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For interval maps topological entropy equals

hp(f) = lim —log #{ laps of /")

n—oo

1
= lim —log#{ fixed points of f"}.

n—oo 11

For the logistic family f,(z) = ax(1 — x),

a — hiop( fa) is monotone

Proofs by Sullivan & Thurston (1986),
Milnor & Thurston (1988),
Douady (1995), Tsujii (1993-94).

Monotonicity for other families; e.g. (Tsujii '94)
faolx)=1—alzl*, a€]0,2], deN,
and (Rempe & van Strien, 2010)
fo(x) = asin(nx), a € ]0,1].

All proofs use complex analysis
No completely real proof known!
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Multimodal polynomial families:

Pl=Xf:[-1,1] —

\

-1

A

deg(f) = d+ L,
f(=1) = -1,
f(1 )6{ 1,1}

d distinct crltlcal
points in (—1,1)

has d-dimensional parameter space A%,
e.g. P? can be parametrized by its d critical values.

Monotonicity of topological entropy means:

Every isentrope

{a € A hiop(fa) = s}

1s connected

\
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Theorem 1 (Milnor & Tresser, 2000). In the fam-
Wly of bimodal polynomaals, topological entropy is
monotone.

Theorem 2 (Radulescu, 2008). In the family of
trimodal polynomials emerging from the compo-
sition of two logistic maps (i.e., g = fo o f),
topological entropy is monotone.

Theorem 3 (Main Theorem). Topological entropy
is monotone on P? for every d € N.

Conjecture: The isentropes

{feped o hiop(f) = s}

are contractible.

Question: For d > 3, are the complements of isen-
tropes are simply connected. (No Alexander horned
spheres!?)
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Figure 1: The family fy(z) = 2a2? — 3ax® + b with critical values
f(0) =band f(1) =b—a = —0.515. The map b — h,(f3)

1S not monotone.

Conjecture: If d > 2 and all but one of the crit-
ical points of f € P, are attracted to a periodic
attractor, then v +— hyp(fy) is non-monotone for
each critical value v.



Ingredients of the Monotonicity Proof:

e Multimodal Rigidity Theorem.

e The loci of partial conjugacy in P? of semi-
conjugacy are topological cells.
(Uses complex dynamics!)

e Parametrize P? by stunted seesaw maps S?.

e Monotonicity of entropy for stunted seesaw maps
(the easy bit).

e Investigate the semiconjugacies between maps
in P? and stunted seesaw maps, and their be-
haviour under bifurcation. (messy bit).

e Scts of constant entropy in the set
S4 = {T € S*: T has no wandering pair.}

of ‘good’ seesaw maps are contractible in S¢.
(extremely messy bit).
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Stunted seesaw maps:
Fix degree d € Nand A =d +2. Amap T € S if

A
d+1

o T(—e)=—e, T(e) = (—1)""e;

)

o1 :|—e,e] > [—e e, e= is continuous;

e [t has plateaus Z;, + = 1,...,d around equally
spaced critical points ¢;;

e [t has slope £\ in between the plateaus.

The map T'(Z;) — hyp(T) is clearly monotone for
each i. It follows that entropy is monotone on S



Fact 1: Every multimodal map is entropy-preservingly
semiconjugate to some stunted seesaw map.

Proof: Define the kneading invariants of f €
P? as

BT
Vi xljglf@j)

where i(z) is the symbolic itinerary with respect to
the components [—1, 1] \ Crit.

The unstunted map exhibits all itineraries, so for
each v; there is a unique point g; such that

limig(z) = ;.
Ty,

Let
T =V(f)

be that stunted seesaw map such that y; is the right
boundary point of Z;.

Then f and T have the same kneading invariant,
and hence the same entropy:.



Fact 2: Isentropes in the family of stunted seesaw
maps are connected and even contractible.

Proof: Parametrize stunted seesaw maps by ¢ =

(€1, - -+, Ca) where
¢ = { T(Z;r) if S(c;) assumes a maximun;

—T'(Z;r) if S(¢;) assumes a minimum.

Then

G htOP(TC )
is increasing in each (; separately.

Fact 2 follows directly.



The map
v Pt 5d

is neither continuous, nor injective, nor surjective.

Example: Consider the logistic map
iz dx(l — o).
Then

o At A =\ =2, cis fixed for f).
For 0 < XA <2, v =10, and V(f)) = Tp.
e At A = A9, ¢ has period 2 for f).
For A\j < A < Ay, v = 1101, and W(f)) = T),.
e At A\ = Ay, ¢ has period 4 for fy.
For Ay < A < Ay, v = 11010101, and U(f)) = T),.

A

<« Plateau of W(fy), A € (A2, \4]
~— Plateau of U(f)), \ € (2, \o]

: : <—— Plateau of ¥(f)), A € (0,2]
—€ P2 D1 €

Figure 2: Unimodal sawtooth and stunted sawtooth maps
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To solve monotonicity we need to understand the
map

U P 8T fs W)
The crux is that ¥ is not easy to define on cells of
partial conjugacy; at these, we take a set valued

approach: f — [W(f)].

Proposition 1. The map ¥ : P? — S¢ is

e almost surjective: f € P% has no wandering
intervals, so V needs to map into

St ={T € ST has no wandering pair.}

e almost continuous: yet another issue with S\
Sd’
e almost injective: f1, fo not “partially conju-

gate”, then [W(f1)] N[V (fo)] = 0.
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Wandering pairs:

e Two plateaus (Z;, Z;) are a wandering pair if
there exists n > 0 such that T"(J) is a point
(for J = |Z;, Z,] the convex hull of Z; and Z;.)

e [f this point is not eventually periodic, then

T #9(f)

for every polynomial (or in fact C* map).
The reason is that C? multimodal maps have no
wandering intervals.

o Let 8¢ denote the set T € S¢ for which every
wandering pair (Z;, Z;), the convex hull J is
eventually mapped into a periodic plateau.
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Theorem 4. The isentropes
{T € S hiop(T) = s}
are connected and contractible.
Under U1, we can pull-back the connectedness of
isentropes, and this gives the main theorem. It is

not clear if contractibility is preserved under U1,
see our Conjecture.

To give an idea of the messiness of Theorem 4, here is the

retract:

( B for ¢t € [0, %],

[6t—10 B for t € [3, 2],

R, — ) Floﬁ/(it—?oﬁl fort € [%7%]7

t = )

[’y 041 0 5100613 for t € [2, 3],
[foyr0B10Ag-400; for ¢ € [5, 2],
\Flo’yloﬁlomt%oAlocﬁ forté[g,l].
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