
TRACTOR BUNDLES IN CR GEOMETRY

ANDREAS ČAP

This is an outline of my lecture at the Hayama Symposium on several
complex variables on December 21, 2002.

The subject of the talk are new applications of the canonical Cartan
connection for CR manifolds. Most of the results I will report on are based
on joint research (partly in progress) with A.R. Gover and with J. Slovák and
V. Souček. Partly, these results are specific for the class of CR structures
but many of them have analogs in the much more general setting of Cartan
geometries corresponding to arbitrary parabolic subgroups in semisimple Lie
groups, the so–called parabolic geometries.

A central ingredient in these new developments is a special class of natural
vector bundles called tractor bundles. These are equivalent to the Cartan
bundle and Cartan connection and directly lead to an invariant calculus.

1. Partially integrable almost CR structures

In this article, we will only be concerned with almost CR structures of
hypersurface type. It should be remarked at this point that there is also a
relation between parabolic geometries and certain almost CR structures of
codimension two, see [13] and [6], but this is an entirely different story.

1.1. Basic definitions. An almost CR manifold of hypersurface type is a
smooth manifold M of Dimension 2n + 1 endowed with a rank n complex
subbundle H in the tangent bundle TM . The complex structure on H is
denoted by J . Given such a structure, we define Q := TM/H and denote
by q : TM → Q the natural quotient map.

The Levi–bracket L : H×H → Q is the tensorial operation induced by the
Lie bracket of vector fields, i.e. it is characterized by L(ξ, η) = q([ξ, η]) for
ξ, η ∈ Γ(H). The almost CR structure (M,H, J) is called non–degenerate if
L(ξ, η) = 0 for all η ∈ H implies ξ = 0 and it is called partially integrable if
L(Jξ, Jη) = L(ξ, η) for all ξ, η ∈ H.

Passing to the complexification TM ⊗ C of the tangent bundle, the sub-
bundle H ⊗ C splits into a holomorphic and an anti–holomorphic part, i.e.
H ⊗C = H1,0 ⊕H0,1. Partial integrability is easily seen to be equivalent to
[ξ, η] ∈ Γ(H1,0⊕H0,1) for all ξ, η ∈ Γ(H0,1), so this is indeed a weakening of
the usual integrability condition (see below). Assuming partial integrabil-
ity, the Levi bracket L is (up to a nonzero factor) the imaginary part of the
usual Levi form, so one obtains the usual notion of non–degeneracy. From
now on, we will restrict our attention to non–degenerate partially integrable
almost CR (abbreviated as p.i.a.CR) manifolds.

The signature (p, q) of a p.i.a.CR manifold is defined as the signature of
the Levi form. We require p ≥ q for this to be unambiguous.
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A p.i.a.CR manifold (M,H, J) is called integrable or a CR manifold if
the subbundle H0,1 of H ⊗ C is involutive, i.e. [ξ, η] ∈ Γ(H0,1) for all ξ, η ∈
Γ(H0,1). Equivalently, one may require vanishing of the Nijenhuis–tensor
N which is the section of Λ2H∗ ⊗H characterized by

N(ξ, η) = [ξ, η]− [Jξ, Jη] + J([Jξ, η] + [ξ, Jη]).

1.2. The homogeneous model. The basic idea behind the canonical Car-
tan connection is to view general p.i.a.CR manifolds as “curved analogs” of
a homogeneous model. Also the other constructions discussed in this arti-
cle carry over some aspects of this homogeneous model to general p.i.a.CR
manifolds, so a good understanding of this homogeneous model is important
for the further developments.

Consider V = Cp+q+2 endowed with a Hermitian form 〈 , 〉 of signature
(p + 1, q + 1) and the null cone C := {0 6= v ∈ V : 〈v, v〉 = 0}. Let M
be the space of complex lines in C. For v ∈ C, the tangent space TvC
is a real hyperplane in V, and the orthogonal complement v⊥ of v is a
complex hyperplane contained in TvC. It is easy to see that the images of
these complex hyperplanes in the tangent spaces of M endow M with an
almost CR structure which turns out to be integrable and non–degenerate of
signature (p, q). Alternatively, one may deduce this CR structure from the
fact that M is a smooth real hypersurface in the projectivization P(V) ∼=
CP p+q+1.

