Monotonicity of topologocial entropy in polynomial families of maps.

Henk Bruin

University of Surrey

(Joint work with Sebastian van Strien and Weixiao Shen)

Topological entropy was introduced by Adler, Konheim and McAndrew (1965). For interval maps, there are easier definitions (Misurewicz, Szlenk).

$$l(f^n)=\#\{\ \text{laps of } f^n\}.$$

$$\operatorname{Per}(f^n)=\#\{\ \text{periodic points of } f^n\}.$$

$$\operatorname{Var}(f^n)=\#\{\ \text{variation of } f^n\}.$$

The entropy is the exponential growth rate of all of htese:

$$h_{top}(f) = \lim_{n \to \infty} \frac{1}{n} \log l(f^n)$$

$$= \lim_{n \to \infty} \frac{1}{n} \log \operatorname{Per}(f^n)$$

$$= \lim_{n \to \infty} \frac{1}{n} \log \operatorname{Var}(f^n)$$

A quadratic map; f(x) = ax(1 - x), a = 3.84.

Renormalization of a quadratic map: f(x) = ax(1-x), a = 3.84.

Theorem (Milnor & Thurston 1988)

For the quadratic family $f_c(z) = z^2 + c$,

$$c \mapsto h_{top}(f_c)$$

is monotone decreasing on [-2,0].

Later proofs due to Douady & Hubbard, and Tsujii.

Theorem (Milnor & Tresser 2000)

For the cubic family $f_{a,b}(x) = ax^3 + bx^2 + (1 - a - b)x$,

$$(a,b) \mapsto h_{top}(f_{a,b})$$

is monotone in the sense that level sets of constant entropy are connected.

A cubic map $f_{a,b}(x) = ax^3 + bx^2 + (1-a-b)x$.

Let P^d be the set of d-modal polynomials fixing $\{0,1\}$ and such that all critical points are real and distinct.

Theorem (Bruin, Shen & van Strien 2005)

For any d, topological entropy is monotone in P^d in the sense that level sets of constant entropy are connected.

The polynomial family P^d can be parametrized by their d critical values $f(c_i)$. However topological entropy need not be monotone with respect any of these parameters separately.

Non-monotonicity of entropy for the map $f_b(x) = 2ax^2 - 3ax^3 + b$ with a = b + 0.515.

Ingredients of the proof:

- Multimodal Rigidity Theorem.
- Partially hyperbolic deformation spaces are topological cells.
- ullet Parametrize P^d by stunted seesaw maps.
- Monotonicity of entropy for stunted seesaw maps.
- ullet Investigate the semiconjugacies between maps in P^d and stunted seesaw maps, and their behaviour under bifurcation.

Definition Two maps are **partially conjugate** if they are conjugate away from the basins of periodic attractors.

Rigidity Theorem (Kozlovski, Shen and van Strien 2004) Let f and g be d-modal polynomials with d real and distinct critical points. Assume that f and g are partially conjugate and that each critical point which belongs to the basin of a periodic attractor, is periodic or eventually periodic. Then f=g up to an affine rescaling.

Rigidity for the quadratic family was proved by Lyubich and by Graczyk & Świątek in the mid 1990s.

Stunted Seesaw Maps to parametrize d-modal polynomial families.

The seesaw map S and two stunted seesaw maps (with different third plateaus Z_3)

Theorem 1 Within the family of d-modal stunted seesaw maps, topological entropy dependents monotonotically on each parameter.

Proof. Immediate. If any (one) plateau is raised, all the "old" orbits remain unchanged and potentially new orbits are created. \Box

Define the **kneading invariants** of f as

$$\nu_i = \lim_{x \downarrow c_i} \underline{\mathrm{i}}_f(x)$$

where $\underline{i}_f(x)$ is the symbolic itinerary with respect to the components $[-1,1] \setminus Crit$.

For each ν_i there is a unique point y_i such that

$$\underline{i}_S(y_i) = \nu_i.$$

Let $\Psi(f)$ be that stunted seesaw map such that y_i is the right boundary point of Z_i .

The map

$$f \mapsto \Psi(f)$$

is discontinuous and neither injective nor surjective.

The crux of the proof is to show that partially hyperbolic cells $\mathcal{PH}(f)$ of P^d map appropriately to cells $[\Psi(f)]$ in the class of stunted seesaw maps.

Definition: $f \in \mathcal{A}^*$ if

- 1. if $f^s: B_i \to B_j$ for some components of the basin of f, then $f^s(B_i \cap \text{Crit})$ lies entirily to the left/right of the left/right-most critical point in B_j .
- 2. all periodic points are hyperbolical repelling or parabolic.

Lemma: Ψ is 'almost surjective': for each $T \in \mathcal{S}^d_*$ there exists a polynomial $f \in P^d \cap \mathcal{A}^*$ such that $T \in [\Psi(f)]$.

Lemma: The map $\Psi \colon P^d \to \mathcal{S}^d_*$ is 'almost injective': If

 $f_1,f_2\in\mathcal{A}^*$ and $[\Psi(f_1)]\cap [\Psi(f_2)]\neq\emptyset,$ then

$$\overline{\mathcal{P}H(f_1)} \cap \overline{\mathcal{P}H(f_2)} \neq \emptyset.$$