RANDOM WALKS ON GROUPS, 2023 SS EXERCISES F

(1) A subset $A \subset X$ is μ -frilly if for all $x, y \in X$ such that d(x, A) = r and d(y, A) = r and $\operatorname{diam} \pi_A(x) \cup \pi_A(y) > 2r$, every path from x to y that does not enter the r-neighborhood of A has length at least $\mu(r) \cdot d(x, y)$.

Consider the graph that is the 1-skeleton of the (5, 4)-tiling of \mathbb{H}^2 , as in Figure 1. Argue that geodesics

FIGURE 1. (5, 4)-tiling of \mathbb{H}^2

are μ -frilly for exponential μ . (In this example the projection diameter bound is not important.)

(2) Show that if every geodesic triangle in X is δ -thin then if α and β are geodesic rays based at o and $d_{Haus}(\alpha, \beta) < \infty$ then $d_{Haus}(\alpha, \beta) \leq \delta$.

Recall $d_{Haus}(A, B)$ is the infinum of distance r such that A is contained in the r-neighborhood of Band B is contained in the r-neighborhood of A.

(3) Show that if X has δ -thin triangles then geodesics in X are D-strongly contracting for some D depending only on δ . (Claim: $D = 16\delta$ works.)

Recall that γ is *D*-strongly contracting if for all $x, y \in X$ with $d(x, y) \leq d(x, \gamma)$ we have diam $\pi_{\gamma}(x) \cup \pi_{\gamma}(y) \leq D$, where $\pi_{\gamma} : x \mapsto \{p \in \gamma \mid d(x, p) = d(x, \gamma)\}$. Hint: Consider a geodesic square formed by x, $y, x' \in \pi_{\gamma}(x)$ and $y' \in \pi_{\gamma}(y)$. Subdivide it into geodesic triangles by adding a geodesic from x to y'.

- (4) Suppose γ is *D*-strongly contracting. Show that for every $x, y \in X$, one of the following is true for C := 4D:
 - diam $\pi_{\gamma}(x) \cup \pi_{\gamma}(y) \leq C$
 - Every geodesic from x to y enters the C-neighborhood of γ .

Hint: Suppose α is a geodesic from x to y that does not enter the C-neighborhood of γ , and diam $\pi_{\gamma}(x) \cup \pi_{\gamma}(y) > C$. Show that $k = \lfloor \frac{d(x,y) - d(x,\gamma) - d(y,\gamma)}{C} \rfloor \geq 1$. Then there are $z_0, z_1, \ldots, z_{k+1}$ on α such that $d(x,\gamma) = d(x,z_0), d(y,\gamma) = d(y,z_{k+1})$, and $d(z_i, z_{i+1}) \leq C$. Derive a contradiction.