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Dolgopyat inequality for the twisted transfer operator

I F is expanding non-Markov interval map;

I ϕ is a piecewise C 1 roof function;

I L is the transfer operator, with twisted version

Lsv = L(esϕv), s = σ + ib.

Theorem: Under appropriate assumptions (to be discussed later)
there exist A, b0 ≥ 1 and ε, γ ∈ (0, 1) such that

‖Lns ‖b ≤ γn

for all |σ| < ε, |b| > b0 and n ≥ A log |b|, where ‖ ‖b is a weighted
version of the BV-norm.



Previous results

The tool (cancellation mechanism) comes from Chernov and Dol-
gopyat's work to prove exponential mixing for certain Anosov �ows.

I Baladi & Vallée [2005] for general setting of suspension
semi�ows over p.w. C 2 Markov maps with p.w. C 1 roof.

I Avila, Gouëzel & Yoccoz [2006] for Teichmüller �ows.

I Araújo & Melbourne [2015] for suspension semi�ows over p.w.
C 1+α Markov maps with p.w. C 1 roof (to treat the Lorenz
�ow).

I Eslami [2015] stretched exponential mixing for skew-products
on T2 with non-Markov p.w. C 1+α base map and p.w. C 1 roof.

I Butterley & Eslami [2015] exponential mixing for skew-
products on the torus with non-Markov base map with �nitely
many branches and p.w. C 2 roof.



The map F

Let F : Y → Y be an AFU map for Y = [0, 1], i.e.:

I Uniformly expanding: |F ′| ≥ ρ0 > 1,

I Adler's distortion condition: |F ′′|/|F ′|2 uniformly bounded.

I possibly non-Markov, countably many branches, but with
Finite image partition: Let α be the partition into maximal
intervals of continuity. Then

X1 := ∪{∂Fa : a ∈ α} is a �nite set.

Therefore F n has a �nite image partition too, and

Xn = ∪{∂F na : a ∈ αn}, αn =
n−1∨
i=0

F−iα

has cardinality #Xn ≤ n #X1.
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Roof function ϕ

Let Hn be the collection of inverse branches of F n.

Let ϕ : Y → R be C 1 such that

I suph∈H1
supx∈dom(h) |(ϕ ◦ h)′(x)| <∞.

I There is ε0 > 0 such that

sup
x∈Y

sup
h∈H1,x∈dom(h)

|h′(x)|eε0ϕ◦h(x) <∞.

This is used for �moving the contour to <s > 0� (to prove
exponential mixing). Without it, work on imaginary axis in

renewal theory context to prove polynomial mixing.
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Transfer operator L

The transfer operator associated to F is

L : L1(Y , Leb)→ L1(Y , Leb).

For s = σ + ib ∈ C, let Ls be the twisted version of L:

Lns v =
∑
h∈Hn

esϕn◦h|h′|v ◦ h, n ≥ 1,

for ϕn =
∑n−1

i=0 ϕ ◦ F i .



BV functions

Let VarY v be the total variation of v : Y → C.

For b ∈ R de�ne the norm

‖v‖b =
1

1 + |b|
VarY v + ‖v‖1.

Throughout we will work with the Banach space

B = {v : Y → C : ‖v‖b <∞}.



Dolgopyat inequality

Theorem: Under the above + additional assumptions, including
UNI, there exist A, b0 ≥ 1 and ε, γ ∈ (0, 1) such that

‖Lns ‖b ≤ γn.

for all |σ| < ε, |b| > b0 and n ≥ A log |b|.

Corollary: For every ω ∈ (0, 1) there exists b0 such that

‖(I − Ls)−1‖b ≤ |b|ω.

for all |σ| < ε, |b| > b0 and n ≥ A log |b|.
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Additional assumptions

1. We use an iterate k large enough to kill various constants;

2. Let Pk be the image partition of F k . Assume

min
p∈Pk

Leb(p) > Cρ
−k/4
0

,

where C depends the leading eigenfunction fσ of Lσ.

This is trivially satis�ed if F is Markov.
For the family x 7→ βx + α, it holds for Lebesgue-a.e. α, β.

3. UNI: For some particular constant D > 0, and some �xed
multiple n0 of k :

∀p ∈ Pk ∃h1, h2 ∈ Hn0 inf
x∈p
|ψ′(x)| ≥ D

for ψ = ϕhn0
◦ h1 − ϕhn0

◦ h2.
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Line of proof

I Analyze jump-sizes and how discontinuities are created and
propagated;

I Cancellation lemma within a particular cone of pairs (u, v);

I Invariance of the cone.

