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The aim of this work is to present several new results concerning duality in
scalar convex optimization, the formulation of sequential optimality conditions and
some applications of the duality to the theory of maximal monotone operators.

After recalling some properties of the classical generalized interiority notions
which exist in the literature, we give some properties of the quasi interior and
quasi-relative interior, respectively. By means of these notions we introduce several
generalized interior-point regularity conditions which guarantee Fenchel duality. By
using an approach due to Magnanti, we derive corresponding regularity conditions
expressed via the quasi interior and quasi-relative interior which ensure Lagrange
duality. These conditions have the advantage to be applicable in situations when
other classical regularity conditions fail. Moreover, we notice that several duality
results given in the literature on this topic have either superfluous or contradictory
assumptions, the investigations we make offering in this sense an alternative.

Necessary and sufficient sequential optimality conditions for a general convex
optimization problem are established via perturbation theory. These results are
applicable even in the absence of regularity conditions. In particular, we show that
several results from the literature dealing with sequential optimality conditions are
rediscovered and even improved.

The second part of the thesis is devoted to applications of the duality theory to
enlargements of maximal monotone operators in Banach spaces. After establishing
a necessary and sufficient condition for a bivariate infimal convolution formula, by
employing it we equivalently characterize the ε-enlargement of the sum of two max-
imal monotone operators. We generalize in this way a classical result concerning
the formula for the ε-subdifferential of the sum of two proper, convex and lower
semicontinuous functions. A characterization of fully enlargeable monotone opera-
tors is also provided, offering an answer to an open problem stated in the literature.
Further, we give a regularity condition for the weak∗-closedness of the sum of the
images of enlargements of two maximal monotone operators.

The last part of this work deals with enlargements of positive sets in SSD spaces.
It is shown that many results from the literature concerning enlargements of maxi-
mal monotone operators can be generalized to the setting of Banach SSD spaces.
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Chapter 1

Introduction

The simplex method published by Dantzig in 1947 and the duality theorem (ex-
plicitly given for the first time in 1951 by Gale, Kuhn and Tucker [64]) have
proved to be important steps in linear optimization, due to their robustness and
efficiency for solving various problems appearing in operations research, business,
economics and engineering.

Soon it was realized that in practice often one has to deal with optimization prob-
lems with the function which has to be minimized (or maximized) being convex,
and not necessarily linear. This fact along with the increasing interest of mathe-
maticians in the calculus of variations motivated an intensive study of convex sets
and convex functions. We mention here the pioneering works of Fenchel [62],
Brøndsted [38], Moreau [102, 103] and Rockafellar [118, 119], which are the
cornerstones of the convex analysis, including investigations on the theory of convex
functions, conjugate functions and duality in convex optimization. For a compre-
hensive study of convex analysis in finite-dimensional spaces we refer to the mono-
graphs of Borwein and Lewis [15], Hiriart-Urruty and Lemaréchal [73–75]
and Rockafellar [120], while for the infinite-dimensional case we mention the
works due to Ekeland and Temam [60] and Zălinescu [147] (see also [121]).

To a primal convex optimization problem one can associate, by means of conju-
gate functions, a dual optimization problem, for which weak duality holds, that is
the optimal objective value of the dual is less than or equal to the optimal objective
value of the primal problem. Let us mention that the two duality approaches with
the greatest resonance in the literature are the so-called Fenchel and Lagrange du-
ality, respectively. Actually, the duality approach based on conjugate functions can
be studied from a more general point of view, by means of the perturbation theory
(we refer to [60,147] for more on this approach). An important challenge in duality
theory is to find conditions which ensure strong duality, namely the case when the
optimal objective values of the two problems are equal and the dual has an optimal
solution. This issue was solved by introducing several so-called regularity conditions
guaranteeing strong duality.

Let us mention that several results from the theory of conjugate duality have
been successfully applied in mathematical economics, optimal control, mechanics,
numerical analysis, variational analysis, support vector machines and the list can
be continued.

