
Exercise sheet for Introduction to Topology, WS2022

Exercise 1 Show that with the discrete metric of on a space X:

• Every subset of X is open;

• Every subset of X is closed;

• Every subset of X has an empty boundary;

• Every map f : X → X is continuous.

Exercise 2 Let X be the space of all closed subsets of the Euclidean space Rn. Let Bε(A) =⋃
a∈ABε(a) be an ε-neighborhood of the set A.

• Show that the so-called Hausdorff metric

dH(A,B) = inf{ε > 0 : A ⊂ Bε(B) und B ⊂ Bε(A)}

is indeed a metric on X.

• Is dH also a metrik on the space of all subsets of Rn? Justify your answer.

Exercise 3 The metric dp for p ∈ (0,∞) is defined on Rn as

dp(x, y) =

(∑
i

|xi − yi|p
)1/p

.

• Sketch the unit ball in R2 for p = 1
2
, 1, 2 uand 100.

• Verify that dp is really a metric for p ≥ 1.
(Hint: Minkovski inequality.)

• The metric dp is also applicable on sequence spaces `p = {(xn)n∈N : xn ∈ C,
∑

n |xn|p <
∞}. Show that `p ⊂ `q for 1 ≤ p < q. Do dp and dq generate the same topology on `p?

Exercise 4 Let `∞ = {(xn)n∈N : xn ∈ C, supn |xn| < ∞} be the space of bounded sequences
equiped with the metric d∞(x, y) = supn |xn − yn|. For p ∈ [1,∞), let (`p, dp) the metric space
from Exercise 3. In (`∞, d∞) and in (`2, d2), find the interior, closure and boundary of the
following sets:

• Y = {(yn)n∈N : |yn| < 1
n
};

• Z = {(zn)n∈N : ∃ n ∈ N xn = 0} ∩ `2;

Exercise 5 Let X be the space of 0-1-sequences x ∈ {0, 1}N, and for every integer a ≥ 2, let

ρa(x, y) =

{
a−m(x,y) m = min{n ∈ N : xn 6= yn} falls x 6= y;

0 if x = y.

• Show that ρa is a metric.



• Are ρ2 and ρ3 equivalent in the sense that there is a constant C ≥ 1 such that

∀ x, y ∈ X 1

C
ρ2(x, y) ≤ ρ3(x, y) ≤ Cρ2(x, y)?

• Are ρ2 and ρ3 equivalent in the sense that the identity I : (X, ρ2) → (X, ρ3) is a home-
omoorphism? (A homeomorphism is a continuous map with a well-defined continuous
inverse.)

• Do ρ2 and ρ3 generate the same Topology?

Exercise 6 Let X be a topological space with subsets A,B. Prove the following statements, or
find counter-examples:

1. ∂∂A = ∂A and A◦ = (A◦)◦.

2. A◦ = (A)◦ and ∂A = ∂(A).

3. ∂(A◦) = ∂A (maybe ∂(A◦) ⊂ ∂A or ∂(A◦) ⊃ ∂A holds?)

4. ∂A ∪ ∂B = ∂(A ∪B).

5. ∂(A ∩B) = ∂A ∩ ∂B.

6. (∂A)◦ = ∅.

Exercise 7 In the co-finite topology on a space X, the open sets are U entweder U = ∅ or the
cardinality #(X \ U) <∞.

1. Show that the co-finite topology indeed satisfies the axioms of a topology.

2. Show that in finite spaces, the co-finite topology coincides with the discrete topology.

3. Has the co-finite topology the Hausdorff property? (That is, are there for all x 6= y ∈ X
disjoint neighbourhoods U 3 x and V 3 y. Is the co-finite topology metrisable?

Exercise 8 Order the following topologies on X = [0, 1] according to finer/coarser.

1. the trivial topology;

2. the discrete topology;

3. Euclidean topology;

4. the co-finite topology;

5. co-countable topology: U is open if U = ∅ or X \ U is countable;

6. the topology defined by U = X or 0 /∈ U ;

Which of these topologies are metrisable (or just Hausdorff)?

Exercise 9 Find countably infinite metric spaces (X, d) so that



1. (X, d) has N ∈ N isolated points;

2. (X, d) is complete, and another one that is not complete.

Exercise 10 Find a countable basis and subbasis for the following topological spaces, or show
that such don’t exist.

