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Abstract. We prove that Morse subsets of CAT(0) spaces are strongly contracting.

This generalizes and simplifies a result of Sultan, who proved it for Morse quasi-geodesics.
Our proof goes through the recurrence characterization of Morse subsets.

In this note we give a short proof of the following technical result:

Proposition. If Z is a ρ–recurrent subset of a CAT(0) space X and the empty set is not
in the image of the map πZ(x) := {z ∈ Z | d(x, z) = d(x,Z)} then Z is 12ρ(21)–strongly
contracting.

This is the final piece of the following theorem, which says that a number of properties
that are equivalent to quasi-convexity in hyperbolic spaces are also equivalent to one another
in CAT(0) spaces:

Theorem. Let X be a geodesic metric space. Let Z be an unbounded subset of X such that
the empty set is not in the image of πZ . The following are equivalent:

Z is Morse:: There is a function µ : [1,∞) × [0,∞) → [0,∞) defined by µ(L,A) :=
supγ supw∈γ d(w,Z), where the first supremum is taken over (L,A)–quasi-geodesic
segments γ with both endpoints on Z.

Z is contracting:: There is a function σ : [0,∞) → [0,∞) with limr→∞ σ(r)/r = 0
defined by:

σ(r) := sup
d(x,y)≤d(x,Z)≤r

diamπZ(x) ∪ πZ(y)

Z is recurrent:: There is a function ρ : [1,∞)→ [0,∞) defined by:

ρ(q) := sup
∆(γ)≤q

inf
w∈γ

d(w,Z ′)

The first supremum is taken over rectifiable segments γ with distinct endpoints on

Z such that ∆(γ) := len(γ)
d(γ+,γ−) ≤ q, where γ+ and γ− are the endpoints of γ and Z ′

is Z with the open balls of radius d(γ+, γ−)/3 about γ+ and γ− removed.

If X is hyperbolic or CAT(0) then these conditions are equivalent to:

Z is strongly contracting:: Z is contracting and the contraction gauge σ is a bounded
function.

Corollary. Morse subsets of CAT(0) spaces are strongly contracting.

We refer the reader to [3] for background on hyperbolic and CAT(0) spaces.
The Proposition and the Theorem can be extended to arbitrary non-empty subsets Z by

suitable modification of the definitions. Specifically, if the empty set is in the image of πZ
then redefine πZ(x) := {z ∈ Z | d(x, z) ≤ d(x,Z) + 1}. Extra bookkeeping is then required
to compute an explicit contraction bound in the proof of the proposition. For bounded
sets the four properties are trivially satisfied, with the possible exception that the given
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definition of recurrence does not make sense if some Z ′ is empty, which occurs, for instance,
when Z is a two point set. We could redefine ρ to be the diameter of Z in this case.

The corollary confirms a conjecture of Russell, Spriano, and Tran [7] and generalizes a
result of Sultan [8], who proved that Morse quasi-geodesics in CAT(0) spaces are strongly
contracting.

Genevois [6] proved that Morse subsets of a finite dimensional CAT(0) cube complex
X are strongly contracting in the combinatorial metric. While this is quasi-isometric to
the CAT(0) metric, the property of being a strongly contracting subset is not, in general,
preserved by quasi-isometries [2], so Genevois’s result and our theorem are independent.
However, since the Morse property is preserved by quasi-isometries, and since Morse equals
strongly contracting in both metrics, X has the same strongly contracting subsets regardless
of whether it is endowed with the CAT(0) or the combinatorial metric.

Proof of the theorem. The contraction condition was introduced in [1], where it was shown
to be equivalent to the Morse condition. The recurrence condition was used to characterize
Morse quasi-geodesics in [5], and this characterization can be extended to arbitrary subsets,
as in [4, Theorem 2.2]. Strong contraction obviously implies contraction. It is easy to see
that all of these properties are equivalent to quasi-convexity in hyperbolic spaces. The
proposition supplies the remaining implication. �

There is extensive literature making use of the Morse property and equivalent character-
izations in various settings, but a complete exposition would be longer than this paper, so
we will not attempt it. Sultan’s result uses a characterization of the images of Morse quasi-
geodesics in asymptotic cones due to Druţu, Mozes, and Sapir [5]. Loosely speaking, this
characterization depends on there being a sensible notion of one point being between two
others, which we have for quasi-geodesics but not, at least in an obvious way, for arbitrary
subsets. We avoid the use of asymptotic cones and instead use recurrence (which also comes
from [5]). We construct curves in essentially the same way as Sultan, but our argument, in
addition to applying to general subsets, is simpler and gives an explicit strong contraction
bound.