The present work has been developed towards two main directions. In the first
part we introduce by means of generalized interiority notions some new regularity
conditions guaranteeing Fenchel and Lagrange duality. These conditions are useful
to overcome the situation when the classical regularity conditions given in the liter-
ature fail. Moreover, establishing regularity conditions guaranteeing strong duality
is important in order to be able to derive necessary and sufficient optimality condi-

9



10 CHAPTER 1. INTRODUCTION

tions. On the other hand, we show that a sequential form of optimality conditions
for different classes of optimization problems can be provided even in the absence
of any regularity condition.

The second part of the thesis is dedicated to applications of the duality theory to
enlargements of monotone operators. Since 2001, when the Fitzpatrick function as-
sociated to a maximal monotone operator was rediscovered, conjugate duality plays
a significant role in the theory of maximal monotone operators, offering in many
situations the possibility to reduce questions on monotone operators to questions
on convex functions. We underline this connection by several applications of the
duality theory to enlargements of maximal monotone operators in Banach spaces.

1.1 A description of the contents

In the following we give a description of the contents of this thesis, underlining its
most important results. In the last part of the introduction we include a section
with preliminary notions and results which makes this manuscript self-contained.

The second chapter is devoted to the study of strong duality results in infinite-
dimensional scalar convex optimization. In the first section we revisit some proper-
ties of several generalized interiority notions from the literature, like the algebraic
interior, relative algebraic interior and strong quasi-relative interior. Then we focus
our attention on the notions of quasi interior and quasi-relative interior, the later
being introduced by Borwein and Lewis (cf. [14]). The main tool which is often
used in deriving strong duality results in convex optimization is the existence of sep-
aration theorems. This in the reason why a special attention is paid to establishing
useful separation theorems by means of the quasi interior and quasi-relative interior
of convex sets. The next section deals with Fenchel duality. After recalling the clas-
sical generalized interior-point regularity conditions given in the literature in order
to overcome the duality gap between a primal (Fenchel-type) convex optimization
problem and its Fenchel dual, we introduce some new ones expressed with the help
of the notions of quasi interior and quasi-relative interior, respectively. These con-
ditions turn out to be sufficient for strong duality. A very interesting approach due
to Magnanti (cf. [91]) offers a link between Fenchel duality and Lagrange duality.
This is presented in the last section of the second chapter and we derive in this
way corresponding strong duality results between the primal optimization problem
with geometric and cone constraints and its Lagrange dual problem. The strong
duality results introduced by means of the quasi interior and quasi-relative interior
offer an alternative for the situation when the classical strong duality results from
the literature cannot be applied. Several examples illustrate the usefulness of these
new duality statements. We conclude the chapter with a comment on different
strong duality theorems given in the literature that employ the quasi-relative inte-
rior, which turn out to have either superfluous, or contradictory assumptions. The
investigations we make are useful to overcome this drawback.

In the first section of the third chapter we derive necessary and sufficient se-
quential optimality conditions for the general optimization problem

(PΦ) inf
x∈X

Φ(x, 0),

where Φ : X × Y → R is a proper, convex and lower semicontinuous function such
that 0 ∈ prY (dom Φ) and X,Y are Banach spaces with X being reflexive. These se-
quential characterizations of optimal solutions have the advantage to be applicable
even in the case when no regularity condition is fulfilled. In the last three sections of
this chapter we particularize the general results, rediscovering, and in many situa-
tions, even improving some sequential optimality conditions given in the literature.
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For a particular choice of the function Φ we derive in Section 3.2 sequential optimal-
ity conditions for the optimization problem with the objective function being the
sum of a proper, convex and lower semicontinuous function with the composition
of another proper, convex and lower semicontinuous function with a continuous lin-
ear operator. The sequential generalizations of the Pshenichnyi-Rockafellar Lemma
given by Jeyakumar and Wu in [84, Theorem 3.3 and Corollary 3.5]) follow as
particular cases of the general theory. For an appropriate choice of the function Φ
we give in Section 3.3 qualification free necessary and sufficient sequential optimal-
ity conditions for the optimization problem with geometric and cone constraints,
improving a result given by Thibault in [136, Theorem 4.1]). In the last section
of this chapter we provide different sequential optimality conditions for composed
convex optimization problems. We show that also in this case some sequential char-
acterizations of subgradients given by Thibault in [136] follow as particular cases
of the general theory developed in Section 3.1.