Let G = SU(V) be the special unitary group of 〈 , 〉 and let G = PSU(V)
be the associated projective group, i.e. the quotient of G by its center. The
standard action of G on V induces a transitive action of G on M , which
factors to a transitive action of G. From the above description of the CR
structure on M it is obvious that these actions are by CR diffeomorphisms,
and it turns out that the second one leads to an identification of G with the
group of all CR diffeomorphisms of M .

Denoting by P and P the stabilizers of some base point x0 ∈ M and G
and G, we see that G/P ∼= G/P ∼= M . The map p : G → M , p(g) := g ·x0 is
a principal fiber bundle with structure group P , and likewise for p : G → M .

1.3. The canonical Cartan connection. Let (M,H, J) be an arbitrary
p.i.a.CR manifold of signature (p, q), and let g = su(V) be the Lie algebra
of G and G. Then there exists a canonical principal P–bundle p : G → M

endowed with a Cartan connection ω ∈ Ω1(G, g), whose curvature satisfies a
normalization condition. Conversely, a principal P–bundle over any smooth
manifold M endowed with a regular Cartan connection (whose existence
implies that M has dimension 2p+2q+1) gives rise to a p.i.a.CR–structure of
signature (p, q) on M . Moreover, local CR diffeomorphisms induce principal
bundle morphisms which are compatible with the Cartan connections and
vice versa, so this leads to an equivalence of categories. The (integrable) CR
structures correspond exactly to those normal Cartan connections which are
torsion–free.

This result was proved in [8] by E. Cartan for dim(M) = 3, by N. Tanaka
in [14, 15] in complete generality, and by S.S. Chern and J. Moser in [9] for
CR structures of arbitrary dimension.
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Of course, the principal bundle p : G → M is an analog of the bundle
G → G/P for the homogeneous model. The Cartan connection should be
thought of as an analog of the left Maurer–Cartan form on the group G.
The point here is that the actions of elements of G are characterized among
the principal bundle automorphisms of the bundle G → G/P by the fact
that they pull back the Maurer–Cartan form to itself.

In order to pass to the equivalent picture of tractor bundles, it is useful
to extend the bundle G to a principal P–bundle p : G → M (which is
then automatically endowed with a canonical normal Cartan connection).
It turns out that such an extension is equivalent to the choice of a complex
line bundle E(1, 0) such that E(1, 0)⊗

n+2 ∼= Λp+q
C H ⊗ Q, so this boils down

to choosing an n + 2’nd root of the canonical bundle. While existence of
such a bundle may be obstructed in general, there are no problems locally
and for boundaries of domains. We will usually assume that such a choice
has been made.

Having chosen the line bundle E(1, 0), one defines complex line bundles
E(k, `) for all k, ` ∈ Z by using tensor powers, dual and conjugate bundles.
Further one defines real line bundles E [2] := Q and then E [2k] for k ∈ Z via
tensor powers and duals. The convention is chose in such a way that E [2k]
naturally includes into E(k, k). Without the choice of E(1, 0), all the real
line bundles E [2k] do exist, but E(k, `) is only available if k− ` is an integer
multiple of n + 2. All these line bundles, which are usually referred to as
density bundles are examples of irreducible bundles (see below).

1.4. Natural vector bundles. Having the canonical Cartan bundle at
hand, there is an obvious notion of natural vector bundles over p.i.a.CR
manifolds, namely associated vector bundles to the principal Cartan bundle
G. It is well known that such associated vector bundles are in bijective cor-
respondence with representations of the structure group P of the principal
bundle. In the case of the homogeneous model G/P , one obtains exactly
the homogeneous vector bundles in this way.

