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For interval maps topological entropy equals

htop(f ) = lim
n→∞

1

n
log #{ laps of fn}

= lim
n→∞

1

n
log #{ fixed points of fn}.

For the logistic family fa(x) = ax(1− x),

a 7→ htop(fa) is monotone

Proofs by Sullivan & Thurston (1986),

Milnor & Thurston (1988),

Douady (1995), Tsujii (1993-94).

Monotonicity for other families, e.g. (Tsujii ’94)

fa(x) = 1− a|x|2d, a ∈ [0, 2], d ∈ N,

and (Rempe & van Strien, 2010)

fa(x) = a sin(πx), a ∈ [0, 1].

All proofs use complex analysis

No completely real proof known!
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Multimodal polynomial families:

P d =

f : [−1, 1] → [−1, 1] :

deg(f ) = d + 1,
f (−1) = −1,
f (1) ∈ {−1, 1}
d distinct critical
points in (−1, 1)


has d-dimensional parameter space Ad,
e.g. P d can be parametrized by its d critical values.

Monotonicity of topological entropy means:

Every isentrope

{a ∈ Ad : htop(fa) = s}
is connected
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Theorem 1 (Milnor & Tresser, 2000). In the fam-
ily of bimodal polynomials, topological entropy is
monotone.

Theorem 2 (Radulescu, 2008). In the family of
trimodal polynomials emerging from the compo-
sition of two logistic maps (i.e., g = fa ◦ fb),
topological entropy is monotone.

Theorem 3 (Main Theorem).Topological entropy
is monotone on P d for every d ∈ N.

Conjecture: The isentropes

{f ∈ P d
ε ; htop(f ) = s}

are contractible.

Question: For d ≥ 3, are the complements of isen-
tropes are simply connected. (No Alexander horned
spheres!?)
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Figure 1: The family fb(x) = 2ax2−3ax3+b with critical values

f(0) = b and f (1) = b− a ≡ −0.515. The map b 7→ htop(fb)

is not monotone.

Conjecture: If d ≥ 2 and all but one of the crit-
ical points of f ∈ Pd are attracted to a periodic
attractor, then v 7→ htop(fv) is non-monotone for
each critical value v.
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Ingredients of the Monotonicity Proof:

• Multimodal Rigidity Theorem.

• The loci of partial conjugacy in P d of semi-
conjugacy are topological cells.
(Uses complex dynamics!)

• Parametrize P d by stunted seesaw maps Sd.

• Monotonicity of entropy for stunted seesaw maps
(the easy bit).

• Investigate the semiconjugacies between maps
in P d and stunted seesaw maps, and their be-
haviour under bifurcation. (messy bit).

• Sets of constant entropy in the set

Sd
∗ = {T ∈ Sd : T has no wandering pair.}

of ‘good’ seesaw maps are contractible in Sd
∗ .

(extremely messy bit).
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Stunted seesaw maps:

Fix degree d ∈ N and λ = d + 2. A map T ∈ Sd if

• T : [−e, e] → [−e, e], e = dλ
d+1, is continuous;

• T (−e) = −e, T (e) = (−1)d+1e;

• It has plateaus Zi, i = 1, . . . , d around equally
spaced critical points ci;

• It has slope ±λ in between the plateaus.

The map T (Zi) 7→ htop(T ) is clearly monotone for
each i. It follows that entropy is monotone on Sd.
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Fact 1: Every multimodal map is entropy-preservingly
semiconjugate to some stunted seesaw map.

Proof: Define the kneading invariants of f ∈
P d as

νi = lim
x↓ci

if(x)

where if(x) is the symbolic itinerary with respect to
the components [−1, 1] \ Crit.
The unstunted map exhibits all itineraries, so for
each νi there is a unique point yi such that

lim
x↓yi

iS(x) = νi.

Let
T = Ψ(f )

be that stunted seesaw map such that yi is the right
boundary point of Zi.

Then f and T have the same kneading invariant,
and hence the same entropy.
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Fact 2: Isentropes in the family of stunted seesaw
maps are connected and even contractible.

Proof: Parametrize stunted seesaw maps by ζ =
(ζ1, . . . , ζd) where

ζi =

{
T (Zi,T ) if S(ci) assumes a maximum;
−T (Zi,T ) if S(ci) assumes a minimum.

Then
ζ 7→ htop(Tζ)

is increasing in each ζi separately.

Fact 2 follows directly.
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The map
Ψ : P d → Sd

is neither continuous, nor injective, nor surjective.

Example: Consider the logistic map

fλ : x 7→ λx(1− x).

Then

• At λ = λ1 = 2, c is fixed for fλ.

For 0 ≤ λ ≤ 2, ν = 10, and Ψ(fλ) = T0.

• At λ = λ2, c has period 2 for fλ.

For λ1 < λ ≤ λ2, ν = 1101, and Ψ(fλ) = Tp1.

• At λ = λ2, c has period 4 for fλ.

For λ2 < λ ≤ λ4, ν = 11010101, and Ψ(fλ) = Tp4.
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Figure 2: Unimodal sawtooth and stunted sawtooth maps
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To solve monotonicity we need to understand the
map

Ψ : P d → Sd f 7→ Ψ(f ).

The crux is that Ψ is not easy to define on cells of
partial conjugacy; at these, we take a set valued
approach: f 7→ [Ψ(f )].

Proposition 1. The map Ψ : P d → Sd is

• almost surjective: f ∈ P d has no wandering
intervals, so Ψ needs to map into

Sd
∗ = {T ∈ Sd : T has no wandering pair.}

• almost continuous: yet another issue with S\
Sd
∗;

• almost injective: f1, f2 not “partially conju-
gate”, then [Ψ(f1)] ∩ [Ψ(f2)] = ∅.
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Wandering pairs:

• Two plateaus (Zi, Zj) are a wandering pair if
there exists n ≥ 0 such that T n(J ) is a point
(for J := [Zi, Zj] the convex hull of Zi and Zj.)

• If this point is not eventually periodic, then

T 6= Ψ(f)

for every polynomial (or in fact C2 map).
The reason is that C2 multimodal maps have no
wandering intervals.

• Let Sd
∗ denote the set T ∈ Sd for which every

wandering pair (Zi, Zj), the convex hull J is
eventually mapped into a periodic plateau.
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Theorem 4. The isentropes

{T ∈ Sd
∗ : htop(T ) = s}

are connected and contractible.

Under Ψ−1, we can pull-back the connectedness of
isentropes, and this gives the main theorem. It is
not clear if contractibility is preserved under Ψ−1,
see our Conjecture.

To give an idea of the messiness of Theorem 4, here is the

retract:

Rt =



β6t for t ∈ [0, 16],

Γ6t−1 ◦ β1 for t ∈ [16,
2
6],

Γ1 ◦ γ̂6t−2 ◦ β1 for t ∈ [26,
3
6],

Γ1 ◦ γ̂1 ◦ β1 ◦ δ6t−3 for t ∈ [36,
4
6],

Γ1 ◦ γ̂1 ◦ β1 ◦∆6t−4 ◦ δ1 for t ∈ [46,
5
6],

Γ1 ◦ γ̂1 ◦ β1 ◦ r6t−5 ◦∆1 ◦ δ1 for t ∈ [56, 1].
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