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This talk reports on joint work in progress with T. Mettler
(Frankfurt) that studies the “bundles of Weyl structures”
associated to parabolic geometries.

These bundles were introduced by M. Herzlich to study
distinguished curves. With an improved construction of the
canonical connection, we obtain a geometric approach to all
elements of the theory of Weyl structures in this picture.

For torsion-free AHS structures, it turns out that the bundle
of Weyl structures carries a nice intrinsic geometric structure,
which includes a split-signature Einstein metric. This can be
studied using the relation to Weyl structures that leads to an
efficient calculus.

The motivation for studying this structure comes from a
connection to fully nonlinear PDE that are naturally associated
to the initial AHS structure. In the case of projective structure
in dimension two, this connects to the theory of convex
projective structures, representation varieties, etc.
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To define a type of parabolic geometries, one needs a grading on a
semisimple Lie algebra g of the form g = g−k ⊕ · · · ⊕ gk , which we
write as g = g− ⊕ g0 ⊕ p+. Putting p = g0 ⊕ p+, we choose a
group G , a (parabolic subgroup) P and take the Levi
decomposition P = G0 n P+. A parabolic geometry of type (G ,P)
is then a Cartan geometry (p : G → M, ω) of that type. Defining
G0 := G/P+, one obtains a G0-principal bundle over M that
defines a filtered analog of a G0-structure on M.

The best known examples of such structures are conformal and
projective structures and Levi-non-degenerate CR structures of
hypersurface type. The G0-bundle G0 → M provides a simple
encoding of this geometry, the Cartan geometry is an equivalent
encoding which is much more involved but leads to a large number
of efficient tools.

Andreas Čap Cartan connections



The bundle A → M of Weyl structures
Intrinsic geometry of A and non-linear PDE

A parabolic geometry never determines a distinguished connection
on TM, but there is always a class of distinguished connections.
This is captured by the theory of Weyl structures. By definition, a
Weyl structure is a G0–equivariant section of the projection
G → G/P+ = G0, so in particular, this defines a reduction of G to
the structure group G0. The associated geometric objects, which
include a principal connection on G0, are obtained from pulling
back the Cartan connection.

As observed by M. Herzlich, any reduction of G to the structure
group G0 is obtained from some Weyl structure. Hence Weyl
structures can be identified with sections of the bundle
G ×P (P/G0) =: A→ M, the bundle of Weyl structures. Herzlich
gave a rather intricate construction of a connection on TA and
used the geodesics of this connection to study distinguished curves
of the underlying parabolic geometry.
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One easily shows that multiplication from the right makes P/G0

into a principal homogeneous space of P+ and exp : p+ → P+ is a
diffeomorphism. This implies that Γ(A) is an affine space modeled
on Γ(gr(T ∗M)).

By construction, A = G/G0, so the canonical projection G → A is a
principal G0-bundle and ω ∈ Ω1(G, g) defines a Cartan connection
on that bundle. Since g admits a G0-invariant decomposition as
g0 ⊕ (g− ⊕ p+) we see that

ω0 defines a principal connection on G → A and thus induces
linear connections D on all associated vector bundles.

TA decomposes as L+ ⊕ L− (parallel for D) where L+ is the
vertical bundle of π : A→ M and L− ∼= π∗TM.

Correspondingly, we can decompose D into a sum D+ ⊕ D−

of partial connections, which only differentiate in the
directions in one of the subbundles.
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Natural vector bundles on M are of the form VM = G ×P V for
representations V of P. Restricting to G0 ⊂ P, we can also form
VA := G ×G0 V→ A. Recall that V carries a canonical P-invariant
filtration and that the associated graded gr(V) is isomorphic to V
as a G0-module. Now we obtain:

A natural inclusion Γ(VM → M) ↪→ Γ(VA→ A), which we
write as σ 7→ σ̃. The image is characterized by D+

ϕ τ = ϕ • τ ,
so for irreducible V, one gets D+-parallel sections.

A pullback operation s∗ : Γ(VA)→ Γ(gr(VM)) associated to
each section s of π : A→ M (i.e. any Weyl structure).
Similarly, this works for forms with values in VA.

Combining these, σ 7→ s∗(σ̃) defines a map Γ(VM)→ Γ(gr(VM))
which recovers the isomorphism VM → gr(VM) induced by a Weyl
structure. The dependence of this on the Weyl structure can be
easily recovered from the differential equation satisfied by D+σ̃.
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Weyl connection and Rho tensor

For σ ∈ Γ(VM) consider Dσ̃ ∈ Ω1(A,VA). On the other hand,
projection to the L+-component in TA = L− ⊕ L+ can be viewed
as P ∈ Ω1(A, L+). Given a smooth section s of π : A→ M, we can
pull these back to s∗(Dσ̃) ∈ Ω1(M, gr(VM)) and to
s∗P ∈ Ω1(M, gr(T ∗M)), respectively.

Theorem

Denoting by ∇s the Weyl connection on VM determined by s,
s∗(Dσ̃) coincides with the image of ∇sσ under the
isomorphism VM → gr(VM) induced by s.

For ξ ∈ X(M) the pullback s∗(D−
ξ̃
σ̃) ∈ Γ(gr(VM)) recovers

the Rho-corrected derivative induced by s.

