
7.8. Good pairs. We start the discussion of cellular homology by discussing a
result which also is of independent interest. Under certain assumptions, it provides a
relation between absolute and relative homology.

Definition 7.8. A topological pair (X,A) is called a good pair if A is closed in X
and there is an open subset U ⊂ X with A ⊂ U such that A is a strong deformation
retract in U .

Example 7.8. (1) The pair (Bn, Sn−1) is a good pair for each n. We can simply
take U := Bn \{0} (or inded the complement of any closed ball of radius less than one).

(2) Let Y be any topological space and for a continuous function f : Sn−1 → Y put
X := Y ∪f Bn. Then as in (1) we can take the complement of 0 ∈ Bn to see that (X, Y )
is a good pair.

(3) In the situation of (2), we may as well glue an arbitrary number of cells. This
shows that for any CW complex X with n–Skeleton Xn, the pair (Xn, Xn−1) is a good
pair.

(4) Via so–called tubular neighborhoods, one shows that for any smooth manifold
M and closed submanifold N ⊂M , the pair (M,N) is a good pair.

Proposition 7.8. Let (X,A) be a good pair. Viewing the projection to the quotient
as a map p : (X,A) → (X/A, [A]) of pairs, it induces isomorphisms p# : Hq(X,A) →
Hq(X/A, [A]) for each q ≥ 0. In particular, Hq(X,A) ∼= Hq(X/A) for all q > 0.

Proof. Let U ⊂ X be an open subset as in the definition of a good pair. The we can
consider the pairs (X,A), (X,U), (X/A, [A]) and (X/A,U/A). From natural inclusions
and projections we get the following commutative diagram of continuous maps of pairs
and the induced diagram in homology:

(X,A) //

��

(X,U)

��

Hq(X,A) //

��

Hq(X,U)

��
(X/A, [A]) // (X/A,U/A) Hq(X/A, [A]) // Hq(X/A,U/A)

We want to prove that the left vertical arrow in the right diagram is an isomorphism.
Now since A ⊂ U is a deformation retract, example (4) of 7.1 shows that Hq(U,A) = 0
for all q ≥ 0. Feeding this information into the long exect sequence of the triple (X,U,A)
from Theorem 7.2, we conclude that the top horizontal arrow in the right diagram is an
isomorphism.

A retraction r : U → A of course desends to a retraction r : U/A → {[A]}. Since
A ⊂ U is a strong deformation retract, viewing r as a map U → U , it is homotopic
relative to A to the identity. But such a homotopy descends to a map U/A× I → U/A,
which then shows that r is homotopic to the identity. Hence {[A]} ⊂ U/A is a strong
deformation retract, and as above, we conclude that the bottom horizontal arrow in the
right diagram is an isomorphism. Hence we can prove the first part of the Proposition
by showing that Hq(X,U) ∼= Hq(X/A,U/A) for all q.

But now we get a second set of diagrams induced by canonical inclusions and pro-
jections:

Hq(X \ A,U \ A) //

��

Hq(X,U)

��
Hq(X/A \ [A], U/A \ [A]) // Hq(X/A,U/A)
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We have to show that the right vertical arrow in the right diagram is an isomorphism.
But since A = Ā ⊂ U o = U , the top horizontal arrow in the right diagram is an
isomorphism by excision, see Theorem 7.4. The same reasoning applies to the bottom
horizontal arrow, so this is an isomorphism, too. By definition of the quotient, the
projection restricts to a homeomorphim (X \ A,U \ A) → (X/A \ [A], U/A \ [A]) of
pairs, so the left vertical arrow in the right diagram is an isomorphism, too. This
completes the proof that Hq(X,A) ∼= Hq(X/A, [A]) and the last statement then follows
from Example (3) of 7.1. �

7.9. On the homology of CW–complexes. Let X be a CW–complex and for
each k ∈ N let Xk be the k–skeleton of X.

Proposition 7.9. (1) For each k, the relative homology group Hq(X
k, Xk−1) van-

ishes for q 6= k, while Hk(X
k, Xk−1) = ⊕αZ, where α runs through the set of k–cells of

X.
(2) The homomorphism Hq(X

k) → Hq(X) induced by the inclusion Xk ↪→ X is
bijective for q < k and surjective for q = k.

(3) If for some q > 0, X has no cells in dimension q, the Hq(X) = 0. In particular,
if X is n–dimensional, then Hq(X) = 0 for q > n.

Proof. (1) For each k, we know from Section 4.18 that there is a relative homeomor-
phism F : (tαBk

α,tαSk−1
α ) → (Xk, Xk−1). Now the quotient space (tαBk

α)/(tαSk−1
α )

clearly is a wedge ∨αSkα and from the construction it is evident that F induces a home-
omorphism from this wedge onto Xk/Xk−1. In view of Proposition 7.8, we conclude
that F induces an isomorphism Hq(tαBk

α,tαSk−1
α ) ∼= Hq(X

k, Xk−1) for each q ≥ 0.
Now from Example (3) of Section 6.6, we conclude that Sq(tαBk

α) = ⊕αSq(Bk
α) and

likewise for the spheres. Thus we see that Sq(tαBk
α,tαSk−1

α ) = ⊕αSq(Bk
α, S

k−1
α ). Of

course, this decomposition is compatible with the boundary operators, so the relative
homology groups decompose as direct sums. Using this, (1) follows from Proposition
7.6.

(2) The long exact sequence of the pair (Xk, Xk−1) contains the parts

· · · → Hq+1(X
k, Xk−1)→ Hq(X

k−1)→ Hq(X
k)→ Hq(X

k, Xk−1)→ . . .

