RANDOM WALKS ON GROUPS, 2023 SS EXERCISES D

(1) Consider a graph with vertex set \mathbb{N}_{0} with 2^{n} edges between n and $n+1$. Show the simple random walk on this graph is transient. Conclude that bounded geometry hypotheses are important.
(2) Show there is a quasi-isometry $T_{3} \rightarrow T_{4}$ that is bijective on vertices.

If X is a bounded geometry graph, define a ray $\gamma: \mathbb{N}_{0} \rightarrow X$ to be a sequence of vertices v_{0}, v_{1}, \ldots such that $\forall i, v_{i} \sim v_{i+1}$. A ray is proper if for every bounded set $B \subset X, \gamma^{-1}(B)$ is bounded. For any proper ray γ and bounded subset $B \subset X, B$ has only finitely many complementary connected components, and one of those contains all but finitely many vertices of γ. Say that γ ends in C.
(3) Show there is an equivalence relation on proper rays in X defined by $\gamma \sim \gamma^{\prime}$ if for every bounded set B, γ and γ^{\prime} end in the same complementary component of B.

Define $\operatorname{Ends}(X)$ to be the set of equivalence classes of proper rays.
(4) Show that for any choice of basepoint $\mathcal{O} \in X$ and every $\mathcal{E} \in \operatorname{Ends}(X)$ there is a geodesic ray ξ based at \mathcal{O} that belongs to \mathcal{E}.
(5) Show that a quasi-isometry between bounded geometry graphs induces a bijection between their ends.
(6) Compute the cardinality of $\operatorname{Ends}(\mathbb{Z}), \operatorname{Ends}\left(\mathbb{Z}^{2}\right)$, and $\operatorname{Ends}\left(T_{3}\right)$. Conclude that none of $\mathbb{Z}, \mathbb{Z}^{2}$, and T_{3} are quasi-isometric to one another.

