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Figure : Density ‘;—5 for g = %(\/54- 1) and B = V7.

The density is only locally constant, if there is a Markov partition.



The map Tj

T = {Tﬁ_(x)zx—i-2 if x <0,

TE(X):6—2X if x > 0.

Ts preserves the [f — max{2, 3}, max{2, 3}] and some iterate is
uniformly expanding. Therefore Tz admits an acip.



The map Tj

T = {Tﬂ_(x)zx+2 if x <0,

TE(X):5—2X if x > 0.

Ts preserves the [f — max{2, 3}, max{2, 3}] and some iterate is
uniformly expanding. Therefore Tz admits an acip.

Figure : Invariant density for the Ts: left g = %(\/g—k 1) right: 3 = V7.
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The interval partition {P;} is a Markov partition for T if
T(P;) N P; # 0 implies T(P;) D P;.
The transition matrix 1 =1, ; is defined as:

1 i T(P) > P,
Mij =140 iijﬂT(P;):@,
No other possibility, because {P;} is Markov

The topological entropy is
htop(T) = logo

for o the leading eigenvalue of .
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Markov partitions and entropy

Scale I by the slopes t; = [DT|p,| to obtain a matrix

1
Aij Eniu
Then ¢; = |P;| and p; = %“1 satisfy > pi¢; =1 and
T T
P1 p1 1% 0y
: A= : and Al @ | =1]":
PN PN Iy n

Rokhlin's formula gives the metric entropy:

N
hu(T) =) _ max{log(t;),0}u(P:)
i=1



Not Markov but Matching

For the family T3, there is no Markov partition in general, but
something called matching takes can occur:

Definition: There is matching if there are iterates x4+ > 0 such that
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Not Markov but Matching

For the family T3, there is no Markov partition in general, but
something called matching takes can occur:

Definition: There is matching if there are iterates x4+ > 0 such that
T"=(07) = T%+(0") and derivatives DT"~(07) = DT"+(0")
The pre-matching partition plays the role of Markov partition:
(T TU{TOM )

Theorem: If T has matching, then p = % is constant on each
element of the pre-matching partition.



Not Markov but Matching

Remark: The density can again be found by linear algebra, using
Mij = [T(P) NP/ 1P
Then MM;; € {0,1} except for those column numbers j such that

z:=T"(c.)=T"(c}) € P}
Example: For 0 < 8 < 2, we have matrices

01 4 0 1 0
M={0 0 1-90 and A=|0 0 1-94
1 1 9
11 0 2 2 2
The eigenvectors are )
1
= 1 2 2 =|2-2
P 10_40( ) and ¢ ; 0

The metric entropy is h,(Ts) = 2|°g2

by the Rokhlin formula.



Monotonicity of entropy

Numerical illustration for the metric entropy:

Figure : Entropy h,(Tg) for 3 € [4.6,6] (I) and 5 € [5.29,5.33] (r).



Monotonicity of entropy

Definition: The matching index is A = k4 — K_.

Theorem: Topological and metric entropy are

increasing  if A <0;
h.(Tg) and hiop(Tp) are constant if A =0;
decreasing if A >0,

as function of 8 within matching intervals.
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The a-continued fraction map T,.

A generalization of the GauR map stems from Nakada (and Natsui).

branches: |§| +n,
ne€Z, on[-1,1]

Figure: To:la—1,a]—=[a—1al,x— || = [ +1—al

All of them have invariant densities (infinite if « = 0).
Matching of the orbits of & and o — 1 occurs for a.e. a € [0, 1].



a-continued fractions and the Mandelbrot set

Figure : From a paper by Bonanno, Carminati, Isola and Tiozzo: The
non-matching set and the real antenna of Mandelbrot set



Change of coordinates

For fixed slope s > 1, take:

x+1, x <7 !
Qy(x) =
1+s(l1—x), x>~

For s = 2, Q, is conjugate to T3 above via

HoQy=TgoH with H(x) =2(x—7),5:=2(1+s)(1—7).



Change of coordinates

For fixed slope s > 1, take:

x+1, x <7 !
Qy(x) =
1+s(l1—x), x>~

For s = 2, Q, is conjugate to T3 above via

HoQy=TgoH with H(x) =2(x—7),5:=2(1+s)(1—7).

Advantages of Q:
» x =1 is fixed for all s € R and v < 1;

» For integer s > 2, every point ps—™, p, m € N, eventually
maps to 1;

» therefore matching occurs whenever v = ps—™;

» matching occurs on an open dense set!
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Matching is Lebesgue typical

Theorem: @, has matching for Lebesgue-a.e. v, but the set £ of
non-matching parameters has Haussdorf dimension 1.

Let g(x) :=s(1 —x) mod 1 and R: (0,1) — (0,1) be the first
return of Qé(x) to [0,1).

Lemma:

~ Jelx)  ifxe(0,7)
R = {g2(x) if x € (7,1)




On the proof of “Matching is Lebesgue typical”

Lemma: For fixed v € [0, 1], the following conditions are
equivalent:

(i) gX(7) < v for some k € N;
(i) matching holds for ~.

In other words, the bifurcation set is

E={vel0,1] : g(») >~y Vk eN}.