Now it turns out that the group P is the semidirect product of a reductive
subgroup G0 ⊂ P and a nilpotent normal vector subgroup P+ ⊂ P . The
reductive part G0 is isomorphic to the conformal unitary group CU(p, q)
and there is a complex Heisenberg algebra p+

∼= Cp+q ⊕ R ⊂ p such that
the exponential map restricts to a diffeomorphism p+ → P+. Hence the
representation theory of P is complicated and general representations tend
to be unmanageable, but there are two simple classes of representations.

Completely reducible representations are given by arbitrary repre-
sentations of G0 with trivial P+–action. Any such representation splits into
direct sum of irreducible representations, which are classified by their high-
est weights. These highest weights are best viewed as weights for g which
satisfy certain dominancy and integrality conditions, see e.g. [2, chapter 3].
Bundles associated to irreducible representations of P are referred to as irre-
ducible bundles. Any such bundle can be realized as a subbundle in a tensor
product of copies of the bundle H, its conjugate, and density bundles.

Restrictions of representations of G: Of course, any representation
of G may be viewed as a representation of P . Such a representation splits
into a direct sum of G–irreducibles, which are classified by dominant integral
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weights for g. Irreducible G–representations are typically indecomposable
as P–representations but have non–trivial P–invariant subspaces. Such rep-
resentations lead to tractor bundles. In the case of the homogeneous model,
any tractor bundle is canonically trivial, but this is no longer true for general
p.i.a.CR structures.

Any tractor bundle can be realized as a subbundle in some tensor product
of copies of the standard tractor bundle T , which corresponds to the standard
representation of G on V, and its conjugate. Another important example of
a tractor bundle is the adjoint tractor bundle A which corresponds to the
adjoint representation of G on g.

Tractor bundles (for conformal and projective structures) have been first
introduced by Tracy Thomas in the 1930’s as an alternative to Cartan’s
approach to these structures, see e.g. [16]. They were rediscovered and the
theory was developed both for special structures and in a general setting
during the last 20 years, see e.g. [1, 5].

1.5. The standard tractor bundle. By construction, the standard trac-
tor bundle T over a p.i.a.CR manifold M is a rank n + 2 complex vector
bundle, which carries a canonical Hermitian bundle metric h of signature
(p + 1, q + 1). Since P stabilizes a null line in V, there is a natural sub-
bundle T 1 ⊂ T consisting of complex null lines. Putting T 0 = (T 1)⊥, one
obtains a filtration T ⊃ T 0 ⊃ T 1. One easily verifies that T 1 ∼= E(−1, 0),
T /T 0 ∼= E(0, 1) and T 0/T 1 ∼= H ⊗ E(−1, 0) =: H(−1, 0). Finally, there is a
canonical global section τ of the complex line bundle Λn+2T .

It turns out that the canonical Cartan connection ω induces on any tractor
bundle a canonical linear connection. In particular, we get the standard
tractor connection ∇T on T . By construction this connection is Hermitian
with respect to h and τ is parallel for the induced connection. It turns out
that the curvature of ∇T equals the curvature of ω and that (G, ω) can be
recovered from (T , T 1, h, τ,∇T ).

Any choice of a pseudo–Hermitian structure, i.e. a (local) trivialization of
the bundle Q, on (M,H, J) induces an isomorphism

T ∼= E(−1, 0)⊕H(−1, 0)⊕ E(0, 1).

In terms of the resulting triples the filtration components are given by van-
ishing of the last respectively the last two components, and there is a simple
formula for the tractor metric h. The change of this isomorphism under
a change of pseudo–Hermitian structure can be easily described explicitly.
This point of view is used to define the standard tractor bundle in [11]. There
is an explicit formula for ∇T in triples in terms of the Webster–Tanaka con-
nection associated to the pseudo–Hermitian structure and its torsion and
curvature. Hence choosing a pseudo–Hermitian structure, one obtains a
completely explicit description of all data on T . The adjoint tractor bun-
dle A can be identified with the bundle su(T ) of tracefree skew Hermitian
endomorphisms of T . Under this identification, the natural algebraic Lie
bracket on A is given by the commutator of endomorphisms and the tractor
connection ∇A is induced from ∇T . Hence also all relevant data on A can
be described explicitly after the choice of a pseudo–Hermitian structure.
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2. Invariant differential operators

