2 + y2)(n+1)/2 π(n+1)/2 

We will also write Py(x) for P (x, y). We called Py the Poisson 
kernel. If f ∈ Lp for some 1 ≤ p ≤ ∞, define Z 

u(x, y) = Py (t)f(x − t) dt. 
Rn 

u is called the Poisson integral of f and is sometime denoted by 

Pyf(x). 

u is also sometimes called the harmonic extension of f . 

Theorem 24.6 If f ∈ Lp for some 1 ≤ p ≤ ∞, then 

lim Py f(x) = f(x), a.e. 
y→0 

Proof. Obviously P1(x) as a function of x is radially symmetric, 
decreasing as a function of |x|, and Py(x) = y−dP1(x/y). The 
result now follows by Theorem 24.4. 

24.4 The Calderon-Zygmund lemma 

The following theorem, known as the Calderon-Zygmund lemma, is 
very important to the theory of singular integrals. 

Theorem 24.7 Suppose f ≥ 0, f is integrable, and λ > 0. There 
exists a closed set F such that 
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(1) f(x) ≤ λ almost everywhere on F . 
(2) F c is the union of open disjoint cubes {Qj } such that for each 
j, Z 

1 
λ < f(x) dx ≤ 2nλ. (24.5) 

m(Qj ) Qj 

(3) m(F c) ≤ kfk1/λ. 

Proof. Let Rk be defined as in Section 24.3. Choose k0 to be a 
negative integer such that kfk12nk0 ≤ λ. Then if Q ∈ Rk0 , Z 

1 kfk1
f ≤ ≤ λ. 

m(Q) m(Q)Q 

The idea is that we look at each cube in Rk0 and divide it into 
2n equal subcubes. If the average of f over a subcube is greater 
than λ, then we include that subcube in our collection {Qj }. If 
the average of a subcube is less than or equal to λ, we divide that 
subcube into 2n further subcubes and look at the averages over 
these smaller subcubes. 

To be precise, we proceed as follows. Let Qk0 = ∅. For k > k0 

we define Qk inductively. Suppose we have defined Qk0 , . . . , Qk−1. 
We let Qk consist of those cubes R in Rk such that 
(1) the average of f over R is greater than λ: Z 

1 
f > λ; 

m(R) R 

(2) R is not contained in any element of Qk0 , Qk0+1, . . . , Qk−1. 

We then let {Qj } consist of the interiors of the cubes that are 
in ∪k≥k0 Qk. The Qj are open cubes. For each k the interiors of 
the cubes in Rk are disjoint, while two cubes, one in Rk and the 
other in Rk0 with k 6= k0 , either have disjoint interiors or else one 
is contained in the other. The fact that we never chose a cube R 
in Rk that was contained in any of the cubes in ∪k−1 Qi impliesi=k0 

that the Qj are disjoint. 

Suppose R is one of the Qj and its closure is in Rk. Let S be 
the cube in Rk−1 that contains R. Since R is one of the Qj , then Z 

1 
f > λ. 

m(R) R 
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Since S is not one of the Qj (otherwise we would not have chosen 
R), then Z 

1 
f ≤ λ. 

m(S) S 

From this we deduce Z Z 
1 m(S) 1 

f = · f ≤ 2nλ. 
m(R) m(R) m(S)R S 

Consequently (24.5) holds. 

Let G be the union of the Qj ’s and let F = Gc . G is open, so 
F is closed. If x ∈ F and x is not on the boundary of any of the 
cubes in any of the Rk, then there exists a sequence of cubes Si(x)R 

1decreasing to x with Si(x) ∈ Ri for which f ≤ λ. Bym(Si(x)) Si(x) 
Theorem 24.5, for almost every such x we have Z 

1 
f(x) = lim f(y) dy ≤ λ. 

i→∞ Si(x) Si (x) 

Since the union of the boundaries of all the cubes has Lebesgue 
measure 0, (2) is proved. R 
We have f/m(Qj ) > λ for each j, hence

Qj Z 
1 

m(Qj ) < f. 
λ Qj 

Since the Qj are disjoint, then ZX 1 kfk1 
m(F c) = m(Qj ) ≤ f ≤ . 

λ λ∪j Qjj 

This proves (3). 

24.5 Hilbert transform 

A function is in C1 if it has a continuous derivative. If in addition 
f has compact support, we say that f ∈ CK 

1 . 

The Hilbert transform is an operator on functions defined by Z 
1 f(x − y)

Hf(x) = lim dy. (24.6) 
ε→0,N →∞ π N>|y|>ε y 
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Of course, 1/y is not absolutely integrable, so even when f is iden-R 
tically constant, dy/y will not have a limit as ε1 → 0 or

N1>y>ε1 

N1 → ∞. It is important, therefore, to take integrals over sym-
metric intervals. Let us show the limit exists for each x if f ∈ CK 

1 . 

Proposition 24.8 If f ∈ CK 
1 , Z 

f(x − y)
lim dy 

ε→0,N→∞ N>|y|>ε y 

exists for every x. 

Proof. Fix x. Since f has compact support, f(x − y) will be 0 if 
|y| is large enough. Hence for each fixed ε we see that Z 

lim f(x − y)/y dy 
N→∞ N>|y|>ε 

exists. We now consider Z 
f(x − y)

lim dy. (24.7)
ε→0 y|y|>ε 

Observe that if ε1 < ε2, then Z Z 
f(x − y) f(x − y) − f(x)

dy = dy, 
ε2≥|y|>ε1 

y ε2≥|y|>ε1 
y R 

using the fact that dy/y = 0 because 1/y is an odd func-
ε2≥|y|>ε1 

tion. By the mean value theorem, |f(x − y) − f(x)| ≤ kf 0k∞|y|, 
and so Z Z 

f(x − y) f(x − y)
dy − dy 

|y|>ε1 
y |y|>ε2 

yZ 
|f(x − y) − f(x)|≤ 

ε2≥|y|>ε1 
|y| 

dy Z 
≤ kf 0k∞ dy 

ε2≥|y|>ε1 

≤ 2|ε2 − ε1| kf 0k∞. R 
Hence f(x − y)/y dy is a Cauchy sequence in ε. This implies|y|>ε 

that the limit in (24.7) exists. 
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The Hilbert transform turns out to be related to conjugate har-
monic functions. To see the connection, let us first calculate the 
Fourier transform of Hf . 

Remark 24.9 We will need the fact that the absolute value ofR b sin x dx is bounded uniformly over 0 ≤ a < b < ∞. To see this,
a x 
since sin x/x → 1 as x → 0, there is no difficulty as a → 0 and it is 
enough to bound Z b sin x 

dx . 
x0 R (k+1)π P

sin xIf Ak = dx, then is an alternating series with
kπ x k Ak 

Ak → 0 as k → ∞, hence the series converges. This impliesPN 
Ak is bounded in absolute value independently of N . Now ifk=1 

N is the largest integer less than or equal to b/π, write Z b N−1 Z bXsin x sin x 
dx = Ak + dx. 

x x0 (N −1)πk=1 

The last term is bounded in absolute value by AN , and this proves 
the assertion. 

Proposition 24.10 If f ∈ CK 
1 , then 

dHf(u) = i sgn (u)fb(u). 
Proof. Let 

1 
HεN (x) = χ(N>|x|>ε). (24.8)

πx band let us look at HεN . Since 1/x is an odd function, Z iux Z 
e sin(ux)

dx = 2i dx. 
x xN>|x|>ε N>x>ε R 

This is 0 if u is 0, and is equal to −2i sin(|u|x)/x dx if u < 0.
N>x>ε 

Also Z Z 
sin(|u|x) sin x 

dx = dx. 
x xN>x>ε |u|N>x>|u|ε 

This converges to the value π/2 as N →∞ and ε → 0; see Exercise 
11.14. Moreover, Z 

sin(|u|x) 
sup dx < ∞ 

xε,N N>|x|>ε 
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bby Remark 24.9. Therefore HεN (u) → i sgn (u) pointwise and 
boundedly. 

By the Plancherel theorem, Theorem 16.8, Z 
kHε1N1 f −Hε2 N2 fk2 = (2π)−1 |Hb 

ε1N1 (u)−Hb 
ε2 N2 (u)|2|fb(u)|2du.2 

This tends to 0 as ε1, ε2 → 0 and N1, N2 → ∞ by the dominated 
convergence theorem and the fact that kfbk2 = (2π)1/2kfk2 < ∞. 
Therefore HεN f converges in L2 as ε → 0 and N →∞. Since HεN f 
converges pointwise to Hf by Proposition 24.8, it converges to Hf 
in L2 . By the Plancherel theorem again, the Fourier transform of 
HεN f converges in L2 to the Fourier transform of Hf . The Fourier 
transform of HεN f is HbεN (u)fb(u), which converges pointwise to 
i sgn (u)fb(u). 
Proposition 24.11 Suppose f ∈ CK 

1 . Let U be the harmonic ex-
tension of f and let V be the harmonic extension of Hf . Then U 
and V are conjugate harmonic functions. 

Proof. We will show that U and V satisfy the Cauchy-Riemann 
conditions by looking at their Fourier transforms. By Exercise 24.4, bPy(u), the Fourier transform of the Poisson kernel in x with y held 

−y|u|fixed, is e . 

In each of the formulas below the Fourier transform is in the 
x variable only, with y considered to be fixed. We have U (x, y) = 
(Pyf)(x). Then the Fourier transform of U is 

Ub(u, y) = Pb 
y(u)fb(u) = e −y|u|fb(u). (24.9) 

Also, by Exercise 16.4, 

d∂U 
(u, y) = iuUb(u, y) = iue−y|u|fb(u) (24.10)

∂x 

and d∂U −y|u| b(u, y) = −|u|e f(u). (24.11)
∂y 

We obtain (24.11) by differentiating (24.9). Similarly, 

b −y|u| d −y|u| bV (u, y) = e Hf(u) = i sgn (u)e f(u), 
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hence d∂V 
(u, y) = iue−y|u|i sgn (u)fb(u) (24.12)

∂x 
and d∂V 

(u, y) = −|u|e −y|u|i sgn (u)fb(u) (24.13)
∂y 

Comparing (24.10) with (24.13) and (24.10) with (24.12) and 
using the inversion theorem for Fourier transforms (Theorem 16.7), 
we see that the Cauchy-Riemann equations hold for almost all pairs 
(x, y). Since Py(x) is continuous in x and y for y > 0, then U and 
V are both continuous, and hence the Cauchy-Riemann equations 
hold everywhere. 

Lp24.6 boundedness 

Throughout this section we let m be one-dimensional Lebesgue 
measure. We say a function K satisfies the Hörmander condition 
if Z 

|K(x − y) − K(x)| dx ≤ c1, |y| > 0, 
|x|≥2|y| 

where c1 does not depend on y. 

As an example, consider the Hilbert transform. Here K(x) = 
1/πx, and 

1 1 1 1 y|K(x − y) − K(x)| = − = . 
π x − y x π x(x − y) 

If |x| > 2|y|, then |x − y| ≥ |x|/2, so the right hand side is bounded 
by 2|y|/π|x|2 . Then Z Z 

2 1 2 |K(x − y) − K(x)| dx ≤ |y| dx ≤ . 
|x|≥2|y| π |x|>2|y| |x|2 π 

Theorem 24.12 Define Hf(x) by (24.6) when f ∈ CK 
1 . If 1 < 

p < ∞, then there exists a constant cp such that 

kHfkp ≤ cpkfkp 

for f ∈ CK 
1 . 
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Since the C1 functions are dense in Lp, we can use this theorem K 
to extend the definition of H to all of Lp as follows. If f ∈ Lp, 
choose fm ∈ C1 such that kf − fmkp → 0. ThenK 

kHfm − Hfkkp ≤ cpkfm − fkkp → 0, 

and we let Hf be the limit of the Cauchy sequence Hfm. If {fm}
and {gm} are two sequences of C1 functions converging to f in Lp,K 
then 

kHfm − Hgmkp ≤ cpkfm − gmkp → 0. 

Thus the definition of Hf is independent of which sequence we 
choose to approximate f by. 

This theorem is not true for p = ∞. Let f = χ[0,1]. If x < 0, Z Z xf(x − y) dy x 
dy = = log , 

y y x − 1x−1 

which is not bounded on [−1, 0). Exercise 24.6 shows that the 
theorem is not true for p = 1 either. 

Proof. Step 1: p = 2. Let 

1 
K(x) = χ(N>|x|>ε)

πx R 
and define Tf(x) = K(x−y)f(y) dy. By the proof of Proposition b24.10 we saw that K is bounded in absolute value by a constant 
c1 not depending on N or ε. Moreover, Exercise 24.8 asks you to 
show that K satisfies Hörmander’s condition with a constant c2 

not depending on ε or N . By the Plancherel theorem, Theorem 
16.8, 

kTfk2 = (2π)−1/2k c = (2π)−1/2k b fk2Tfk2 K b 

≤ c1(2π)
−1/2kfbk2 = c1kfk2. 

Step 2: p = 1. We want to show that T is of weak-type 1-1. Fix 
λ and use the Calderon-Zygmund lemma for |f |. We thus have 
disjoint open intervals Qj with G = ∪j Qj and a closed set F = Gc 

on which |f | ≤ λ a.e. Also, m(G) ≤ kfk1/λ. 

Define ( 
f(x), x ∈ F ; 

g(x) = R 
1 f(x) dx, x ∈ Qj . m(Qj ) Qj 
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Note |g(x)| ≤ λ a.e. on F and Z 
1 |g(x)| ≤ |f(y)| dy ≤ 2λ 

m(Qj ) Qj 

on Qj . Let h = f − g. Then h(x) = 0 on F and Z Z Z Zh i1 
h(x) dx = f(x) dx − f(y) dy dx = 0 

m(Qj )Qj Qj Qj Qj 

for each Qj . 

We have Tf = Tg + Th, so 

m({x : |Tf(x)| > λ}) ≤ m({x : |Tg(x)| > λ/2}) 
+ m({x : |Th(x)| > λ/2}). 

If we show 
c3 

m({x : |Tg(x)| > λ/2}) ≤ kfk1
λ 

for some constant c3 with a similar estimate for Th, then we will 
have that T is of weak-type 1-1. 

Step 3. We look at Tg. Since |g| = |f | ≤ λ on F and Z 
1 |f(x)| dx ≤ 2λ 

m(Qj ) Qj 

by Theorem 24.7, we have Z Z 
2 2kgk2 = g + g2 ZF G Z ZX h 1 i2 

= f2 + f(y) dy dx 
F Qj QjZ 

j 
m(Qj ) X 

≤ λ |f(x)| dx + 4 m(Qj )λ
2 

F j 

≤ λkfk1 + 4λ
2 m(G) 

≤ 
� 
λ + 4λ2 1 

� 
kfk1

λ 
= 5λkfk1. 
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Therefore 

m({x : |Tg(x)| > λ/2}) ≤ m({x : |Tg(x)|2 > λ2/4}) 
4 c1≤ kTgk22 ≤ kgk2 

λ2 λ2 2 

c2λ c2kfk1≤ kfk1 = 
λ2 λ 

for some constants c1, c2. This provides the required inequality for 
Tg. 

Step 4. We now turn to Th. Define hj (x) to be equal to h(x) if 
x ∈ Qj and to be zero otherwise. Let Q∗ 

j be the interval with the 
same center as Qj but with length twice as long. Let G∗ = ∪j Qj 

∗ 

∗and F = (G∗)c . Note that X X 
m(G ∗ ) ≤ m(Q ∗ 

j ) = 2 m(Qj ) = 2m(G). 
j j 

If yj is the center of Qj , rj is the length of Qj , x ∈/ Qj 
∗ , and y ∈ Qj , 

then 
|x − yj | ≥ rj ≥ 2|y − yj |. R R 

Since hj (y) dy = h(y) dy = 0,
Qj Z 

|Thj (x)| = K(x − y)hj (y) dy Z 
= [K(x − y) − K(x − yj )]hj (y) dy Z 
≤ |K(x − y) − K(x − yj )| |hj (y)| dy. 

Qj 

Therefore, since F ∗ = (G∗)c = ∩j (Qj 
∗)c ⊂ (Qj 

∗)c for each j, Z ZX 
|Th(x)| dx ≤ |Thj (x)| dx 

F ∗ F ∗ 
jZX 

≤ |Thj (x)| dx 
(Q∗ )c 

j jZ ZX 
≤ |K(x − y) − K(x − yj )| |hj (y)| dy dx 

(Q∗ )c Qjj jZ ZX 
= |K(x − y) − K(x − yj )| dx |hj (y)| dy 

Qj (Q∗)c 
j j 
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≤ |K(x 0 − (y − yj )) − K(x 0)| dx0|hj (y)| dy 

Qj |x0|≥2|y−yj |j ZX 
≤ c2 |hj (y)| dy. 

Qjj 

In the next to the last inequality we made the substitution x0 = 
x − yj and in the last inequality we used the fact that K satisfies 
Hörmander’s condition. 

Now h = hj on Qj and h = f − g, so Z Z Z Zh i1 |h(y)| dy ≤ |f(y)| dy + |f(x)| dx dy 
m(Qj )Qj Qj Qj QjZ 

= 2 |f(y)| dy. 
Qj 

We therefore conclude Z ZX 
|Th(x)| ≤ 2c2 |f(y)|dy ≤ 2c2kfk1. 

F ∗ Qjj 

By Chebyshev’s inequality, 

m({x ∈ F ∗ : |Th(x)| > λ/2}) = m({x : |Th(x)|χF ∗ (x) > λ/2})R 
|Th(x)|χF ∗ (x) dx 

≤ 
λ/2Z 

2 
= |Th(x)| dx 
λ F ∗ 

2c2≤ kfk1. 
λ 

We also have 

2 
m({x ∈ G ∗ : |Th(x)| > λ/2}) ≤ m(G ∗ ) ≤ 2m(G) ≤ kfk1. 

λ 

Combining gives the required inequality for Th. 

Step 5: 1 < p < 2. The operator T is linear, is of weak-type 1-1 and 
is bounded on L2 . By the Marcinkiewicz interpolation theorem, T 
is bounded on L1 ∩ Lp for 1 < p < 2. 

Step 6: 2 < p < ∞. We obtain the boundedness of T on Lp for 
p > 2 by a duality argument. Suppose p > 2 and choose q so that 
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−1p + q−1 = 1. If f ∈ L1 ∩ Lp, nZ o 
kTfkp = sup g(y)(Tf)(y) dy : kgkq, g ∈ C1 

K 

since the CK 
1 functions are dense in Lq. But Z Z Z 

g(Tf)dy = g(y)K(y − x)f(x) dx dy = − f(x)(Tg)(x) dx. 

By Hölder’s inequality, the absolute value of the last integral is less 
than or equal to 

kfkpkTgkq ≤ c4kfkpkgkq 

for a constant c4. The inequality here follows from Step 5 since 
1 < q < 2. Taking the supremum over g ∈ Lq ∩ C1 with kgkq ≤ 1,K 
we obtain by the duality of Lp and Lq that 

kTfkp ≤ c4kfkp. 

Step 7. We have proved the boundedness of Tf where we chose ε 
and N and then left them fixed, and obtained 

kTfkp ≤ cpkfkp, (24.14) 

where cp does not depend on ε or N . If we apply (24.14) for f ∈ C1 
K 

and let ε → 0 and N →∞, we obtain by Fatou’s lemma that 

kHfkp ≤ cpkfkp. 

This is what we were required to prove. 

Remark 24.13 An examination of the proof shows that the es-
sential properties of the Hilbert transform that were used are that 
its Fourier transform is bounded, that it satisfies Hörmander’s con-
dition, and that Hf exists for a sufficiently large class of functions. 
Almost the same proof shows Lp boundedness for a much larger 
class of operators. See [10] for an exposition of further results in 
this theory. 
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24.7 Exercises 

Exercise 24.1 Let f ∈ Lp(Rn) for some 1 ≤ p ≤ ∞. Define Γ(x) 
to be the cone in Rn × [0, ∞) defined by 

Γ(x) = {(z, y) : z ∈ Rn , y ∈ (0, ∞), |z − x| < y}. 

(1) Prove that there exists a constant c1 such that 

sup |Pyf(x)| ≤ c1Mf(x). 
(z,y)∈Γ(x) 

(2) Prove that 

lim Py f(x) = f(x), a.e. 
(z,y)∈Γ(x),(z,y)→x 

The assertion in (2) is known as Fatou’s theorem and the conver-
gence is called nontangential convergence. 

Exercise 24.2 Let A be a bounded open set in Rn and let rA+x = 
{ry + x : y ∈ A} for r > 0 and x ∈ Rn . Suppose f is an integrable 
function on Rn and m is Lebesgue measure. Prove that Z 

1 
lim f(y) dy = f(x), a.e. 
r→0 m(rA) rA+x 

Exercise 24.3 Suppose f is in Lp(R2) for 1 < p < ∞. Let Rhk 

be the rectangle [−h/2, h/2] × [−k/2, k/2]. Prove that Z 
1 

lim f(y) dy = f(x), a.e., 
h,k→0 hk Rhk +x 

where Rhk + x = {y + x : y ∈ Rhk}. 

Exercise 24.4 Let Py be defined by (24.4) where we take the di-
mension n to be 1. 
(1) Prove that the Fourier transform of e−|x| is a constant times 
1/(1 + u2). 
(2) Fix y > 0. Prove that the Fourier transform of h(x) = P (x, y) 

−|u|yis e . 

Exercise 24.5 Prove that if y1, y2 > 0 and f ∈ Lp for some 1 ≤ 
p ≤ ∞, then Py1 (Py2 f) = Py1+y2 f . This shows that the family 
{Py } is an example of what is known as a semigroup of operators. 
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Exercise 24.6 Let Py be defined by (24.4) where we take the di-
mension n to be 1. 
(1) Prove that the Hilbert transform of Py is equal to a constant 

2times the function x/(x + y2). 
(2) Conclude that the Hilbert transform is not a bounded operator 
on L1(R). 

Exercise 24.7 Suppose that f ∈ CK 
1 , f ≥ 0, and f is not identi-

cally zero. Prove that the Hilbert transform of f is not in L1(R). 