For q 6= k, k− 1 the relative homologies both vanish by part (1) and hence Xk−1 ↪→ Xk

induces an isomorphism Hq(X
k−1) ∼= Hq(X

k). If q = k − 1, then the right hand
relative homology still is zero, so the induced homomorphism Hk−1(X

k−1)→ Hk−1(X
k)

is surjective.
Now consider the inclusions Xk ↪→ Xk+1 ↪→ Xk+2 ↪→ . . . and the induced maps

Hq(X
k)→ Hq(X

k+1)→ Hq(X
k+2)→ . . . . For q < k, they are all isomorphisms, while

for q = k the first is surjective and all others are isomorphisms. This already implies
(2) in case that X is finite dimensional, since then X = XN for sufficiently large N .

In general, we claim that each c ∈ Sq(X) lies in the image of the inclusion Sq(X
N)→

Sq(X) for sufficiently large N . This simply follows since any singular simplex in X is
compact subset and hence meets only finitely many cells, see Proposition 4.17. Hence
there is a maximal dimension of cells met by a singular simplex and taking the maximum
over the finitely many singular simplices showing up in c, we get the required number N .
Now any class in Hq(X) can be written as [c] for some chain c, so it lies in the image of
the homomorphismHq(X

N)→ Hq(X) and hence also in the image ofHq(X
q)→ Hq(X).

Likewise, suppose that for c̃ ∈ Sq(Xq+1) we have 0 = [c̃] ∈ Hq(X). Then there is a chain
c ∈ Sq+1(X) such that dc = c̃ and as above c sctually lies in Sq+1(X

N) for sufficiently
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large n. But this says that 0 = [c] ∈ Hq(X
N) and hence also in Hq(X

q+1). So the proof
of (2) is complete.

(3) The above observations also show that Hq(X
q−1) ∼= Hq(X

q−2) ∼= . . . ∼= Hq(X0),
and the latter group vanishes, since X0 is discrete and q > 0. But if X has no celles of
dimension q, then Xq = Xq−1, so Hq(X

q) = {0}. But from (2) we know that Hq(X
q)

surjects onto Hq(X). �

7.10. The cellular complex. Let X be a CW–complex and for k ∈ N let Xk be
the k skeleton of X. Then for each q ≥ 0 define Wq(X) to be the relative homology
group Hq(X

q, Xq−1). So part (1) of Proposition 7.9 shows that Wq(X) is the free group
generated by the q–cells of X. Next, consider the long exact sequence of the triple
(Xq, Xq−1, Xq−2), see Theorem 7.2. Its connecting homomorphism in degree q maps
Hq(X

q, Xq−1) to Hq−1(X
q−1, Xq−2), so this defines a homomorphism ∂ = ∂q : Wq(X)→

Wq−1(X).
In section 7.2, we have observed that ∂q can be written as a composition of two ho-

momorphisms as in Hq(X
q, Xq−1) → Hq−1(X

q−1) → Hq−1(X
q−1, Xq−2). Here the first

homomorphism is the connecting homomorphism in the long exact sequence of the pair
(Xq, Xq−1), while the second homomorphism is induced by the inclusion (Xq−1, ∅) ↪→
(Xq−1, Xq−2), so this is part of the long exact sequence of the pair (Xq−1, Xq−2). Do-
ing the same for ∂q−1, we get an expression for ∂q ◦ ∂q−1 as a composition of four
homomorphisms. But the middle two of these homomorphisms are two subsequent
homomorphisms in the long exact sequence of the pair (Xq−1, Xq−2), so already their
composition is zero.

Hence we conclude that (W∗(X), ∂) is a chain complex, which is called the cellular
complex of X. The homology groups of this complex are called the cellular homology
groups of X. We will describe the differential ∂ in this complex more explicitly later.
First we prove that the cellular complex can be used to compute the singular homology
of a CW complex.

Theorem 7.10. The cellular homology groups of a CW complex X are isomorphic
to the singular homology groups H∗(X).

Proof. Fix a degree q ≥ 0 and let Xq be the q–skeleton of X. Then we know that
the inclusion Xq ↪→ X induces a surjection Hq(X

q) → Hq(X). Now the long exact
sequence of the pair (Xq, Xq−1) contains the part

· · · → Hq(X
q−1)→ Hq(X

q)
j#−→ Hq(X

q, Xq−1)
δ−→ Hq−1(X

q−1)→ . . .

Now part (3) of Proposition 7.9 shows that Hq(X
q−1) = 0, so j# injects Hq(X

q) into
Hq(X

q, Xq−1) = Wq(X). The same argument in degree q − 1 shows that j# : Hq−1 →
Wq−1(X) is injective and from above we know that its composition with δ coincides
with ∂q. But this shows that ker(∂q) ⊂ Wq(X) coincides with ker(δ) and thus with the
image of j# : Hq(X

q) → Wq(X). Hence j# identifies Hq(X
q) with the q–dimensional

cycles in the cellular complex.
To complete it suffices to show that for a homology class [c] ∈ Hq(X

q), the im-
age j#([c]) lies in the image of ∂q+1 if and only if [c] lies in the kernel of the map
Hq(X

q) → Hq(X) induced by the inclusion. From the proof of Proposition 7.9 we see
that this kernel coincides with the kernel of the mapHq(X

q)→ Hq(X
q+1) induced by the

inclusion. The long exact sequence of the pair (Xq+1, Xq) then shows that this kernel co-
incides with the image of the connecting homomorphism δ : Hq+1(X

q+1, Xq)→ Hq(X
q).

But as we have noticed above, ∂q+1 = j# ◦ δ, so the proof is complete. �


