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@ This talk reports on joint work in progress with Rod Gover
(Auckland).

@ The notion of a projectively compact affine connection is an
analog of a conformally compact Riemannian metric. Given a
smooth manifold M with boundary OM and interior M, a
linear connection V on TM is called projectively compact if
its projective equivalence class smoothly extends to M.

e It turns out that one may involve a parameter a € (0,2] in the
picture which is called the order or projective compactness.

@ If the connection preserves a volume density, then the power
of this which is a section of £(«) is a natural defining density
for the boundary.

@ For a = 1,2 there are projectively invariant overdetermined
systems defined on sections of £(a) and we study the
consequences of the defining density being a solution
respectively a normal solution of this system.
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Background and motivation

Conformal compactness

Let M be a smooth manifold of dimension n + 1 with boundary
OM and interior M. Recall that a local defining function for OM is
a smooth function r : U — R>g, where U C M is open, such that
r~1({0}) = UN OM and dr is nowhere zero on U N OM.

A Riemannian metric g on M is called conformally compact iff
locally around each x € M there is a local defining function

r: U — R>g such that the metric r’g on UN M smoothly extends
to all of U.

@ Changing the defining function, the metric again extends, and
one gets a conformally related metric on M. This leads to
the notion of conformal infinity.

@ If one requires in addition that g is negative Einstein, then
one arrives at the concept of a Poincaré—Einstein manifold.
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Background and motivation

Relation to conformal holonomy

It is well known that Einstein metrics in a conformal class are
related to solutions of a second order overdetermined operator
defined on £[1]. Via the volume density, any metric in the
conformal class determines a nowhere vanishing section of £[1].

@ This section is a solution if and only if the metric is Einstein.

@ Conversely, a solution o determines an Einstein metric outside
its zero set Z(o).

Via parallel sections of the standard tractor bundle, solutions
correspond to reductions of conformal holonomy. Using this,

R. Gover showed that in the negative Einstein case Z(o) is an
embedded hypersurface for which o becomes a defining density.
This leads to all Poincaré—Einstein structures.
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Background and motivation

A projective analog

There is an analog in projective geometry. Here one considers
reductions of projective holonomy to an appropriate orthogonal
group. These are equivalent to normal solutions ¢ of a natural
third order operator defined on £(2), and outside of Z(o), one
obtains the Levi—Civita connection of an Einstein metric in the
projective class. Z(o) again is an embedded hypersurface, which
inherits a natural conformal structure.

Analyzing the structure of such solutions (which can be done on
the homogeneous model of the geometry), one is led to the general
notion of projective compactness of order 2 as defined below.

A major motivation for the whole project is that the holonomy
approaches to conformal and projective compactness both admit
an analog in which the boundary has a natural CR structure rather
than a conformal structure. Work in this direction is in progress.
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Projectively compact connections and metrics

Projective structures

For two affine connections V and V on a smooth manifold N, the
following conditions are equivalent:

@ V and V have the same geodesic paths
@ There is a one—form T € Q(N) such that for all £, € X(N)

we have @gn = Ven + T(En + T(n)§. We will indicate this
relation symbolically by V=V 4+ T.

definition

These conditions define projective equivalence of V and V. A
projective equivalence class of torsion free connections is called a
projective structure on N.

Similarly to the conformal case, one defines the projective density
bundles £(w). Adding “(w)" to the name of a bundle will indicate
a tensor product with £(w).

Andreas Cap Projective Compactness



Projectively compact connections and metrics

Definition of projective compactness

Let M be a smooth manifold with boundary M and interior M
and let v be a real number with 0 < o < 2.

definition

A torsion free affine connection V on M is called projectively
compact of order « if and only if for each x € M there is an open
subset U C M with x € U and a local defining function

r: U — Rxq for OM such that the affine connection V + % on

U N M extends smoothly to all of U.

Given one defining function r : U — R0, any other defining
function can be written as ¥ = efr for a smooth function

f: U — R. Consequently, % = % + édf. This shows that our
definition does not depend on the choice of r and that V gives rise
to a projective structure on M.
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Projectively compact connections and metrics

Completeness

The last observation shows that a projectively compact connection
V gives rise to a distinguished family of paths on all of M. Our
first result is related to completeness of V.

Proposition

Consider a distinguished path in M which meets the boundary OM
transversally in a point xg. Then a part of this path can be
parametrized as a geodesic for V in the form ¢ : [0,00) — M such
that lim¢—o c(t) = xo.

Sketch of proof: Take some local defining function r defined
around xp and parametrize a part of the path as a geodesic ¢ for
V =V + . Then there is a reparametrization ¢ : [0, b) — [0, to)
such that ¢ = o ¢ is a geodesic for V. This implies that (roc)~!
satisfies an ODE, which implies the claimed behavior since oo < 2.
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Projectively compact connections and metrics

Volume asymptotics

Given a hypersurface in a manifold N, the notion of a local
defining density (of some fixed weight) makes sense. Given U C N
open, choose a nowhere vanishing density 7 over U. Call ¢ a
defining density if the uniquely determined function r : U — R
such that o = r7 is a defining function. This is independent of 7.

Assume next that V admits a parallel volume density vol. Then for
each w € R, volm2 is a section of £(w) which is parallel for V.
This pins down V within its projective class.