Exercise 24.8 Let HεN be defined by (24.8). Suppose ε ∈ (0, 1) 
and N ∈ (8, ∞). Prove that HεN satisfies Hörmander’s condition 
with a constant not depending on ε or N . 

Exercise 24.9 Let f be a CK 
1 function on Rn and for 1 ≤ j ≤ n 

prove that the limit Z 
yj

Rj f(x) = lim 
|y|n+1 

f(x − y) dy
ε→0,N→∞ ε<|x|<N 

exists. Rj is a constant multiple of the jth Riesz transform. 

Exercise 24.10 Let f ∈ L2(R) and set u(x, y) = Pyf(x), where 
Pyf is the Poisson integral of f . Define �Z ∞ �1/2 

g(f)(x) = y|ru(x, y)|2 dy . 
0 

Here 
n2 X 2∂u ∂u |ru|2 = + . 

∂y ∂xk
k=1 

g(f) is one of a class of functions known as Littlewood-Paley func-
tions. Prove there exists a constant c1 such that 

kfk2 = c1kg(f)k2. 
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Chapter 25 

Spectral theory 

An important theorem from undergraduate linear algebra says that 
a symmetric matrix is diagonalizable. Our goal in this chapter is 
to give the infinite dimensional analog of this theorem. 

We first consider compact symmetric operators on a Hilbert 
space. We prove in this case that there is an orthonormal basis of 
eigenvectors. We apply this to an example that arises from partial 
and ordinary differential equations. 

We then turn to general bounded symmetric operators on a 
Hilbert space. We derive some properties of the spectrum of such 
operators, give the spectral resolution, and prove the spectral the-
orem. 

Throughout this chapter we assume our Hilbert space is sepa-
rable, that is, there exists a countable dense subset. We also only 
consider Hilbert spaces whose scalar field is the complex numbers. 

25.1 Bounded linear operators 

Let H be a Hilbert space over the complex numbers. Recall that 
a linear operator A : H → H is bounded if 

kAk = sup{kAxk : kxk ≤ 1} 

is finite. Given two linear operators A and B and a complex number 
c, we define (A + B)(x) = Ax + Bx and (cA)(x) = cA(x). The set 

369 
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L of all bounded linear operators from H into H is a linear space, 
and by Exercise 18.7, this linear space is a Banach space. We can 
define the composition of two operators A and B by 

(AB)(x) = A(Bx). 

Note that 

k(AB)(x)k = kA(Bx)k ≤ kAk kBxk ≤ kAk kBk kxk, 

and we conclude that 

kABk ≤ kAk kBk. (25.1) 

In particular, kA2k ≤ (kAk)2 and kAik ≤ (kAk)i . 

The operator of composition is not necessarily commutative 
(think of the case where H is Cn and A acts by matrix multi-
plication), but it is associative and the distributive laws hold; see 
Exercise 25.1. The space of bounded linear operators from a Ba-
nach space to itself is an example of what is known as a Banach 
algebra, but that is not important for what follows. 

Let A be a bounded linear operator. If z is a complex number 
and I is the identity operator, then zI − A is a bounded linear 
operator on H which might or might not be invertible. We define 
the spectrum of A by 

σ(A) = {z ∈ C : zI − A is not invertible}. 

We sometimes write z − A for zI − A. The resolvent set for A is 
the set of complex numbers z such that z − A is invertible. We 
define the spectral radius of A by 

r(A) = sup{|z| : z ∈ σ(A)}. 

We say x ∈ H with x 6= 0 is an eigenvector corresponding to an 
eigenvalue λ ∈ C if Ax = λx. If λ is an eigenvalue, then λ ∈ σ(A). 
This follows since (λ − A)x = 0 while x 6= 0, so λ − A is not 
one-to-one. 

The converse is not true, that is, not every element of the spec-
trum is necessarily an eigenvalue. 
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Example 25.1 Let H = `2 and let en be the sequence in `2 which 
thhas all coordinates equal to 0 except for the n one, where the 

coordinate is equal to 1. Define 

A(a1, a2, a3, . . .) = (a1, a2/2, a3/3, . . .). 

Clearly A is a bounded operator. On the one hand, A does not 
have an inverse, for if it did, then A−1en = nen, and A−1 would 
not be a bounded operator. Therefore 0I − A is not invertible, or 
0 is in the spectrum. On the other hand, we do not have Ax = 0x 
for any non-zero x, so 0 is not an eigenvalue. 

Proposition 25.2 If B is a bounded linear operator from H to H 
with kBk < 1, then I − B is invertible and 

∞X 
(I − B)−1 = Bi , (25.2) 

i=0 

with the convention that B0 = I. 

Proof. If kBk < 1, then 

n n nX X X 
Bi ≤ kBik ≤ kBki , 

i=m i=m i=m Pn
which shows that Sn = Bi is a Cauchy sequence in the Ba-i=0 
nach space L of linear operators from H to H. By the complete-P∞ 
ness of this space, Sn converges to S = Bi . We see thati=0P∞
BS = Bi = S − I, so (I − B)S = I. Similarly we show thati=1 
S(I − B) = I. 

Proposition 25.3 If A is an invertible bounded linear operator 
from H to H and B is a bounded linear operator from H to H with 
kBk < 1/kA−1k, then A − B is invertible. 

Proof. We have kA−1Bk ≤ kA−1k kBk < 1, so by Proposition 
25.2 we know that I−A−1B is invertible. If M and N are invertible, 
then 

(N−1M−1)(MN) = I = (MN)(N−1M−1), 

so MN is invertible. We set M = A and N = I − A−1B, and 
conclude that A − B is invertible. 
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Proposition 25.4 If A is a bounded linear operator from H into 
H, then σ(A) is a closed and bounded subset of C and r(A) ≤ kAk. 

Proof. If z ∈/ σ(A), then zI −A is invertible. By Proposition 25.3, 
if |w − z| is small enough, then 

wI − A = (zI − A) − (z − w)I 

will be invertible, and hence w ∈/ σ(A). This proves that σ(A)c is 
open, and we conclude that σ(A) is closed. 

We know from (25.2) that 

∞X 
−n−1(zI − A)−1 = z −1(I − Az−1)−1 = An z 

n=0 

converges if kAz−1k < 1, or equivalently, |z| > kAk. In other 
words, if |z| > kAk, then z ∈/ σ(A). Hence the spectrum is con-
tained in the closed ball in H of radius kAk centered at 0. 

If A is a bounded operator on H, the adjoint of A, denoted A∗ , 
is the operator on H such that hAx, yi = hx, A∗ yi for all x and y. 

It follows from the definition that the adjoint of cA is cA∗ andPn
the adjoint of An is (A∗)n . If P (x) = j is a polynomial, j=0 aj xPn
the adjoint of P (A) = j=0 aj A

j will be 

nX 
P (A ∗ ) = aj P (Aj ). 

j=0 

The adjoint operator always exists. 

Proposition 25.5 If A is a bounded operator on H, there exists 
a unique operator A∗ such that hAx, yi = hx, A∗ yi for all x and y. 

Proof. Fix y for the moment. The function f(x) = hAx, yi is a 
linear functional on H. By the Riesz representation theorem for 
Hilbert space, Theorem 19.12, there exists zy such that hAx, yi = 
hx, zyi for all x. Since 

hx, zy1+y2 i = hAx, y1 + y2i = hAx, y1i+hAx, y2i = hx, zy1 i+hx, zy2 i 
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for all x, then zy1+y2 = zy1 + zy2 and similarly zcy = czy . If we 
define A∗ y = zy, this will be the operator we seek. 

If A1 and A2 are two operators such that hx, A1yi = hAx, yi = 
hx, A2yi for all x and y, then A1y = A2y for all y, so A1 = A2. 
Thus the uniqueness assertion is proved. 

25.2 Symmetric operators 

A bounded linear operator A mapping H into H is called symmetric 
if 

hAx, yi = hx, Ayi (25.3) 

for all x and y in H. Other names for symmetric are Hermitian or 
self-adjoint. When A is symmetric, then A∗ = A, which explains 
the name “self-adjoint.” 

Example 25.6 For an example of a symmetric bounded linear op-
erator, let (X, A, µ) be a measure space with µ a σ-finite measure, 
let H = L2(X), and let F (x, y) be a jointly measurable function 
from X × X into C such that F (y, x) = F (x, y) and Z Z 

F (x, y)2 µ(dx) µ(dy) < ∞. (25.4) 

Define A : H → H by Z 
Af(x) = F (x, y)f(y) µ(dy). (25.5) 

Exercise 25.4 asks you to verify that A is a bounded symmetric 
operator. 

We have the following proposition. 

Proposition 25.7 Suppose A is a bounded symmetric operator. 
(1) hAx, xi is real for all x ∈ H. 
(2) The function x → hAx, xi is not identically 0 unless A = 0. 
(3) kAk = supkxk=1 |hAx, xi|. 
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Proof. (1) This one is easy since 

hAx, xi = hx, Axi = hAx, xi, 

where we use z for the complex conjugate of z. 

(2) If hAx, xi = 0 for all x, then 

0 = hA(x + y), x + yi = hAx, xi + hAy, yi + hAx, yi + hAy, xi 

= hAx, yi + hy, Axi = hAx, yi + hAx, yi. 

Hence Re hAx, yi = 0. Replacing x by ix and using linearity, 

Im (hAx, yi) = −Re (ihAx, yi) = −Re (hA(ix), yi) = 0. 

Therefore hAx, yi = 0 for all x and y. We conclude Ax = 0 for all 
x, and thus A = 0. 

(3) Let β = supkxk=1 |hAx, xi|. By the Cauchy-Schwarz inequal-
ity, 

|hAx, xi| ≤ kAxk kxk ≤ kAk kxk2 , 

so β ≤ kAk. 

To get the other direction, let kxk = 1 and let y ∈ H such that 
kyk = 1 and hy, Axi is real. Then 

1hy, Axi = (hx + y, A(x + y)i − hx − y, A(x − y)i).4 

We used that hy, Axi = hAy, xi = hAx, yi = hx, Ayi since hy, Axi 
is real and A is symmetric. Then 

16|hy, Axi|2 ≤ β2(kx + yk2 + kx − yk2)2 

= 4β2(kxk2 + kyk2)2 

= 16β2 . 

We used the parallelogram law (equation (19.1)) in the first equal-
ity. We conclude |hy, Axi| ≤ β. 

iθ 0 −iθIf kyk = 1 but hy, Axi = re is not real, let y = e y and 
apply the above with y0 instead of y. We then have 

|hy, Axi| = |hy 0, Axi| ≤ β. 

Setting y = Ax/kAxk, we have kAxk ≤ β. Taking the supremum 
over x with kxk = 1, we conclude kAk ≤ β. 
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25.3 Compact symmetric operators 

Let H be a separable Hilbert space over the complex numbers and 
let B1 be the open unit ball in H. We say that K is a compact 
operator from H to itself if the closure of K(B1) is compact in H. 

Example 25.8 The identity operator on H = `2 is not compact; 
see Exercise 19.5. 

Example 25.9 Let H = `2 , let n > 0, let λ1, . . . , λn be complex 
numbers, and define 

K(a1, a2, . . . , ) = (λ1a1, λ2a2, . . . , λnan, 0, 0, . . .). 

Then K(B1) is contained in F = E × {(0, 0, . . .)}, where E =Qn 
B(0, λi). The set F is homeomorphic (in the topological i=1 

sense) to E, which is a closed and bounded subset of Cn . Since 
Cn is topologically the same as R2n , the Heine-Borel theorem says 
that E is compact, hence F is also. Closed subsets of compact sets 
are compact, so the closure of K(B1) is compact. 

Before we can give other examples of compact operators, we 
need a few facts. 

Proposition 25.10 (1) If K1 and K2 are compact operators and 
c is a complex number, then cK1 + K2 is a compact operator. 
(2) If L is a bounded linear operator from H to H and K is a 
compact operator, then KL and LK are compact operators. 
(3) If Kn are compact operators and limn→∞ kKn − Kk = 0, then 
K is a compact operator. 

Proof. (1) Since (K1 + K2)(B1) ⊂ K1(B1) + K2(B1), (1) follows 
by Exercise 25.5. The proof for cK1 is even easier. 

(2) The closure of LK(B1) will be compact because the closure 
of K(B1) is compact and L is a continuous function, hence L maps 
compact sets into compact sets. 

L(B1) will be contained in the ball B(0, kLk). Then KL(B1) 
will be contained in kLkK(B1), and the closure of this set is com-
pact. 
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(3) Recall from Theorem 20.23 that a subset A of a metric space 
is compact if and only if it complete and totally bounded. Saying 
A is totally bounded means that given ε > 0, A can be covered 
by finitely many balls of radius ε. Let ε > 0. Choose n such that 
kKn − Kk < ε/2. Since Kn is compact, the closure of Kn(B1) can 
be covered by finitely many balls of radius ε/2. Hence the closure of 
K(B1) can be covered by the set of balls with the same centers but 
with radius ε. Therefore the closure of K(B1) is totally bounded. 
Since H is a Hilbert space, it is complete. We know that closed 
subsets of complete metric spaces are complete. Hence the closure 
of K(B1) is complete and totally bounded, so is compact. 

We now give an example of a non-trivial compact operator. 

Example 25.11 Let H = `2 and let 

K(a1, a2, a3, . . .) = (a1/2, a2/2
2 , a3/2

3 , . . .). 

Note K is the limit in norm of Kn, where 

Kn(a1, a2, . . .) = (a1/2, a2/2
2 , . . . , an/2

n , 0, 0, . . .). 

Each Kn is compact by Example 25.9. By Proposition 25.10, K is 
a compact operator. 

Here is another interesting example of a compact symmetric 
operator. 

Example 25.12 Let H = L2([0, 1]) and let F : [0, 1]2 → R be a 
continuous function with F (x, y) = F (y, x) for all x and y. Define 
K : H → H by Z 1 

Kf(x) = F (x, y)f(y) dy. 
0 

We discussed in Example 25.6 the fact that K is a bounded sym-
metric operator. Let us show that it is compact. 

If f ∈ L2([0, 1]) with kfk ≤ 1, then Z 1 
0|Kf(x) − Kf(x 0)| = [F (x, y) − F (x , y)]f(y) dy 

0 �Z 1 �1/2 
0≤ |F (x, y) − F (x , y)|2 dy kfk, 

0 
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using the Cauchy-Schwarz inequality. Since F is continuous on 
[0, 1]2 , which is a compact set, then it is uniformly continuous there. 
Let ε > 0. There exists δ such that 

0 sup sup |F (x, y) − F (x , y)| < ε. 
|x−x0|<δ y 

Hence if |x − x0| < δ, then |Kf(x) − Kf(x0)| < ε for every f with 
kfk ≤ 1. In other words, {Kf : kfk ≤ 1} is an equicontinuous 
family. 

Since F is continuous, it is bounded, say by N , and therefore Z 1 

|Kf(x)| ≤ N |f(y)| dy ≤ Nkfk, 
0 

again using the Cauchy-Schwarz inequality. If Kfn is a sequence 
in K(B1), then {Kfn} is a bounded equicontinuous family of func-
tions on [0, 1], and by the Ascoli-Arzelà theorem, there is a sub-
sequence which converges uniformly on [0, 1]. It follows that this 
subsequence also converges with respect to the L2 norm. Since 
every sequence in K(B1) has a subsequence which converges, the 
closure of K(B1) is compact. Thus K is a compact operator. 

We will use the following easy lemma repeatedly. 

Lemma 25.13 If K is a compact operator and {xn} is a sequence 
with kxnk ≤ 1 for each n, then {Kxn} has a convergent subse-
quence. 

Proof. Since kxnk ≤ 1, then { 12 xn} ⊂ B1. Hence { 1 Kxn} = 2 

{K( 1 xn)} is a sequence contained in K(B1), a compact set and2 
therefore has a convergent subsequence. 

We now prove the spectral theorem for compact symmetric op-
erators. 

Theorem 25.14 Suppose H is a separable Hilbert space over the 
complex numbers and K is a compact symmetric linear operator. 
There exist a sequence {zn} in H and a sequence {λn} in R such 
that 
(1) {zn} is an orthonormal basis for H, 
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(2) each zn is an eigenvector with eigenvalue λn, that is, Kzn = 
λnzn, 
(3) for each λn 6= 0, the dimension of the linear space {x ∈ H : 
Kx = λnx} is finite, 
(4) the only limit point, if any, of {λn} is 0; if there are infinitely 
many distinct eigenvalues, then 0 is a limit point of {λn}. 

Note that part of the assertion of the theorem is that the eigenval-
ues are real. (3) is usually phrased as saying the non-zero eigen-
values have finite multiplicity. 

Proof. If K = 0, any orthonormal basis will do for {zn} and all 
the λn are zero, so we suppose K =6 0. We first show that the 
eigenvalues are real, that eigenvectors corresponding to distinct 
eigenvalues are orthogonal, the multiplicity of non-zero eigenvalues 
is finite, and that 0 is the only limit point of the set of eigenvalues. 
We then show how to sequentially construct a set of eigenvectors 
and that this construction yields a basis. 

If λn is an eigenvalue corresponding to a eigenvector zn =6 0, we 
see that 

λnhzn, zni = hλnzn, zni = hKzn, zni = hzn,Kzni 
= hzn, λnzni = λnhzn, zni, 

which proves that λn is real. 

If λn =6 λm are two distinct eigenvalues corresponding to the 
eigenvectors zn and zm, we observe that 

λnhzn, zmi = hλnzn, zmi = hKzn, zmi = hzn,Kzmi 
= hzn, λmzmi = λmhzn, zmi, 

using that λm is real. Since λn 6= λm, we conclude hzn, zmi = 0. 

Suppose λn 6= 0 and that there are infinitely many orthonormal 
vectors xk such that Kxk = λnxk. Then 

kxk − xj k2 = hxk − xj , xk − xj i = kxkk2 − 2hxk, xj i + kxj k2 = 2 

if j 6= k. But then no subsequence of λnxk = Kxk can converge, a 
contradiction to Lemma 25.13. Therefore the multiplicity of λn is 
finite. 

Suppose we have a sequence of distinct non-zero eigenvalues 
converging to a real number λ 6= 0 and a corresponding sequence 
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of eigenvectors each with norm one. Since K is compact, there is 
a subsequence {nj } such that Kznj converges to a point in H, say 
w. Then 

1 1 
znj = Kznj → w, 

λnj λ 

or {znj } is an orthonormal sequence of vectors converging to λ−1w. 
But as in the preceding paragraph, we cannot have such a sequence. 

Since {λn} ⊂ B(0, r(K)), a bounded subset of the complex 
plane, if the set {λn} is infinite, there will be a subsequence which 
converges. By the preceding paragraph, 0 must be a limit point of 
the subsequence. 

We now turn to constructing eigenvectors. By Lemma 25.7(3), 
we have 

kKk = sup |hKx, xi|. 
kxk=1 

We claim the maximum is attained. If supkxk=1 hKx, xi = kKk, 
let λ = kKk; otherwise let λ = −kKk. Choose xn with kxnk = 1 
such that hKxn, xni converges to λ. There exists a subsequence 
{nj } such that Kxnj converges, say to z. Since λ =6 0, then z =6 0, 
for otherwise λ = limj→∞ hKxnj , xnj i = 0. Now 

k(K − λI)zk2 = lim k(K − λI)Kxnj k2 

j→∞ 

≤ kKk2 lim k(K − λI)xnj k2 

j→∞ 

and 

k(K − λI)xnj k2 = kKxnj k2 + λ2kxnj k2 − 2λhxnj ,Kxnj i 
≤ kKk2 + λ2 − 2λhxnj ,Kxnj i 
→ λ2 + λ2 − 2λ2 = 0. 

Therefore (K − λI)z = 0, or z is an eigenvector for K with corre-
sponding eigenvalue λ. 

Suppose we have found eigenvectors z1, z2, . . . , zn with corre-
sponding eigenvalues λ1, . . . , λn. Let Xn be the linear subspace 
spanned by {z1, . . . , zn} and let Y = X⊥ be the orthogonal com-n 
plement of Xn, that is, the set of all vectors orthogonal to every 
vector in Xn. If x ∈ Y and k ≤ n, then 

hKx, zki = hx, Kzki = λkhx, zki = 0, 
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or Kx ∈ Y . Hence K maps Y into Y . By Exercise 25.6, K|Y is a 
compact symmetric operator. If Y is non-zero, we can then look 
at K|Y , and find a new eigenvector zn+1. 

It remains to prove that the set of eigenvectors forms a basis. 
Suppose y is orthogonal to every eigenvector. Then 

hKy, zki = hy, Kzki = hy, λkzki = 0 

if zk is an eigenvector with eigenvalue λk, so Ky is also orthogonal 
to every eigenvector. Suppose X is the closure of the linear sub-
space spanned by {zk}, Y = X⊥ , and Y 6= {0}. If y ∈ Y , then 
hKy, zki = 0 for each eigenvector zk, hence hKy, zi = 0 for every 
z ∈ X, or K : Y → Y . Thus K|Y is a compact symmetric opera-
tor, and by the argument already given, there exists an eigenvector 
for K|Y . This is a contradiction since Y is orthogonal to every 
eigenvector. 

Remark 25.15 If {zn} is an orthonormal basis of eigenvectors for 
K with corresponding eigenvalues λn, let En be the projection onto 
the subspace spanned by zn, that is, Enx = hx, znizn. A vector xP P 
can be written as hx, znizn, thus Kx = n λnhx, znizn. n We 
can then write X 

K = λnEn. 
n 

For general bounded symmetric operators there is a related expan-
sion where the sum gets replaced by an integral; see Section 25.6. 

Remark 25.16 If zn is an eigenvector for K with corresponding 
eigenvalue λn, then Kzn = λnzn, so 

K2 zn = K(Kzn) = K(λnzn) = λnKzn = (λn)
2 zn. 

More generally, Kj zn = (λn)
j zn. Using the notation of Remark 

25.15, we can write X 
Kj = (λn)

j En. 
n 

If Q is any polynomial, we can then use linearity to write X 
Q(K) = Q(λn)En. 

n 
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It is a small step from here to make the definition X 
f(K) = f(λn)En 

n 

for any bounded and Borel measurable function f . 

