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Topological entropy was introduced by Adler,
Konheim and McAndrew (1965). For inter-
val maps, there are easier definitions (Mis-
urewicz, Szlenk).

I(f") = #{ laps of f"}.
Per(f") = #{ periodic points of f"}.

Var(f") = #{ variation of f"}.

The entropy is the exponential growth rate
of all of htese:

hiop(f) = lim —logl(f™)

n—,oo n

lim 1 log Per(f™)
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lim 1 log Var(f™)
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A quadratic map; f(z) = azx(l —z), a =
3.84.
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Renormalization of a quadratic map: f(x) =
ar(l —x), a = 3.84.



Theorem (Milnor & Thurston 1988)

For the quadratic family fe(2) = 22 + ¢,

C— htop(fC)

is monotone decreasing on [—2,0].

Later proofs due to Douady & Hubbard, and
Tsujii.



Theorem (Milnor & Tresser 2000)

For the cubic family f, ,(z) = az>+bx? 4 (1 -
a—b)rx,
(a,b) — htop(fa,b)

IS monotone in the sense that level sets of
constant entropy are connected.

A cubic map f, p(x) = ax3+bz2+(1—a—b)zx.



Let P9 be the set of d-modal polynomials
fixing {0,1} and such that all critical points
are real and distinct.

Theorem (Bruin, Shen & van Strien 2005)

For any d, topological entropy is monotone
in P9 in the sense that level sets of constant
entropy are connected.



The polynomial family P can be parametrized
by their d critical values f(¢;). However topo-
logical entropy need not be monotone with
respect any of these parameters separately.
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Non-monotonicity of entropy for the map
fi(z) = 2az? — 3az3 + b with a = b+ 0.515.



Ingredients of the proof:

e Multimodal Rigidity Theorem.

e Partially hyperbolic deformation spaces are
topological cells.

e Parametrize P4 by stunted seesaw maps.

e Monotonicity of entropy for stunted see-
Saw maps.

e Investigate the semiconjugacies between
maps in P% and stunted seesaw maps,
and their behaviour under bifurcation.



Definition Two maps are partially conju-
gate if they are conjugate away from the
basins of periodic attractors.

Rigidity Theorem (Kozlovski, Shen and
van Strien 2004) Let f and g be d-modal
polynomials with d real and distinct critical
points. Assume that f and g are partially
conjugate and that each critical point which
belongs to the basin of a periodic attractor,
is periodic or eventually periodic. Then f =g
up to an affine rescaling.

Rigidity for the quadratic family was proved

by Lyubich and by Graczyk & Swiatek in the
mid 1990s.
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Stunted Seesaw Maps to parametrize d-
modal polynomial families.

|z
The seesaw map S and two stunted seesaw
maps (with different third plateaus Z3)
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Theorem 1 Within the family of d-modal stunted
seesaw maps, topological entropy dependents
monotonotically on each parameter.

Proof. Immediate. If any (one) plateau is
raised, all the “old” orbits remain unchanged
and potentially new orbits are created. []
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Define the kneading invariants of f as

v, = limirs(x
im ir(z)

where i¢(x) is the symbolic itinerary with re-
spect to the components [—1,1] \ Crit.

For each v; there is a unique point y; such
that

is(y;) = v;.

Let W(f) be that stunted seesaw map such
that y; is the right boundary point of Z,.
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The map
f=V(f)

IS discontinuous and neither injective nor sur-
jective.

The crux of the proof is to show that partially
hyperbolic cells PH(f) of P% map appropri-
ately to cells [W(f)] in the class of stunted
seesaw maps.
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Definition: f ¢ A* if

1. if f°: B; — Bj for some components of
the basin of f, then f$(B; N Crit) lies entirily
to the left/right of the left/right-most criti-
cal point in Bj;.

2. all periodic points are hyperbolical re-
pelling or parabolic.

Lemma: W is ‘almost surjective’: for each
T € S% there exists a polynomial f € P4n A*
such that T € [W(f)].

Lemma: The map W: P% — 8% is ‘almost
injective': If

fi1,fo € A" and [W(f1)]N[W(f2)] #0,
then

PH(f1) NPH(f2) # 0.
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