In the fourth chapter of the thesis we present some applications of conjugate du-
ality to enlargements of maximal monotone operators in Banach spaces. In Section
4.1 we introduce a closedness-type regularity condition which turns out to be neces-
sary and sufficient in order to have a so-called bivariate infimal convolution formula.
In the next section we revisit the most important notions and results concerning
monotone operators and their enlargements, including the properties of the so-called
Fitzpatrick function, which establishes the connection between different elements of
convex analysis and the theory of monotone operators. By using the conditions
given for the bivariate infimal convolution formula, we equivalently characterize in
Section 4.3 the ε-enlargement of the sum of two maximal monotone operators. We
extend by this approach a classical result regarding an equivalent characterization
of the ε-subdifferential of the sum of two proper, convex and lower semicontinuous
functions. Burachik and Iusem posed in [42] an open problem concerning the
characterization of the maximal monotone operators S : X ⇒ X∗ (X is a Banach
space) which are fully enlargeable by Sse, the smallest element belonging to a spe-
cial family of enlargements associated to S. An answer to this problem is provided
in Section 4.4. In the last section of this chapter we introduce a weak regularity
condition which guarantees the weak∗-closedness of the set ShS

(ε1, x) + ThT
(ε2, x),

where ε1, ε2 ≥ 0, S, T : X ⇒ X∗ are two maximal monotone operators with rep-
resentative functions hS and hT , respectively, while X and Y are Banach spaces.
This is achieved by giving a preliminary result that ensures the weak∗-closedness
of the sum of two convex and weak∗-closed sets, which are actually sublevel sets of
some functions with certain properties. In case X is a reflexive Banach space, or X
is Banach and S, T are of Gossez type (D), we improve in this way a result given
by Garćıa, Lassonde and Revalski in [65, Theorem 3.7 (1)].

In the last chapter we study the theory of enlargements of monotone operators
from a more abstract, though systematic way. Stephen Simons introduced in [127]
the notion of positive set with respect to a quadratic form q defined on a so-called
symmetrically self-dual Banach space (Banach SSD space), as an extension of the
notion of a monotone set in Banach spaces. Let us notice that the term Simons
space is already used in the community when referring to the notion of Banach SSD
space (see [22, 108]). A number of known results coming from the theory of mono-
tone operators has been successfully generalized to this framework. In analogy to
the enlargement of a monotone operator we introduce and study the notion of en-
largement of a positive set in SSD spaces. In Section 5.1 we investigate the algebraic
properties of this notion, like convexity, transportation formula, etc. We also asso-
ciate to a positive set A a family of enlargements E(A) for which we provide, in case
A is a maximally q-positive set, the smallest and the biggest element with respect
to the partial ordering inclusion relation of the graphs. In Section 5.2 we give some
topological properties of enlargements of positive sets in the framework of Banach
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SSD spaces. For Ec(A), the subfamily of E(A) containing the enlargements of A
having a closed graph, we point out, in case A is maximally q-positive, the smallest
and the biggest element with respect to the partial ordering inclusion relation of
the graphs. A one-to-one correspondence is established between this subfamily and
H(A), the set of so-called representative functions of A. We also show that the
smallest and the biggest elements of H(A) are nothing else than two functions con-
sidered by Simons in [129]. We close the chapter by giving a characterization of the
additive enlargements in Ec(A), in case A is a maximally q-positive set, which turns
out to be helpful when showing the existence of enlargements having this property.
In this way we extend to (Banach) SSD spaces several results given by Burachik
and Svaiter in [48,49,132] for enlargements of maximal monotone operators.

1.2 Preliminary notions and results

For the functional analysis tools considered in this work we refer to the monographs
of Fabian et al. [61], Holmes [76] and Rudin [125]. We emphasize that all the
vector spaces mentioned in this work are considered over the real field.