25.4 An application 

Consider the ordinary differential equation 

−f 00(x) = g(x) (25.6) 

with boundary conditions f(0) = 0, f(2π) = 0. We put the minus 
sign in front of f 00 so that later some eigenvalues will be positive. 

When g is continuous, we can give an explicit solution as follows. 
Let ( 

x(2π − y)/2π, 0 ≤ x ≤ y ≤ 2π;
G(x, y) = (25.7) 

y(2π − x)/2π, 0 ≤ y ≤ x ≤ 2π. 

Recall that a function is in C2 if it has a continuous second 
derivative. We then have 

Proposition 25.17 If g is continuous on [0, 2π], then Z 2π 

f(x) = G(x, y)g(y) dy 
0 

is a C2 function, f(0) = f(2π) = 0, and −f 00(x) = g(x). 

Proof. Clearly f(0) = f(2π) = 0 by the formula for G. We see 
that Z 2πf(x + h) − f(x) G(x + h, y) − G(x, y) 

= g(y) dy
h h0Z 2π 

→ H(x, y) dy 
0 
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as h → 0 by the dominated convergence theorem, where ( 
(2π − y)/2π, x ≤ y;

H(x, y) = 
−y/2π, x > y. 

Thus 
x Z 2πZ 
−y 2π − y

f 0(x) = g(y) dy + g(y) dy. 
2π 2π0 x 

By the fundamental theorem of calculus, f 0 is differentiable and 

f 00(x) = 
−x 2π − x 

g(x) − g(x) = −g(x)
2π 2π 

as required. 

The function G is called the Green’s function for the operator 
= f 00Lf . The phrase “the Green’s function” is awkward English, 

but is nevertheless what people use. 

By Examples 25.6 and 25.12 the operator Z 
Kf(x) = G(x, y)f(y) dy 

is a bounded compact symmetric operator on L2([0, 2π]), so there 
exists an orthonormal basis of eigenvectors {zn} with corresponding 
eigenvalues {λn}. If λn =6 0, then zn = λ−1Kzn is continuous sincen 
K maps L2 functions to continuous ones. By Proposition 25.17 
we can say more, namely that zn ∈ C2 , zn(0) = zn(2π) = 0, 

00 λ−1and −z = zn. The solutions to this differential equation, n n 
00 + λ−1or equivalently z zn = 0, with zn(0) = zn(2π), are zn = n n 

π−1/2 sin(nx/2) with λn = 4/n
2 . 

We note that 0 is not an eigenvalue for K because if Kz = 
0, then z is equal to the second derivative of the function that 
is identically 0, hence z is identically 0. Therefore z is not an 
eigenvector. 

A function f ∈ L2([0, 2π]) can be written as 

∞X 
f = hf, znizn, 

n=1 

where zn(x) = π−1/2 sin(nx/2) and the sum converges in L2 . This 
is called a Fourier sine series. 
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We can use the above expansion to solve the partial differential 
equation 

∂u ∂2u 
(t, x) = (t, x)

∂t ∂x2 

with u(t, 0) = u(t, 2π) = 0 for all t and u(0, x) = f(x) for all 
x ∈ [0, 2π], where f ∈ L2([0, 2π]). This partial differential equationP∞
is known as the heat equation. Write f = hf, znizn. It is then n=1 
a routine matter to show that the solution is 

∞X 
−t/λnu(t, x) = hf, znie zn. 

n=1 

This formula may look slightly different from other formulas you 
may have seen. The reason is that we are using λn for the eigenval-
ues of K; {1/λn} will be the eigenvalues for the operator Lf = −f 00 . 

25.5 Spectra of symmetric operators 

When we move away from compact operators, the spectrum can 
become much more complicated. Let us look at an instructive 
example. 

Example 25.18 Let H = L2([0, 1]) and define A : H → H by 
Af(x) = xf(x). There is no difficulty seeing that A is bounded 
and symmetric. 

We first show that no point in [0, 1]c is in the spectrum of A. If z 
is a fixed complex number and either has a non-zero imaginary part 
or has a real part that is not in [0, 1], then z − A has the inverse 

1Bf(x) = z−x f(x). It is obvious that B is in fact the inverse of 
z − A and it is a bounded operator because 1/|z − x| is bounded 
on x ∈ [0, 1]. 

If z ∈ [0, 1], we claim z − A does not have a bounded inverse. 
The function that is identically equal to 1 is in L2([0, 1]). The only 
function g that satisfies (z − A)g = 1 is g = 1/(z − x), but g is not 
in L2([0, 1]), hence the range of z − A is not all of H. 

We conclude that σ(A) = [0, 1]. We show now, however, that no 
point in [0, 1] is an eigenvalue for A. If z ∈ [0, 1] were an eigenvalue, 
then there would exist a non-zero f such that (z − A)f = 0. Since 
our Hilbert space is L2 , saying f is non-zero means that the set of 
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x where f(x) 6= 0 has positive Lebesgue measure. But (z −A)f = 0 
implies that (z − x)f(x) = 0 a.e., which forces f = 0 a.e. Thus A 
has no eigenvalues. 

We have shown that the spectrum of a bounded symmetric op-
erator is closed and bounded. A bit more difficult is the fact that 
the spectrum is never empty. 

Proposition 25.19 If A is a bounded operator, then σ(A) con-
tains at least one point. 

Proof. Suppose not. Then for each z ∈ C, the inverse of the 
operator z − A exists. Let us denote the inverse by Rz. Since z − A 
has an inverse, then z − A is one-to-one and onto, and by the open 
mapping theorem, z − A is an open map. This translates to Rz 

being a continuous operator, hence a bounded operator. 

Let x, y ∈ H and define f(z) = hRzx, yi for z ∈ H. We want to 
show that f is an analytic function of z. If w =6 z, 

w − A = (z − A) − (z − w)I = (z − A)(I − (z − w)Rz ). 

If |z − w| < 1/kRzk, then 

∞�X � 
Rw = (w − A)−1 = Rz ((z − w)Rz)

i . 
i=0 

Therefore 
Rw − Rz

lim 
w→z w − z 

= −R2 .z (25.8) 

It follows that 

f(w) − f(z)
lim = −hR2 x, yi,z 
w→z w − z 

which proves that f has a derivative at z, and so is analytic. 

For z > kAk we have 

−1A)−1Rz = (z − A)−1 = z −1(I − z , 

and using Proposition 25.2, we conclude that f(z) = hRz x, yi → 0 
as |z| → ∞. 
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We thus know that f is analytic on C, i.e., it is an entire func-
tion, and that f(z) tends to 0 as |z| → ∞. Therefore f is a bounded 
entire function. By Liouville’s theorem from complex analysis (see 
[1] or [9]), f must be constant. Since f tends to 0 as |z| tends 
to infinity, that constant must be 0. This holds for all y, so Rz x 
must be equal to 0 for all x and z. But then for each x we have 
x = (z − A)Rz x = 0, a contradiction. 

Before proceeding, we need an elementary lemma. 

Lemma 25.20 If M and N are operators on H that commute and 
MN is invertible, then both M and N are also invertible. 

Proof. If M has a left inverse A and a right inverse B, that is, 
AM = I and MB = I, then A = A(MB) = (AM)B = B and so 
M has an inverse. It therefore suffices to prove that M has both a 
left and right inverse, and then to apply the same argument to N . 

Let L = (MN)−1 . Then M(NL) = (MN)L = I and M has a 
right inverse. Using the commutativity, (LN)M = L(MN) = I, 
and so M has a left inverse. Now use the preceding paragraph. 

Here is the spectral mapping theorem for polynomials. 

Theorem 25.21 Suppose A is a bounded linear operator and P is 
a polynomial. Then σ(P (A)) = P (σ(A)). 

By P (σ(A)) we mean the set {P (λ) : λ ∈ σ(A)}. 

Proof. We first suppose λ ∈ σ(P (A)) and prove that λ ∈ P (σ(A)). 
Factor 

λ − P (x) = c(x − a1) · · · (x − an). 

Since λ ∈ σ(P (A)), then λ−P (A) is not invertible, and therefore for 
at least one i we must have that A−ai is not invertible. That means 
that ai ∈ σ(A). Since ai is a root of the equation λ − P (x) = 0, 
then λ = P (ai), which means that λ ∈ P (σ(A)). 

Now suppose λ ∈ P (σ(A)). Then λ = P (a) for some a ∈ σ(A). 
We can write 

nX 
iP (x) = bix 

i=0 
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for some coefficients bi, and then 

nX 
P (x) − P (a) = bi(x i − a i) = (x − a)Q(x) 

i=1 

i − aifor some polynomial Q, since x − a divides x for each i ≥ 1. 
We then have 

P (A) − λ = P (A) − P (a) = (A − a)Q(A). 

If P (A) − λ were invertible, then by Lemma 25.20 we would have 
that A − a is invertible, a contradiction. Therefore P (A) − λ is not 
invertible, i.e., λ ∈ σ(P (A)). 

A key result is the spectral radius formula. First we need a 
consequence of the uniform boundedness principle. 

Lemma 25.22 If B is a Banach space and {xn} a subset of B 
such that sup |f(xn)| is finite for each bounded linear functionaln 
f , then sup kxnk is finite.n 

Proof. For each x ∈ B, define a linear functional Lx on B∗ , the 
dual space of B, by 

Lx(f) = f(x), f ∈ B ∗ . 

Note |Lx(f)| = |f(x)| ≤ kfk kxk, so kLxk ≤ kxk. 

To show equality, let M = {cx : c ∈ C} and define f(cx) = 
ckxk. We observe that f is a linear functional on the subspace M , 
|f(x)| = kxk, and kfk = 1. We use the Hahn-Banach theorem, 
Theorem 18.6, to extend f to a bounded linear functional on B, 
also denoted by f , with kfk = 1. Then |Lx(f)| = |f(x)| = kxk, so 
kLxk ≥ kxk. We conclude kLxk = kxk. 

Since sup |Lxn (f)| = sup |f(xn)| is finite for each f ∈ B∗ , by n n 
the uniform boundedness principle (Theorem 18.8), 

sup kLxn k < ∞. 
n 

Since kLxn k = kxnk, we obtain our result. 

Here is the spectral radius formula. 
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Theorem 25.23 If A is a bounded linear operator on H, then 

kAnk1/nr(A) = lim . 
n→∞ 

nProof. By Theorem 25.21 with the polynomial P (z) = z , we 
have (σ(A))n = σ(An). Then 

(r(A))n = ( sup |z|)n = sup |z n|
z∈σ(A) z∈σ(A) 

= sup |w| = r(An) ≤ kAnk ≤ kAkn . 
w∈σ(An ) 

We conclude 
kAnk1/nr(A) ≤ lim inf . 

n→∞ 

For the other direction, if z ∈ C with |z| < 1/r(A), then |1/z| > 
r(A), and thus 1/z ∈/ σ(A) by the definition of r(A). Hence I − 
zA = z(z−1I − A) is invertible if z =6 0. Clearly I − zA is invertible 
when z = 0 as well. 

Suppose B is the set of bounded linear operators on H and f 
a linear functional on B. The function F (z) = f((I − zA)−1) is 
analytic in B(0, 1/r(A)) ⊂ C by an argument similar to that in 
deriving (25.8). We know from complex analysis that a function 
has a Taylor series that converges absolutely in any disk on which 
the function is analytic. Therefore F has a Taylor series which 
converges absolutely at each point of B(0, 1/r(A)). 

Let us identify the coefficients of the Taylor series. If |z| < 
1/kAk, then using (25.2) we see that 

� ∞ � ∞X X 
nAn f(An)z nF (z) = f z = . (25.9) 

n=0 n=0 

thTherefore F (n)(0) = n!f(An), where F (n) is the n derivative of 
F . We conclude that the Taylor series for F in B(0, 1/r(A)) is 

∞X 
nF (z) = f(An)z . (25.10) 

n=0 

The difference between (25.9) and (25.10) is that the former is valid 
in the ball B(0, 1/kAk) while the latter is valid in B(0, 1/r(A)). 
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P∞
It follows that f(znAn) converges absolutely for z in the n=0 

ball B(0, 1/r(A)), and consequently 

lim |f(z nAn)| = 0 
n→∞ 

if |z| < 1/r(A). By Lemma 25.22 there exists a real number K 
such that 

sup kz nAnk ≤ K 
n 

for all n ≥ 1 and all z ∈ B(0, 1/r(A)). This implies that 

|z| kAnk1/n ≤ K1/n, 

and hence 
kAnk1/n ≤ 1|z| lim sup 

n→∞ 

if |z| < 1/r(A). Thus 

kAnk1/n ≤ r(A),lim sup 
n→∞ 

which completes the proof. 

We have the following important corollary. 

Corollary 25.24 If A is a symmetric operator, then 

kAk = r(A). 

Proof. In view of Theorem 25.23, it suffices to show that kAnk = 
kAkn when n is a power of 2. We show this for n = 2 and the 
general case follows by induction. 

On the one hand, kA2k ≤ kAk2 . On the other hand, 

kAk2 = ( sup kAxk)2 = sup kAxk2 

kxk=1 kxk=1 

= sup hAx, Axi = sup hA2 x, xi 
kxk=1 kxk=1 

≤ kA2k 

by the Cauchy-Schwarz inequality. 

The following corollary will be important in the proof of the 
spectral theorem. 
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Corollary 25.25 Let A be a symmetric bounded linear operator. 
(1) If P is a polynomial with real coefficients, then 

kP (A)k = sup |P (z)|. 
z∈σ(A) 

(2) If P is a polynomial with complex coefficients, then 

kP (A)k ≤ 2 sup |P (z)|. 
z∈σ(A) 

Proposition 25.27 will provide an improvement of assertion (2). 

Proof. (1) Since P has real coefficients, then P (A) is symmetric 
and 

kP (A)k = r(P (A)) = sup |z|
z∈σ(P (A)) 

= sup |z| = sup |P (w)|, 
z∈P (σ(A)) w∈σ(A) 

where we used Corollary 25.24 for the first equality and the spectral 
mapping theorem for the third. P Pn n
(2) If P (z) = (aj + ibj )z

j , let Q(z) = n andj=0 j=0 aj zPm nR(z) = bj z . By (1), j=0 

kP (A)k ≤ kQ(A)k + kR(A)k ≤ sup |Q(z)| + sup |R(z)|, 
z∈σ(A) z∈σ(A) 

and (2) follows. 

The last fact we need is that the spectrum of a bounded sym-
metric operator is real. We know that each eigenvalue of a bounded 
symmetric operator is real, but as we have seen, not every element 
of the spectrum is an eigenvalue. 

Proposition 25.26 If A is bounded and symmetric, then σ(A) ⊂ 
R. 

Proof. Suppose λ = a + ib, b 6= 0. We want to show that λ is not 
in the spectrum. 
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If r and s are real numbers, rewriting the inequality (r − s)2 ≥ 
2 20 yields the inequality 2rs ≤ r + s . By the Cauchy-Schwarz 

inequality 

2ahx, Axi ≤ 2|a| kxk kAxk ≤ a 2kxk2 + kAxk2 . 

We then obtain the inequality 

k(λ − A)xk2 = h(a + bi − A)x, (a + bi − A)xi 
2 = (a + b2)kxk2 + kAxk2 − (a + bi)hAx, xi 
− (a − bi)hx, Axi 
2 = (a + b2)kxk2 + kAxk2 − 2ahAx, xi 

≥ b2kxk2 . (25.11) 

This inequality shows that λ−A is one-to-one, for if (λ−A)x1 = 
(λ − A)x2, then 

0 = k(λ − A)(x1 − x2)k2 ≥ b2kx1 − x2k2 . 

Suppose λ is in the spectrum of A. Since λ − A is one-to-one 
but not invertible, it cannot be onto. Let R be the range of λ − A. 
We next argue that R is closed. 

If yk = (λ − A)xk and yk → y, then (25.11) shows that 

b2kxk − xmk2 ≤ kyk − ymk2 , 

or xk is a Cauchy sequence. If x is the limit of this sequence, then 

(λ − A)x = lim (λ − A)xk = lim yk = y. 
n→∞ n→∞ 

Therefore R is a closed subspace of H but is not equal to H. 
Choose z ∈ R⊥ . For all x ∈ H, 

0 = h(λ − A)x, zi = hx, (λ − A)zi. 

This implies that (λ − A)z = 0, or λ is an eigenvalue for A with 
corresponding eigenvector z. However we know that all the eigen-
values of a bounded symmetric operator are real, hence λ is real. 
This shows λ is real, a contradiction. 
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25.6 Spectral resolution 

Let f be a continuous function on C and let A be a bounded sym-
metric operator on a separable Hilbert space over the complex num-
bers. We describe how to define f(A). 

We have shown in Proposition 25.4 that the spectrum of A is a 
closed and bounded subset of C, hence a compact set. By Exercise 
20.46 we can find polynomials Pn (with complex coefficients) such 
that Pn converges to f uniformly on σ(A). Then 

sup |(Pn − Pm)(z)| → 0 
z∈σ(A) 

as n, m →∞. By Corollary 25.25 

k(Pn − Pm)(A)k → 0 

as n, m → ∞, or in other words, Pn(A) is a Cauchy sequence in 
the space L of bounded symmetric linear operators on H. We call 
the limit f(A). 

The limit is independent of the sequence of polynomials we 
choose. If Qn is another sequence of polynomials converging to 
f uniformly on σ(A), then 

lim kPn(A) − Qn(A)k ≤ 2 sup |(Pn − Qn)(z)| → 0, 
n→∞ z∈σ(A) 

so Qn(A) has the same limit Pn(A) does. 

We record the following facts about the operators f(A) when f 
is continuous. 

Proposition 25.27 Let f be continuous on σ(A). 
(1) hf(A)x, yi = hx, f(A)yi for all x, y ∈ H. 
(2) If f is equal to 1 on σ(A), then f(A) = I, the identity. 
(3) If f(z) = z on σ(A), then f(A) = A. 
(4) f(A) and A commute. 
(5) If f and g are two continuous functions, then f(A)g(A) = 
(fg)(A). 
(6) kf(A)k ≤ supz∈σ(A) |f(z)|. 

Proof. The proofs of (1)-(4) are routine and follow from the cor-
responding properties of Pn(A) when Pn is a polynomial. Let us 
prove (5) and (6) and leave the proofs of the others to the reader. 
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(5) Let Pn and Qn be polynomials converging uniformly on 
σ(A) to f and g, respectively. Then PnQn will be polynomials 
converging uniformly to fg. The assertion (5) now follows from 

(fg)(A) = lim (PnQn)(A) = lim Pn(A)Qn(A) = f(A)g(A). 
n→∞ n→∞ 

The limits are with respect to the norm on bounded operators on 
H. 

(6) Since f is continuous on σ(A), so is g = |f |2 . Let Pn be poly-
nomials with real coefficients converging to g uniformly on σ(A). 
By Corollary 25.25(1), 

kg(A)k = lim kPn(A)k ≤ lim sup |Pn(z)| = sup |g(z)|. 
n→∞ n→∞ z∈σ(A) z∈σ(A) 

If kxk = 1, using (1) and (5), 

kf(A)xk2 = hf(A)x, f(A)xi = hx, f(A)f(A)xi = hx, g(A)xi 
≤ kxk kg(A)xk ≤ kg(A)k ≤ sup |g(z)|

z∈σ(A) 

= sup |f(z)|2 . 
z∈σ(A) 

Taking the supremum over the set of x with kxk = 1 yields 

kf(A)k2 ≤ sup |f(z)|2 , 
z∈σ(A) 

and (6) follows. 

We now want to define f(A) when f is a bounded Borel mea-
surable function on C. Fix x, y ∈ H. If f is a continuous function 
on C, let 

Lx,y f = hf(A)x, yi. (25.12) 

It is easy to check that Lx,y is a bounded linear functional on 
C(σ(A)), the set of continuous functions on σ(A). By the Riesz 
representation theorem for complex-valued linear functionals, Ex-
ercise 17.10, there exists a complex measure µx,y such that Z 

hf(A)x, yi = Lx,y f = f(z) µx,y(dz) (25.13) 
σ(A) 

for all continuous functions f on σ(A). Now use the right hand 
side of (25.13) to define Lx,y f for all f that are bounded and Borel 
measurable. 

We have the following properties of µx,y . 
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Proposition 25.28 (1) µx,y is linear in x. 
(2) µy,x = µx,y. 
(3) The total variation of µx,y is less than or equal to kxk kyk. 

Proof. (1) The linear functional Lx,y defined in (25.12) is linear 
in x and Z Z 

f d(µx,y + µx0,y) = Lx,y f + Lx0,yf = Lx+x0 ,yf = f dµx+x0 ,y. 

By the uniqueness of the Riesz representation (see Exercise 17.9), 
µx+x0,y = µx,y + µx0+y. The proof that µcx,y = cµx,y is similar. 

(2) follows from the fact that if f is continuous on σ(A), then Z 
f dµy,x = Ly,xf = hf(A)y, xi = hy, f(A)xi Z 

= hf(A)x, yi = Lx,yf = f dµx,y Z 
= f dµx,y. 

Now use the uniqueness of the Riesz representation. 

(3) For f continuous on σ(A) we have Z 
f dµx,y = |Lx,y f | = |hf(A)x, yi| 

≤ kf(A)k kxk kyk ≤ γf kxk kyk, 

where γf = supz∈σ(A) |f(z)|. Taking the supremum over f ∈ 
C(σ(A)) with γf ≤ 1 and using Exercise 17.11 proves (3). 

If f is a bounded Borel measurable function on C, then Ly,xf is 
linear in y. By the Riesz representation theorem for Hilbert spaces, 
Theorem 19.12, there exists wx ∈ H such that Ly,xf = hy, wxi for 
all y ∈ H. We then have that for all y ∈ H, Z Z 

Lx,yf = f(z) µx,y (dz) = f(z) µy,x(dz) 
σ(A) σ(A)Z 

= f(z) µy,x(dz) = Ly,xf 
σ(A) 

= hy, wxi = hwx, yi. 
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Since 

hy, wx1+x2 i = Ly,x1+x2 f = Ly,x1 f + Ly,x2 f = hy, wx1 i + hy, wx2 i 

for all y and 

hy, wcxi = Ly,cxf = cLy,xf = chy, wxi = hy, cwxi 

for all y, we see that wx is linear in x. We define f(A) to be the 
linear operator on H such that f(A)x = wx. 