The standard tractor connection offers a first step towards a CR–invariant
calculus. However it is not satisfactory, since the cotangent bundle is not
a tractor bundle and thus there is no way to iterate tractor connections to
obtain higher derivatives. It follows from a surprising connection to rep-
resentation theory that finding CR invariant operators between irreducible
bundles is a subtle problem:

2.1. Invariant operators on the homogeneous model. As we have
noted in 1.4 above, natural vector bundles give rise to homogeneous vec-
tor bundles on the homogeneous model G/P . There is a canonical G–action
on the space of sections of such a bundle, and one may look for G–equivariant
differential operators between sections of two such bundles. Any such opera-
tor extends canonically to a natural operator on the subcategory of spherical
CR manifolds (i.e. those which are locally CR–diffeomorphic to the homoge-
neous model). On the other hand it turns out that such invariant operators
are in bijective correspondence with homomorphisms between certain in-
duced modules, see [2, chapter 11]. If one restricts to the case of irreducible
bundles, then the relevant modules are generalized Verma modules, and
representation theory leads to detailed information about homomorphisms
between those.

The main restriction on existence of invariant operators comes from the
fact that nonzero homomorphisms can exist only between generalized Verma
modules which have the same infinitesimal character. By a classical theorem
of Harish–Chandra the infinitesimal characters agree if and only if the high-
est weights lie in the same orbit of the affine action of the Weyl group. The
dominancy conditions further restrict the possibilities to a certain subset of
the Weyl group, which is best visualized as a directed graph. This graph is
called the Hasse graph of the parabolic subalgebra p ⊂ g. For example, in
the case relevant for 7 dimensional p.i.a.CR manifolds, this graph has the
form

E3,0 //

##HHH
HHH

F3,0
))SSSS

S

E2,0

55kkkkk

))SSSSS
F2,0

))SSSS
S

E1,0

55kkkkk

))SSSSS
E2,1

;;vvvvvv
//

##HHH
HHH

F2,1

55kkkkk

))SSSS
S F1,0

))SSSS
S

E0,0

55kkkkk

))SSSSS
E1,1

55kkkkk

))SSSSS
F1,1

55kkkkk

))SSSS
S F0,0

E0,1

55kkkkk

))SSSSS
E1,2

;;vvvvvv
//

##HHH
HHH

F1,2

55kkkkk

))SSSS
S F0,1

55kkkkk

E0,2

55kkkkk

))SSSSS
F0,2

55kkkkk

E0,3 //

;;vvvvvv
F0,3

55kkkkk

Here the numbering of the vertices is just for later reference. This pattern
has the form of the Rumin complex (decomposed into irreducibles) which
computes the complex cohomology.

Given a highest weight, there is a simple algorithm (see [2, section 4])
to compute the affine Weyl orbit. In particular, any Weyl orbit contains
a unique dominant weight, so these weights can be used for indexing the
different patterns. If that weight lies in the interior of the dominant Weyl
chamber (“regular infinitesimal character”), then the affine Weyl orbit looks
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exactly like the picture above. If it lies in a wall (“singular infinitesimal
character”), the pattern collapses in the sense that some vertices have to be
removed and/or several vertices correspond to the same weight.

By the work of Bernstein–Gelfand–Gelfand and Lepowsky (see [3, 12])
any arrow in the above pattern really gives rise to a nonzero homomorphism
(“standard homomorphisms”). Besides these and their compositions, there
may be further homomorphisms, called nonstandard–homomorphisms. In
our case, these homomorphisms map Ei,j to Fi,j for (i, j) = (0, 0), (1, 0),
and (0, 1). Essentially all these homomorphisms are unique up to scale.