Throughout this thesis we denote by N the set of positive integers {1, 2...},
Z the set of integer numbers, R the set of real numbers and R+ the set of non-
negative real numbers. Let us mention that we denote by R the usual topology on
R. We consider also R = R ∪ {±∞} the extended real line. By Rn (n ∈ N) we
denote the n-dimensional space and by Rn+ the non-negative orthant of Rn, that is
Rn+ = {(x1, ..., xn) ∈ Rn : xi ≥ 0 ∀i = 1, n}. We identify R1 with R and similarly
R1

+ with R+.
Consider X a separated locally convex space and X∗ its topological dual space.

We denote by w(X,X∗) (w(X∗, X)) the weak topology on X induced by X∗

(the weak∗ topology on X∗ induced by X). When there is no danger of confu-
sion, the notation w (w∗) is used. For a non-empty set U ⊆ X, we denote by
co(U), cone(U), coneco(U), aff(U), lin(U), int(U), ri(U), cl(U), its convex hull, conic
hull, convex conic hull, affine hull, linear hull, interior, relative interior, and clo-
sure, respectively. We have cone(U) = ∪t≥0tU and if 0 ∈ U then obviously
cone(U) = ∪t>0tU . The set ri(U) is the interior of U relative to cl

(
aff(U)

)
.

In finite-dimensional spaces, ri(U) is the classical relative interior, that is the in-
terior of U relative to aff(U). Let us consider V ⊆ X another non-empty set.
By U + V we denote the usual Minkowski sum of the sets U, V ⊆ X, that is
U + V = {u + v : u ∈ U, v ∈ V }, while for α ∈ R, αU = {αx : x ∈ U}. By
convention we take U + ∅ = ∅ + U = ∅ + ∅ = α∅ = ∅. The following property will
be used several times in Chapter 2: if U is convex then

coneco(U ∪ {0}) = cone(U). (1. 1)

We denote by 〈x∗, x〉 the value of the continuous linear functional x∗ ∈ X∗ at x ∈ X.
Consider the identity function on X, idX : X → X, idX(x) = x for all x ∈ X. For
a function f : U ×V → R we denote by f> the transpose of f , namely the function
f> : V × U → R, f>(v, u) = f(u, v) for all (v, u) ∈ V × U . Let us mention also the
projection operator prU : U × V → U , prU (u, v) = u for all (u, v) ∈ U × V . The
indicator function of U , denoted by δU , is defined as δU : X → R,

δU (x) =
{

0, if x ∈ U,
+∞, otherwise.

The support function of U , σU : X∗ → R is defined by σU (x∗) = supx∈U 〈x∗, x〉 for
all x∗ ∈ X∗. We say that the function f : X → R is convex if

∀x, y ∈ X, ∀t ∈ [0, 1] : f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y), (1. 2)
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with the conventions (+∞) + (−∞) = +∞, 0 · (+∞) = +∞ and 0 · (−∞) = 0
(see [147]). We consider dom f = {x ∈ X : f(x) < +∞} the domain of f and
epi f = {(x, r) ∈ X × R : f(x) ≤ r} its epigraph. Moreover, we denote by êpi(f) =
{(x, r) ∈ X × R : (x,−r) ∈ epi f}, the symmetric of epi f with respect to the
x-axis. For a given real number α, f − α : X → R is the function defined by
(f −α)(x) = f(x)−α for all x ∈ X. We call f proper if dom f 6= ∅ and f(x) > −∞
for all x ∈ X. By cl f we denote the lower semicontinuous hull of f , namely the
function whose epigraph is the closure of epi f in X×R, that is epi(cl f) = cl(epi f).
We consider also co f , the convex hull of f , which is the greatest convex function
majorized by f . For x ∈ X such that f(x) ∈ R we define the ε-sudifferential of f
at x, where ε ≥ 0, by

∂εf(x) = {x∗ ∈ X∗ : f(y)− f(x) ≥ 〈x∗, y − x〉 − ε ∀y ∈ X}.