1. R2 with Euclidean topology;

2. The Sorgenfrey line;

3. Z with co-finite topology.

Exercise 11 Set X = Rn. In the Zariski-topology on X, the closed sets are the sets of zeros of
polynomials in x = (x1, . . . , xn). That is, G ⊂ X is closed if there is a polynomial p : X → R
such that p(x) = 0 if and only if x ∈ G.

1. Show that the Zariski-topology satisfies the axioms of a topology (for the closed sets ap-
proach).

2. Show that singletons are closed sets in the Zariski-topology.

3. Does the Zariski-topology have the Hausdorff property?

4. Are there closed sets with a non-empty interior?

5. Show that in dimension n = 1, the Zariski-topology coincides with the co-finite topology.

Exercise 12 An arithmetic sequence on Z is a set of the form S(a, b) := {an + b : n ∈ Z}
where a, b ∈ N, a > 0. Define on X = Z the topology τ in which the non-empty open sets are
the unions of arithmetic sequences. Show that

1. τ is indeed a topology;

2. every non-empty is infinite;

3. the arithmetic sequences S(a, b) are both closed and open;

4.
⋃
p is prime S(p, 0) = Z \ {−1, 1}.

5. Conclude there are infinitely many primes.

Exercise 13 The Niemytzki space (or Moore plane) is the half-plane R × [0,∞) so that the
points p have the following neighbourhoods ases:{

{Bε(p) : ε > 0} if p = (x, y), y > 0,

{Bε(p) : ε > 0} ∪ {Bε(x, ε) ∪ {p} : ε > 0} if p = (x, 0).

1. Show that this system indeed gives neighbourhoodbases.

2. Determine the closures of the subsets A := Q× {0} und B := Q× {1}.



3. Describe the relative topology of Niemytzki topologie for the above subsets A und B as well
as C := {(x, x2) : x ∈ R}.

Exercise 14 Let (X, τ) be a separable topological space, that is: X has a countable dense
subset A.

1. Show that B := {B1/n(a) : 1 ≤ n ∈ N, a ∈ A} is a basis.

2. Is a subset E ⊂ X with relative topology separable again?
Hint: Exercise 13.

Exercise 15 According to the Theorem of Heine-Borel on Rn with Euclidean Topology, one
characterize compact by closed and bounded. How can you characterize compact on Rn in

1. discrete topology;

2. co-finite topology;

3. co-countable topology?

Exercise 16 Let X = R2 be equiped with Zariski topology.

• Find a basis B of the topology consisting of sets that are not co-finite.

• Show that G = X for all non-empty open sets G.

• What is the closure of {( 1
n
, 0) : 1 ≤ n ∈ N}? And of {( 1

n
, sin( 1

n
)) : 1 ≤ n ∈ N}?

• Characterise the compact sets in Zariski topology.

Exercise 17 Let X = R2 be the plane mit Sorgenfrey product-topologie.

• Are the following sets open?

(i) [0, 1)× (0, 1] (ii) {(x, y) ∈ R2 : |x|+ |y| ≤ 1}.

• Describe the relative topology for the following subspaces:

(i) {(x, y) ∈ R2 : x+ y = 0} (ii) {(x, y) ∈ R2 : x− y = 0}

(iii) {(x, y) ∈ R2 : x2 + y2 = 1}.

Exercise 18 Let H = [0, 1]N be the Hilbert cube, with product topology. Thus the sets of the
form

B = {(xn) ∈ H : ∃N ∈ N and open intervals Ij ⊂ [0, 1], j ≤ N such that xj ∈ Ij}

constitute a basis of this topology.

1. Show that d(x, y) =
∑

n∈N 2−n|xn − yn| is a the metric on H.



2. Show that d induces the product topology.
Hint: Show that balls in metric d are basis element and vice versa, every element in B is
the union of balls in d.

3. Do dprod und d∞ (defined by d∞(x, y) = supn∈N |xn − yn|) generate the same topology?

Exercise 19 1. Show that for a subset A of a topological space X holds

A = A ∪ {x ∈ X : x is accumulation point of A}.

2. Let A′ denote the set of accumulation points of A. Find a subset A ⊂ R (Euclidean) such
that A′ 6= A′′. Does A′′ = A′′′ hold?

Exercise 20 Let τ1 and τ2 be topologies on a set X and for every x ∈ X let B1(x) and B2(x)
be neighborhood bases of x w.r.t. τ1 and τ2, respectively.

