RANDOM WALKS ON GROUPS, 2023 SS EXERCISES B

- (1) Compute the spectral radius of the simple random walk on the \mathbb{Z}^d grid.
- (2) Show the following equivalent formulations of recurrence/transience:
 - recurrent $\iff \mathbb{P}[\text{random walk starting at } x \text{ never returns to } x] = 0$
 - recurrent $\iff \forall x, y \in X, F(x, y) = 1$
 - recurrent $\iff \forall x, y \in X, \mathbb{P}_x[Z_n = y \text{ for infinitely many } n] = 1$
 - transient $\iff \forall x \in X \forall$ finite $A \subset X$, $\mathbb{P}_x[Z_n \in A \text{ for infinitely many } n] = 0$
- (3) Construct an example of a non-recurrent graph in which there exist vertices $x \neq y$ with F(x, y) = 1.
- (4) Show that if Cay(G, S) is homeomorphic to \mathbb{R} then G is either \mathbb{Z} or the infinite dihedral group D_{∞} .

 $(x|y)_z := \frac{1}{2}(d(x,z) + d(y,z) - d(x,y))$

- (5) Show that if X is a tree then $(x|y)_z$ is the distance from z to the unique geodesic [x, y] between x and y.
- (6) Show that if X is a tree then given any x, y, z there is a unique point $m = m(x, y, z) = [x, y] \cap [y, z] \cap [x, z]$, where [x, y] is the unique geodesic from x to y.
- (7) Show the same is true in the grid Z², where this time [x, y] denotes the set of all possible geodesics from x to y.