RANDOM WALKS ON GROUPS, 2023 SS EXERCISES G

Assume for the first 4 problems that X is a proper geodesic metric space, but **NOT NECESSARILY HYPEBOLIC**.

(1) Show that for $D \ge 0$ there is a C such that if $Y \subset X$ is D-strongly contracting and $x \in X$ and $y \in Y$ then:

$$d(x,y) \ge d(x,\pi_Y(x)) + d(\pi_Y(x),y) - C$$

- (2) Show the for $D \ge 0$ there exists χ such that if $Y \subset X$ is D-strongly contracting then it is χ -quasigeodesically quasi-convex.
- (3) Show that given D, L, and A there exist D' and H such that for every D-strongly contracting (L, A)quasi-geodesic ray γ there exists a geodesic ray α such that $d_{Haus}(\alpha, \gamma) \leq H$ and α is D'-strongly contracting.
- (4) Suppose that φ: X → Y is a quasi-isometry between proper geodesic metric spaces. Suppose that Y has the property that given χ there exists D such that χ-quasi-geodesically quasi-convex sets in Y are D-strongly contracting. Show that for all D₁ there exists D₂ such that φ sends any D₁-strongly contracting geodesic ray in X to within bounded Hausdorff distance of a D₂-strongly contracting geodesic ray in Y. Remark: The statement is not true without the extra hypothesis on Y. The extra hypothesis is true, for example, if Y is hyperbolic or CAT(0).
- (5) Suppose X is a proper geodesic space. Let \mathcal{O} and \mathcal{O}' be two different choices of basepoint. Show that the resulting boundaries of X are homeomorphic.
- (6) Suppose X is a proper geodesic space. Show that an action $G \curvearrowright X$ by isometries induces an action of $G \curvearrowright \partial X$ by homeomorphisms.