1. Show that

τ1 is coarser as τ2 ⇐⇒ ∀x ∈ X ∀B1 ∈ B1(x) ∃B2 ∈ B2(x) : B2 ⊆ B1.

2. Give an example to show that the inclusion above can be strict.

Exercise 21 Take X = R. Find topologies on X with bases B such that

1. B is countable and every open set can be written as countable union of basis-elements.

2. B is uncountable and every open set can be written as countable union of basis-elements
(but there is no basis for which 1. holds).

3. B is uncountable and there are open sets that can only be written as uncountable union
of basis-elements.

Exercise 22 Consider the square Q := [0, 1]2 with lexicographical order: (x, y) ≤ (x′, y′) if
x < x′ or if x = x′ and y ≤ y′. Let τ be the order topology w.r.t. this order.

1. Describe neighbourhood bases for (x, y) ∈ Q, especially for the points (0, 0), (x, 0), (x, 1)
und (1, 1). Does every point have a countable neighbourhood basis?

2. Has (Q, τ) a countable basis and/or a countable dense subset?

Exercise 23 Let (X, τ) be a topological Hausdorff space. The co-compact topology is defined
as

τcc = {U ⊂ X : X \ U is compact} ∪ ∅.

1. Show that τcc is really a topology.

2. When is it true that τcc = τ? In general, is τcc coarser or finer as τ?

3. If A ⊂ X is compact in τ , is the boundary ∂A in τ compact too?



Exercise 24 Let (X,≤X) and (X,≤Y ) be well-ordered sets. Show that the identity mapping
the only order-preserving bijection is between X and itself.

Exercise 25 Two sets A ⊂ X und B ⊂ Y in topological spaces X and Y are called homeomor-
phic if there is a homeomorphism ψ : A→ B (in the relative topology on A and B). Which of
the following subsets of R2 Euclidean are homeomorphic and which are not (with justification).

R2 R× {0} [0, 1]× {0} {(x, y) : x2 + y2 < 1} {(x, y) : max{|x|, |y|} < 1}

Exercise 26 Let f : X → Y be a continuous mapping between topological spaces.

1. If A ⊂ X is compact, show that f(A) is compact in Y .

2. If additionally Y is Hausdorff and f : A→ f(A) is injective, show that f : A→ f(A) is
a homeomorphism.

3. Show by means of an example that the assumption that A is compact is essential.

Exercise 27 1. Show that in a Hausdorff space, every sequence has at most one limit.

2. Give an example of a sequence with two limit points (that is, in a non-Hausdoff space).

Exercise 28 Take X = Y = R with Euclidean or Sorgenfrey topology, and f : X → Y as
below. Is f continuous for these four possible choice of the topology on X, Y ?

(i) f(x) = −x (ii) f(x) = bxc (iii) f(x) = x− dxe

Exercise 29 Let X be a topological space with subbasis S, and f : X → X a surjective ap.

1. Show that: f−1(S) ∈ S for all S ∈ S implies that f is continuous.

2. Does the converse hold? Proof or counter-example.

Exercise 30 Let X be a topological space and ∼ an equivalencerelation on X. We denote the
quotient space X/ ∼ with quotient topology as Y . Show that

1. if the equivalence classes [x] are not closed, then Y is not Hausdorff.

2. if X = [−1, 1] with Euclidean topology and x ∼ x′ if x = x′ or x = 1− 1
n

und x′ = −1 + 1
n

for some 2 ≤ n ∈ N, then allvequivalence classes are closed, but Y is still not Hausdorff.

Exercise 31 We saw in Example 5.6,2 of the class notes, that there is no sequence in Ω0 =
[0, ω1) that converges to ω1. However, ω1 ∈ Ω0, and therefore there must be a net in Ω0 that
converge to ω1. Construct such a net.

Exercise 32 We saw in Example 5.6,2 of the class notes, that in RR with topology of point-
wise convergence, the function g(x) ≡ 1 belongs to the closure of the set E = {g ∈ RR |
g(x) 6= 0 for finitely many x}, but is not the limit of any sequence (fn)n∈N aus E auftreten
kann. Construct a net that converges to g.



Exercise 33 Indicate for each of the folllowing topological spaces if they are AA1, AA2 and/or
separable.