If f(x) ∈ {±∞} we take by convention ∂εf(x) = ∅. The set ∂f(x) = ∂0f(x) is
the classical (convex) subdifferential of f at x. The ε-subdifferential, introduced
in [39], plays an important role in convex analysis, having significant theoretical
and practical applications. The ε-subdifferential of f is an “enlargement” of its
subdifferential, in the sense that ∂f(x) ⊆ ∂εf(x) for all x ∈ X and ε ≥ 0. Let us
mention that if f is proper, convex, continuous at x0 ∈ dom f and Gâteaux differ-
entiable at x0, then ∂f(x0) = {∇f(x0)} (cf. [147, Corollary 2.4.10 and Theorem
2.4.4(i)]). The following fact underlines the usefulness of the subdifferential: if f is
proper then for a ∈ dom f we have the relation

inf
x∈X

f(x) = f(a)⇔ 0 ∈ ∂f(a).

The ε-normal set of U at x ∈ X is defined by Nε
U (x) = ∂εδU (x), that is Nε

U (x) =
{x∗ ∈ X∗ : 〈x∗, y − x〉 ≤ ε ∀y ∈ U} when x ∈ U , and Nε

U (x) = ∅ if x 6∈ U .
The normal cone of U at x ∈ X is NU (x) = N0

U (x), that is NU (x) = {x∗ ∈ X∗ :
〈x∗, y − x〉 ≤ 0 ∀y ∈ U}, if x ∈ U and NU (x) = ∅ otherwise.

The Fenchel-Moreau conjugate of f is the function f∗ : X∗ → R defined by

f∗(x∗) = sup
x∈X
{〈x∗, x〉 − f(x)} ∀x∗ ∈ X∗.

It holds δ∗U = σU . We mention here some important properties of conjugate func-
tions. We have the so-called Young-Fenchel inequality

f∗(x∗) + f(x) ≥ 〈x∗, x〉 ∀x ∈ X ∀x∗ ∈ X∗.

The Fenchel-Moreau Theorem is used several times throughout this work. This
states that if f is proper, then f is convex and lower semicontinuous if and only if
f∗∗ = f (see [60, 147]). Moreover, if f is convex and (cl f)(x) > −∞ for all x ∈ X,
then f∗∗ = cl f (cf. [147, Theorem 2.3.4]).

The following characterizations of the subdifferential and ε-sudifferential of a
proper function f at x ∈ dom f by means of conjugate functions will be useful
(see [60,147]):

x∗ ∈ ∂f(x)⇔ f(x) + f∗(x∗) = 〈x∗, x〉 ⇔ f(x) + f∗(x∗) ≤ 〈x∗, x〉

and, respectively,

x∗ ∈ ∂εf(x)⇔ f(x) + f∗(x∗) ≤ 〈x∗, x〉+ ε.

In case f : X → R is a proper function and a ∈ dom f , the epigraph of f∗ can
be represented as follows

epi f∗ =
⋃
ε≥0

{(
x∗, 〈x∗, a〉+ ε− f(a)

)
: x∗ ∈ ∂εf(a)

}
. (1. 3)
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This formula, which is an easy consequence of the definitions above, describes the
epigraph of a conjugate function in terms of the ε-subdifferential of the function
and will play an important role in the proof of the main results of Chapter 3. It was
stated in [79], where the function f was considered convex and lower semicontinuous,
however the formula is valid even without these hypotheses.

The following version of the Brøndsted-Rockafellar Theorem (see [39]) was proved
in [136] and will be used for providing sequential optimality conditions written in
terms of the subdifferentials of the functions involved (see Section 3.1).

Theorem 1.1 (Brøndsted-Rockafellar Theorem [39,136]) Let (X, ‖·‖) be a Banach
space, f : X → R be a proper, convex and lower semicontinuous function and
a ∈ dom f . Then for every ε > 0 and for every x∗ ∈ ∂εf(a) there exist xε ∈ X and
x∗ε ∈ ∂f(xε) such that

‖xε − a‖ ≤
√
ε, ‖x∗ε − x∗‖∗ ≤

√
ε and |f(xε)− 〈x∗ε, xε − a〉 − f(a)| ≤ 2ε,

where ‖ · ‖∗ is the dual norm on X∗.