If the weight indexing the pattern is dominant and integral and has regular
infinitesimal character, then there is a unique irreducible representation W
of g having the weight corresponding to the initial point in the pattern and in
[3, 12] it is shown that one may distribute signs among the homomorphisms
in such a way that the whole pattern forms a resolution of the g–module W
(“BGG–resolutions”).

Translated to the language of bundles, this means that given any irre-
ducible bundle there are invariant operators from at most three other and
to at most three other irreducible bundles, and these bundles can be deter-
mined algorithmically. The orders of these operators are determined by the
weights and may be arbitrarily high. Hence if one wants to construct invari-
ant differential operators between such bundles from simpler operators, one
has to leave the realm of irreducible bundles.

2.2. Two basic invariant operators. Tractor bundles directly lead to
two basic sets of CR invariant operators which have the advantage that
they both can be iterated in order to obtain higher order operators.
• For any natural vector bundle E → M , there is the fundamental deriv-

ative or fundamental D–operator

Γ(E) → Γ(A∗ ⊗ E),

see [5]. This is a family of first order operators which is natural with respect
to any bundle map induced by a P–homomorphism and satisfies a Leibniz
rule for tensor products, so it is like a covariant derivative but with the
adjoint tractor bundle A replacing the tangent bundle TM (which turns out
to be a quotient of A). For subquotients of tractor bundles, the fundamental
derivative can be computed from the tractor connection. Since there is no
restriction on the bundle E at all, these operators can obviously be iterated.
• Tractor–D–operators: Let V be any tractor bundle, T the standard

tractor bundle, k, ` ∈ Z and consider the weighted tractor bundle V(k, `) :=
V⊗E(k, `). For any such choice there is a second order CR–invariant operator

Γ(V(k, `)) → Γ(T ∗ ⊗ V(k, `− 1)).

There also is a complex conjugate version of this operator. Since the range of
these operators are again weighted tractor bundles, they can also be iterated.

The compatibility of the tractor–D–operators with the various projections
onto subquotients can be described well. Thus one obtains a calculus which
can be used for the construction of natural differential operators, e.g. fol-
lowing the ideas of the curved translation principle. This has been applied
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in [11]to give a construction of all CR–invariant powers of the sublaplacian
that are known to exist.

2.3. Curved analogs of BGG–resolutions. For patterns (as described in
2.1 above) with regular infinitesimal character which start with a dominant
integral weight, there is a conceptual construction of CR invariant opera-
tors generalizing the BGG–resolution on the homogeneous model. This was
introduced in [7] and improved in [4].

Let W be the irreducible representation of g with the given highest weight.
Then Kostant’s version of the Bott–Borel–Weil–theorem shows that the
weights in the affine Weyl orbit are exactly the highest weights of the ir-
reducible components of the Lie algebra homology groups of p+ with coef-
ficients in W. Let us write H∗(p+, W) for these homology representations.
They can be naturally computed from a standard complex formed of P–ho-
momorphisms ∂∗ : Λkp+ ⊗W → Λk−1p+ ⊗W.

Geometrically, W corresponds to a tractor bundle W, and Λkp+⊗W cor-
responds to the bundle ΛkT ∗M ⊗ W. The P–homomorphisms ∂∗ induce
bundle maps between the corresponding bundles, so we get natural subbun-
dles

im(∂∗) ⊂ ker(∂∗) ⊂ ΛkT ∗M ⊗W
such that ker(∂∗)/im(∂∗) is the associated bundle corresponding to the
representation Hk(p+, W). Thus we can realize all the irreducible bundles in
our pattern as subquotients of the bundles of W–valued differential forms.

The canonical linear connection ∇W on the tractor bundle W extends to
the covariant exterior derivative d∇ on W–valued differential forms and one
obtains a twisted de–Rham sequence. On the homogeneous model this is a
resolution of the constant sheaf W, while in general it is not a complex.