If C is a Borel measurable subset of C, we let 

E(C) = χC (A). (25.14) 

Remark 25.29 Later on we will write the equationZ 
f(A) = f(z) E(dz). (25.15) 

σ(A) 

Let us give the interpretation of this equation. If x, y ∈ H, then Z 
hE(C)x, yi = hχC (A)x, yi = χC (z) µx,y(dz). 

σ(A) 

Therefore we identify hE(dz)x, yi with µx,y(dz). With this in mind, 
(25.15) is to be interpreted to mean that for all x and y, Z 

hf(A)x, yi = f(z) µx,y(dz). 
σ(A) 

Theorem 25.30 (1) E(C) is symmetric. 
(2) kE(C)k ≤ 1. 
(3) E(∅) = 0, E(σ(A)) = I. 
(4) If C, D are disjoint, E(C ∪ D) = E(C) + E(D). 
(5) E(C ∩ D) = E(C)E(D). 
(6) E(C) and A commute. 
(7) E(C)2 = E(C), so E(C) is a projection. If C, D are disjoint, 
then E(C)E(D) = 0. 
(8) E(C) and E(D) commute. 

Proof. (1) This follows from Z 
hx, E(C)yi = hE(C)y, xi = χC (z) µy,x(dz) Z 

= χC (z) µx,y (dz) = hE(C)x, yi. 
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(2) Since the total variation of µx,y is bounded by kxk kyk, we 
obtain (2). 

(3) µx,y(∅) = 0, so E(∅) = 0. If f is identically equal to 1, then 
f(A) = I, and Z 

hx, yi = µx,y(dz) = hE(σ(A))x, yi. 
σ(A) 

This is true for all y, so x = E(σ(A))x for all x. 

(4) holds because µx,y is a measure, hence finitely additive. 

(5) We will first prove that 

f(A)g(A) = (fg)(A) (25.16) 

if f and g are bounded and Borel measurable on σ(A). 

Now 

hfn(A)gm(A)x, yi = h(fngm)(A)x, yi (25.17) 

when fn and gm are continuous. The right hand side equals Z 
(fngm)(z) µx,y(dz), 

which converges to Z 
(fng)(z) µx,y(dz) = h(fng)(A)x, yi 

when gm → g boundedly and a.e. with respect to µx,y. The left 
hand side of (25.17) equals Z 

hgm(A)x, f (A)yi = gm(z) µ (dz),n f (A)x,yn 

which converges to Z 
g(z) µ (dz) = hg(A)x, f (A)yif (A)x,y n 

n 

as long as gm also converges a.e. with respect to µ . So we f (A)x,y 
have 

n 

hfn(A)g(A)x, yi = h(fng)(A)x, yi. (25.18) 
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If we let fn converge to f boundedly and a.e. with respect to 
µx,y, the right hand side converges as in the previous paragraph to 
h(fg)(A)x, yi. The right hand side of (25.18) is equal to 

hg(A)x, f (A)yi = hf (A)y, g(A)xi. (25.19)n n 

If f converges to f a.e with respect to µy,g(A)x, the right handn 
side of (25.19) converges by arguments similar to the above to 

hf(A)y, g(A)xi = hg(A)x, f(A)yi = hf(A)g(A)x, yi. 

Assertion (5) now follows by letting f = χC and g = χD and 
noticing that fg = χC∩D. 

(6) Let h(z) = z. Note that h is bounded on σ(A) since σ(A) is 
compact. We first apply (25.16) with f = χC and g = h and then 
with f = h and g = χC to get that E(C)A = (fg)(A) = AE(C). 

(7) Setting C = D in (5) shows E(C) = E(C)2 , so E(C) is a 
projection. If C ∩ D = ∅, then E(C)E(D) = E(∅) = 0, as required. 

(8) Writing 

E(C)E(D) = E(C ∩ D) = E(D ∩ C) = E(D)E(C) 

proves (8). 

The family {E(C)}, where C ranges over the Borel subsets of 
C is called the spectral resolution of the identity. We explain the 
name in just a moment. 

Here is the spectral theorem for bounded symmetric operators. 

Theorem 25.31 Let H be a separable Hilbert space over the com-
plex numbers and A a bounded symmetric operator. There exists 
a operator-valued measure E satisfying (1)–(8) of Theorem 25.30 
such that Z 

f(A) = f(z) E(dz), (25.20) 
σ(A) 

for bounded Borel measurable functions f . Moreover, the measure 
E is unique. 

Remark 25.32 When we say that E is an operator-valued mea-
sure, here we mean that (1)–(8) of Theorem 25.30 hold. We use 
Remark 25.29 to give the interpretation of (25.20). 
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Remark 25.33 If f is identically one, then (25.20) becomes Z 
I = E(dλ), 

σ(A) 

which shows that {E(C)} is a decomposition of the identity. This 
is where the name “spectral resolution” comes from. 

Proof of Theorem 25.31. Given Remark 25.32, the only part 
to prove is the uniqueness, and that follows from the uniqueness of 
the measure µx,y. 

25.7 Exercises 

Exercise 25.1 Prove that if A, B, and C are bounded operators 
from a Hilbert space to itself, then 
(1) A(BC) = (AB)C; 
(2) A(B + C) = AB + AC and (B + C)A = BA + CA. 

Exercise 25.2 Prove that if A is a bounded symmetric operator, 
then so is An for each n ≥ 1. 

Exercise 25.3 Suppose H = Cn and Ax is multiplication of the 
vector x ∈ H by a n×n matrix M . Prove that A∗ x is multiplication 
of x by the conjugate transpose of M . 

Exercise 25.4 Let (X, A, µ) be a σ-finite measure space and F : 
X × X → C a jointly measurable function such that F (y, x) = 
F (x, y) and (25.4) holds. Prove that if A is defined by (25.5), then 
A is a bounded symmetric operator. 

Exercise 25.5 If C1, C2 are subsets of a Hilbert space whose clo-
sures are compact, prove that the closure of 

C1 + C2 = {x + y : x ∈ C1, y ∈ C2} 

is also compact. 
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Exercise 25.6 Prove that if H is a Hilbert space, K is a compact 
symmetric operator on H, and Y is a closed subspace of X, then 
the map K|Y is compact. 

Exercise 25.7 Suppose K is a bounded compact symmetric oper-
ator with non-negative eigenvalues λ1 ≥ λ2 ≥ . . . and correspond-
ing eigenvectors z1, . . . , zn. Prove that for each n, 

hKx, xi 
λn = max . 

x⊥z1,··· ,zn−1 kxk2 

This is known as the Rayleigh principle. 

Exercise 25.8 Let K be a compact bounded symmetric operator 
and let z1, . . . , zn be eigenvectors with corresponding non-negative 
eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn. Let X be the linear subspace 
spanned by {z1, . . . , zN }. Prove that if y ∈ X, we have hKy, yi ≥ 
λnhy, yi. 

Exercise 25.9 Prove that the nth largest non-negative eigenvalue 
for a compact bounded symmetric operator satisfies n hKx, xi 

λn = max min : Sn is a linear subspace 
x∈Sn kxk2 o 

of dimension n . 

This is known as Fisher’s principle. 

thExercise 25.10 Prove that the n largest non-negative eigen-
value for a compact bounded symmetric operator satisfies n hKx, xi 

λn = min max : Sn−1 is a linear subspace 
x∈S⊥ kxk2 

n−1 o 
of dimension n − 1 . 

This is known as Courant’s principle. 

Exercise 25.11 We say A is a positive operator if hAx, xi ≥ 0 for 
all x. (In the case of matrices, the term used is positive definite.) 
Suppose A and B are compact positive symmetric operators and 
that B − A is also a positive operator. Suppose A and B have 



399 25.7. EXERCISES 

eigenvalues αk, βk, resp., each arranged in decreasing order, i.e., 
α1 ≥ α2 ≥ · · · and similarly for the βk. Prove that αk ≤ βk for all 
k. 

Exercise 25.12 Let A be a compact symmetric operator on an 
infinite dimensional Hilbert space. Find necessary and sufficient 
conditions on a continuous function f such that f(A) is a compact 
symmetric operator. 

Exercise 25.13 Let A be a bounded symmetric operator, suppose 
z, w ∈ σ(A)c , Rz = (z − A)−1 , and Rw = (w − A)−1 . Prove the 
resolvent identity 

Rw − Rz = (z − w)RwRz . 

Exercise 25.14 Prove that K is a compact symmetric positive 
operator if and only if all the eigenvalues of K are non-negative. 

Exercise 25.15 Let A be a bounded symmetric operator, not nec-
essarily compact. Prove that if A = B2 for some bounded sym-
metric operator B, then A is a positive operator. 

Exercise 25.16 Let A be a bounded symmetric operator whose 
spectrum is contained in [0, ∞). Prove that A has a square root, 
that is, there exists a bounded symmetric operator B such that 
A = B2 . 

Exercise 25.17 Let A be a bounded symmetric operator, not nec-
essarily compact. Prove that A is a positive operator if and only if 
σ(A) ⊂ [0, ∞). 

Exercise 25.18 Let A be a bounded symmetric operator. Prove 
that µx,x is a real non-negative measure. 

Exercise 25.19 Prove that if A is a bounded symmetric operator 
and f is a bounded Borel measurable function, then Z 

kf(A)xk2 = |f(z)|2 µx,x(dz). 
σ(A) 
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Chapter 26 

Distributions 

Mathematical physicists often talk about the Dirac delta function, 
which is supposed to be a function that is equal to 0 away from 0, 
equal to infinity at 0, and which has integral equal to 1. Of course, 
no measurable function can have these properties. The delta func-
tion can be put on a solid mathematical footing through the use 
of the theory of distributions. The term generalized function is 
also used, although there are other notions of generalized functions 
besides that of distributions. 

For simplicity of notation, in this chapter we restrict ourselves to 
dimension one, but everything we do can be extended to Rn , n > 1, 
although in some cases a more complicated proof is necessary. See 
[6] for the n dimensional case. 

26.1 Definitions and examples 

We use C∞ for the set of C∞ functions on R with compact support. K 
= f 00Let Df = f 0 , the derivative of f , D2f , the second derivative, 

and so on, and we make the convention that D0f = f . 

If f is a continuous function on R, let supp (f) be the support 
of f , the closure of the set {x : f(x) =6 0}. If fj , f ∈ CK 

∞ , we 
say fj → f in the C∞ sense if there exists a compact subset KK 
such that supp (fj ) ⊂ K for all j, fj converges uniformly to f , and 
Dmfj converges uniformly to Dmf for all m. 

401 
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We have not claimed that C∞ with this notion of convergence K 
is a Banach space, so it doesn’t make sense to talk about bounded 
linear functionals. But it does make sense to consider continuous 
linear functionals. A map F : C∞ → C is a continuous linear K 
functional on CK 

∞ if F (f + g) = F (f) + F (g) whenever f, g ∈ CK 
∞ , 

F (cf) = cF (f) whenever f ∈ C∞ and c ∈ C, and F (fj ) → F (f)K 
whenever fj → f in the C∞ sense.K 

A distribution is defined to be a complex-valued continuous lin-
ear functional on CK 

∞ . 

Here are some examples of distributions. 

Example 26.1 If g is a continuous function, define Z 
Gg(f) = f(x)g(x) dx, f ∈ CK 

∞ . (26.1) 
R 

It is routine to check that Gg is a distribution. 

Note that knowing the values of Gg(f) for all f ∈ C∞ deter-K 
mines g uniquely up to almost everywhere equivalence. Since g is 
continuous, g is uniquely determined at every point by the values 
of Gg(f). 

Example 26.2 Set δ(f) = f(0) for f ∈ CK 
∞ . This distribution is 

the Dirac delta function. 

Example 26.3 If g is integrable and k ≥ 1, define Z 
F (f) = Dkf(x)g(x) dx, f ∈ CK 

∞ . 
R 

Example 26.4 If k ≥ 1, define F (f) = Dkf(0) for f ∈ CK 
∞ . 

There are a number of operations that one can perform on dis-
tributions to get other distributions. Here are some examples. 

Example 26.5 Let h be a C∞ function, not necessarily with com-
pact support. If F is a distribution, define Mh(F ) by 

Mh(F )(f) = F (fh), f ∈ CK 
∞ . 

It is routine to check that Mh(F ) is a distribution. 
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Example 26.1 shows how to consider a continuous function g as 
a distribution. Defining Gg by (26.1), Z Z 

Mh(Gg)(f) = Gg(fh) = (fh)g = f(hg) = Ghg (f). 

Therefore we can consider the operator Mh we just defined as an 
extension of the operation of multiplying continuous functions by 
a C∞ function h. 

Example 26.6 If F is a distribution, define D(F ) by 

D(F )(f) = F (−Df), f ∈ CK 
∞ . 

Again it is routine to check that D(F ) is a distribution. 

If g is a continuously differentiable function and we use (26.1) 
to identify the function g with the distribution Gg , then Z 

D(Gg )(f) = Gg (−Df) = (−Df)(x)g(x) dx Z 
= f(x)(Dg)(x) dx = GDg (f), f ∈ CK 

∞ , 

by integration by parts. Therefore D(Gg) is the distribution that 
corresponds to the function that is the derivative of g. However, 
D(F ) is defined for any distribution F . Hence the operator D 
on distributions gives an interpretation to the idea of taking the 
derivative of any continuous function. 

Example 26.7 Let a ∈ R and define Ta(F ) by 

Ta(F )(f) = F (f−a), f ∈ CK 
∞ , 

where f−a(x) = f(x + a). If Gg is given by (26.1), then Z 
Ta(Gg )(f) = Gg (f−a) = f−a(x)g(x) dx Z 

= f(x)g(x − a) dx = Gga (f), f ∈ CK 
∞ , 

by a change of variables, and we can consider Ta as the operator 
that translates a distribution by a. 
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Example 26.8 Define R by 

R(F )(f) = F (Rf), f ∈ CK 
∞ , 

where Rf(x) = f(−x). Similarly to the previous examples, we can 
see that R reflects a distribution through the origin. 

Example 26.9 Finally, we give a definition of the convolution of 
a distribution with a continuous function h with compact support. 
Define Ch(F ) by 

Ch(F )(f) = F (f ∗ Rh), f ∈ CK 
∞ , 

where Rh(x) = h(−x). To justify that this extends the notion of 
convolution, note that Z 
Ch(Gg )(f) = Gg (f ∗ Rh) = g(x)(f ∗ Rh)(x) dx Z Z Z 

= g(x)f(y)h(y − x) dy dx = f(y)(g ∗ h)(y) dy 

= Gg∗h(f), 

or Ch takes the distribution corresponding to the continuous func-
tion g to the distribution corresponding to the function g ∗ h. 

One cannot, in general, define the product of two distributions 
or quantities like δ(x2). 

26.2 Distributions supported at a point 

We first define the support of a distribution. We then show that a 
distribution supported at a point is a linear combination of deriva-
tives of the delta function. 

Let G be open. A distribution F is zero on G if F (f) = 0 for 
all CK 

∞ functions f for which supp (f) ⊂ G. 

Lemma 26.10 If F is zero on G1 and G2, then F is zero on 
G1 ∪ G2. 

Proof. This is just the usual partition of unity proof. Suppose f 
has support in G1 ∪ G2. We will write f = f1 + f2 with supp (f1) ⊂ 
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G1 and supp (f2) ⊂ G2. Then F (f) = F (f1) + F (f2) = 0, which 
will achieve the proof. 

Fix x ∈ supp (f). Since G1, G2 are open, we can find hx such 
that hx is non-negative, hx(x) > 0, hx is in CK 

∞ , and the support of 
hx is contained either in G1 or in G2. The set Bx = {y : hx(y) > 0}
is open and contains x. 

By compactness we can cover supp f by finitely many sets, say, 
{Bx1 , . . . , Bxm }. Let h1 be the sum of those hxi whose support is 
contained in G1 and let h2 be the sum of those hxi whose support 
is contained in G2. Then let 

h1 h2
f1 = f, f2 = f. 

h1 + h2 h1 + h2 

Clearly supp (f1) ⊂ G1, supp (f2) ⊂ G2, f1 + f2 > 0 on G1 ∪ G2, 
and f = f1 + f2. 

If we have an arbitrary collection of open sets {Gα}, F is zero on 
each Gα, and supp (f) is contained in ∪αGα, then by compactness 
there exist finitely many of the Gα that cover supp (f). By Lemma 
26.10, F (f) = 0. 

The union of all open sets on which F is zero is an open set 
on which F is zero. The complement of this open set is called the 
support of F . 

Example 26.11 The support of the Dirac delta function is {0}. 
Note that the support of Dkδ is also {0}. 

Define 
kfkCN (K) = max sup |Dkf(x)|. 

0≤k≤N x∈K 

Proposition 26.12 Let F be a distribution and K a fixed compact 
set. There exist N and c depending on F and K such that if f ∈ 
C∞ has support in K, thenK 

|F (f)| ≤ ckfkCN (K). 

Proof. Suppose not. Then for each m there exists fm ∈ C∞ withK 
support contained in K such that F (fm) = 1 and kfkCm(K) ≤ 1/m. 
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Therefore fm → 0 in the sense of CK 
∞ . However F (fm) = 1 while 

F (0) = 0, a contradiction. 

Proposition 26.13 Suppose F is a distribution and supp (F ) = 
{0}. There exists N such that if f ∈ C∞ and Dj f(0) = 0 forK 
j ≤ N , then F (f) = 0. 

Proof. Let ϕ ∈ C∞ be 0 on [−1, 1] and 1 on |x| > 2. Let 
g = (1 − ϕ)f . Note ϕf = 0 on [−1, 1], so F (ϕf) = 0 because F is 
supported on {0}. Then 

F (g) = F (f) − F (ϕf) = F (f). 

Thus is suffices to show that F (g) = 0 whenever g ∈ CK 
∞ , supp (g) 

⊂ [−3, 3], and Dj g(0) = 0 for 0 ≤ j ≤ N . 

Let K = [−3, 3]. By Proposition 26.12 there exist N and 
c depending only on F such that |F (g)| ≤ ckgkCN (K). Define 
gm(x) = ϕ(mx)g(x). Note that gm(x) = g(x) if |x| > 2/m. 

Suppose |x| < 2/m and g ∈ C∞ with support in [−3, 3] andK 
Dj g(0) = 0 for j ≤ N . By Taylor’s theorem, if j ≤ N , 

N−jx 
Dj g(x) = Dj g(0) + Dj+1 g(0)x + · · · + DN g(0) + R 

(N − j)! 

= R, 

|Dgm(x)| ≤ |ϕ(mx)| |Dg(x)| + m|g(x)| |Dϕ(mx)| ≤ c4m 

where the remainder R satisfies 

|x|N+1−j 

|R| ≤ sup |DN+1 g(y)| . 
y∈R (N + 1 − j)! 

Since |x| < 2/m, then 

j−1−N|Dj g(x)| = |R| ≤ c1m (26.2) 

for some constant c1. 

By the definition of gm and (26.2), 

−N−1|gm(x)| ≤ c2|g(x)| ≤ c3m , 

where c2 and c3 are constants. Again using (26.2), 

−N . 
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Continuing, repeated applications of the product rule show that if 
k ≤ N , then 

k−1−N|Dk gm(x)| ≤ c5m 

for k ≤ N and |x| ≤ 2/m, where c5 is a constant. 

Recalling that gm(x) = g(x) if |x| > 2/m, we see that Dj gm(x) 
→ Dj g(x) uniformly over x ∈ [−3, 3] if j ≤ N . We conclude 

F (gm − g) = F (gm) − F (g) → 0. 

However, each gm is 0 in a neighborhood of 0, so by the hypothesis, 
F (gm) = 0; thus F (g) = 0. 

By Example 26.6, Dj δ is the distribution such that Dj δ(f) = 
(−1)j Dj f(0). 

Theorem 26.14 Suppose F is a distribution supported on {0}. 
Then there exist N and constants ci such that 

NX 
F = ciD

iδ. 
i=0 

Proof. Let Pi(x) be a C∞ function which agrees with the poly-K 
inomial x in a neighborhood of 0. Taking derivatives shows that 

Dj Pi(0) = 0 if i 6= j and equals i! if i = j. Then Dj δ(Pi) = (−1)ii! 
if i = j and 0 otherwise. 

Use Proposition 26.13 to determine the integer N . Suppose 
f ∈ CK 

∞ . By Taylor’s theorem, f and the function 

NX 
g(x) = Dif(0)Pi(x)/i! 

i=0 

agree at 0 and all the derivatives up to order N agree at 0. By the 
conclusion of Proposition 26.13 applied to f − g, 

N� X �Dif(0)
F f − Pi = 0. 

i! 
i=0 
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Therefore 

N NX XDif(0)
F (f) = F (Pi) = (−1)i D

iδ(f) 
F (Pi)

i! i! 
i=0 i=0 

NX 
= ciD

iδ(f) 
i=0 

if we set ci = (−1)iF (Pi)/i! Since f was arbitrary and the ci do 
not depend on f , this proves the theorem. 

26.3 Distributions with compact 
support 

In this section we consider distributions whose supports are com-
pact sets. 

Theorem 26.15 If F has compact support, there exist a non-
negative L and continuous functions gj such that X 

F = Dj Ggj , (26.3) 
j≤L 

where Ggj is defined by Example 26.1. 

Example 26.16 The delta function is the derivative of h, where 
h is 0 for x < 0 and 1 for x ≥ 0. In turn h is the derivative of g, 
where g is 0 for x < 0 and g(x) = x for x ≥ 0. Therefore δ = D2Gg. 

Proof. Let h ∈ C∞ and suppose h is equal to 1 on the support ofK 
F . Then F ((1 − h)f) = 0, or F (f) = F (hf). Therefore there exist 
N and c1 such that 

|F (hf)| ≤ c1khfkCN (K). 