Having f, g : X → R two functions we consider their infimal convolution, namely
the function denoted by f�g : X → R, f�g(x) = infu∈X{f(u) + g(x − u)} for all
x ∈ X. We say that the infimal convolution is exact at x ∈ X if the infimum in its
definition is attained. Moreover, f�g is said to be exact if it is exact at every x ∈ X.
We refer to [103,131] for more properties of the infimal convolution operation.

Let us also note that everywhere within this work we write min (max) instead
of inf (sup) when the infimum (supremum) is attained.

Consider Y another separated locally convex space. For a function h : X → Y
we denote by h(U) = {h(u) : u ∈ U} the image of the set U ⊆ X through h,
while for D ⊆ Y we use the notation h−1(D) = {x ∈ X : h(x) ∈ D}. Given
a continuous linear mapping A : X → Y , its adjoint operator, A∗ : Y ∗ → X∗

is defined by 〈A∗y∗, x〉 = 〈y∗, Ax〉 for all y∗ ∈ Y ∗ and x ∈ X. Consider also
a non-empty convex cone C ⊆ Y (that is cone(C) ⊆ C and C + C ⊆ C) and
C∗ = {y∗ ∈ Y ∗ : 〈y∗, y〉 ≥ 0 ∀y ∈ C} its positive dual cone. By C− we denote
the negative dual cone of C, that is C− = −C∗. Let ≤C be the partial ordering
induced by C on Y , defined as y1 ≤C y2 ⇔ y2 − y1 ∈ C, for y1, y2 ∈ Y . To Y we
attach an abstract maximal element with respect to ≤C , denoted by∞C and we let
Y • := Y ∪ {∞C}. Then for every y ∈ Y one has y ≤C ∞C and we consider on Y •

the following operations: y +∞C = ∞C + y = ∞C and t∞C = ∞C for all y ∈ Y
and all t ≥ 0. Moreover, if λ ∈ C∗ let 〈λ,∞C〉 := +∞.

A function g : Y → R is called C-increasing on a subset S of Y if for every
s1, s2 ∈ S such that s1 ≤C s2 one has g(s1) ≤ g(s2).

Some of the above notions given for functions with extended real values can be
formulated also for functions having their ranges in infinite-dimensional spaces.

For a function h : X → Y • we denote by domh = {x ∈ X : h(x) ∈ Y } its
domain and by epiC h = {(x, y) ∈ X × Y : h(x) ≤C y} its C-epigraph. We say
that h is proper if its domain is a non-empty set. The function h is said to be
C-convex if h(tx1 + (1 − t)x2) ≤C th(x1) + (1 − t)h(x2) for all x1, x2 ∈ X and all
t ∈ [0, 1]. One can prove that h is C-onvex if and only if epiC h is a convex subset
of X×Y . Further, for an arbitrary λ ∈ C∗ we define the function (λh) : X → R, by
(λh)(x) = 〈λ, h(x)〉 for all x ∈ X. The function h is said to be C-epi-closed if epiC h
is a closed subset of X×Y (cf. [90]), while h is called star C-lower semicontinuous at
x ∈ X if for all λ ∈ C∗ the function (λh) is lower semicontinuous at x. The function
h is said to be star C-lower semicontinuous if it is star C-lower semicontinuous at
every x ∈ X. This notion was considered first in [82].
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Remark 1.1 (a) Besides the two generalizations of lower semicontinuity defined
above for functions taking values in infinite-dimensional spaces, there exist in the
literature other notions of lower semicontinuity, for instance the so-called C-lower
semicontinuity, which has been introduced by Penot and Théra in [109] and
then refined in [55]. One can show that C-lower semicontinuity implies star C-
lower semicontinuity, which yields C-epi-closedness (see [90]), while the opposite
assertions are not valid in general. An example of a C-convex function which is
C-epi-closed, but not star C-lower semicontinuous is given in [31, Example 1]. For
more on the lower semicontinuity for functions with values in topological vector
spaces we refer the reader to [1, 55,90,109,133].