On the proof of “Matching is Lebesgue typical”

Proof of the Theorem: y=1%

> Lebesgue measure is preserved by g, so the Ergodic Theorem

implies that inf{g¥(y) : k > 1} = 0 for a.e. 7. The previous
lemma gives that each such v ¢ £.
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On the proof of “Matching is Lebesgue typical”

Proof of the Theorem: y=1

> Lebesgue measure is preserved by g, so the Ergodic Theorem
implies that inf{g¥(y) : k > 1} = 0 for a.e. 7. The previous
lemma gives that each such v ¢ £.

» Define K(t) := {x €[0,1] : gh(x) >t Vk > 1}.

» The Hausdorf dimension dimy(K(t)) — 1 and
dimy(K(t)N[0,1]) = 1 as t — 0.

» Combine this with £N [0, t] D K(t).
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Monotonicity

Recall the Monotonicity Theorem stated for Q:

Topological and metric entropy are

decreasing if A <0;

h.(Qy) and hip(Q,) are constant if A =0;
increasing  if A >0,

as function of « within matching intervals.

The proof is based on the structure of the first return map R to a
neighbourhood J of z := Q) (7-) = QY (v4) which is nice,, i.e.:

orb(9J) N J° = 0.



Monotonicity

Lemma: All branches of R are monotone onto, also the branches
that contain a preimage y € Q,Y_N(fy).

R = Q7 for first
return time 7: [0,1) - N

T(AZ) =N+ k_ z
T(AL) =N+ ry

_A
y

Corollary: R preserves Lebesgue measure m.
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Proof-sketch of the monotonicity theorem:

» [, 7 dmhy,(R) increases by an amount proportional to
n := AX increased proportion of |AL|/|A].

» Abramov’s Formula: h,(Qy) = I dmh (R).

> Therefore h,(Q,) decreases due to increase of .



Monotonicity

Proof-sketch of the monotonicity theorem:

» [, 7 dmhy,(R) increases by an amount proportional to
n := AX increased proportion of |AL|/|A].
» Abramov’s Formula: h,(Qy) = I dmh (R).

> Therefore h,(Q,) decreases due to increase of .

» Topological entropy is the exponential growth-rate of number
of periodic point.

» As v moves within a matching interval, periodic points in J
don’t change,



Monotonicity

Proof-sketch of the monotonicity theorem:

» [, 7 dmhy,(R) increases by an amount proportional to
n := AXx increased proportion of |AL|/|A_].

_ 1
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Monotonicity

Proof-sketch of the monotonicity theorem:
» [, 7 dmhy,(R) increases by an amount proportional to
n := AXx increased proportion of |AL|/|A_].
» Abramov’s Formula: h,(Qy) = Whm(l?).

> Therefore h,(Q,) decreases due to increase of .

» Topological entropy is the exponential growth-rate of number
of periodic point.

» As v moves within a matching interval, periodic points in J
don’t change,

> but their period increases by A as A, absorbes them (when
they previously belonged to A_).

» Hence the topological entropy decreases accordingly.
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Pseudo-centers

Motivation: Find exact formulas for matching intervals J and their
matching indices A for slope s = 2.

Let Qqyq be the set of dyadic rationals in (0, 1].

Definition The pseudocenter of an interval J C (0,1) is the
(unique) dyadic rational §£ € Qqyq with minimal denominator.

Definition
» For binary string u, let & be the bitwise negation of u.

For £ € Qqgya \ {1} and let w be the shortest even binary
expansion of £ and v be the shortest odd binary expansion of

1-¢.

Define the interval ¢ := ({1, &r) containing & where,

v

v

v

L= Vv, (=W
Also define the “degenerate” interval / := (2/3, +0).

v
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Pseudo-centers
In short: Ie = (&1, &Rr) with & == Vv, E(ri=.W.
If € =1/2then w =10, v =1 and & = .01, £g = .10.

(01) w = w0l = & = .u0016110;

(11) w = ull = & = .u101%6010;

(010) w = w010 = & = .u00U1T;

(110) w = 110 = & = .u10%OL.
£ €r €L
I =10 2 =10 I =01
;=01 ; = 01 5 = .001110
& = .001110 | 3 = .001110| 4 = .0011011001
& = .0011 : = .0011 & = .0010111010
& = 001001 | 7 = 001 |{£% = .00100011101110
i =.0010 |& = .0010 + = .000111




Pseudo-centers

Theorem:
» All matching intervals have the form /¢, where { € Qqyq are
precisely the pseudo-centers of the components of [0, 2] \ €.

» The matching index is

3

INGE

(Iwlo = lwly),

where |w/|, is the number of symbols a in w (the shortest
even binary expansion of ).



Pseudo-centers

Theorem:
» All matching intervals have the form /¢, where { € Qqyq are
precisely the pseudo-centers of the components of [0, 2] \ €.

» The matching index is

3

INGE

(Iwlo = lwly),

where |w/|, is the number of symbols a in w (the shortest
even binary expansion of ).

Proposition: If gk(y) >
matching intervals in (g,

, then |wp| = |wl1. In particular, all
) have matching index A = 0.

—
w“\)o‘\\



Pseudo-centers

Figure : Entropies hyp(Tg) and h,(Tg) for 8 € [0, 6.5].

Remark: This proposition explains constant entropy on all matching
intervals in (%, 2). Using an extra (no devil's staircase) argument:

673
1++5
2

hu(Qy) = log(

for all v € [£, 2

2
) and htop(Q’y) = 5 IOg 2,
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