RANDOM WALKS ON GROUPS, 2023 SS EXERCISES C

- (1) Show that a harmonic function on a finite graph is constant.
- (2) Show that a superharmonic function on a graph (not necessarily finite) that realizes a minimum value is constant.
- (3) (finite Dirichlet problem) Suppose A is a finite subset of a bounded valence graph X. Given a function $f_0: A^c \to \mathbb{R}$, show there is a unique extension $f: X \to \mathbb{R}$ that agrees with f_0 on A^c and is harmonic at every point of A, given by $f(x) = \mathbb{E}_x[f_0(Z_{s^{A^c}})]$, where $s^{A^c} = \min\{n \ge 0 \mid Z_n \in A^c\}$.

Let T be a bounded valence tree, and fix a vertex \mathcal{O} as basepoint. Define ∂T to be the set of geodesic rays based at \mathcal{O} ; that is, infinite edge paths $e_1e_2e_3\ldots$ such that $\mathcal{O} = e_1^-, e_i^+ = e_{i+1}^-$, and $e_{i+1} \neq \bar{e}_i$ for all i.

- (4) Show that the Gromov product $(x \mid y)_z$ defined last time can be extended ∂T as follows. Let $\xi = e_1 e_2 e_3 \dots$ and $\eta = e'_1 e'_2 e'_3 \dots$ be geodesic rays and $x, y \in T$. Show the sequence $(e_i^- \mid x)_{\mathcal{O}}$ stabilizes, and define this to be $(\xi \mid x)_{\mathcal{O}}$. Similarly, show that for all sufficiently large *i* and *j* the function $i, j \mapsto (e_i^- \mid e'_j)_{\mathcal{O}}$ is constant, and define this to be $(\xi \mid \eta)_{\mathcal{O}}$. Show $(\xi \mid \eta)_{\mathcal{O}} = \max\{0\} \cup \{n \in \mathbb{N} \mid \forall i \leq n, e_i = e'_i\}$.
- (5) Show $d(\xi, \eta) = e^{-(\xi|\eta)_o}$ defines a metric on ∂T .
- (6) Show that if e is an edge in T then the set of boundary points that contain e in their defining geodesic ray is a subset of ∂T that is both open and closed.
- (7) Show ∂T is compact.
- (8) Show that if the vertices of T have valence bounded below by 3 then ∂T contains no isolated points. Brouwer's Theorem then says that a tree with vertices of valence bounded above and bounded below by 3 has ∂T homeomorphic to the Cantor space.
- (9) Show that if T and T' are bounded valence trees with no leaves and ∂T is isometric to $\partial T'$ then T is isomorphic to T'.