## RANDOM WALKS ON GROUPS, 2023 SS EXERCISES A

(1) Show the asymptotic distribution for the simple random walk on $\mathbb{Z}$ is, for $k \leq n / 2$, given by:

$$
P\left[Z_{2 n}=2 k\right] \sim \frac{1}{\sqrt{\pi}} \cdot \frac{1}{\sqrt{n}} \cdot e^{-\frac{k^{2}}{n}}
$$

Fact: For $b, p>0, \lim _{x \rightarrow \infty}\left(1+\frac{b}{x^{p}}\right)^{x^{p}}=e^{b}$
(2) Show the return probability for the simple random walk on the 3 -dimensional grid is:

$$
p^{(2 n)}(\overrightarrow{0}, \overrightarrow{0}) \sim \frac{1}{2} \cdot\left(\frac{3}{\pi}\right)^{3 / 2} \cdot n^{-3 / 2}
$$

A walk that starts and ends at $\overrightarrow{0}$ takes $\ell$ steps left and $\ell$ steps right, $h$ steps up and $h$ steps down, and $b$ steps back and $b$ steps forward, where $\ell, h$, and $b$ are non-negative numbers such that $n=\ell+h+b$. The following will be helpful:

- Stirling's approximation
- $\ell!h!b!\geq \frac{n}{3}!\frac{n}{3}!\frac{n}{3}!$
- $3^{n}=\sum_{\ell+h \leq n} \frac{n!}{\ell!h!b!}$
(3) The Soulmates Problem: Ingrid and Hagrid are simple random walkers starting at different points in the grid $\mathbb{Z}^{d}$. For which $d$ do they almost surely eventually find one another? That is, for which $d$ is the probability that there exists $n$ such that $I_{n}=H_{n}$ equal to 1 ?
(4) Soulmates II, the Perfume Problem: As above, but additionally Ingrid wears a perfume that lingers at each vertex she visits. For which $d$ does Hagrid almost surely catch a whiff of Ingrid's perfume; that is, for which $d$ is the probability that there exists $n$ such that for some $m \leq n, H_{n}=I_{m}$ equal to 1 ?
(5) Try drawing some Cayley graphs, say for the symmetric groups on 2, 3, and 4 elements.
(6) Show that different word metrics on a finitely generated group are biLipschitz equivalent; that is, if $G$ is a group with finite generating sets $S_{1}$ and $S_{2}$ then there exists $L$ such that for all $g, h \in G$ we have:

$$
\frac{1}{L} d_{S_{1}}(g, h) \leq d_{S_{2}}(g, h) \leq L d_{S_{1}}(g, h)
$$

A quasiisometry is a map $\phi: X \rightarrow Y$ between metric spaces such that there exist $L$ and $A$ such that:

- (coarsely biLipschitz) $\forall x_{1}, x_{2} \in X$

$$
\frac{1}{L} d_{X}\left(x_{1}, x_{2}\right)-A \leq d_{Y}\left(\phi\left(x_{1}\right), \phi\left(x_{2}\right)\right) \leq L d_{X}\left(x_{1}, x_{2}\right)+A
$$

- (coarsely surjective) $\forall y \in Y \exists x \in X, \quad d_{Y}(y, \phi(x)) \leq A$

Two maps $\phi, \psi: X \rightarrow Y$ are coarsely equivalent if $\exists A \forall x \in X, d_{Y}(\phi(x), \psi(x)) \leq A$.
(7) Show the integer grid $\mathbb{Z}^{2}$ (with its edge length metric!!) is quasiisometric to the Euclidean plane.
(8) Show that if $\phi: X \rightarrow Y$ is a quasiisometry then there is a map $\bar{\phi}: Y \rightarrow X$ such that $\bar{\phi} \circ \phi$ is coarsely equivalent to $I d_{X}$ and $\phi \circ \bar{\phi}$ is coarsely equivalent to $I d_{Y}$. Show that $\bar{\phi}$ is well-defined up to coarse equivalence. Show that $\bar{\phi}$ is a quasiisometry. $\bar{\phi}$ is called a quasiisometry inverse of $\phi$.
(9) Show that if $G$ is a finitely generated group and $H$ is a finite index subgroup of $G$ then $H$ is finitely generated and for any choice of finite generating sets $S$ of $G$ and $T$ of $H$ the inclusion of $H$ into $G$ is a quasiisometry between $\operatorname{Cay}(G, S)$ and $\operatorname{Cay}(H, T)$. Describe a quasiisometry inverse.