1. The Niemytzki space (see Execise 13).

2. R with cofinite topology.

3. The order interval Ω = [0, ω1] in which ω1 is the first uncoutable ordinal.

Exercise 34 Let X =
∏

λ∈ΛXλ be a product space with product topology. Does the statement

X is separable if and only if every factor space Xλ is separable

hold if Λ is (i) finite, (ii) countable, (iii) arbitrary?

Exercise 35 Let RS be the set of real number with Sorgenfrey Topology (i.e., {[a; b) : a < b ∈
R} is a basis of the topology).

1. Are the sequences ( 1
n
)n∈N\{0} und (− 1

n
)n∈N\{0} convergent? If yes, what are their limits?

2. Argue which of the following sets are open/closed/compact. (Compact means that every
open cover has a finite subcover.):

(a, b) [a, b]

[a, b) {0} ∪ { 1

n
)n∈N\{0}}

(a, b] {0} ∪ {− 1

n
)n∈N\{0}

3. Show that the Sorgenfrey plane, that is RS ×RS with product topology, is a normal space.

Exercise 36 Let U(x) be the neighborhood system of a point x in a topological space (X, τ).
We equip U(x) with the directed order U ≤U(x) V if V ⊆ U , and for every U ∈ U(x) choose a
point xU ∈ U . Is the net (xU)U∈U(x) an ultranet? Justify your answer.

Exercise 37 Let Q = [0, 1]× [0, 1] ⊂ R2 be the unit square with Euclidean topology.

1. By identifying opposite sides of Q pairwise and in an orientation preserving way, one gets
the torus. Which other surfaces can be obtained by identifying sides of Q (orientation
preserving or reversing)? Which of these surfaces are orientable.

2. Consider Q/ ∼ for x ∼ x′ if x = x′ or x and x′ lie both on the boundary of Q. Construct
a homeomorphism between Q/ ∼ and the unit sphere S2 = {x ∈ R3 : ‖x‖ = 1} (where ‖ ‖
indicates the Eucliden norm).
Hint: Show that both (0, 1)×(0, 0) and S2\(0, 0, 1) are homeomorphic to R2 (stereographic
projection).

Exercise 38 Show by means of an example that a torus satisfies at least a “seven-colour the-
orem”. That is, find a graph on T2 that can only be coloured with seven colours.



Exercise 39 Take K = { 1
n

: 1 ≤ n ∈ N} and let RK be the set of real numbers with topology
given by the basis {(a, b) : a < b ∈ R} ∪ {(a, b) \K : a < b ∈ R}.

1. Show that the interval [0, 1] is not compact.

2. Show that RK has the Hausdorff property, but there is a closed set A and x /∈ A, so that
A and {x} don’t have disjoint open supersets.

3. Show that RK connected but not arc-connected is.

Exercise 40 We consider the following subsets R2:

the sin
1

x
-continuum: A := {(x, sin 1

x
) : 0 < x ≤ 1/π]} ∪ ({0} × [−1, 1]);

B := A ∪ ({0} × [−2, 2]);

the Warsaw circle: W := A ∪ {(x, 1 + sin π2x) : 0 < x ≤ 1/π]} ∪ ({1/π} × [0, 1]).

1. Which of these sets are connected and/or arc-connected? Are they continua (i.e. compact,
connected metric spaces)?

2. The arc-component of a point p is the union of all connected subsets that contain p. What
are the arc-components of A,B and W?

3. The composant of a point p is the union all proper subcontinua that contain p. What are
the composants of A,B and W?

Exercise 41 Let f : X → Y be a continuous funktion between topological spaces, and A ⊂ X.
Show that or give a counter-example:

1. A is arc-connected implies f(A) is arc-connected.

2. A is locally connected implies f(A) is locally connected.

A set A is called locally connected if for every x ∈ A holds: for every neighborhood V 3 x
there is an open connected neighborhood x ∈ U ⊂ V .

Exercise 42 The Knaster continuum K is (any set homeomorphic to the following) subset R2:

• We start with C × {0} where C ⊂ [0, 1] is the middle-third Cantor set.

• For each x ∈ C, connect (x, 0) to (1− x, 0) by a semi-circle arched upward.

• Let Ji = [3−i − 3−i+1), 3−i] for i ≥ 0. For each x ∈ Ji, connect (x, 0) to (5
3
3−i − x, 0) by a

semi-circle arched downwards.

