RANDOM WALKS ON GROUPS, 2023 SS EXERCISES D

- (1) Consider a graph with vertex set \mathbb{N}_0 with 2^n edges between n and n+1. Show the simple random walk on this graph is transient. Conclude that bounded geometry hypotheses are important.
- (2) Show there is a quasi-isometry $T_3 \to T_4$ that is bijective on vertices.

If X is a bounded geometry graph, define a ray $\gamma \colon \mathbb{N}_0 \to X$ to be a sequence of vertices v_0, v_1, \ldots such that $\forall i, v_i \sim v_{i+1}$. A ray is proper if for every bounded set $B \subset X$, $\gamma^{-1}(B)$ is bounded. For any proper ray γ and bounded subset $B \subset X$, B has only finitely many complementary connected components, and one of those contains all but finitely many vertices of γ . Say that γ ends in C.

(3) Show there is an equivalence relation on proper rays in X defined by $\gamma \sim \gamma'$ if for every bounded set B, γ and γ' end in the same complementary component of B.

Define Ends(X) to be the set of equivalence classes of proper rays.

- (4) Show that for any choice of basepoint $\mathcal{O} \in X$ and every $\mathcal{E} \in Ends(X)$ there is a geodesic ray ξ based at \mathcal{O} that belongs to \mathcal{E} .
- (5) Show that a quasi-isometry between bounded geometry graphs induces a bijection between their ends.
- (6) Compute the cardinality of $Ends(\mathbb{Z})$, $Ends(\mathbb{Z}^2)$, and $Ends(T_3)$. Conclude that none of \mathbb{Z} , \mathbb{Z}^2 , and T_3 are quasi-isometric to one another.