By the product rule, 

|D(hf)| ≤ |h(Df)| + |(Dh)f | ≤ c2kfkCN (K), 
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and by repeated applications of the product rule, 

khfkCN (K) ≤ c3kfkCN (K). 

Hence 
|F (f)| = |F (hf)| ≤ c4kfkCN (K). 

Let K = [−x0, x0] be a closed interval containing the support of 
F . Let CN (K) be the N times continuously differentiable functions 
whose support is contained in K. We will use the fact that CN (K) 
is a complete metric space with respect to the metric kf −gkCN (K). 

Define Z� X �1/2 
kfkHM = |Dkf |2 dx , f ∈ CK 

∞ , 
k≤M 

and let HM be the completion of {f ∈ C∞ : supp (f) ⊂ K} withK 
respect to this norm. It is routine to check that HM is a Hilbert 
space. 

Suppose M = N + 1 and x ∈ K. Then using the Cauchy-
Schwarz inequality and the fact that K = [−x0, x0], Z x 

|Dj f(x)| = |Dj (x) − Dj f(−x0)| = Dj+1f(y) dy 
−x0�Z �1/2 

≤ |2x0|1/2 |Dj+1f(y)|2 dy �Z R �1/2 
≤ c5 .|Dj+1f(y)|2 dy 

R 

This holds for all j ≤ N , hence 

kukCN (K) ≤ c6kukHM . (26.4) 

Recall the definition of completion from Section 20.4. If g ∈ 
HM , there exists gm ∈ CN (K) such that kgm −gkHM → 0. In view 
of (26.4), we see that {gm} is a Cauchy sequence with respect to 
the norm k · kCN (K). Since C

N (K) is complete, then gm converges 
with respect to this norm. The only possible limit is equal to g a.e. 
Therefore we may assume g ∈ CN (K) whenever g ∈ HM . 

Since |F (f)| ≤ c4kfkCN (K) ≤ c4c6kfkHM , then F can be viewed 
as a bounded linear functional on HM . By the Riesz representation 
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theorem for Hilbert spaces (Theorem 19.12), there exists g ∈ HM 

such that X 
F (f) = hf, gi = hDkf, Dk gi, f ∈ HM .HM 

k≤M 

Now if gm → g with respect to the HM norm and each gm ∈ 
CN (K), then 

hDkf, Dk gi = lim hDkf, Dk gmi = lim (−1)khD2kf, gmi 
m→∞ m→∞ 

= (−1)khD2kf, gi = (−1)kGg (D
2kf) 

= (−1)kD2kGg(f) 

if f ∈ CK 
∞ , using integration by parts and the definition of the 

derivative of a distribution. Therefore X 
F = (−1)kD2kGgk , 

k≤M 

which gives our result if we let L = 2M , set gj = 0 if j is odd, and 
set g2k = (−1)kg. 

26.4 Tempered distributions 

Let S be the class of complex-valued C∞ functions u such that 
|xj Dku(x)| → 0 as |x| → ∞ for all k ≥ 0 and all j ≥ 1. S is called 
the Schwartz class. An example of an element in the Schwartz class 

−xthat is not in CK 
∞ is e 

2 
. 

Define 
kukj,k = sup |x|j |Dk u(x)|. 

x∈R 

We say un ∈ S converges to u ∈ S in the sense of the Schwartz 
class if kun − ukj,k → 0 for all j, k. 

A continuous linear functional on S is a function F : S → C 
such that F (f + g) = F (f) + F (g) if f, g ∈ S, F (cf) = cF (f) if 
f ∈ S and c ∈ C, and F (fm) → F (f) whenever fm → f in the 
sense of the Schwartz class. A tempered distribution is a continuous 
linear functional on S. 
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Since C∞ ⊂ S and fn → f in the sense of the Schwartz classK 
whenever fn → f in the sense of CK 

∞ , then any continuous lin-
ear functional on S is also a continuous linear functional on CK 

∞ . 
Therefore every tempered distribution is a distribution. 

Any distribution with compact support is a tempered distribu-
tion. If g grows slower than some power of |x| as |x| → ∞, thenR 
Gg is a tempered distribution, where Gg(f) = f(x)g(x) dx. bFor f ∈ S, recall that we defined the Fourier transform Ff = f 
by Z 

fb(u) = f(x)e ixu dx. 

Theorem 26.17 F is a continuous map from S into S. 

Proof. For elements of S, Dk(Ff) = F((ix)k)f). If f ∈ S, 
|xkf(x)| tends to zero faster than any power of |x|−1 , so xkf(x) ∈ 
L1 . This implies DkFu is a continuous function, and hence Ff ∈ 
C∞ . 

We see by Exercise 26.8 that 

uj Dk(Ff)(u) = ik+j F(Dj (x kf))(u). (26.5) 

Using the product rule, Dj (xkf) is in L1 . Hence uj DkFf(u) is 
continuous and bounded. This implies that every derivative of 
Ff(u) goes to zero faster than any power of |u|−1 . Therefore Ff ∈ 
S. 

Finally, if fm → f in the sense of the Schwartz class, it fol-
lows by the dominated convergence theorem that F(fm)(u) → 
F(f)(u) uniformly over u ∈ R and moreover |u|kDj (F(fm)) → 
|u|kDj (F(f)) uniformly over R for each j and k. 

If F is a tempered distribution, define FF by 

FF (f) = F (fb) 
for all f ∈ S. We verify that FGg = Ggb if g ∈ S as follows: Z 

F(Gg)(f) = Gg(fb) = fb(x)g(x) dx Z Z Z 
= eiyxf(y)g(x) dy dx = f(y)gb(y) dy 

= Gbg(f) 
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if f ∈ S. 

Note that for the above equations to work, we used the fact 
that F maps S into S. Of course, F does not map C∞ into C∞ 

K K . 
That is why we define the Fourier transform only for tempered 
distributions rather than all distributions. 

Theorem 26.18 F is an invertible map on the class of tempered 
distributions and F−1 = 2πFR. Moreover F and R commute. 

Proof. We know Z 
f(x) = (2π)−1 fb(−u)e ixu du, f ∈ S, 

so f = (2π)−1FRFf , and hence FRF = 2πI, where I is the 
identity. Then if H is a tempered distribution, 

(2π)−1FRFH(f) = RFH((2π)−1Ff) = FH((2π)−1RFf) 
= H((2π)−1FRFf) = H(f). 

Thus 
(2π)−1FRFH = H, 

or 
(2π)−1FRF = I. 

We conclude A = (2π)−1FR is a left inverse of F and B = 
(2π)−1RF is a right inverse of F . Hence B = (AF)B = A(FB) 
= A, or F has an inverse, namely, (2π)−1FR, and moreover RF = 
FR. 

26.5 Exercises 

Exercise 26.1 We define a metric for S by setting X 1 kf − gkj,k 
d(f, g) = · . 

k,j 
2j+k 1 + kf − gkj,k 

Prove that this is a metric for S. Prove that a sequence converges 
in the sense of the Schwartz class if and only if it converges with 
respect to the metric. Is S with this metric complete? 
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Exercise 26.2 Prove that if f ∈ CK 
∞ , then Z 
f(x)

F (f) = lim dx 
ε→0 x|x|>ε 

exists. Prove that F is a distribution. 

Exercise 26.3 Suppose U is a continuous linear map from C∞ 
K 

into CK 
∞ . If F is a distribution, define TF by 

TF (f) = F (Uf), f ∈ CK 
∞ . 

(1) Prove that TF is a distribution. 
(2) Suppose V is a continuous linear map from C∞ into itself such R R K 
that g(Uf) = (V g)f for every f, g ∈ CK 

∞ . Prove that if g ∈ CK 
∞ , 

then 
TGg = GV g. 

Exercise 26.4 If µ is a finite measure defined on the Borel σ-R 
algebra, prove that F given by F (f) = f dµ is a distribution. 

Exercise 26.5 A positive distribution F is one such that F (f) ≥ 0 
whenever f ≥ 0. Prove that if K is a compact set and F is a positive 
distribution, then there exists a constant c such that 

|F (f)| ≤ c sup |f(x)|
x∈K 

for all f supported in K. 

Exercise 26.6 Prove that if F is a positive distribution with com-
pact support, then there exists a measure µ such that F (f) =R 
f dµ for f ∈ CK 

∞ . 

xExercise 26.7 Let g1(x) = e and g2(x) = ex cos(ex). Prove that 
Gg2 is a tempered distribution but Gg1 is not. 

Exercise 26.8 Prove (26.5). 

Exercise 26.9 Determine FG1, Fδ, and FDj δ for j ≥ 1. 
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Chapter 27 

Hints on exercises 

Here are some hints on selected exercises from Chapters 2 to 19. 
For some I provide complete solutions, for some sketches of the 
proof, and for some only minimal hints. 

Chapter 2 

Exercise 2.4. No. Let Mn consist of all subsets of {1, 2, · · · , n}. 
Let Aj = {1, 2, . . . , j}. Then Aj ∈ Mj ⊂ M, but Aj ↑ A = 
{1, 2, . . .} is not in M. 

Exercise 2.6. The first step is to find a countably infinite sequence 
of pairwise disjoint non-empty sets. Find two disjoint non-empty 
sets B0, B1 in A whose union is X. Next choose two disjoint non-
empty sets B00, B01 in A whose union is B0, and then divide B00 

into B000 and B001 and so on. Let A1 = B1, A2 = B01, A3 = B001, 
and so on. 

Now we show the collection of countable unions of the Ais is 
uncountable. If x is an irrational in (0, 1), let x = .a1a2a3 . . . be 
its binary expansion. (E.g., x = .01001010...) Let 

Bx = ∪{i:ai=1}Ai. 

Thus in our example Bx = A2 ∪ A5 ∪ A7 ∪ · · · . If x 6= y, then the 
thbinary expansions of x and y will differ in some digit, say the n 

one, and then one of Bx, By will contain An while the other will 

415 
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not. Hence Bx 6= By. There are uncountably many irrationals in 
(0, 1) and each one gives rise to a different element of A. Therefore 
A is uncountable. 

Exercise 2.8. Suppose A is countably infinite. If x ∈ X, let 
Ax be the intersection of all sets in A that contain x. Since A is 
countable, then Ax ∈ A. We claim the Ax are either disjoint or 
equal. Suppose z ∈ Ax ∩ Ay . By the definition of Az we have 
Az ⊂ Ax. If x ∈ Az, then similarly Ax ⊂ Az. If x ∈/ Az, then 
Ax − Az is a set in A containing x but not z, contradicting z ∈ Ax. 
Therefore Ax = Az. Similarly Ay = Az , so Ax = Ay . Ax is not 
empty since the point x is in it. 

If C ∈ A and x ∈ C, then Ax ⊂ C. Therefore C = ∪x∈C Ax. If 
there are only finitely many Ax’s, this means that the {Ax} gener-
ate A, contradicting A being infinite. So there must be infinitely 
many Ax’s. Now proceed as in the solution to Exercise 2.6. 

Chapter 3 

Exercise 3.1. We need to show that µ is countably additive. Let 
Bi be disjoint sets in A and let Ai = ∪i Then An ↑ ∪∞ 

n=1Bn. n=1Bn. 
Since µ is finitely additive, we can write 

∞ iX X 
µ(Bn) = lim µ(Bn) = lim µ(∪i

n=1Bn)
i→∞ i→∞ 

n=1 n=1 

= lim µ(Ai) = µ(∪∞ 
n=1An)

i→∞ 

= µ(∪∞ 
n=1Bn) 

as desired. 

Exercise 3.8. Let C = {A ∪ N : A ∈ A, N ∈ N}. We will show C 
is a σ-algebra. Clearly A ∪ N ⊂ C, so that will show B ⊂ C. It is 
also obvious that C ⊂ B. 

We proceed to showing C is a σ-algebra. Closure under count-
able additivity is easy, so we need to show (A ∪ N)c ∈ C if A ∈ A 
and N ∈ N . Since N ∈ N , there exists B ∈ A with N ⊂ B and 
µ(B) = 0. We may without loss of generality assume A ∩ B = ∅; 
to see this, we can write A ∪ N = A ∪ (N − A) and we note that 
N − A ⊂ N , so N − A ∈ N , and also A ∩ (B − A) = ∅. 
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Now write A ∪ N = (A ∪ B) ∩ (Bc ∪ N), and then 

(A ∪ N)c = (A ∪ B)c ∪ (Bc ∪ N)c = (A ∪ B)c ∪ (B ∩ N c). 

This gives us what we need since (A ∪ B)c ∈ A and B ∩ N c ⊂ B, 
so B ∩ N c ∈ N . 

To see that µ is well-defined, observe that if A ∪ N = A0 ∪ N 0 

with A, A0 ∈ A and N, N 0 ∈ N , then A4A0 ⊂ N ∪ N 0 . 

Exercise 3.10. The answer is no to both parts. Let X = {1, 2, 3}, 
let A consist of all subsets, and let C = {{1, 2}, {2, 3}}. Define 
m({1}) = m({3}) = 1 and m({2}) = 0. Define n({2}) = 1 and 
n({1}) = n({3}) = 0. Then m and n agree on C but are not equal 
on σ(C) = A. 

Chapter 4 

Exercise 4.3. It is clear from the definition that µ ∗(A) = µ(A) 
if A ∈ A. We now show countable subadditivity. Suppose {Ai} is 
a countable collection of sets. Let ε > 0. For each i there exists 
Bi ∈ A such that Ai ⊂ Bi and µ(Bi) ≤ µ ∗(Ai) + ε/2i . Then 
∪Ai ⊂ ∪Bi and 

∞X 
µ ∗ (∪Ai) ≤ µ(∪Bi) ≤ µ(Bi). 

i=1 

The last inequality is not necessarily an equality because the Bi 

need not be disjoint. The last term is in turn less than or equalP 
to (µ ∗(Ai) + ε/2i) Since ε is arbitrary, that proves countable i 

∗subadditivity of µ . To show the rest of the definition of outer 
measure is easy. 

Suppose E ⊂ X is arbitrary. Let ε > 0. Suppose A ∈ A. 
There exists B ∈ A containing E such that µ(B) ≤ µ ∗(E) + ε. So 
µ ∗(E ∩ A) ≤ µ ∗(B ∩ A) = µ(B ∩ A) and the same with A replaced 
by Ac . Adding, 

µ ∗ (E ∩A)+µ ∗ (E∩Ac) ≤ µ(B ∩A)+µ(B∩Ac) = µ(B) ≤ µ ∗ (E)+ε. 

Since ε is arbitrary, this proves A is µ ∗-measurable. 
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Exercise 4.6. B = lim sup = ∩∞ ∪∞ (Cf. Exercise 2.9.) n An j=1 i=j Ai. 
It follows that B is Lebesgue measurable. For (2), 

m(B) = lim i=j Ai) ≥ lim inf m(∪∞ m(Aj ) ≥ δ. 
j→∞ j→∞ 

We have 
∞X 

m(B) = lim i=j Ai) ≤ m(Ai) = 0m(∪∞ lim 
j→∞ j→∞ 

i=j P 
since m(Ai) is a convergent series. This proves (3). An example 
for (4) is to let An = [0, 1/n]. 

Exercise 4.8. Since F c consists of countably many disjoint open 
intervals (ai, bi), let X 

2−iα(x) = 
{i:ai≤x} 

for 0 ≤ x ≤ 1. Define α(x) = α(0) for x < 0 and α(x) = α(1) 
for x > 1. Let µ1 be the Lebesgue-Stieltjes measure corresponding 
to α(x) and let µ2 be Lebesgue measure restricted to F , that is, 
µ2(A) = m(A ∩ F ). Let µ3(dy) = χF (0) δ0(dy) + χF (1) δ1(dy), 
where δz is point mass at z. So µ3 includes point masses at 0 and 
1 if those points are in F . Let µ = µ1 + µ2 + µ3. α is constant on 
the intervals making up F c and µ2(F c) is 0, so µ(F c) = 0. 

Suppose E is a proper closed subset of F . If F − E contains an 
interval I, then µ2(I) > 0 and so µ(Ec) > 0. If either 0 or 1 is in 
F − E, then µ3(F − E) > 0 and so µ(Ec) = 0. 

The remaining possibility is if F − E contains no intervals and 
neither of the points 0 or 1. In this case there exists an open interval 
I disjoint from E that contains points of F . The interval I must 
then contain at least one ai, so µ1(I) > 0. Therefore µ(Ec) > 0 in 
this case also. Hence F is the smallest closed set whose complement 
has µ measure 0. 

1 1 3Exercise 4.9. Let A1 = [0, ], let A2 = [0, ] ∪ [ 12 , ], A3 = 2 4 4 
1 3 5 7[0, ] ∪ [ 1 , ] ∪ [ 1 , ] ∪ [ 3 , ], and so on. Each An has measure 1/2,8 4 8 2 8 4 8 

1An4Am has positive measure if n =6 m, and m(Am ∩ An) = if4 
m 6= n. 

Exercise 4.10. We will show m(A ∩ [−n, n]) = 0 for each n. So 
let us suppose A is contained in [−n, n]. Let β > 0 and choose G 
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open containing A such that m(G) < m(A) + β. Let G = ∪∞ 
i=1Ii, 

where the Ii are disjoint open intervals. Then X X 
m(A) = m(A ∩ Ii) ≤ (1 − ε) m(Ii) 

i i 

= (1 − ε)m(G) ≤ (1 − ε)(m(A) + β). 

This implies εm(A) ≤ (1 − ε)β. Since β is arbitrary, m(A) = 0. 

Exercise 4.11. The following elementary argument is from [11]. 
Replacing A by a compact subset with positive measure, we may 
suppose A is compact but still m(A) > 0. Choose U open and 
bounded containing A so that m(U) < 2m(A). Let ε be the min-
imum distance between points in A and points in U c . Since A is 
compact and U is open and bounded, it is not hard to show that 
ε > 0. We will show that if |x| < ε, then x + A and A intersect. 
If not, A and x + A are two disjoint sets contained in U and then 
m(U) ≥ m(x + A) + m(A) = 2m(A), a contradiction. 

Therefore x + A and A intersect, that is, there exist y, z ∈ A 
such that x + y = z. But then x = z − y ∈ B. Hence B contains 
(−ε, ε). 

Exercise 4.12. Let C be the generalized Cantor set constructed 
in Example 4.13 with Lebesgue measure 1/2. In each interval in 
the complement of C put a scaled version of C: that is, if Cc = 
∪∞ 
i=1(ai, bi), let Di = ai + (bi − ai)C, and let C1 = i=1Di).C ∪ (∪∞ 

Now put a scaled version into each interval in the complement of 
C1 and call the resulting set C2. Continue and let A = ∪∞ 

j=1Cj . 
Any interval I will contain some interval J in the complement of 
some Cj , and so m(I ∩J) < m(I). It follows that m(A∩I) < m(I). 

Exercise 4.13. Since A is a subset of the non-measurable set con-
structed in Section 4.4, the A + q are disjoint for distinct rationals 
q ∈ [0, 1]. We have X 
3 = m([−1, 2]) ≥ m(∪q∈Q∩[0,1](A + q)) = m(A + q), 

q∈Q∩[0,1] 

and since m(A + q) = m(A), this implies m(A) = 0. 

Exercise 4.14. We may assume A ⊂ [−n, n] for some n sufficiently 
1 1large. By looking at A + , finding a nonmeasurable subset B,2n 2 
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and then looking at 2n(B − 1 ), it suffices to prove the assertion2 
when A ⊂ [0, 1]. 

Let N be the non-measurable set constructed in Section 4.4. 
Let Bq = A ∩ (q + N). If Bq is measurable for each rational q, 
then m(Bq) = 0 by Exercise 4.13 and the fact that Bq ⊂ q + N . 
On the other hand, A ⊂ ∪q∈Q∩[0,1]Bq, contradicting that m(A) > 
0. Therefore for a least one rational q the set Bq must be non-
measurable. 

∗Exercise 4.15. Let ε > 0 and choose B so that A ⊂ B, B is µ -
measurable, and µ ∗(B − A) < ε. Let E ⊂ X. Then E ∩ A ⊂ E ∩ B, 
hence µ ∗(E ∩ A) ≤ µ ∗(E ∩ B). 

Note Ac − Bc = Ac ∩ B = B − A. So 

µ ∗ (E ∩ (Ac − Bc)) ≤ µ ∗ (Ac − Bc) = µ ∗ (B − A) < ε. 

Now 

µ ∗ (E ∩ Ac) ≤ µ ∗ (E ∩ Bc) + µ ∗ (E ∩ (Ac − Bc)) ≤ µ ∗ (E ∩ Bc) + ε. 

Thus 

µ ∗ (E ∩ A)+ µ ∗ (E ∩ Ac) ≤ µ ∗ (E ∩ B)+ µ ∗ (E ∩ Bc)+ ε = µ ∗ (E)+ ε, 

the last equality following because B is µ ∗-measurable. Since ε is 
arbitrary, that does it. 

Exercise 4.16. Choose Bn a countable union of elements of A with 
A ⊂ Bn and µ ∗(A) > µ ∗(Bn) − 1 . Let B = ∩nBn. Then A ⊂ B,n 
each Bn and hence B are µ ∗-measurable, and therefore 

1 µ ∗ (B) ≤ lim inf µ ∗ (Bn) ≤ µ ∗ (A) + lim = µ ∗ (A). nn n 

Note µ ∗(Ac) = `(X) − µ ∗(A) = `(X) − µ ∗(B) = µ ∗(Bc). Since 
B is µ ∗-measurable, 

µ ∗ (Ac) = µ ∗ (Ac ∩ B) + µ ∗ (Ac ∩ Bc). 

Then since Bc ⊂ Ac , 

µ ∗ (Ac) = µ ∗ (Ac ∩ B) + µ ∗ (Bc) = µ ∗ (Ac ∩ B) + µ ∗ (Ac). 

This forces µ ∗(Ac ∩ B) to be 0, or in other words, µ ∗(B − A) is 
zero. Now apply Exercise 4.15. 
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Exercise 4.17. (1) Let X be the positive integers, µ ∗(A) equal 
to 0 if A is empty, equal to 1 if A is finite, and equal to 2 if A is 
infinite. Let An = {1, 2, . . . , n} and Bn = {n, n + 1, . . .}. 