Proof of the proposition. Define D := ρ(21). Supposing the contraction gauge σ of Z is not
bounded by 12D, we derive a contradiction. Failure of the contraction bound means there
exist points x, y ∈ X such that d(x, y) ≤ d(x,Z) and such that diamπZ(x)∪ πZ(y) > 12D.
We may assume d(x,Z) ≥ d(y,Z), because otherwise d(x, y) ≤ d(y,Z) and we can swap
the roles of x and y. Choose x′ ∈ πZ(x) and y′ ∈ πZ(y) such that P := d(x′, y′) > 12D.
Let Z ′ denote the set Z with the open balls of radius P/3 about x′ and y′ removed.

For points a, b ∈ X , let [a, b] : [0, 1] → X denote the geodesic segment from a to b,
parameterized proportional to arc length. Concatenation is denoted ‘+’.

(∗) If d(w,Z ′) ≤ D for some w ∈ X then w /∈ [x′, x] + [x, y] + [y, y′].

To see this, first suppose w ∈ [x′, x]. Then x′ ∈ πZ(w), so P/3 ≤ d(x′,Z ′) ≤ d(x′, w) +
d(w,Z ′) = d(w,Z) + d(w,Z ′) ≤ 2d(w,Z ′) ≤ 2D, which is a contradiction, since P > 12D.
Similarly, w /∈ [y′, y]. If w ∈ [x, y] then:

d(x,w) + d(w, y) = d(x, y) ≤ d(x,Z) ≤ d(x,w) +D

Thus, d(w, y) ≤ D, which implies:

P/3 ≤ d(y′,Z ′) ≤ d(y′, y) + d(y,Z ′) ≤ 2d(y,Z ′) ≤ 2(d(y, w) + d(w,Z ′)) ≤ 4D

Again, this contradicts the hypothesis that P > 12D, so (∗) is verified.
Now there are three cases to consider.
Case 1, d(x, x′) ≤ 6P : Define γ := [x′, x] + [x, y] + [y, y′]. Then len(γ) ≤ 18P < 21P ,

so recurrence says there is a point w ∈ γ such that d(w,Z ′) ≤ D. By (∗), this is impossible.



MORSE SUBSETS OF CAT(0) SPACES ARE STRONGLY CONTRACTING 3

x

x′

y

y′

Case 1

x

x′

y

y′

a

b

Case 2

x

x′

y

y′

a
c

e
b

Case 3

Case 2, d(x, x′) > 6P and d(y, y′) ≤ 4P : Let a := [x′, x]( 6P
d(x,x′) ) and b := [y, x]( 6P

d(x,x′) ),

so that:

d(a, x′) =
6P

d(x, x′)
· d(x, x′) = 6P and d(b, y) =

6P

d(x, x′)
· d(x, y) ≤ 6P

Since d(x′, y) ≤ 5P , the CAT(0) condition implies d(a, b) < 5P . Define γ := [x′, a] + [a, b] +
[b, y] + [y, y′]. Since len(γ) < 6P + 5P + 6P + 4P = 21P , recurrence says there is a point
w ∈ γ with d(w,Z ′) ≤ D. By (∗), the only possibility is w ∈ [a, b], but this is impossible
because d([a, b],Z) ≥ d(a,Z)− d(a, b) > 6P − 5P = P > D.

Case 3, d(x, x′) > 6P and d(y, y′) > 4P : Let a := [x′, x]( 4P
d(x,x′) ) and let c :=

[y′, x]( 4P
d(x,x′) ). Then d(x′, a) = 4P and:

4P ≤ d(y′, c) =
4P

d(x, x′)
· d(y′, x) ≤ 4P

d(x, x′)
· (d(x, x′) + P ) <

14

3
P

Let b be the point of [y′, y] at distance 4P from y′, and let e be the point of [y′, x] at
distance 4P from y′, so d(c, e) < 2

3P . The CAT(0) condition implies that d(a, c) < P and,

since d(x, y) ≤ d(x, y′), that d(e, b) ≤ 4
√

2P .

Define γ := [x′, a]+[a, c]+[c, e]+[e, b]+[b, y′]. Then len(γ) < 4P+P+ 2
3P+4

√
2P+4P <

21P , so recurrence demands a point w ∈ γ with d(w,Z ′) ≤ D. By (∗), w /∈ [x′, a], [b, y′].
We cannot have w ∈ [a, c] + [c, e] because d([a, c] + [c, e],Z) ≥ d(a,Z)− (d(a, c) + d(c, e)) >
4P − P − 2

3P > D. Thus, w ∈ [e, b], so d(e, b) = d(e, w) + d(w, b). However, d(w, b) ≥
d(b,Z) − d(w,Z) ≥ 4P −D > 47

12P . By the same reasoning, 47
12P < d(a,w), but d(a,w) <

P + 2
3P + d(e, w), so d(e, w) > 27

12P . This gives us the desired contradiction:

6P <
74

12
P < d(e, w) + d(w, b) = d(e, b) ≤ 4

√
2P < 6P

Since all three cases ended in contradiction, we conclude 12D bounds σ. �
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