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Dynamical Systems

The simplest form of a dynamical system is the iteration of a map
T : X → X . That is, we look at orbits:

orb(x) = {x ,T (x),T ◦ T (x), . . . ,T n(x) := T ◦ · · · ◦ T (x)︸ ︷︷ ︸
n times

, . . . }.

Sometimes orbits are simple, like fixed points T (x) = x or periodic
points T p(x) = x for period p ∈ N, or asymptotic to e.g. fixed points:
limn→∞ T n(x) = y = T (y).

Most of the time orbits are complicated and erratic (chaotic). How to
understand all (or at least most) orbits?



Interval Translation Maps
Our dynamical system will be an interval translation map (ITM)
introduced by Bruin & Troubetzkoy in 2003:

Tα,β(x) =


x + α, x ∈ [0,1 − α),

x + β, x ∈ [1 − α,1 − β),

x − 1 + β, x ∈ [1 − β,1]

on the parameter space U = {(α, β) : 0 < β ≤ α ≤ 1}.
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Interval Translation Maps
Note that Tα,β is usually not continuous, not one-to-one and not
onto: T ([0,1]) ⊊ [0,1].
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Set I0 = [0,1] and In = T (In−1) for n ≥ 1. Then

I0 ⊇ I1 ⊇ I2 ⊇ · · · ⊇ I∞ :=
⋂
n≥0

In.

We call the set I∞ the attractor of Tα,β .

What kind of set is I∞ and what is the dynamics on it?
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Renormalization of Interval Translation Maps

We look at the first return map of Tα,β to the subinterval [1 − α,1].
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Renormalization
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Types of parameters
▶ Finite Type: Gn(α, β) /∈ U◦ for some n ≥ 1. Then I∞ is a finite

union of intervals and Tα,β reduces to a circle rotation.
▶ Infinite Type: Gn(α, β) ∈ U for all n ≥ 1. Then I∞ is a Cantor

set.
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Renormalization

Approximation of the set Ω of parameters (α, β) with Tα,β of infinite
type (10,000 pixels).
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The set Ω has Lebesgue measure zero but positive Hausdorff
dimension.



Renormalization
Every renormalization step gives an integer k = ⌊ 1

α⌋.

Hence we get a sequence (ki)i≥1 of natural numbers that uniquely
determines a parameter (α, β) of infinite type.

But is every sequence allowed, or are the restrictions?
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It turns out that parameters (α, β) on
the right and top edge of U always stay

in Ū, but are still parameters of finite type

Such parameters have ki = 1 for every odd
or every even i . This is the only restriction

Every sequence (ki)igeq1 satisfying:
k2i = 1 and k2i−1 = 1 for only finitely many i

corresponds to a unique parameter of infinite type
and vice versa.
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Invariant measures
Orbits can be described statistically by means of invariant measures:

Definition: A measure µ on a space X is a σ-additive function

µ : {Borel sets} → [0,1]

such that µ(∅) = 0, µ(X ) = 1. µ is called T -invariant if

µ(B) = µ(T−1(B)) for every Borel set B.

Birkhoff’s Ergodic Theorem

Let T be a transformation of a compact metric space X and µ an
ergodic T -invariant measure. Then for every f : X → R continuous,

lim
n→∞

1
n

n−1∑
j=0

f ◦ T j(x)

︸ ︷︷ ︸
time average

=

∫
X

f dµ︸ ︷︷ ︸
space average

for all x except for a set of µ-measure zero. If there is only one
T -invariant measure (T is uniquely ergodic), then this holds for all
x ∈ X and the convergence is uniform (Oxtoby’s Theorem).
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Symbolically, one renormalization step is given by the substitution

χk :


1 → 2
2 → 31k

3 → 31k−1

for k =
⌊1
α

⌋
∈ N

with unimodular incidence matrix

Ak =

0 k k − 1
1 0 0
0 1 1

 and det(Ak ) = −1,

This matrix indicates how many letters a there are in χk (b).



Recap

Every ITM of infinite type in this family is uniquely characterised by a
sequence (ki)i∈N ⊂ N such that

k2i = 1 and k2i−1 > 1 for only finitely many i ∈ N.

We define a (so-called S-adic) subshift based on the sequence of
substitutions χki , ki ∈ N. The itinerary of the point 1 is

ρ = lim
i→∞

χk1 ◦ χk2 ◦ χk3 ◦ · · · ◦ χki (3).

The (left-)shift σ removes the first symbols and moves the other
symbols one lace to the left:

ρ = ρ1ρ2ρ3ρ4 . . . σ(ρ) = ρ2ρ3ρ4 . . .

The subshift X is the closure of {σn(ρ)}n∈N where σ.
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Unique ergodicity
Birkhoff’s ergodic theorem implies that each shift-invariant measure µ
determines fixed “frequency” of letters a ∈ {1,2,3}:

va(x) = lim
n→∞

1
n
#{1 ≤ j ≤ n : xj = a}

and the same for frequencies of blocks. Let e⃗b, b = 1,2,3, be the unit
vectors in R3. Then

va(ρ) =

(
lim

n→∞

A1 · A2 · · ·Ane⃗3

∥A1 · A2 · · ·Ane⃗3∥

)
a
.

Lemma
Let Q = [0,∞)3 be the positive octant.
The symbolic shift (Σρ, σ) is uniquely ergodic if and only if⋂

n≥1

A1 · A2 · · ·An(Q) is a single line ℓ.

The frequency vector v⃗(ρ) is the intersection ℓ ∩ {x1 + x2 + x3 = 1}.



The task is now to (find conditions to) ensure that the matrices Ak
squeeze the positive octant to a single line.

{x1 + x2 + x3 = 1}

A1 · A2(Q)

Q

A1(Q)

If all Ak were the positive and the same (or just bounded), then this
would follow from the Perron-Frobenius Theorem.
But if the Ak increase too fast, then

⋂
n≥1 A1 · A2 · · ·An(Q) can be

more than a line.
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Unique ergodicity

We solve the problem using Hilbert semi-metric - in this metric the
matrices are contractions, but the contraction factors rk < 1 depend
on Ak . Under certain condition

∏∞
k=1 rk = 0, and this assures that⋂

n≥1 A1 · A2 · · ·An(Q) is a single line, and unique ergodicity follows.

Theorem
Let (ki)i≥1 be the sequence corresponding to a parameter (α, β) of
infinite type.
▶ If lim inf i ki < ∞ then Tα,β is uniquely ergodic.
▶ If ki+1 ≥ λki for some λ > 1 and all i sufficiently large, then Tα,β

is not uniquely ergodic.



Unique ergodicity

We solve the problem using Hilbert semi-metric - in this metric the
matrices are contractions, but the contraction factors rk < 1 depend
on Ak . Under certain condition

∏∞
k=1 rk = 0, and this assures that⋂

n≥1 A1 · A2 · · ·An(Q) is a single line, and unique ergodicity follows.

Theorem
Let (ki)i≥1 be the sequence corresponding to a parameter (α, β) of
infinite type.
▶ If lim inf i ki < ∞ then Tα,β is uniquely ergodic.
▶ If ki+1 ≥ λki for some λ > 1 and all i sufficiently large, then Tα,β

is not uniquely ergodic.


	Symbolic approach: S-adic Subshift

