Markov extensions, inducing and Lyapunov exponents of measures

Henk Bruin

University of Surrey

Let (X, f) be a dynamical system, $Y \subset X$ and f_Y is the return map to Y. If μ_Y is an f_Y -invariant probability measure, then

• f preserves a σ -finite measure

$$\mu(A) = \sum_{k} \sum_{i=0}^{k-1} \mu_Y(f^{-i}(A) \cap \{\tau_Y = k\})$$

 μ is σ -finite because $\mu(f^k(\{\tau_Y \geq k\})) < 1$ for all $k \in \mathbf{N}$.

• $\int_Y \tau_Y \ d\mu_Y < \infty$ if and only if μ is finite. Indeed:

$$\mu(X) = \sum_{k} \sum_{i=0}^{k-1} \mu_{Y}(f^{-i}(X) \cap \{\tau_{Y} = k\})$$
$$= \sum_{k} k \mu_{Y}(\{\tau_{Y} = k\}) = \int_{Y} \tau \ d\mu_{Y}$$

If an interval $J \subset I$ is such that

- 1. $\operatorname{orb}(\partial J) \cap J^{\circ} = \emptyset$ (*J* is *nice*),
- 2. J contains only hyperbolic repelling periodic points,
- 3. $\overline{\operatorname{orb}(\operatorname{Crit})} \cap \overline{J} = \emptyset$

then the first return map to J is Markov map with onto branches.

Induced maps with "good" transfer times

A good transfer time n=n(x) for an induced (jump) transformation on J (with extension $T\supset J$) is such that

$$1 f^n(x) \in J$$

- 2a there exists $J_x \supset x$ such that $f^n: J_x \to J$ is monotone onto (n is natural), or
- 2b there exists $T_x \supset J_x \supset x$ such that f^n : $T_x \to T$ is monotone onto (n is naturally extendible).
 - 3 n is minimal with respect to properties 1-2.

Then $F(x) := f^{n(x)}$ is a natural (naturally extendible) induced map.

Note that naturally extendible reduces to natural if you take T=J.

The **Markov extension** (Hofbauer tower) is (\hat{I}, \hat{f}) where $\hat{I} = \sqcup_n D_n$ and $\pi \circ \hat{f} = f \circ \pi$.

If f is non-renormalisable and has no periodic attractors, then $(\widehat{I},\widehat{f})$ is transitive.

Liftability of measures

An f-invariant probability measure μ is **liftable** if, given $\mu_1=\mu\circ\pi|_{D_2}$, the sequence of Cesaro means

$$\widehat{\mu}_n := \frac{1}{n} \sum_{k=0}^{n-1} \widehat{\mu}_1 \circ f^{-k}$$

converges vaguely (along a subsequence) to a probability measure $\hat{\mu}$.

Theorem 1 (Keller) If μ is an f-invariant probability measure such that

- ullet the entropy $h_{\mu}>0$, or
- the Lyapunov exponent $\lambda(\mu) > 0$,

then μ is liftable.

Remark: The second condition is actually equivalent to liftability, provided μ is non-atomic.

For intervals $J \subset T$ in I, let

$$\widehat{T} = \sqcup \{ \pi^{-1}(T) \cap D_n : \pi(D_n) \supset T \},$$

and

$$\widehat{J} = \pi^{-1}(J) \cap \widehat{T}.$$

Theorem 2 • If (F, J, T) is a natural(ly extendible) induced map with transfer time n(x), then $\widehat{F}: \widehat{J} \to \widehat{J}$ defined by

$$\widehat{F}(\widehat{x}) = \widehat{f}^{n(\pi(\widehat{x}))}(\widehat{x})$$

is the first return map to \widehat{J} .

• Conversely, if $(\widehat{F}, \widehat{J})$ is a first return map, then $F: \widehat{J} \to J$ defined by

$$F(x) = \pi(\widehat{F}(\pi^{-1} \cap \widehat{J}))$$

is a natural(ly extendible) induced map on J.