(b) It is known that in case Y = R and C = R+ all the lower semicontinuity
notions mentioned above coincide, becoming the classical lower semicontinuity for
functions with extended real values.
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Chapter 2

Regularity conditions via
quasi interior and
quasi-relative interior in
convex optimization

Usually there is a so-called duality gap between the optimal objective values of
a primal convex optimization problem and its dual problem. A challenge when
dealing with duality is to give sufficient conditions which guarantee strong duality,
the situation when the optimal objective values of the two problems are equal and
the dual problem has an optimal solution. Several generalized interior-point regu-
larity conditions were introduced in the literature in order to eliminate the above
mentioned duality gap. Along the classical interior, some generalized interiority no-
tions were used, like the algebraic interior (see [121]), the relative algebraic interior
(see [76]), or the strong quasi-relative interior (see [13]), in order to state regularity
conditions for strong duality. For an overview on these conditions we invite the
reader to consult [69,146] (see also [147] for more on this subject).

Nevertheless, in many theoretical and practical infinite-dimensional convex op-
timization problems, the interior-point conditions are useless since for instance, the
interior of the set involved in the regularity condition is empty. This is the case, for
example, when dealing with the positive cones `p+ and Lp+(T, µ) of the spaces `p and
Lp(T, µ), respectively, where (T, µ) is a σ-finite measure space and p ∈ [1,∞). For
these two cones even the relative algebraic interior (which is the most general inte-
riority notion from the aforementioned ones) is empty. In order to overcome such
a situation Borwein and Lewis introduced in [14] the notion of quasi-relative
interior of a convex set, which is a further generalization of the above mentioned
interiority notions. They also proved that the quasi-relative interiors of `p+ and
Lp+(T, µ) are non-empty.

In the first section of this chapter we recall the basic properties of the above
mentioned generalized interiority notions, together with the quasi interior, another
interiority notion closely related to that of quasi-relative interior. In the following
two sections we introduce several regularity conditions formulated by means of the
quasi interior and quasi-relative interior which guarantee Fenchel and, respectively,
Lagrange duality. The main results of this chapter are Theorem 2.3 (a Fenchel
duality result) and Theorem 2.6 (a Lagrange duality result). Several examples
illustrate the theoretical considerations and we provide also some comments on
other regularity conditions given in the literature via the quasi-relative interior.

17
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The theory presented in this chapter is mainly based on [25,29].

2.1 Generalized interiority notions

We start with an overview on the most important generalized interiority notions
introduced in the literature. Consider X a separated locally convex space and
U ⊆ X a non-empty set. The algebraic interior (the core) of U is the set (cf.
[76, 121,147])

core(U) = {u ∈ X| ∀x ∈ X, ∃δ > 0 such that ∀λ ∈ [0, δ] : u+ λx ∈ U},

while its relative algebraic interior (sometimes called also intrinsic core) is the set
(cf. [76, 147])

icr(U) = {u ∈ X| ∀x ∈ aff(U − U), ∃δ > 0 such that ∀λ ∈ [0, δ] : u+ λx ∈ U}.

We consider also the strong quasi-relative interior (sometimes called intrinsic
relative algebraic interior) of U (cf. [13, 83,145,147]), denoted by sqri(U) (or icU)

sqri(U) =
{

icr(U), if aff(U) is a closed set,
∅, otherwise.

In this case U is a convex set, the above generalized interiority notions can be
characterized as follows:

• core(U) = {x ∈ U : cone(U − x) = X} (cf. [121,147]);

• icr(U) = {x ∈ U : cone(U − x) is a linear subspace of X} (cf. [12, 76,147]);

• sqri(U) = {x ∈ U : cone(U − x) is a closed linear subspace of X} (cf. [13, 83,
145,147]);

• x ∈ sqri(U) if and only if x ∈ icr(U) and aff(U −x) is a closed linear subspace
of X (cf. [69, 145,147]).

