## RANDOM WALKS ON GROUPS, 2023 SS <br> EXERCISES B

(1) Compute the spectral radius of the simple random walk on the $\mathbb{Z}^{d}$ grid.
(2) Show the following equivalent formulations of recurrence/transience:

- recurrent $\Longleftrightarrow \mathbb{P}[$ random walk starting at $x$ never returns to $x]=0$
- recurrent $\Longleftrightarrow \forall x, y \in X, F(x, y)=1$
- recurrent $\Longleftrightarrow \forall x, y \in X, \mathbb{P}_{x}\left[Z_{n}=y\right.$ for infinitely many $\left.n\right]=1$
- transient $\Longleftrightarrow \forall x \in X \forall$ finite $A \subset X, \mathbb{P}_{x}\left[Z_{n} \in A\right.$ for infinitely many $\left.n\right]=0$
(3) Construct an example of a non-recurrent graph in which there exist vertices $x \neq y$ with $F(x, y)=1$.
(4) Show that if $\operatorname{Cay}(G, S)$ is homeomorphic to $\mathbb{R}$ then $G$ is either $\mathbb{Z}$ or the infinite dihedral group $D_{\infty}$.

$$
(x \mid y)_{z}:=\frac{1}{2}(d(x, z)+d(y, z)-d(x, y))
$$

(5) Show that if $X$ is a tree then $(x \mid y)_{z}$ is the distance from $z$ to the unique geodesic $[x, y]$ between $x$ and $y$.
(6) Show that if $X$ is a tree then given any $x, y, z$ there is a unique point $m=m(x, y, z)=[x, y] \cap[y, z] \cap[x, z]$, where $[x, y]$ is the unique geodesic from $x$ to $y$.
(7) Show the same is true in the grid $\mathbb{Z}^{2}$, where this time $[x, y]$ denotes the set of all possible geodesics from $x$ to $y$.