The form s∗P coincides with the Rho-tensor associated to the
Weyl structure s.
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Cartan curvature

The curvature of ω is the horizontal, P-equivariant form
K ∈ Ω2(G, g) defined by K (ξ, η) = dω(ξ, η) + [ω(ξ), ω(η)]. This
can be equivalently interpreted as κ ∈ Ω2(M,AM). On the level of
A, we get a further splitting into κ± ∈ Γ(Λ2(L−)∗ ⊗ L±) and
κ0 ∈ Γ(Λ2(L−)∗ ⊗ (G ×G0 g0)). Pulling back along s : M → A, one
recovers the torsion, the Weyl curvature, and the Cotton-York
tensor associated to a Weyl structure.

On A, let τ and ρ be the torsion and the curvature of D. Let
{ , } ∈ Ω2(A,TA) and { , }0 ∈ Ω2(A,G ×G0 g0) be induced by
appropriate restrictions of the Lie bracket on g. Then we have:

τ + { , } ∈ Ω2(A,TA) vanishes upon insertion of one section
of L+ and restricts to κ− ⊕ κ+ on Λ2(L−)∗.

ρ+ { , }0 vanishes upon insertion of one section of L+ and
restricts to κ0 on Λ2(L−)∗.
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The two summands in the decomposition TA = L− ⊕ L+ are dual
to each other (via the Killing form of g). Extending this pairing to
a skew-symmetric respectively to a symmetric bilinear form on TA,
we obtain Ω ∈ Ω2(A) and h ∈ Γ(S2T ∗A) which both are
non-degenerate. Thus A carries an almost bi-Lagrangean structure.

Theorem

We get dΩ = 0 and thus a bi-Lagrangian structure on A iff the
parabolic geometry (p : G → M, ω) is associated to a |1|-grading
of g and torsion-free.

Idea of proof: By construction DΩ = 0, which allows computing
dΩ via the alternation of iτΩ. Decomposing this into ±-types,
κ− + { , }− can be recovered from one of the components, which
implies necessity of the condition. To prove sufficiency, one has to
show that the complete alternation of κ+ vanishes, which is shown
using the Bianchi identity.
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Hence we restrict to torsion-free AHS-structures from now on. For
some geometries, this implies local flatness, but the locally flat
case is of interest anyway.
By construction, Dh = 0, so one may compute the Levi-Civita
connection ∇h of h from D and its torsion. This in turn also
relates the curvatures of D and of ∇h. These computations can be
done explicitly using that local frames for TM and T ∗M induce
local frames for TA and the relation to Weyl structures. This gives:

Theorem

For a torsion-free AHS structure, consider the induced metric h (of
split signature) and the canonical connection D on A. Then

The Ricci-type contraction of the curvature RD of D is
proportional to h.

The metric h is Einstein.
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Any irreducible representation of g has a canonical p-irreducible
quotient. There is a unique fundamental representation V of g, for
which that quotient is one-dimensional, and we assume that V
integrates to G . Restricting V to P, one obtains the basic tractor
bundle V := G ×P V→ M and the irreducible quotient induces the
bundle of 1-densities E [1]→ M. The bundle V carries a natural
decreasing filtration by smooth subbundles {V i}. Using this, the
bundle π : A→ M can be equivalently described as:

The open subbundle in the projectivization P(V/V2)
consisting of lines that are transversal to the hyperplane
subbundle V1/V2.

The bundle QE [1]→ M of linear connections on the bundle of
1-densities.

The latter description nicely corresponds to the parametrization of
Weyl structures by connections on a bundle of scales.
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A local non-vanishing section of E [1] determines a flat connection
on E [1] and thus a local smooth section s of π : A→ M. Now it
turns out that there is a natural fully non-linear PDE on nowhere
vanishing sections of E [1]→ M:

Since V is a fundamental representation, the corresponding
first BGG operator H has order 2 and maps Γ(E [1]) to
Γ(}2T ∗M ⊗ E [1]) (invariant Hessian).

The determinant induces a (non-linear) natural bundle map
S2T ∗M → S2ΛnT ∗M, and the latter turns out to be some
power E [−N] of E [−1] := E [1]∗.

Thus σ 7→ det(H(σ)) is a non-linear invariant operator
Γ(E [1])→ Γ(E [−(N − n)]), and det(H(σ)) = σ−(N−n) is an
invariant PDE of Monge-Ampère type.
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Now this nicely connects to the geometry of Weyl structures. In
the picture of sections s : M → A, we call a Weyl-structure
Lagrangean if s∗Ω = 0 and non-degenerate if s∗h is
non-degenerate. Equivalently, the Rho tensor of s has to be
symmetric and non-degenerate. The main connection to the
invariant Monge-Ampère equation is

Theorem

Consider a locally flat AHS structure on M. Then a nowhere
vanishing sections of Γ(E [1]) satisfies the invariant Monge-Ampère
equation if and only if the corresponding section s : M → A has
the property that s(M) ⊂ A is a minimal submanifold.

In projective geometry, solutions of the invariant Monge-Ampère
equation are related to convex projective structures, which play an
important role in the study of representation varieties.
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Thank you for your attention!
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