(2) Let An ↑ A, and choose Bn ∈ A such that An ⊂ Bn and 
µ ∗(Bn) ≤ µ ∗(An) + 1 . Let Cn = ∩∞ Bi. Then the Cn increase,n i=n 
say to C. If x ∈ A, then x ∈ An for some n, and hence for all 
n sufficiently large. So x ∈ Bn for all n sufficiently large, and 
therefore x ∈ C. We conclude A ⊂ C. Since the Cn and C are in 
A, we can write 

lim µ ∗ (An) ≥ lim inf(µ ∗ (Bn) − 1 )n 

≥ lim(µ ∗ (Cn) − 1 )n 

= µ ∗ (C) ≥ µ ∗ (A). 

Each An ⊂ A, so of course lim µ ∗(An) ≤ µ ∗(A). 

Exercise 4.18. B0 = ∪x∈A(x − 1, x + 1) is an open set, and 
therefore Lebesgue measurable, Also −1+A and 1+A are Lebesgue 
measurable. Therefore B = B0 ∪ (−1 + A) ∪ (1 + A) is Lebesgue 
measurable. 

Exercise 4.19. If x ∈ R and A ∩ (x + Q) is not empty, there exists 
a rational r such that x + r ∈ A, which implies x ∈ A + (−r) ⊂ 
∪q∈Q(A + q). So if A ∩ (c + Q) is nonempty for each c ∈ R, we have 
R ⊂ ∪q∈Q(A + q). But ∪q∈Q(A + q) has measure 0, a contradiction. 

Chapter 5 

Exercise 5.2. For each x choose gx and rx such that f and gx agree 
on (x−rx, r+rx)∩(0, 1) and gx is Borel measurable. Take rx smaller 
if necessary so that (x − rx, x + rx) ⊂ (0, 1). The collection of open 
intervals {(x − rx, x + rx)} is a cover for (0, 1) and take a countable 
subcover. (To see that this is possible, take a finite subcover of 
[ 1 , 1 − 1 ] for each n and take the union of these finite subcovers.) n n 

Label the intervals in the countable subcover I1, I2, . . . and let 
gi be the corresponding functions. Let J1 = I1 and for n > 1 let 
Jn = In − (∪n−1Ji). Each Jn is Borel measurable and fχJn = i=1 
gnχJn is Borel measurable. Since the Jn are pairwise disjoint and 
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P∞
their union is all of (0, 1), we see that f = fχJn is Borel n=1 
measurable. 

Exercise 5.6. (1) x → 
p
|x| is a continuous function from R top

|f2 + g2|.[0, ∞), and |f | = 

(2) For z in the interior of the first quadrant 

arg z = arctan(Im z/Re z), 

with similar expressions for the other quadrants. 

Exercise 5.8. Let A be a non-measurable subset of [0, 1]. Let 
fα(x) = χ{α}(x). Then g = χA, which is non-measurable. 

Exercise 5.9. {x : g ◦ f(x) > r} = {x : f(x) ∈ g−1((r, ∞))}, and if 
g is continuous or Borel measurable, A = g−1((r, ∞)) will be Borel 
measurable. Since f is Lebesgue measurable, then f−1(A) will be 
a Lebesgue measurable set, so g ◦ f is Lebesgue measurable. 

If g is only Lebesgue measurable, this might not be true. Let 
f1 be the Cantor-Lebesgue function, f2(x) = x, and g = f1 + f2. 
Since g is strictly increasing and continuous, h = g−1 is continuous. 

Let C be the Cantor set. If I is any interval in the complement 
of C, then f1 is constant on I. So m({g(x) : x ∈ I}) = m(I). 
Summing over the intervals in [0, 1] − C, we get 

m({g(x) : x ∈ [0, 1] − C}) = 1. 

On the other hand g(0) = 0, g(1) = 2, and g is strictly increas-
ing and continuous, so m({g(x) : x ∈ [0, 1]}) = 2. Therefore 
m(g(C)) = 1. 

Let A be a non-measurable subset of g(C) (which exists by 
Exercise 4.14) and let B = h(A) ⊂ C. Since C has measure 0, 
so does B, and so χB is Lebesgue measurable. h is also Lebesgue 
measurable since it is continuous. But χB ◦ h is not Lebesgue 

1measurable because {x : χB ◦ h(x) > } = {x : h(x) ∈ B} = A,2 
which is not Lebesgue measurable. 

Exercise 5.10. First suppose g = χA, where A ∈ A. Then A = {x : 
f(x) ∈ B} for some B Borel measurable. If h = χB , then h◦f(x) = 
χB (f(x)) = χA(x) = g(x). If g is a linear combination of such 
functions, we have our result by linearity. If g is nonnegative and 
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A measurable, choose A-measurable simple functions sn increasing 
to g, let hn be functions such that sn = hn ◦f , and let h = sup hn.n 

−Finally, in general write g = g+ − g , construct h+ and h− , and 
let h = h+ − h− . 

Exercise 5.11. First some easy observations. f(0) = f(0 + 0) = 
f(0) + f(0), so f(0) = 0. f(2x) = f(x + x) = f(x) + f(x), and we 
conclude f(nx) = nf(x) by using induction: if it is true for n, 

f((n + 1)x) = f(nx + x) = f(nx) + f(x) 

= nf(x) + f(x) = (n + 1)f(x). 

1Using f(nx) = nf(x) with y = nx, we get f(y) = f(y/n). We n 
mthen conclude that f(y) = f(my/n), or in other words rf(y) = n 

f(ry) for every positive rational. Since 0 = f(x + (−x)) = f(x) + 
f(−x), we conclude f(−x) = −f(x). 

Now suppose f is Lebesgue measurable. We will show f is 
continuous. (Once we have this, by continuity f(rx) = rf(x) for all 
reals r, and then f(r) = rf(1), or f is linear.) To show continuity 
it suffices to show continuity at 0 since 

f(x + h) − f(x) = f((x + h) − x) = f(h). 

Let Mk = {x : |f(x)| ≤ k}. Since f is Lebesgue measurable, 
each Mk is Lebesgue measurable, and Mk ↑ R, so for some k we 
have m(Mk) > 0. By the Steinhaus theorem (Exercise 4.11) there 
exists δ such that if |x| < δ, then x ∈ Mk − Mk. If x ∈ Mk − Mk, 
there exist y and z in Mk such that x = y − z, and then 

|f(x)| = |f(y − z)| = |f(y) − f(z)| ≤ 2k. 

Given ε, choose a rational r ∈ (0, ε). If |x| < rδ/2k, then 2k|x|/r < 
δ, so |f(2k|x|/r)| ≤ 2k, and hence 

r r|f(x)| = |f(2kx/r)| ≤ (2k) = r < ε.2k 2k 

Thus f is continuous at 0. 

Chapter 6 

Pm
Exercise 6.2. Suppose s = . We will argue that we cani=1 aiχAiPK 
can rewrite s as where the ck are non-zero, all distinct, k=1 ckχCk 
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PK Pm
Ck = {x : s(x) = ck}, and k=1 ckµ(Ck) = i=1 aiµ(Ai). Such a 
representation of s is unique (up to a reordering of the indices), soPn 
we get the same expression if we rewrite bj χBj .j=1 

We use induction on m. Suppose such a representation is pos-
sible for every simple function consisting of m summands. If s =Pm+1 

i=1 aiχAi , we may assume the Ai, 1 ≤ i ≤ m, are pairwise 
disjoint by the induction hypothesis. Write 

mX 
=χAm+1 χ(Am+1∩Ai) + χ(Am+1−D), 

i=1 

∪mwhere D = i=1Ai. For 1 ≤ i ≤ m write χAi = χ(Am+1∩Ai) + 
χ(Ai−Am+1). Then 

m mX X 
s = (ai + am+1)χ(Am+1∩Ai) + aiχ(Ai−Am+1) 

i=1 i=1 

+ am+1χ(Am+1−D) 

and 

m+1 mX X 
aiµ(Ai) = (ai + am+1)µ(Am+1 ∩ Ai) 

i=1 i=1 
mX 

+ aiµ(Ai − Am+1) + am+1µ(Am+1 − D). 
i=1 

Let Ci = Am+1 ∩ Ai, ci = ai + am+1, 1 ≤ i ≤ m; let Ci+m = 
Ai − Am+1, ci+m = ai, 1 ≤ i ≤ m; and let C2m+1 = Am+1 − D,Pm+1 
c2m+1 = am+1. We have thus shown that aiχAi equalsi=1P2m+1 

ciχCk .k=1 

Next omit any summands where Ci is empty. And finally com-
bine those sets whose coefficients agree: if ck1 = ck2 , replace 
ck1 χCk1 

+ ck2 χCk2 
with ck1 χ(Ck1 ∪Ck2 ) 

and do this repeatedly until 
no two coefficents are the same. This is our desired representation. 

Exercise 6.3. Suppose first that f is non-negative. The equality is 
easy to check for simple functions s. We then have, if s ≤ f , that Z Z Z Z Z 

s = s + s ≤ f + f. 
A1∪A2 A1 A2 A1 A2 



425 

R 
Taking the supremum over all such simple functions, f ≤R R A1∪A2 

f + f. 
A1 A2 

Now let si ≤ fχAi be simple functions for i = 1, 2. Then s1 +s2 

is a simple function bounded by fχ(A1∪A2). So Z Z Z Z 
f ≥ (s1 + s2) = s1 + s2. 

A1∪A2 

(We don’t yet have additivity for the Lebesgue integral, but it is 
not hard to show that it holds for simple functions.) Taking the 
supremum over all such pairs {s1, s2} we have Z Z Z 

f ≥ f + f. 
A1+A2 A1 A2 

If f is integrable, write f as the difference of its positive and 
negative parts and apply the above to each part. R R 
Exercise 6.7. Clearly (f ∧ n) ≤ f . Let s be a simple function 
less than or equal to f . Then s takes only finitely many values, soR R R 
is bounded, say by M . If n ≥ M , then (f ∧ n) ≥ (s ∧ n) = s,R R 
so lim infn (f ∧ n) ≥ s. Taking the supremum over all such s,R R 
lim infn (f ∧ n) ≥ f . 

Exercise 6.8. Let g = |f |. Let ε > 0. By Exercise 6.7 there existsR R 
n such that g ≤ (g ∧ n) + ε/2. Now suppose δ = ε/2n andR R 
µ(A) < δ. Since (g ∧ n) ≤ g, we can write

Ac Ac Z Z Z Z Z Z 
g = g − g ≤ (g ∧n)+ε/2− (g ∧n) = (g ∧n)+ε/2. 

Ac AcA R 
A 

Since g ∧ n is bounded by n, then (g ∧ n) ≤ nµ(A) < ε/2.
A 

Exercise 6.9. Let a0 = 0 and choose an strictly increasing to 
infinity such that 

µ({x : f(x) ≥ an}) < 1/4n . 

Let An = {x : an−1 ≤ f(x) < an}. Let g(an) = 2n and let g be 
linear in between successive an’s. Then for positive integers M Z M Z ∞X X 

(g ◦ f) ∧ 2M ≤ g ◦ f ≤ 2n µ(An) 
Ann=1 n=1 

∞X 
≤ 2n/4n−1 . 

n=1 
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Now apply Exercise 6.7. 

Chapter 7 

Exercise 7.5. Use Fatou’s lemma. 

Exercise 7.6. Let An = (2−n−1 , 2−n), let an = 2n/n, and let 
fn = anχAn . 

Exercise 7.9. Use Exercise 7.5. 

Exercise 7.10. Use Exercise 7.5. 

−nx/2 −1Exercise 7.15. Some calculus shows that ne ≤ 2e . Use 
this to show that for every a we have Z ∞ x−nx 

2 + 1 

a 
ne dx → 0 

x2 + x + 1 

as n → ∞. 
2If ε > 0, choose a small so that |(x2 + 1)/(x + x + 1) − 1| < ε ifR a

0 ≤ x ≤ a. A calculation shows that 
0 ne

−nx dx → 1 as n →∞. P∞2 k−1Exercise 7.19. Write 1/(1 − x) = 1 + x + x + = fork=1 x 
x < 1. Since −xk+p log x > 0, monotone convergence twice (once 

1R 1− R 1nto go from 0 to 
0 and once to go from finite sums to the 

countable sum) will give our result once we know Z 1 

x k+p−1 log x dx =
1 

. 
(k + p)2 

0 

But this follows by an integration by parts. 

Exercise 7.21. First suppose the fn are uniformly absolutelyR 
continuous and L = sup |fn| < ∞. Let ε > 0 and choose then 
appropriate δ in the definition of uniform absolutely continuous. 
Then Z 

|fn(x)| L 
µ({x : |fn(x)| > M}) ≤ ≤ . 

{x:|fn(x)|>M} M M 
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This will be less than δ if M is chosen large enough, and thenR 
{x:|fn(x)|>M} |fn| < ε. 

Now suppose the fn are uniformly integrable. Let ε > 0 andR 
choose M such that {x:|fn (x)|>M} |fn| < ε/2. Choose δ = ε/2M . 
If µ(A) < δ, then Z Z Z 

|fn| = |fn| + |fn|
A A∩{x:|fn(x)|>M } A∩{x:|fn(x)|≤M} 

< ε/2 + Mµ(A) ≤ ε. 

Exercise 7.22. Let ε > 0. First note that if f is integrable, R 
then {x:|f (x)|>M} |f | → 0 as M → ∞ by the dominated con-
vergence theorem. Next let β = ε/5µ(X) and let An = {x :R 
|fn(x) − f(x)| ≤ β}. Then choose M such that {x:|f (x)|>M} |f |R 
and {x:|f (x)|>M} |fn| are less than ε/5 for all n. Finally choose N 
such that if n ≥ N , then Mµ(Ac ) < ε/5.n 

For n ≥ N write Z Z Z 
|fn − f | ≤ |fn − f | + |fn|

An Ac ∩{x:|fn(x)|≤M}nZ Z 
+ |fn| + |f |

{x:|fn(x)|>M } Ac ∩{x:|f (x)|≤M}nZ 
+ |f |. 

{x:|f (x)|>M} 

The first term on the right hand side is bounded by βµ(X) = ε/5.R 
The third term is bounded by {x:|fn(x)|>M} |fn| < ε/5 and simi-
larly for the fifth term. The second term is bounded by Mµ(Ac ) ≤n 
ε/5 and the same is true for the fourth term. 

Exercise 7.24. Write Z Z 
1 |fn| ≤ |fn|1+γ , 

{x:|fn(x)|>M} Mγ 
{x:|fn(x)|>M } 

and the right hand side goes to 0 uniformly in n as M →∞. 

Exercise 7.28. Suppose 0 ≤ a < b ≤ 1. Choose fn bounded 
1by 1, continuous, non-negative, and fn is 1 on [a + , b − 1 ] and n n 
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R R 
0 on [a, b]c . Then fn dµ = fn dν. Letting n → ∞ and using 
dominated convergence, we see that µ((a, b)) = ν((a, b)). Now 
apply Exercise 3.9. 

Exercise 7.29. (2) and (3) are equivalent by taking complements. 
We next show that (2) and (3) together imply (4). If µ(∂A) = 0, 
then 

lim sup µn(A) ≤ lim sup µn(A) ≤ µ(A) 
n n 

= µ(Ao) ≤ lim inf µn(A
o) 

n 

≤ lim inf µn(A). 
n 

Next we show (4) implies (2). Suppose A is closed. Let Aδ be 
the set of points that are a distance strictly less than δ from A. 
The sets ∂Aδ are disjoint for different δ’s, so only countably many 
of them can have positive µ measure. Choose δk ↓ 0 such that 
µ(∂Aδk ) = 0. Then 

lim sup µn(A) ≤ lim sup µn(Aδk ) = µ(Aδk ) = µ(Aδk ). 
n n 

Since µ(Aδk ) ↓ µ(A), this gives (2). 

To show (1) implies (2), suppose A is closed. Let ε > 0. Choose 
δ small so that µ(Aδ) − µ(A) < ε. Choose f continuous taking 
values in [0, 1] such that f is 1 on A and has support in Aδ. Then Z 
lim sup µn(A) ≤ lim sup f dµn = f dµ ≤ µ(Aδ ) ≤ µ(A) + ε. 

n n 

Now use the fact that ε is arbitrary. 

That (4) implies (5) is obvious. To show that (5) implies (1), let 
ε > 0 and let g be a step function such that sup |f(x) − g(x)| < ε.x 
Since the set of x such that µ({x}) > 0 is at most countable and 
f is continuous, we can choose g such that µ({x}) = 0 for each 
endpoint of the intervals that make up g (i.e., at each x where gR R 
is discontinuous). (5) and linearity imply that g dµn → g dµ. 
Since |f − g| < ε and L = supn µn([0, 1]) < ∞, we see that Z Z 

lim sup f dµn − f dµ ≤ ε(L + µ([0, 1])). 
n 

Since ε is arbitrary, (1) follows. 
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Exercise 7.30. Taking f ≡ 1 shows that µn([0, 1]) → 1, so by 
looking at µen(dx) = µn(dx)/µn([0, 1]), we may without loss of 
generality assume that µn([0, 1]) = 1. 

Let Fn(x) = µn([0, x]). By Exercise 7.24 Fn → F (x) ≡ x 
pointwise. We show that Fn → F uniformly. If ε > 0 choose 
m > 1/ε. Choose N such that |Fn(k/m) − F (k/m)| < ε if n ≥ N 
for k = 1, 2, . . . ,m. If k/m ≤ x ≤ (k + 1)/m, 

1Fn(x) ≤ Fn((k + 1)/m) ≤ F ((k + 1)/m) + ε < F (x) + ε + m 

and similarly Fn(x) ≥ F (x)−ε− 1 . Therefore |Fn(x)−F (x)| < 2ε m 
for all x if n ≥ N . 

Let hn be the inverse of Fn. If Fn is constant on an interval, 
the definition of hn is ambiguous; let’s take the right continuous 
version of the inverse: hn(x) = inf{w : Fn(w) > x}. Verify that hn 

is right continuous with this definition. 

Our first step is to show that hn → h(x) ≡ x pointwise. Let 
ε > 0 and take n large enough so that sup |Fn(x) − F (x)| < ε. Ifx 
Fn is continuous and is strictly increasing, then setting x = Fn(y), 
we have |hn(x) − x| = |y − Fn(y)| < ε, and so it is easy in this case. 
If Fn has jump discontinuities, then a more complicated argument 
is necessary. 

Here’s a hint: Taking |Fn(w) − w| < ε and letting w → x from 
the left, we obtain |Fn(x−)−x| ≤ ε. Combining with |Fn(x)−x| < 
ε shows that |Fn(x) − Fn(x−)| < 2ε. Use this to argue that 

|Fn ◦ hn(x) − x| ≤ 2ε. 

Let x ∈ [0, 1] and let yn = hn(x). Then 

|hn(x) − x| = |yn − x| ≤ |Fn(hn(x)) − x| + |Fn(yn) − yn| 
< 3ε. 

Therefore hn(x) → x for all x as n →∞ (in fact, uniformly). 

The next step is to show Z Z 
χA ◦ hn(x) dx = χA(y) µn(dy). 

We first establish this claim when A = [0, b) and Fn is continuous 
at b. 
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If hn(x) < b, then b > inf{w : Fn(w) > x}. There must then 
exist z such that Fn(z) > x and b > z. So Fn(b) > x. 

If Fn(b) > x, then since Fn(b−) = Fn(b), there exists z < b 
such that Fn(z) > x. So hn(x) ≤ z < b. Therefore 

{x : hn(x) < b} = {x : x < Fn(b)}. 

Now µn([0, b)) = Fn(b−) = Fn(b), while Z 
χA ◦ hn(x) dx = m({x : hn(x) < b}) 

= m({x : x < Fn(b)}) = Fn(b). 

Now that we have the claim for such A, by dominated conver-
gence and approximating b by b + δk with δk ↓ 0 such that Fn is 
continuous at b + δk, the claim then holds when A = [0, b]. By 
linearity we then have the claim when A = (a, b], and by linear-
ity again when A is the finite union of such intervals. The class of 
Borel sets A for which the claim holds is a σ-algebra containing the 
finite unions of such intervals: monotone convergence shows that if 
An ↑ A and the claim holds for each An, then it holds for A; and 
since χAc = χ[0,1] − χA, linearity shows that the claim holds for Ac 

if it holds for A. Therefore the claim holds for all Borel sets A. 

We extend from characteristic functions to simple functions by 
linearity, to non-negative functions by the monotone convergence 
theorem, and to bounded measurable functions by linearity. Since 
hn → h and g is continuous a.e., then g(hn(x)) → g(h(x)) a.e. So Z Z Z 

g(y) µn(dy) = g(hn(x)) dx → g(x) dx 

by dominated convergence. 

Chapter 8 

Exercise 8.4. Let At = {x : f(x) ≥ t}. Then Z 
tµ(At) ≤ f → 0. 

At 
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Exercise 8.5. Let f(x) = 1/(x log(1/x)). 

Exercise 8.6. If An = {x : n ≤ f(x) < n + 1}, then Z ∞ ∞ nX XX 
f ≤ (n + 1)µ(An) = µ(An). 

n=0 n=0 i=0 R 
Interhange the order of summation to get an upper bound on f ,R 
and obtain a lower bound on f similarly. 

Exercise 8.8. (1) Let z ∈ R and for h, k > 0, let x = z + h, 
y = z − k, and choose λ so that λh = (1 − λ)k. The definition of 
convexity implies that 

f(z) = f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y), 

or after some algebra, 

f(z + h) − f(z) f(z) − f(z − k)≥ . 
h k 

Let c be the infimum of the left hand side over h > 0. Then c is 
greater than or equal to the supremum of the right hand side over 
k > 0. This implies the desired inequality. R 
(2) Use (1) with x = g and y = g(z) and then integrate over 

z. 
n1 P(4) Set µ = δi, where δi is point mass at i. n i=1 

Exercise 8.9. Let g = yχ[0,λ] + zχ(λ,1]. R 1
Exercise 8.10. For any h let h = h. For any F , if f = F − F ,

0R R R R R 1 
we have 0 = fg = Fg − F g = Fg − Fg. But F (g − g) = R R 0 

Fg − g F = Fg − Fg = 0. Approximate χA by continuous F ’s 
and conclude g − g = 0 a.e. 