One constructs computable differential projections from Ωk(M,W) onto
the spaces of sections of the subbundles ker(∂∗) and im(∂∗), which in turn
induce a differential splitting of the projection from sections of ker(∂∗) onto
sections of the homology bundles. Using these operations one may com-
press the d∇’s to a sequence of higher order invariant differential operators
between the homology bundles, called the BGG–sequence corresponding to
W.

One obtains efficient tools for passing between the two sequences, and in
particular, one shows that if the twisted de–Rham sequence is a complex,
then so is the BGG–sequence, and both complexes compute the same co-
homology, so this is an independent construction for the BGG–resolutions.
This correspondence sometimes directly leads to geometric interpretations,
e.g. for spherical CR manifolds, the adjoint BGG–sequence is a deformation
complex.

One drawback of the curved BGG–sequences is that they are not com-
plexes. Indeed, the composition of two consecutive covariant exterior deriva-
tives is given by the action of the Cartan curvature. This can be used to com-
pute the composition of consecutive operators in a BGG–sequence. In joint
work in progress with V. Souček, we use elementary representation theory to
conclude the existence of subcomplexes under torsion–freeness and/or semi–
flatness assumptions. This applies to the case of CR manifolds (as opposed
to p.i.a.CR structures). In the case of dimension 7 the result is that in the
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pattern displayed before, all subsequences which always go up or down are
subcomplexes. (The horizontal arrows are not involved in any subcomplex.)
This means that using the notation of the diagram, in each pattern we have
subcomplexes corresponding for example to E0,0 → E1,0 → E2,0 → E3,0,
and to E2,0 → E2,1 → F1,2 → F0,2, and so on.

Remarkably, in the case of the adjoint BGG–sequence, the subcomplex
in the beginning of the sequence still may be interpreted as a deformation
complex, but this time in terms of deformations in the category of CR
structures (rather than p.i.a.CR structures):
• The kernel of the first operator is a subspace of Γ(Q) isomorphic to the

space of infinitesimal automorphisms of the CR structure.
• The first homology of the subcomplex is the formal tangent space to

the space of all CR deformations, i.e. the quotient of all infinitesimal CR
deformations by the trivial infinitesimal CR deformations.

3. Relations to the Fefferman space and
to the ambient metric construction

The contents of this last section are based on joint work (partly in progress)
with A.R. Gover.

3.1. Tractors and the Fefferman space. For a CR structure (M,H, J)
of signature (p, q), the Fefferman space M̃ is the total space of a circle
bundle over M , on which the CR structure canonically induces a conformal
structure of signature (2p + 1, 2q + 1). For the homogeneous model G/P as
described in 1.2, the Fefferman space is simply space of all real null lines in
V. It is easy to see that G = SU(V) also acts transitively on that space, so
we may view it as G/P̃ , where P̃ ⊂ P is the stabilizer in G of a real null
line. The group of all conformal diffeomorphisms of this Fefferman space is
then simply the group SO(V).

In general, one may define M̃ as a quotient of the frame bundle of E(−1, 0).
The CR Cartan bundle G can then be viewed as a principal P̃–bundle over
M̃ . As in the CR case, conformal structures may equivalently described by a
standard tractor bundle. It is easy to show that the bundle T̃ = G×P̃ V → M̃

can be used as a standard tractor bundle for a conformal structure on M̃ ,
which thus is canonically associated to the CR structure on M . Further, one
shows that the normal CR Cartan connection induces the conformal normal
standard tractor connection on T̃ .

There is a canonical U(1)–action on M̃ with orbit space M . This lifts
to an action by vector bundle maps on T̃ whose orbit space is exactly the
CR standard tractor bundle T → M . This construction leads to a parallel
orthogonal complex structure on the conformal standard tractor bundle of
M̃ , which can be used to decompose the conformal adjoint tractor bundle
into pieces that are related (via a U(1)–action) to certain tractor bundles on
M . These constructions are compatible with the fundamental derivatives
and the tractor D–operators. A similar correspondence is available for more
general bundles.