Corollaries:

• If \widehat{J}_0 is compactly contained in some D_k and the first return map \widehat{F}_0 is defined for Leb-a.e. $x \in \widehat{J}_0$, then any interval compactly contained in some D_k has an acip for its first return map.

Sketch of Proof: (\hat{J}_0, \hat{F}_0) has an acip $\hat{\mu}_0$ (Folklore Theorem). Pull it back to obtain a σ -finite acim on \hat{I} . By transitivity, $\frac{d\hat{\mu}}{dLeb} > 0$. Therefore the first return map \hat{F}_1 of any interval \hat{J}_1 is defined Leb-a.e. If \hat{J}_1 is compactly contained in some D_k , then \hat{F}_1 preserves an acip.

- If (I, f) has some naturally extendible induced map with an acip, then every naturally extendible induced map has an acip,
- If (I, f) has some natural induced map with acip and integrable transfer time, then every natural induced map has an acip with integrable transfer time.

Theorem 3 (Bruin & Luzzatto) Let f and \tilde{f} be conjugate $(f \circ \psi = \psi \circ \tilde{f})$ C^3 multimodal maps with nonflat critical points.

If μ is a non-atomic f-invariant probability measure and $\tilde{\mu} = \mu \circ \psi$, then the signs of the Lyapunov exponents $\lambda(\mu)$ and $\lambda(\tilde{\mu})$ are the same.

Remark: By Ruelle's inequality $\lambda(\mu) \geq h_{\mu}$, and h_{μ} is preserved under conjugacy. So if $h_{\mu} > 0$, the result is immediate.

Remark: The fact that μ is non-atomic is important. Indeed, if $\mu = \delta_p$ for fixed point p, then one can alter the sign of $\lambda(\mu)$ from + to 0 (from - to 0) if p is repelling (attracting).

Proposition 4 The sign of the lower pointwise Lyapunov exponent $\underline{\lambda}(x)$ is not preserves by conjugacy.

This was shown by Przytycki, Rivera-Letelier and Smirnov in the bimodal setting. It holds for unimodal maps as well.

Conjecture: If $\frac{1}{n}\sum_{i=0}^{n-1}\delta_{f^i(x)} \not\to$ an atomic measure, then the sign of the upper pointwise Lyapunov exponent $\overline{\lambda}(x)$ is preserved under conjugacy.

Remark: For unimodal maps: If

 $\inf\{\lambda(\mu): \mu \text{ erg. } f\text{-inv. prob. meas.}\}>0,$ then f is Collet-Eckmann and $\overline{\lambda}(x)>0$ for all x non-precritical.

Example: There is a quadratic map such that $\lambda(\mu) > 0$ for all ergodic f-invariant probability measures, but there is x such that $\lambda(x)$ exists and x = 0.

References:

- H. Bruin, *Induced maps, Markov extensions and invariant measures in one-dimensional dynamics*, Commun. Math. Phys. **168** (1995) 571-580.
- H. Bruin, G. Keller, *Equilibrium states for unimodal maps*, Ergod. Th. and Dyn. Sys. **18** (1998) 765-789.
- H. Bruin, S. Luzzatto, *Topological invariance of the sign of the Lyapunov exponents in one-dimensional maps*, Preprint 2004 to appear in Proc. AMS.
- Y. Cao, S. Luzzatto, I. Rios, Minimum principle for Lyapunov exponents and a higher-dimensional version of a Theorem of Mañé, Preprint (2003).
- F. Hofbauer, On intrinsic ergodicity of piecewise monotonic transformations with positive entropy, Israel J. of Math. **34** (1979) 213-237.
- G. Keller, Lifting measures to Markov extensions, Monath. Math. **108** (1989) 183-200.
- F. Przytycki, *Lyapunov characteristic exponents are nonnegative*, Proc. Amer. Math. Soc. **119** (1993) 309–317.
- F. Przytycki, J. Rivera-Letelier, S. Smirnov, Equivalence and topological invariance of conditions for non-uniform hyperbolicity in the iteration of rational maps, Invent. Math. **151** (2003) 29–63.