I L2 contraction in the cone.

I From outside: exponential contraction to the cone

I Version of the Lasota-Yorke inequality.



Jump-sizes

The non-Markov map F generates discontinuities at certain points
x ∈ Y with jump-size de�ned as

Size v(x) := lim
δ→0

sup
ξ,ξ′∈(x−δ,x+δ)

|v(ξ)− v(ξ′)|.

De�nition: v : Y → C has exponentially decreasing jump-sizes if

Size v(x) ≤ C0ρ
−j/4
0

if x ∈ Xj \ Xj−1 and v is continuous at every x /∈ ∪jXj .

(Recall: |F ′| ≥ ρ0 and C0 is �xed in the proof.)



Jump-sizes

For λσ, fσ eigenvalue resp. eigenfunction of Lσ, let

L̃sv =
1

λσfσ
Ls(fσv)

be the normalized version of Ls , s = σ + ib.

Proposition: Take k large such that the additional assumptions 1 &
2 hold, and n = 2k . If u, v with |v | ≤ u have exponentially
decreasing jump-sizes, then

Size L̃nσu(x) , Size L̃ns v(x) ≤ 1

4
max
p∈Pk

sup u|p
inf u|p

Cρ
−j/4
0
L̃nσu(x)

for each x ∈ Xj \ Xj−1, j > k .



The cone

De�ne OscI v = supx ,y∈I |v(x)− v(y)| and

EI (u) :=
∑
j>k

ρ
−j/4
0

∑
x∈(Xj\Xj−1)∩I◦

lim sup
ξ→x

u(ξ)

as intended upper bound of the sum of jumps-sizes on I .

Coneb :=
{

(u, v) : 0 < u , 0 ≤ |v | ≤ u ,

u, v have exponentially decreasing jump-sizes

and OscI v ≤ C1|b|Leb(I ) sup u|I + C2EI (u)

for all intervals I ⊂ single atom of Pk
}
.

(C1 and C2 are �xed in the proof.)



Invariance of the cone

Lemma: Assume |b| ≥ 2, n0 a large multiple of k . Then Coneb is
invariant under

(u, v) 7→ (L̃n0σ (χu), L̃n0s v),

where χ = χ(b, u, v) ∈ C 1(Y , [0, 1]) comes from the �cancellation
lemma�.



BV functions outside the cone.

BV functions can have discontinuities at x /∈ ∪jXj , but their
jump-sizes descrease exponentially under iteration of Ln0s .

Proposition: There exists ε ∈ (0, 1) such that for all s = σ + ib,
0 ≤ σ < ε, |b| ≥ b0, and all v ∈ BV satisfying

VarY v ≤ C3|b|2ρmn0/4
0

‖v‖1,

there exists a pair (umn0 ,wmn0) ∈ Coneb such that

‖L̃mn0
s v − wmn0‖∞ ≤ 2C4 ρ

−mn0 |b|‖v‖∞

where ‖wmn0‖∞ ≤ ‖v‖∞.



BV functions outside the cone.

BV functions can have discontinuities at x /∈ ∪jXj , but their
jump-sizes descrease exponentially under iteration of Ln0s .

Proposition: There exists ε ∈ (0, 1) such that for all s = σ + ib,
0 ≤ σ < ε, |b| ≥ b0, and all v ∈ BV satisfying

VarY v ≤ C3|b|2ρmn0/4
0

‖v‖1,

there exists a pair (umn0 ,wmn0) ∈ Coneb such that

‖L̃mn0
s v − wmn0‖∞ ≤ 2C4 ρ

−mn0 |b|‖v‖∞

where ‖wmn0‖∞ ≤ ‖v‖∞.



Lasota-Yorke

The spaces (BV, L1) form an adapted pair, but for unbounded roof
function ϕ, the operator Ls : L1 → L1 is not bounded when
<(s) = σ > 0. Therefore, the usual Lasota-Yorke inequality fails.

Proposition: Choose k su�ciently large. De�ne

Λσ = λ
1/2
2σ /λσ λσ leading eigenvalue of Lσ.

Then there exist ε > 0 and c > 0 such that for all s = σ + ib with
|σ| < ε and b ∈ R,

VarY (L̃nks v) ≤ ρ−nk/4
0

VarY v + c(1 + |b|)Λnk
σ (‖v‖∞‖v‖1)1/2,

for all v ∈ BV(Y ) and all n ≥ 1.
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