1. Show that K is connected, but not arc-wise connected.

2. Show that K has uncountably many arc-components, that all lie dense in K. Are all these
arc-components homeomoprhc to each other?

3. Show that these arc-components coincide with the composants of K.



Exercise 43 Let (X, τ) be a topological space. A Gδ-set is a countable intersection of open
sets. Prove or give a counter-example:

1. The boundary of an open set is nowhere dense.

2. The boundary of a Gδ-set is nowhere dense.

3. The boundary of a Gδ-set is meager.

Exercise 44 Show that the set Q of rational numbers with Euclidean topology is not a Baire
space.

Exercise 45 Our metric space will be X = [0, 1] with Euclidean metric, and all fractions
are taken in lowest terms (so 4/6 is avoided in favor of 2/3). A number x ∈ X is called
Diophantine of order ν if

lim inf
p/q∈Q∩[0,1]

|x− p

q
|q2+ν <∞

and x is Diophantine if it is Diophantine of order ν for some real order ν > 0. Denote the sets
of Diophantine numbers and Diophantine numbers of order ν as D and Dν. So D = ∪ν>0Dν.

The purpose of this exercise is to show that D is large in topological sense, but small in the
sense of Lebesgue measure Λ. To simplify the argument, we will argue with definition

lim inf
p/q∈Q∩[0,1]

|x− p

q
|q2+ν < 1 instead of <∞.

Those who want can try to do the exercise with the offical definition; the basic argument is the
same, just lengthier.

1. Show that for every r ∈ N and ν > 0 the set Ur := ∪0≤p≤q,q>rBq−(2+ν)(pq ) is open and
dense.

2. Show that Dν = ∩r∈NUr.

3. Conclude that the complements of both Dν and D are meager.

4. For the remainder of this exercise, you don’t really need details of Lebesgue measure λ. It
suffice to apply the

Borel-Cantelli Lemma: If (Yr)r∈N is a sequence of subsets of X such that∑
r∈N λ(Yr) < ∞, then the set of points x ∈ X such that x ∈ Yr for infinitely

many r ∈ N has Lebesgue measure zero.

Using this lemma, show that the set of x ∈ X such that x ∈ Ur for infinitely many r ∈ N
has Lebesgue measure zero.

5. Show that λ(Dν) = 0 and λ(D) = 0. (You may use the fact that coutable unions of sets
of Lebesgue measure zero have Lebesgue measure zero.)

Exercise 46 Verify the Euler characteristic of the projective plane, and the tori with two (pret-
zel) and three holes, by means of triangulation.



Exercise 47 Compute the Euler characteristic and genus of the surface that emerges from a
hexagon by identifying its opposite sites in an orientation preserving way.

Exercise 48 Show or find a counter-example:

1. Xi is connected for all i ∈ I ⇒ the product space
∏

i∈I Xi is connected.

2. X is connected and A ⊂ X ⇒ A with relative topology is connected.

3. X is connected and ∼ an equivalence relation ⇒ the quotient space X/∼ is connected.

Exercise 49 Are the following topological spaces connected and/or arc-connected? Justify your
answer.

1. R with co-finite topology.

2. [0, 1]2 with orderingstopology w.r.t. the lexicographical Order: (x1, y1) < (x2, y2) if (i)
x1 < x2 or (ii) x1 = x2 and y1 < y2.

Exercise 50 Are the following topological spaces Baire space?

1. R mit ko-endlicher Topologie.

2. (Q× {0}) ∪ (R× (0, 1] with euclidean topology.

3. [0, 1]2 with topologie τ = {[0, x) : x ∈ (0, 1]} ∪ {∅}.

Justify your answer.

Exercise 51 Let {qn}n∈N be a denumeration of the rational umbers, and Uk =
⋃
n∈N(qn −

k−n, qn + k−n) for k = 1, 2, 3, . . . . Are the following statement tryue or false?

• Uk is Gδ-dense;

•
⋂
k≥1 Uk ⊃ Q;

•
(⋂

k≥1 Uk
)
\Q = ∅.

Justify your answer.

Exercise 52 Let (X, τ) be a compact Hausdorff space.
(a) Show that every point is closed.
(b) Show that for every point x ∈ X and non-empty closed set A 63 x, there are disjoint open
sets Ux and UA so that x ∈ Ux and A ⊂ UA.
(c) Show that every non-empty open set U ⊂ X has an open nonempty subset V with closure
V̄ ⊂ U .


