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Entropy for quadratic maps

Let £ :[0,1] — [0, 1], x = ax(1 — x) be the quadratic family.

exp(heop(fa)) |

1.9

The entropy map a — hyop(f,) is:

e Continuous - but what is the modulus of continuity?

e Monotone - but not strictly.
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e f has d distinct critical points, all lying in [0, 1].
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Multimodal Maps

What about entropy for multimodal maps,
i.e., maps with several critical points?
Especially for the families of cubic, quartic,
quintic, ... polynomials.

We use the following setting:

P9 is the set of degree d + 1 polynomials f : [0,1] — [0,1] s. t.
e f has d distinct critical points, all lying in [0, 1].
e f(0) =0 and 7(1) € {0,1}.

The dimension of parameter A space is d.
Monotonicity means: all isentropes

Lh = {a € A: htop(fa) = h}

are connected.



Entropy in the cubic family
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The general cubic family %%
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x = x3 — ax + b. N W
One can also parametrize the family by the
height of the two critical values, see top right. S
Level sets of the entropy (isentropes) are complicated. ™.
Entropy is not monotone as function of single critical values. ™.
™~

The cubic family
x— x3—ax+b.

\ Isentropes in blue colour:
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The unimodal case is by now standard:

Theorem (Milnor & Thurston 1970s, Douady & Hubbard 1980s)

a — hyop(fy) is monotone increasing.

The break-through for the cubic case is the result:

Theorem (Milnor & Tresser 2000)

Isentropes are connected in the cubic family.

The general result:

Theorem (Bruin and van Strien, 2009)

Isentropes in P9 are connected.
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Monotonicity doesn’'t mean that isentropes are simple sets. We
know that:

@ For many values of the entropy h, Ly is not locally connected.

@ Entropy is not a monotone function of each single critical
values.



The Shape of Isentropes

Monotonicity doesn’'t mean that isentropes are simple sets. We
know that:

@ For many values of the entropy h, Ly is not locally connected.

@ Entropy is not a monotone function of each single critical
values.

Question (Milnor): Are the isentropes contractible?

Question (Thurston): Is there a dense set of h € [0, log d] such
that hyperbolic maps are dense in L7



The Shape of Isentropes

The following is based on a result by Friedman & Tresser, showing
that the “boundary of chaos” for circle endomorphisms is not
locally connected.

Theorem (Bruin & van Strien, 2013)

For any d > 4, there is a dense set H C [0, log(d — 1)] such that
for each h € H, the isentrope Ly of P9 is not locally connected.




Sketch of Proofs

o f, is a parameterised family of maps in P9, d > 4, unfolding a
saddle node bifurcation.
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Figure: Unfolding a saddle node bifurcation. When the fixed point
disappears, a funnel is left. Points take a long time to iterate
through the funnel.
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Sketch of Proofs

o f, is a parameterised family of maps in P9, d > 4, unfolding a
saddle node bifurcation.
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fixed point funnel

Figure: Unfolding a saddle node bifurcation. When the fixed point
disappears, a funnel is left. Points take a long time to iterate
through the funnel.

@ d — 2 critical points are attracted to periodic points.

@ 2 critical points ¢, and ¢;41 belong to in interval J that under
iteration of f passes along the funnel.




Sketch of Proofs

o There is a sequence ay — as such that fV*k(J) c J. For all
these ay,
htop(fa,) = h* is constant.

o Interspersed is a sequence by — as such that FN*k(J) ¢ J,
and
htop(fbk) > h*.

The result is a comb structure of isentrope Lp«: Ly« is not locally
connected.
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Non-monotonicity of entropy in single critical value.

We can prove in the case d > 3 that the entropy is not monotone
on slices in parameter space. Below, the second critical value in
the cubic map x — x3 — ax + b is fixed, the first, i.e., b, varies.
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Non-monotonicity of entropy in single critical value.

Theorem (Non-monotonicity w.r.t. natural parameters)

Let f, € P9 denote the polynomial map with critical values
v=(v1,...,vq). Ford > 2, there are fixed values of va, ..., vp
such that the map

Vi — htop(fv)

is not monotone.
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