From the construction, one immediately concludes that the Cartan cur-
vatures of the conformal structure on M̃ and of the CR structure on M are
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essentially the same object. Further, one may descend conformally invariant
differential operators on M̃ to families of CR invariant differential operators
on M (including formulae). One obtains a precise relation between infin-
itesimal automorphisms of M and of M̃ , and one can prove a number of
results on the conformal geometry of M̃ (existence of twistor spinors and
odd degree conformal Killing forms, etc.). Finally, it can be shown that the
orthogonal parallel complex structure on the standard tractor bundle locally
characterizes Fefferman spaces among all conformal structures.

3.2. Tractors and the ambient metric. Consider an embedded non–
degenerate CR manifold M ⊂ Cn+1 of signature (p, q). Fefferman’s ambient
metric construction (see [10]) mimics the homogeneous model by first ex-
tending M to the cone M# := C∗ × M ⊂ C∗ × Cn+1 and then defining a
pseudo–Kähler metric of signature (p + 1, q + 1) locally around that cone.
Starting with a smooth defining function r for M , i.e. a smooth real valued
function defined locally around M such that M = r−1(0) and dr is nonzero
on M , one considers the defining function r#(z0, z) := |z0|2r(z) for M#. It
turns out that this can be used as the potential for a pseudo–Kähler metric
g of the right signature. Note that by construction the metric g as well as
its Levi–Civita connection and curvature are explicitly computable from r.

Of course, this depends on the choice of the defining function, which has
to be normalized in order to make things CR invariant. Fefferman showed
that this can be achieved by requiring r to be an approximate solution of
the complex Monge–Ampère equation J(r) = 1 and gave a simple algorithm
to construct approximate solutions in the sense that J(r) = 1 + O(rn+2).

For any choice of defining function r, one may define a complex line bundle
E(1, 0) (with the required properties) as an associated bundle to M# → M .
After this choice, sections of E(k, `) can be identified with homogeneous
functions on M#. Next, one defines a lift of the natural C∗–action on M#

to the restriction T (C∗ × Cn+1)|M#
of the ambient tangent bundle. The

orbit space T of this action is a smooth rank n + 2 complex vector bundle
over M#/C∗ = M . It is easy to see that the ambient pseudo–Kähler metric
g descends to a Hermitian bundle metric h of signature (p + 1, q + 1) on
T . The vertical tangent bundle descends to a complex line bundle T 1 ⊂ T
which consists of null–lines and thus induces an appropriate filtration on T .
Finally, the Levi–Civita connection of g descends to a Hermitian connection
∇T on T .

In this generality T is not a CR standard tractor bundle, since it is not
clear whether Λn+2T admits a parallel section. However, one proves that
A = su(T ) is an adjoint tractor bundle and the connection ∇A induced by
∇T is a tractor connection. More subtle arguments show that this tractor
connection is normal iff the Ricci curvature of the ambient metric g vanishes
along M#.

Finally, suppose that we deal with a normalized defining function r sat-
isfying J(r) = 1 + O(r3). Then one directly constructs a global section of
Λn+2T which is parallel for the connection induced by ∇T . Thus, T be-
comes a CR standard tractor bundle and ∇T is a tractor connection on T .
Moreover, it is well know that J(r) = 1 + O(r3) implies that the associated
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ambient metric is Ricci flat along M#, which implies that T is the normal
standard tractor bundle and ∇T is the normal standard tractor connection.

In this way, one obtains explicit formulae for all the ingredients for tractor
calculus in terms of the normalized defining function r. By construction,
the ambient curvature descends to the tractor curvature, which equals the
Cartan curvature. For defining functions r such that J(r) = 1 + O(rk) for
some k > 3, one may obtain additional information on the ambient curvature
and its covariant derivatives up to a certain order from the tractor curvature.
Using −i∂r as a pseudo–Hermitian structure, the tractor machinery leads to
explicit formulae for the underlying structures (Weyl– and Webster–Tanaka
connections, Rho–tensors) in terms of r.
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