Proposition

Suppose that V admits a parallel volume density vol and is

projectively compact of order a. Then the section of vol2 of
E(a)|m extends by zero to a defining density for OM.
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Projectively compact connections and metrics

Projectively compact metrics

We call a pseudo—Riemannian metric g on M projectively compact
of order v € (0, 2] if its Levi Civita connection is projectively
compact of that order. This seems to be mainly interesting in the
case o = 2. In this case, be can derive the following sufficient
condition.

Proposition

Suppose that around each xp € M, we can find a local defining
function r : U — R and a non—zero constant C such that the
(g)—tensor field h:=rg — C@ on U N M extends smoothly to
all of U in such a way that the restriction to the boundary is
non—degenerate on T(U N JM). Then g is projectively compact of
order 2.

It is easy to see that if this condition is satisfied for one defining
function then it is satisfied for any local defining function.
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Equations on the defining density

Suppose that V is an affine connection on M which is projectively
compact of order a and admits a parallel volume density (so this is
always true in the metric case). Then we obtain a canonical

defining density for M, namely o := vol72 € I(£(c)).

For a =1 and a = 2, the machinery of BGG sequences provides a
projectively invariant differential operator defined on I'(€(«)) and a
relation to sections of some tractor bundle. This operator defines
an overdetermined system of PDE. Apart from general solutions,
there is the subclass of so called normal solutions which are in
bijective correspondence to parallel sections of the tractor bundle
in question.

Hence for o = 1,2 one can single out special projectively compact
connections of order « by requiring that the defining density is a
solution respectively a normal solution of the appropriate BGG
operator.
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Equations on the defining density

Tractor bundles

For projective structures, all tractor bundles can be obtained by
tensorial constructions from the standard cotractor bundle

T* := J*£(1). This comes with a composition series derived from
the jet exact sequence 0 — &,(1) — T* — £(1) — 0, and the
projective structure induces a canonical linear connection on 7 *.
Applying tensorial constructions, one gets:

Properties of tractor bundles

Any tractor bundle V comes with
@ a canonical tractor connection VV

@ a natural quotient Hg which is a tensor bundle

From the jet exact sequence above, one obtains an evident
mapping £, ® T* — T*. This extends to a sequence of bundle
maps 0" : g[al...ak] QT* — g[bl---bk—l] ® T such that 0* 0 0* = 0.
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Equations on the defining density

The first BGG operator

Given a tractor bundle V, we have the projection

M: (V) — I(Ho), the operator VY : T(V) — QY(N, V) and the
maps Q?(N, V) g, QY(N, V) CN F(V). It turns out that
ker(0*)/im(9*) = I'(H1) for a certain tensor bundle H;.

@ For o € [(Hp) there is a unique section s =: L(o) € ['(V)
such that M(s) = o and 9*(VVs) = 0.

@ This defines a projectively invariant differential operator
L:T(Ho) — [(V), the splitting operator.

@ For the first BGG operator D : ['(Ho) — '(H1), D(o) is given
by projecting VY L(c) to ['(H1).

o If s € I(V) satisfies VVs = 0, then s = L((s)) and
D(MN(s)) = 0 (“normal solutions™).
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Equations on the defining density

Projective compactness of order one

In this case, we have V = 7" and Ho = £(1). The first BGG
operator D : T(E(1)) — T(Eapy(1)) is given by

D = V3V + P(ap). The splitting operator L : I'(E(1)) — I'(T*)
is of order one and any solution ¢ of D is automatically normal,
i.e. L(0) is parallel if D(c) = 0.

Theorem
Let V be projectively compact of order one with induced canonical
defining density o € T'(€(1)) for 9M. Then

o L(o) € T(T*) is nowhere vanishing on M

® Papo € T(Eap)(1)|m) extends smoothly to M and restricts to
a projectively invariant second fundamental form on oM.

e D(o) = 0iff V is Ricci flat. In this case, OM is totally
geodesics and thus inherits a projective structure.
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Equations on the defining density

Projective compactness of order two

Here the BGG operator D : T(E(2)) — T'(Eapc)(2)) is given by
D(o) = V(avbvc)a + 4P(abvc)0' + 2(v(a'Dbc))U~

The tractor bundle involved is V = S2T*, so sections are (possibly
degenerate) bundle metrics on the standard tractor bundle 7. The
splitting operator L has order two in this case.

Theorem

Let V be projectively compact of order two with Ricci curvature
Ric,p and induced canonical defining density o € I'(£(2)) for OM.

o D(o) =0 if and only if V(, Ricpe) = 0.
@ o is a normal solution of D iff V,Ricye = 0. If Ricgp, is

non—degenerate then it defines an Einstein metric on M with
Levi—Civita connection V.
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Equations on the defining density

Klein—Einstein metrics

Let g be a negative Einstein metric on M which is projectively
compact of order 2 and let o € ['(£(2)) be the canonical defining
density for 9M. Then we have

Proposition

e L(o) € |'(52'T*)_is a parallel, non—degenerate bundle metric
on 7 on all of M.

@ For a local defining function r for M, the symmetric
( )—tensor field rzijlg + dr?d’ extends to the boundary, and

the boundary value is non—degenerate on TIM.

Note that dividing by the non—zero constant 2”J the last part of

this result give the condition for projective compactness derived
before.
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