Exercise 8.12. Let g be a continuous function with compactR 
support such that |f − g| < ε. 

Chapter 9 

Exercise 9.1. Let f = 0 on the irrationals. If r = p/q is a rational 
in reduced form, let f(r) = 1 if p is even and −1 if p is odd. 
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Exercise 9.2. Divide each interval [2−n−1 , 2−n) in half. Set 
f(2−n−1) = f(2−n) = 0, set f( 5 · 2−n) = 2n/n, set f( 7 · 2−n) = 8 8 
−2n/n, and define f by linear interpolation for the other points in 
(2−n−1 , 2−n), so that f is continuous. Then f is not integrable, but 
|R(χ[a,1]f)| ≤ 1/n if x ∈ [2−n−1 , 2−n), so the improper Riemann 
integral has the value 0. 

Exercise 9.8. (4) If K is closed, then χKc is lower semicontinuous 
because {x : χKc (x) > t} is open. Now take K to be a generalized 
Cantor set of positive measure and note that χKc is discontinuous 
at every point of K. 

(5) Yes. Use (4) with a generalized Cantor set K of measure 1/2 
to get f1. In each open interval (ai, bi) making up the complement 
of K repeat the construction and multiply the resulting functions 
by 1/4 and then add to f1 to get f2. To be more precise, h ∞ iX 

f2(x) = f1(x) + 1 f1((x − ai)/(bi − ai)) .4 
i=1 

We now have f2 discontinuous everywhere except for a set of mea-
sure 1/4. In the open intervals that remain, namely, the comple-
ment of K ∪ (∪∞ 

i=1(ai + (bi − ai)K)), repeat the construction, and 
multiply the resulting functions by 1/16 and add to f2 to get f3. 
Continue. The limit will be the desired function. 

Exercise 9.9. Let K be a generalized Cantor set of positive mea-
sure. Let fn = 1 if dist (x, K) > 1/n, 0 on K and linear in between. 
Then fn ↑ χKc . This function is discontinuous on K. 

Chapter 10 

Exercise 10.1. Choose an increasing sequence Nj such that if 
m, n ≥ Nj , then µ({x : |fn(x) − fm(x)| > 2−j }) < 2−j . Conclude 
that fNj (x) is a Cauchy sequence for almost every x. Let f(x) 
be the limit. Argue that if n ≥ Nj , then µ({x : |fn(x) − f(x)| > 
2−j }) ≤ 2−j . Conclude that fn converges to f in measure. 

Exercise 10.6. If Anε = {x : |fn(x) − f(x)| > ε}, the hypothe-
sis implies that for each ε we have m(lim sup = 0, that is, n Anε) 
|fn(x) − f(x)| > ε for only finitely many n’s, a.e. 
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Exercise 10.7. Argue as in the solution to Exercise 10.1 that 
there is a subsequence Nj such that fNj (x) is a Cauchy sequence 
for almost every x. Let f(x) be the limit. Argue that if n ≥ Nj , 
then µ({x : sup |fm(x) − f(x)| > 2−j }) ≤ 2−j . Concludem≥Nj 

fm(x) → f(x) for almost every x. 

Exercise 10.8. No. Let X = [0, 1] with the Borel σ-algebra and 
Lebesgue measure. For k = 1, 2, . . . , 2n let fn(x) = 1 if (k−1)/2n ≤ 
x < k/2n and k is even, fn(x) = −1 if k is odd. Show thatR 
limn fng = 0 if g is the characteristic function of an interval. 
Then show that the limit is 0 if g is the characteristic function of 
a Borel set, and then for arbitrary integrable g. 

Chapter 11 

Exercise 11.3. No. Let X = Y = [0, 1], let A be the Borel σ-
algebra, and let B consist of all subsets of [0, 1]. Let N be a subset 
of [0, 1] that is not Borel measurable. N ∈ B, so [0, 1] × N ∈ A×B. 
If D = {(x, y) : x = y, 0 ≤ x, y ≤ 1}, then 

k+1D = ∩∞ 
n=1(∪2 

k 

n 

=0 
−1[ 2 

k 
n , 2n ]

2), 

and so is also in A× B. Let F = D ∩ ([0, 1] × N) and let f = χF . 
Then f is A× B measurable. However g(x) is 0 if x ∈/ N and 1 if 
x ∈ N , so g is not measurable with respect to A. 

Exercise 11.5. Z ∞ Z ∞ Z ∞ 

|f(x)| dx = χ{(x,t):|f (x)|≥t} dt dx. 
−∞ −∞ 0 

Now appy the Fubini theorem. 

Exercise 11.6. Look at B = [0, 1]2 − A. m2(B) = 0, so almost 
every section of B has one-dimensional Lebesgue measure 0. 

Exercise 11.7. Define 

fn(x, y) = f(k/2n , y), k/2n ≤ x < (k + 1)/2n . 

By the continuity assumption fn → f pointwise. 
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Exercise 11.12. Set f = 1 on A = [0, 1/2]2 ∪ (1/2, 1]2 and f = −1 
on [0, 1]2 − A. 

Exercise 11.13. Z Z Z 
[f(x + c) − f(x)] dx = χ{(x,y):x<y≤x+c}(x, y) µ(dy) dx. 

Now apply the Fubini theorem. 

Exercise 11.16. It suffices to show absolute convergence a.e. on 
[−N, N ] for each N . Note Z N X |an|p dx < ∞. 

−N |x − rn| 

Exercise 11.18. Show first for the unit cube, then for unions of 
rectangles, then for arbitrary Borel sets. 

iθExercise 11.19. Let CA = {re : 0 < r < R, eiθ ∈ A} for subsets 
1A of S. If A = [0, 2π), then using Exercise 11.18, we see that n 

m2(CA) = m2(CA + b) for any real b. So 

n−1X 
kπR2 = m2(C[0,2π)) = m2(A + ) = nm2(A). n 

k=0 

Hence m2(A) = µ(A)R2/2 in this case. Taking unions and using 
kExercise 11.18 again, m2(A) = µ(A)R2/2 if A = [0, 2π). If r is n 

a real, taking rationals qn increasing to r shows that the formula 
holds if A is any subinterval of [0, 2π). Now use linearity and the 
monotone class theorem to conclude the formula holds for all Borel 
subsets of [0, 2π). 

Chapter 12 

Exercise 12.3. Using Exercise 12.2 for the first inequality, Z Z Z 
f dµ ≤ |fχA| d|µ| ≤ χA d|µ| = |µ|(A). 

A 



��� ��� ��� ��� ��� ���

435 

To show the supremum is attained, let P be a positive set for µ 
and N a negative set for µ such that P ∩ N = ∅ and X = P ∪ N . 
Let f = 1 on P , −1 on N . Then Z Z Z 

f dµ = dµ − dµ = µ +(A) + µ −(A) = |µ|(A). 
A A∩P A∩N 

Exercise 12.4. Let P be a positive set for λ and N a negative set 
for λ such that P ∩ N = ∅ and X = P ∪ N . Then 

µ(A) ≥ µ(A ∩ P ) ≥ µ(A ∩ P ) − ν(A ∩ P ) = λ(A ∩ P ) = λ+(A). 

Exercise 12.5. Use Exercise 12.3. If |f | ≤ 1, then Z Z Z 
f d(µ + ν) ≤ f dµ + f dν ≤ |µ|(A) + |ν|(A). 

A A A 

Now take the supremum over such f ’s. 

Exercise 12.6. If B ∈ A, B ⊂ A, then µ(B) ≤ µ+(B) ≤ µ+(A). 
So the supremum is bounded by µ+(A). To show the supremum is 
attained, let P and N be as in Exercise 12.3. Set B = A ∩ P , and 
then µ(B) = µ+(A). 

Chapter 13 

Exercise 13.4. Let f1 = u1 + iv1 and similarly for f2. Taking real 
and imaginary parts, we have u1 dρ1 = u2 dρ2 and the same with 
v1, v2. Let τ = ρ1 + ρ2, and obviously ρ1 � τ and the same with 
ρ2. Let dρ1 = g1 dτ , dρ2 = g2 dτ . We have u1g1 dτ = u2g2 dτ and 
the same with v1, v2. Then q q 

2 2 2 2 2 2|f1| dρ1 = u1 + v1 g1 dτ = u1g1 + v1 g dτ1 q q 
2 2 2 2 2 2= u dτ = u2 + v2 g2 dτ2g2 + v2 g2 

= |f2| dρ2. 
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Exercise 13.5. Suppose there exists a measurable set A withR 
µ(A) > 0 and f = 0 on A. Then ν(A) = f dµ = 0, a contradic-

A 
tion. 

Exercise 13.7. If X = P ∪ N , where P ∩ N = ∅, P is a positive set 
for µ, and N is a negative set for µ, let f = 1 on P and −1 on N . P 
Exercise 13.11. If ν = νn, the main step is to show that ν and n 
µ are mutually singular. Since each νn is mutually singular with 
respect to µ, there exist sets En with µ(En) = 0 and νn(Ec ) = 0.n 
Let E = ∪nEn. Then µ(E) = 0. Since Ec = ∩Ec , then νn(Ec) ≤n 
νn(E

c ) = 0, and so ν(Ec) = 0.n 

Exercise 13.13. If dλ = f1 dµ + ν1 = f2 dµ + ν2 with ν1, ν2 each 
mutually singular with respect to µ, then there exist E1, E2 such 
that µ(E1) = 0, ν1(E1 

c) = 0, µ(E2) = 0, and ν2(E2 
c) = 0. We have 

(f1 − f2) dµ = ν2 − ν1. The left hand side is 0 on E1 ∪ E2 and the 
right hand side is 0 on (E1 ∪ E2)c = E1 

c ∩ E2 
c . By Exercise 13.12 we 

have that ν2 − ν1 = 0, and since (f1 − f2) dµ = 0, we obtain that 
f1 = f2 a.e. with respect to µ. 

Exercise 13.14. Let X = {1, 2, 3, 4}, let F be all subsets of X, 
and let E = {X, ∅, {1, 2}, {3, 4}}. Let µ({i}) = 1/4 for i = 1, 2, 3, 4 
and let ν({1}) = ν({3}) = 1, ν({2}) = ν({4}) = 0. With respect 
to F , dν/dµ = f with f(1) = f(3) = 4 and f(2) = f(4) = 0. With 
respect to E , dν/dµ = g with g(1) = g(2) = g(3) = g(4) = 2. 

Chapter 14 

Exercise 14.1. (1) Since f, g are absolutely continuous, they are 
continuous and hence bounded on [a, b]. Write 

(fg)(bi) − (fg)(ai) = f(bi)(g(bi) − g(ai)) + g(ai)(f(bi) − f(ai)). 

Then X X 
|(fg)(bi) − (fg)(ai)| ≤ sup |f | |g(bi) − g(ai)|X 

+ sup |g| |f(bi) − f(ai)|. 

(2) We have (fg)0(x) = f 0(x)g(x)+f(x)g0(x) for those points where 
both f and g are differentiable, just as in elementary calculus. 
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R 
Exercise 14.2. Given ε choose δ such that |f | < ε if m(A) < δ.R A 
|F (bi) − F (ai)| ≤ χ[ai,bi ]|f |. Summing, ZX 

|F (bi) − F (ai)| ≤ |f |
A 

if A = ∪i[ai, bi]. 

Exercise 14.3. By a scaled version of the Cantor set on [a, b], we 
mean the set a +(b − a)C = {a +(b − a)x : x ∈ C}, where C is the 
Cantor set. By a scaled version of the Cantor-Lebesgue function 
f1 we mean the function f1((x − a)/(b − a)), or more generally 
c + (d − c)f1((x − a)/(b − a)) if we want to join (a, c) with (b, d). 

Now approximate f by a step function h. Then modify h 
slightly: if [c, d] is one of the intervals on which h is constant, 
change h on [c − ε, c] where ε is small by connecting (c − ε, h(c − ε)) 
and (c, h(c)) by a properly scaled version of the Cantor-Lebesgue 
function, and similarly modify h near d. Do this for each interval 
on which h is constant. 

Exercise 14.4. x2 sin(1/x2) is not of bounded variation. If f 
is of bounded variation and continuous, argue that we can write 
f = f1 − f2 where f1, f2 are increasing and continuous. By adding 
a constant to f we may assume f1(0) = f2(0) = 0. Given ε choose 
a such that f1(a) < ε/4 and f2(a) < ε/4. If {[ai, bi]} is a finite 
collection of disjoint subintervals of [0, a], then X X X 

|f(bi) − f(ai)| ≤ [f1(bi) − f1(ai)] + [f2(bi) − f2(ai)] 

≤ f1(a) + f2(a) < ε/2. 

Now incorporate the fact that f is absolutely continuous on [a, 1]. PN P∞
Exercise 14.6. F (x) − (x) = (x) is increasingn=1 Fn n=N+1 Fn 

in x, so 
NX 

F 0 − F 0 ≥ 0, a.e.n 
1 P∞

Letting N →∞, we obtain F 0 ≥ F 0 a.e.1 n 

But 

N N NZ 1 � X � � X � � X � 
F 0 − Fn 

0 dx ≤ F − Fn (1) − F − Fn (0) → 0 
1 1 1 0 
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as N →∞. Therefore if ε > 0 we have Z 1 Z 1 NX 
F 0 ≤ ε + F 0 n 

0 0 n=1 

for N large enough. Hence Z 1 Z 1 ∞X 
F 0 ≤ ε + F 0 ,n 

0 0 n=1 R 1 R 1 P∞
and since ε is arbitrary, F 0 ≤ 1 F 0 . Putting this togethern0 0P∞
with F 0 ≥ 1 Fn 

0 a.e. implies the result. 

Exercise 14.7. If [ai, bi] is an interval, let Mi be the maximum 
of f on the interval and Yi a point in the interval where f(Yi) = 
Mi. Let mi be the minimum on the interval and yi a point where 
f(yi) = mi. Note f([ai, bi]) = [mi,Mi] = [f(yi), f(Yi)], so 

m(f([ai, bi])) ≤ |f(Yi) − f(yi)|. 

Since f is absolutely continuous, given ε choose the appropriate 
δ. Choose G open containing A such that m(G) < δ. G = ∪(ai, bi). 
Then X X 
m(f(A)) ≤ m(f(G)) ≤ m(f(ai, bi)) ≤ |f(Yi) − f(yi)|. PN

Now for each N , i=1 |f(Yi) − f(yi)| < ε since X X 
|Yi − yi| ≤ |bi − ai| = m(G) < δ. 

Letting N → ∞ and then using that ε is arbitrary we see that 
m(f(A)) = 0. 

Exercise 14.8. f(x) = x2 sin(1/x2) is not of bounded variation 
but is differentiable at each point, including at 0. 

Exercise 14.9. There exist N, b, a such that 

m({x : |f(x)| > b, |x| ≤ N}) > a. 

If |x| > 2N , there exists a constant c not depending on x such that Z 
c cab 

Mf(x) ≥ |f | ≥ ,
|x|n |x|n 

B(0,N ) 
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which is not integrable. 

Exercise 14.10. Start with the Cantor set C and the Cantor-
Lebesgue function f1. On each of the intervals in [0, 1] − C insert 
a scaled copy of C (cf. Exercise 14.5) and let f2 be the sum of the 
corresponding Cantor-Lebesgue functions. On each of the open 
intevals of what is left insert scaled copies of C, and continue. LetP∞ 
g = 4−nfn. Finally let n=1 

∞X 
2−|k|f(x) = g(x + k). 

k=−∞ 

Exercise 14.11. If g is a continuous function that is piecewise 
linear, the equality can be shown to hold. Given a partition P = 
{x0, x1, . . . , xn} with x0 = a and xn = b, let gP be the function 
that agrees with f at each xi and is piecewise linear in between. 
Show that Mf ≥ MgP (using, for example, the intermediate value 
theorem from undergraduate analysis). 

Let L be any number less than Vf [a, b] and choose a partitionP 
P such that |f(xi+1) − f(xi)| > L. Then Z b Z b 

Mf (y) dy ≥ MgP (y) dy = VgP [a, b] ≥ L. 
a a 

So we conclude Z b 

Mf (y) dy ≥ Vf [a, b]. 
a 

We now construct partitions Pn as follows. Let P0 = {a, b}. 
To get Pn+1 from Pn, in each interval [xi, xi+1] of Pn, add the 
points where f takes its maximum and minimum and also add in 
the midpoint. 

If there exist z1 < z2 < · · · < zk with f(zi) = y, for n large 
enough the zi will all be in separate intervals of Pn. So for n large 
enough MgPn 

(y) ≥ k. Therefore MgPn 
(y) increases to Mf (y). In 

particular Mf is Borel measurable. By monotone convergence Z b Z b 

MgPn 
(y) dy → Mf (y) dy. 

a a 

But Z b 

MgPn 
(y) dy = VgPn 

[a, b] ≤ Vf [a, b]. 
a 
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R b
Therefore Vf [a, b] ≥ Mf (y) dy. a 

Exercise 14.12. We will find a set E0 ⊂ [0, 1] such that 

m(E0 ∩ [0, r])
lim = α, 

r→0+ r 

and then let E = {x : |x| ∈ E0}. 

2−nChoose an = and let An = [an+1, an]. Divide An into n 
equal subintervals In1, . . . , Inn and on each Inj take a subinterval 
Jnj whose length is α times the length of Inj . Let E0 be the union 
of all these Jnj . 

It is clear from the construction that m(E0 ∩ [0, r]) = αr when 
r = an+1 + k/n2n+1 for some k = 1, . . . , n, and it remains to 
consider r ∈ (q, s), where q = an+1 + (k − 1)/n2n+1 and s = 
an+1 + k/n2n+1 . 

We write 

m([0, r] ∩ E0) ≤ m([0, s] ∩ E0) = αs 
1≤ α(r + n2n+1 ) ≤ αr(1 + 2 ). n 

Similarly 

m([0, r] ∩ E0) ≥ m([0, q] ∩ E0) = αq 
1≥ α(r − n2n+1 ) ≥ αr(1 − 2 ). n 

Therefore m(E0 ∩ [0, r])/r → α. 

Exercise 14.13. Choose open sets Gn containing A such thatR Px
2−nm(Gn) < . Let hn(x) = χGn (y) dy and let f =P 0 P hn. 

χGn is integrable since m({y : χGn (y) > n}) ≤ 2−n+1 (use 
Exercise 8.6). 

If x ∈ A, then (x, x + k) ⊂ Gn if k is small, and so 

1 [hn(x + k) − hn(x)] = 1k 

if k is small. It follows that limk→0[f(x + k) − f(k)]/k = ∞ on A. 

Exercise 14.14. Let A be an interval, Aδ the set of points within δ 
of A. Choose f 0 so that χA ≤ f 0 ≤ χAδ and f 0 is continuous. Then Z �Z 1 �1/2 

µ(A) ≤ f 0 µ(dx) ≤ (m(Aδ))2 dx = m(Aδ). 
0 
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If we take δ < m(A)/2, we have µ(A) ≤ 2m(A). By linearity this 
holds for A open, and then for all Borel sets A by an argument 
using the monotone class theorem. 

Exercise 14.15. First suppose D+g ≥ ε > 0. If a ≤ x < y ≤ b 
and g(y) < g(x), then either g is decreasing (not possible by the 
assumption on D+g) or g has a local maximum, also not possible 
since D+g ≥ ε > 0. Now apply this to g(x) = f(x) + εx and let 
ε → 0. The same argument works for the other derivates. 

Chapter 15 

R R 1
Exercise 15.4. We have |f |p ≤ kfk∞ = kfkp If M < kfk∞0 ∞. R 
and a = m(A) > 0 where A = {x : |f(x)| ≥ M}, then |f |p ≥R 
|f |p ≥ Mpa. So kfkp ≥ Ma1/p → M as p →∞.

A P 
Exercise 15.9. (2) Let fm = 2

5m/2χ(0,2−3m), f = fm. We have P 
2−m/2kfmk1 ≤ < ∞. When n = 2m , fmgn = 2

7m/2χ(0,2−3m),R 
≥ 2m/2and fgn . 

Exercise 15.10. Let f(x) = 1 on [−a, a], 0 elsewhere. ThenR 
1 = χ[−a,a](x + t) µ(dt) = µ([−a − x, a − x]) a.e. if |x| ≤ a. Take 
x ↓ 0 along a sequence not containing any of the exceptional points 
to get 1 = µ([−a, a)). Then let a → 0. 

Exercise 15.11. For the case p > 1, without loss of generality we 
may assume that µ is σ-finite (look at the set where g is non-zero 
and use Exercise 8.7). Suppose Ek ↑ X with µ(Ek) < ∞ for each k. 
Let AkM = {x ∈ Ek : |g(x)| ≤ M}. Note f ∈ Lp by Fatou’s lemma.R 
We have that fng ≤ sup kfnkpkgχAc kq → 0 by dominated

Ac n kM kM 

convergence as k, M → ∞, and the same with fn replaced by f .R R 
So it suffices to prove that fng → fg for each k and M .

AkM AkM 

But this holds by the Vitali convergence theorem (Exercise 7.22) R 
since gχAkM is bounded and |χAkM fn|p ≤ supn kfnkpp implies 
{χAkM fn} is uniformly integrable by Exercise 7.24. 

For the counterexample for p = 1, look at the real line with 
Lebesgue measure and let g = 1, fn = nχ(0,1/n]. 

Exercise 15.12. First prove that kf(· + h) − f(·)kp → 0 as h → 0; 
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cf. Exercise 8.12. Then Z 
[f(x + h − y) − f(x − y)]g(y) dy ≤ kf(· + h) − f(·)kpkgkq 

→ 0 

as h → 0. This shows the uniform continuity. 

Let ε > 0 and choose G with compact support such that 

kg − Gkq < ε. 

If we show that f ∗ G(x) → 0 as |x| → ∞, then this will show the 
same for g since ε is arbitrary, and kf ∗g −f ∗Gk∞ ≤ kfkpkg−Gkq. 
Suppose the support of G is contained in [−N, N ]. Then Z Z N 

f(x − y)G(y) dy = f(x − y)G(y) dy 
−N 

≤ kGkqkf(x − ·)χ[−N,N ](·)kp. 

But Z Z x+N 

|f(x − y)χ[−N,N ](y)|p dy = |f(z)|p dz → 0 
x−N 

as |x| → ∞ by dominated convergence. 

R 1 
x+ nExercise 15.14. Let Fn(x) = n f(y) dy. Argue first that 
x 

Fn → f in L∞ norm. Show that each Fn is continuous and if 
I is an interval, then {Fn} is a Cauchy sequence with respect to 
the supremum norm on I. Let g be the limit. Prove that g is 
continuous on I and show that g can be defined on all of R in a 
consistent way. Finally show that g is uniformly continuous and 
that f = g a.e. 

Exercise 15.16. First suppose f ≥ ε. Observe that 1/x is a 
convex function on (0, ∞), so by Jensen’s inequality (Exercise 8.8) R R R R R 
g ≥ (1/f) ≥ 1/ f , or ( f)( g) ≥ 1. Now look at f + ε and 

let ε → 0. 

Exercise 15.17. Suppose h ∈ L2([1, ∞)). Using Hölder’s inequality 
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with p = 2 twice, Z ∞ Z ∞ Z xh(x)f(x) h(x)
dx = f 0(y) dy dx 

x x1 1 1Z ∞ Z ∞ h(x) 
= dx f 0(y) dy 

x h 
1Z ∞ 

y�Z ∞ �2 i1/2h(x)≤ dx f 0(y)2 dy 
x1 1Z ∞ h(x)≤ kf 0k2 dx 

x1�Z ∞ �1/2�Z ∞ �1/21 ≤ kf 0k2 h(x)2 dx 
x2 

dx 
1 1 

≤ kf 0k2khk2. 

Now take the supremum over h with khk2 ≤ 1. 

Exercise 15.18. Let 

f 0(x) = 
1 

, 
(x + 1) log3/2(x + 1) 

which is in L1([1, ∞)). But then Z ∞ 

f(x) = − f 0(y) dy =
2 

, 
x log1/2(x + 1) 

and so f(x)/x is not in L1([1, ∞)). 

Exercise 15.19. The cases p = 1, ∞ are easy. If 1 < p < ∞, let 
h ∈ Lq(µ) with khkLq (µ) ≤ 1. Then Z Z Z 

h(x)kfkL1(ν) µ(dx) ≤ |h(x)| |f(x, y)| ν(dy) µ(dx) Z Z 
= |h(x)| |f(x, y)| µ(dx) ν(dy) Z �Z �1/p 
≤ khkLq (µ) |f(x, y)|p µ(dx) ν(dy) Z 
= khkLq (µ) kfkLp(µ) ν(dy). 

Now take the supremum over such h. 
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Exercise 15.20. f ∗ (Kχ[−1,1]) is finite almost everywhere since 
it is the convolution of two L1 functions. f ∗ (Kχ[−1,1]c ) is finite 
everywhere since it is the convolution of an L1 function with an 
L∞ function. 

Exercise 15.21. By Hölder’s inequality twice, Z 1 Z x Z 1 Z 1 

|g(x)| |f 0(y)| dy dx = |g(x)| |f 0(y)|χ[0,x](y) dy dx 
0 0 0 0Z 1 

1/q dx 
0 � �1/p 

≤ |g(x)| kf 0kp x 

1 ≤ kgkq kf 0kp . 
(p/q) + 1 

But p/q + 1 = p. 

Exercise 15.22. Z 
= kfkpm(A)1/q|f | ≤ kfkpkχAkq . 

A 

Let α = 1/q. 

Exercise 15.23. Let 

An = {x : 2n ≤ |f(x)| < 2n+1}. R 
So 2nm(An) ≤ |f | ≤ cm(An)

α , which implies m(An)
1−α ≤

An 
1/(1−α)2−n/(1−α)c2−n , or m(An) ≤ c . Therefore there exists a 

constant c1 such that 

∞X 
m({x : |f(x)| ≥ 2−n}) = m(Ak) ≤ c12

−n/(1−α). 
k=n 

Now use Exercise 15.15. 

Exercise 15.24. By a change of variables and the generalized 
Minkowski inequality, �Z ∞ � Z x � �1/p �Z ∞ �Z 1 � �1/p1 p p 

f(y) dy dx = f(zx) dz dx 
0 x 0 0 0Z 1 � Z ∞ �1/p 

≤ f(zx)p dx dz. 
0 0 



��� ���

��� ���

445 

By another change of variables this is Z 1 �Z ∞ �1/p 
f(x)p dx z −1/p dz. 

0 0 

Exercise 15.25. (2) Write Z 
p 

|Tf(x)|p = K(x, y)f(y) µ(dy) �Z �p 
≤ |K(x, y)|1/q|K(x, y)|1/p|f(y)| µ(dy) �Z �p/q�Z � 
≤ |K(x, y)| µ(dy) |K(x, y)| |f(y)|p µ(dy) . 

So Z Z Z 
µ(dx) ≤ Mp/q|Tf(x)|p |K(x, y)| |f(y)|p µ(dy) µ(dx) Z Z 

= Mp/q |K(x, y)| |f(y)|p µ(dx) µ(dy) 

≤ M1+p/qkfkp.p 

thNow take p roots. 

Exercise 15.26. χA ∗ χB is continuous and non-negative. We have Z Z Z 
χA ∗ χB dx = χA(x − y)χB (y) dy dx Z 

= m(A) χB (y) dy = m(A)m(B) > 0, 

using the Fubini theorem. So χA ∗ χB is not identically 0. 

Exercise 15.27. χA ∗ χB is continuous and not identically 0, so 
there exists an interval I such that if z ∈ I, then χA ∗ χB (z) >R 
0. But χA(z − y)χB (y) dy > 0 implies there exists y such that 
χA(z − y)χB (y) > 0, or y ∈ B, z − y ∈ A, and hence z ∈ A + B. 
Therefore I ⊂ A + B. 

Exercise 15.31. Z n+1 Z n+1p 
|f(n + 1) − f(n)|p = f 0(x) dx ≤ |f 0(x)|p dx, 

n n 
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using Jensen’s inequality (or Hölder’s inequality). So Z ∞X 
|f(n + 1) − f(n)|p ≤ |f 0(x)|p dx < ∞. 

−∞n 

Exercise 15.32. Let N be an arbitrary large integer. It suffices to 
prove the result for almost every x ∈ [−N, N ] since N is arbitrary. 
Now Z N ∞ ZX 

|f(x + n)| dx ≤ (2N + 1) |f(x)| dx < ∞. 
−N n=1 P∞

Therefore |f(x + n)| is finite for almost every x ∈ [−N, N ],n=1 
and for such x we must have |f(x + n)| → 0 as n →∞. 

Chapter 16 

iθExercise 16.3. If y 6= 0 and fb(y) =6 0, then fb(y) = re . So Z 
−iθ b −iθ|fb(y)| = e f(y) = e eiyxf(x) dx. 

Since this is real, Z Z 
|fb(y)| = Re e −iθ eiyxf(x) dx = cos(yx − θ)f(x) dx. 

R bThis is strictly less than f(x) dx = f(0) since f is strictly positive. 

Exercise 16.5. ukfb(m)(u) is a constant times the Fourier transform 
k bof xmf (k)(x). So for all k and all m we have that u f (m)(u) is 

bounded and continuous. Using this with k even shows that fb ∈ S. 

Exercise 16.6. If f is in the Schwartz class, the Fubini theorem 
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shows that Z Z Z 
fb(x) µ(dx) = f(u)e iu·x du µ(dx) Z Z 

iu·x = f(u) e µ(dx) du Z Z 
= f(u) e iu·x ν(dx) du Z b= f(x) ν(dx). 

R R 
By the inversion theorem, g(x) µ(dx) = g(x) ν(dx) for all g in 
the Schwartz class, and then by the Plancherel theorem, for all 
g ∈ L2(dx). 

Exercise 16.7. Write Z x 

f(x)2 = xf(x)
1 

f 0(y) dy 
x 0 

and then use the Cauchy-Schwarz inequality and Hardy’s inequality 
(the latter modified to hold on R rather than just (0, ∞)). 

Exercise 16.8. Reduce to the case a = b = 0 by looking at 
g(x) = eibxf(x+a). Use Exercise 16.7 and the Plancherel theorem. 

Chapter 17 

Exercise 17.3. Let K = L(1) and let L(f) = L(f −f(0)). Define MR · 
on C([0, 1]) by M(g) = L( g(y) dy). M is a bounded linear func-

0 
tional on C([0, 1]), so there exists a measure µ such that M(g) =R R 
g dµ. If g = f 0 and f(0) = 0, then L(f) = M(g) = g dµ =R R 
f 0 dµ, and then L(f) = L(f) + L(f(0)) = f 0 dµ + Kf(0). 

Exercise 17.5. Since X is a compact metric space, it is separable. 
Let {xi} be a countable dense subset. For each xi and each 0 < 
r < s rational take a continuous function fxi,r,s that takes values 
in [0, 1], that is 1 on B(xi, r), and that is 0 on B(xi, s)c . We can 
do this by letting δ be the distance between B(xi, r) and B(xi, s)c 

and then setting fxi ,r,s(x) = (d(x, B(xi, s)
c)/δ) ∧ 1. If x 6= y, let 
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r be a positive rational less than d(x, y)/2, take an xi in B(x, r), 
and choose s rational larger than r but less than d(x, y)/2. Since 

d(xi, y) ≥ d(x, y) − d(xi, x) > d(x, y) − r > d(x, y)/2 > s, 

then fxi,r,s(x) = 1 and fxi ,r,s(y) = 0. 

Note that since X is a compact metric space, it is bounded, so 
fxi ,r,s will be identically 1 on X if r is large enough. If B0 is the 
collection {fxi,r,s}, then B0 is countable and includes the constant 
function 1. If we let B1 be all finite products of functions in B0, 
then B1 is also countable. If we let B2 be the set of all finite linear 
combinations of functions in B1 with rational coefficients, that is,Pm
of the form αj fj , where m is a positive integer, the αj arej=1 
rational, and the fj are in B1. Then B2 is still countable. Finally, 
if we let A be the collection {cf : c ∈ R, f ∈ B2}, then B2 will be 
dense in A and A will be an algebra of functions contained in C(X) 
that separates points and contains the constants. By the Stone-
Weierstrass theorem, Theorem 20.44, A is dense in C(X), and so B2 

is a countable dense subset of C(X), i.e., C(X) is separable. This 
provides a solution to Exercise 20.41. For the complex case, let B2 

be the set of all finite linear combinations of functions where the 
coefficients are complex numbers whose real and imaginary parts 
are rational. 

Exercise 17.6. The proof is the same as that for Exercise 7.29, ex-
cept that we need a substitute for the argument that (1) is implied 
by the others. We show (2) implies (1). Suppose f is bounded andR R 
continuous. We will show that lim sup f dµn ≤ f dµ. Applyingn 
this to f and to −f will give (1). By adding a constant to f and 
then multiplying by a constant, we may assume f takes values in 
(0, 1). Let k be a positive integer and let Ai = {x : f(x) ≥ i/k}. 
Each Ai is closed. We have 

Z kX i i−1 if dµn ≤ µn({x : ≤ f(x) < })k kk 
i=1 

kX i 
= [µn(Ai−1) − An(Ai)]

k 
i=1 

k−1 kX Xi + 1 i 
= µn(Ai) − µn(Ai)

k n 
i=1 i=1 
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kX1 1 ≤ + µn(Ai). 
k k 

i=1 R P∞
Similarly f dµ ≥ 1 

i=1 µ(Ai). Sok Z Xk kX1 1 1 1 
lim sup f dµn ≤ + lim sup µn(Ai) ≤ + µ(Ai)

k k n k k 
i=1 i=1Z 

1 ≤ + f dµ. 
k 

Since k is arbitrary, this gives us what we need. 

Exercise 17.8. By taking continuous functions decreasing to χF 

and using dominated convergence, we have µ(F ) = ν(F ) whenever 
F is closed. Taking f ≡ 1 shows that µ(X) = ν(X). Look at the 
collection A of Borel sets A for which µ(A) = ν(A). It contains 
all the closed sets. Since µ(Ac) = µ(X) − µ(A) and the same for 
ν, A is closed under complements. Since µ and ν are measures, 
if An ∈ A and An ↑ A, then A ∈ A. It follows from this that A 
is closed under countable unions and intersections. Therefore A is 
equal to the Borel σ-algebra, and so µ = ν. 

Exercise 17.9. Writing µ = µ+ − µ− and ν = ν+ − ν− , we see thatR R 
+ − +f d(µ + ν−) = f d(µ + ν+). By Exercise 17.8 µ + ν− = 

+µ + ν−, and then µ = ν. 

Chapter 18 

Exercise 18.3. If fn is a Cauchy sequence in Ck , then there 
exists a subsequence nj such that fn 

(k 
j 

) 
converges uniformly, say 

to gk, and fn 
(i 
j 

)
(0) converges to ai for each i < k. Let gk−1(x) =R x 

ak−1 + gk(x) dx, and define gk−2, gk−3, . . . similarly. Then set
0 

f = g0. Check that kfnj − fkCk → 0. That does it, because given 
ε there exists N such that if m, n ≥ N , then kfn − fmkCk < ε; we 
then replace m by nj and let nj →∞. 

Exercise 18.4. If fn is a Cauchy sequence in Cα , then {fn} is an 
equicontinuous family. Choose a subsequence {nj } such that fnj 
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converges uniformly on [0, 1], say to f . Given ε there exists N such 
that if m, n ≥ N , then kfn − fmkCα < ε/2. So if nj ≥ N , then 

ε |(fnj − fn)(y) − (fnj − fn)(x)| ≤ |y − x|α 

2 

for all x, y. Letting nj →∞ we get that 

ε |(f − fn)(y) − (f − fn)(x)| ≤ |y − x|α 

2 

for all x, y, and therefore for n large enough, kf − fnkCα ≤ ε. 

Exercise 18.5. If fj ∈ An and fj converges to f in L1 , then the 
sequence converges in measure, and a subsequence converges a.e. 
Therefore 

R 1 |f |2 ≤ n by Fatou’s lemma, which shows that An is0 
closed. 

Let g be a function that is in L1 but that is not in L2 (for 
example, |x|−3/4χ(0,1](x)). If f were in the interior of An, then for 
all sufficiently small ε we would have f + εg ∈ An. But f + εg is 
not in L2 , so 

R 1 |f + εg|2 = ∞ for all ε, a contradiction. 
0 

Exercise 18.6. We may suppose L is not identically zero. If L is 
not bounded, there exist xn with kxnk = 1 and |Lxn| → ∞. By 
looking at a subsequence we may suppose that no Lxn is equal to 
0. Let yn = xn/Lxn, so that kynk → 0 and Lyn = 1. But then 
L(y1 − yn) = 1 − 1 = 0 while y1 − yn → y1 and Ly1 = 1. This 
contradicts that {z : Lz = 0} is closed. 

Exercise 18.10. Let Ak = {x : sup |fn(x)| ≤ k}. Since fn(x)n 
converges at every point, each x is in some Ak. By the Baire 
category theorem at least one Ak is not nowhere dense, and so Ak 

contains an open interval. Use the continuity of the fn to argue 
that |fn(x)| ≤ k for all x in the open interval. 

Exercise 18.11. Let X1 = (X, k · k1), X2 = (X, k · k2). Let 
L : X1 → X2 be the identity map: L(x) = x. The hypothesis 
implies L is continuous, and by the open mapping theorem L is 
open. Thus L−1 is a bounded linear functional and the conclusion 
follows. 

Exercise 18.12. (4) Define kxkL = kxk + kLxk. We have kxk ≤ 
kxkL. By Exercise 18.11, kxkL ≤ ckxk. 
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1 1Exercise 18.14. Let gn = an on [0, − 1 ], gn = −an on [ 1 + , 1],2 n 2 n 
and linear in between, where an is chosen so that gn ∈ A. Check 
that infn kgnk = 1. If f ∈ A, with kfk ≤ 1, then f must take 

1 on the value 0 at some point, and so be less than in absolute2 
value for some subinterval of [0, 1]. But it is then impossible thatR 1/2 R 1

f − f = 1.
0 1/2 

Exercise 18.15. (1) First we show that An is closed. If fj are 
continuous functions in An converging uniformly to f , let xj be 
a point such that |fj (y) − fj (xj )| ≤ n|y − xj | for all y ∈ [0, 1]. 
Since [0, 1] is compact, there is a subsequence {jk} such that xjk 

converges, say to x. Then 

|f(y)−f(x)| = lim |fjk (y)−fjk (xjk )| ≤ lim n|y −xjk | = n|y −x|, 
k→∞ k→∞ 

using the uniform convergence of the fj . Therefore f ∈ An, and 
we conclude An is closed. 

Next we show that the interior of An is empty. If not, there 
exist f ∈ An and ε > 0 such that the ball of radius ε about f 
is contained in An. Let k be a positive integer and let g be the 
continuous function that agrees with f at j/k, j = 0, 1, . . . , k, and is 
linear in between. If k is large enough, kf −gkC([0,1]) < ε/2. Since g 
is piecewise linear, there exists M such that |g(y)−g(x)| ≤ M |y−x|
for all x and y. Let h` be sawtooth functions: h`(x) = 0 for x = i/2 ` 

if i is even, h`(x) = 1 for x = i/2 ` if i is odd, and h` is linear in 
between. For each x there exists y such that |h`(x) − h`(y)| ≥ 
2 ` |x − y|. So f1 = g + εh`/2 is not in An if ε2 `−1 > n + M . Thus f1 

is a function that is within ε of f but is not in An, a contradiction. 

(2) C([0, 1]) cannot be the union of the An, so there exists f 
that is not in any of the An. This f is nowhere differentiable. 

Chapter 19 

Exercise 19.2. 

kxn − xk2 = hxn − x, xn − xi = kxnk2 + kxk2 − 2hxn, xi 
→ 2kxk2 − 2hx, xi = 0. 
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Exercise 19.3. That M ⊂ (M⊥)⊥ is easy. If x ∈ (M⊥)⊥ , write 
x = y + z, where y ∈ M and z ∈ M⊥ . Now y ∈ M ⊂ (M⊥)⊥ , so 
z = x − y ∈ (M⊥)⊥ and we also have z ∈ M⊥ . Therefore z = 0 
and x = y ∈ M . For the counterexample see Example 19.8. 

Exercise 19.4. Use Example 19.8. 

Exercise 19.5. If {en} is an infinite basis, it is a sequence in the 
closed unit ball that has no convergent subsequence. Pn
Exercise 19.6. Define Ln on `2 by Ln(x) = if x = i=1 aixi 
(x1, x2, . . .). For any x ∈ `2 

n ∞X X 
sup |Ln(x)| ≤ sup ai|xi| ≤ ai|xi| < ∞, 
n n 

i=1 i=1 

the last inequality holding by our hypothesis. By the Banach-
Steinhaus theorem, Theorem 18.8, there exists M such that kLnk ≤ 
M for all n. Letting x = (a1, a2, . . . , an, 0, 0, . . .), Xn � n �1/2X 

2 2 ai = Ln(x) ≤ Mkxk = M a ,i 
i=1 i=1 Pn 2 ≤ M2which implies i . Now let n tend to ∞.i=1 a 

Exercise 19.7. Let H0 be the closure of the linear span of {xn}. 
This will be separable and let {yk} be a countable dense subset. By 
a diagonalization argument choose nj such that hxnj , yki converges 
for all k. Let L(yk) be the limit, extend L to all of H0 by linear-
ity and continuity, and define L to be 0 on H⊥ . Let x be such 0 
that L(y) = hx, yi for all y. By linearity and a limit argument, 
hxnj , yi → hx, yi for all y. 

Exercise 19.9. The limit obviously holds for f a constant. When 
ikx f = e for a nonzero integer k, the sum is the first n terms of 

a geometric series. This can be explicitly evaluated, and it can 
be verified that 1/n times the sum tends to 0, while the integral 
is also 0. By linearity we have the desired result for finite linear 
combinations of the functions {eikx}. 

Let ε > 0. Given f choose g to be such a linear combination 
such that sup0≤x≤2π |f(x) − g(x)| < ε/2. Then 

nX 
1 |f(jγ) − g(jγ)| < ε/2 n 

j=1 
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and Z 2π1 |f(x) − g(x)| dx < ε/2. 
2π 0 

Exercise 19.10. (3) x + y = Px + Py + Qx + Qy and x + y = 
P (x + y) + Q(x + y). Since x + y can be written as the sum of 
points in M and M⊥ in only one way, P (x + y) = Px + Py and 
Q(x + y) = Qx + Qy. 

Similarly, if c 6= 0, we have cx = cP x + cQx = P (cx) + Q(cx), 
so P (cx) = cP x and Q(cx) = cQx. The case c = 0 is obvious. 

Exercise 19.11. If {fn} is not a basis, there exists f with kfk = 1 
and hf, fni = 0 for all n. By Cauchy-Schwarz, |hf, eni| ≤ 1 and 
also by Cauchy-Schwarz |hf, eni| = |hf, eni − hf, fni| ≤ ken − fnk. 
Then X X 

1 = kfk2 = |hf, eni|2 ≤ ken − fnk < 1, 

a contradiction. 

Exercise 19.13. By looking at f − g, it suffices to suppose f is 
bounded and measurable and is zero in a neighborhood of x0, and 
we need to show SN f(x0) → 0. We therefore assume that there 
exists ε > 0 such that f(x0 − y) = 0 if y ∈ (x0 − ε, x0 + ε). Let 

1 f(x0 − y)χ(−ε.ε)c (y)
h(y) = ,

2π sin(y/2) 

which is bounded since sin(y/2) is bounded below on [−π, π] − 
(−ε, ε). Then Z π 

SN f(x0) = f(x0 − y)DN (y) dy 
−π 

1 
Z π � �1 1

i(N+ )y −i(N+ )y= h(y) e 2 − e 2 dy, 
2i −π 

which tends to 0 by the Riemann-Lebesgue lemma. 
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Carathéodory extension 

theorem, 36 
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