The quasi-relative interior of U is the set (cf. [14])

qri(U) = {x ∈ U : cl
(

cone(U − x)
)

is a linear subspace of X}.

We give the following useful characterization of the quasi-relative interior of a
convex set by means of the normal cone.

Proposition 2.1 (cf. [14]) Let U be a non-empty convex subset of X and x ∈ U .
Then x ∈ qri(U) if and only if NU (x) is a linear subspace of X∗.

Next we consider another interiority notion introduced in connection with a
convex set, which is close to the one of quasi-relative interior. The quasi interior of
U is the set

qi(U) = {x ∈ U : cl
(

cone(U − x)
)

= X}.

The following characterization of the quasi interior of a convex set was given
in [59], where the authors supposed that X is a reflexive Banach space. One can
prove that this property holds in a more general context, namely in every separated
locally convex space.

Proposition 2.2 Let U be a non-empty convex subset of X and x ∈ U . Then
x ∈ qi(U) if and only if NU (x) = {0}.
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Proof. Assume first that x ∈ qi(U) and take an arbitrary element x∗ ∈ NU (x). By
the definition of the normal cone and the continuity of x∗ we obtain 〈x∗, z〉 ≤ 0 for
all z ∈ cl

(
cone(U − x)

)
. Thus 〈x∗, z〉 ≤ 0 for all z ∈ X, which is nothing else than

x∗ = 0.
In order to prove the opposite implication we consider an arbitrary x̄ ∈ X and

prove that x̄ ∈ cl
(

cone(U − x)
)
. Assuming the contrary, by a separation theorem

(see for instance [147, Theorem 1.1.5]), we obtain that there exists x∗ ∈ X∗ \ {0}
and α ∈ R such that

〈x∗, z〉 < α < 〈x∗, x̄〉 ∀z ∈ cl
(

cone(U − x)
)
.

Let y ∈ U be fixed. For all λ > 0 it holds 〈x∗, y − x〉 < (1/λ)α and this implies
that 〈x∗, y − x〉 ≤ 0. As this inequality is true for every arbitrary y ∈ U , we obtain
that x∗ ∈ NU (x). But this leads to a contradiction and in this way the conclusion
follows. �

Remark 2.1 Let us notice that for x ∈ U the implication x ∈ qi(U) ⇒ NU (x) =
{0} holds in the more general setting of topological vector spaces.

We have the following inclusions for a set U ⊆ X:

int(U) ⊆ core(U) ⊆
sqri(U) ⊆ icr(U)

qi(U)
⊆ qri(U) ⊆ U, (2. 1)

in general the inclusions being strict. Let us suppose in the following that U is a
convex set. In case int(U) 6= ∅, all the generalized interiority notions mentioned
above coincide with int(U) (cf. [14, Corollary 2.14]). Let us mention that if X is a
Banach space and U is a closed set then core(U) = int(U) (cf. [121]).

It follows from the definitions above that qri({x}) = {x} for all x ∈ X. Moreover,
if qi(U) 6= ∅, then qi(U) = qri(U). Although this property is given in [89] in the
case of normed spaces, it holds also in separated locally convex spaces, as follows
easily from the properties given above. For U, V two convex subsets of X such that
U ⊆ V , we have qi(U) ⊆ qi(V ), a property which is no longer true for the quasi-
relative interior (however it holds in case aff(U) = aff(V ), see [54, Proposition
1.12]). If X if finite-dimensional then qri(U) = sqri(U) = icr(U) = ri(U) (cf.
[14, 69]) and core(U) = qi(U) = int(U) (cf. [89, 121]). We refer the reader to
[12,14,19,69,76,89,121,134,147] and the references therein for more properties and
examples regarding the above considered generalized interiority notions.

Example 2.1 Take an arbitrary p ∈ [1,+∞) and consider the Banach space `p =

`p(N) of real sequences (xn)n∈N such that
∞∑
n=1
|xn|p < +∞, equipped with the norm

‖ · ‖ : `p → R, ‖x‖ =
( ∞∑
n=1
|xn|p

)1/p

for all x = (xn)n∈N ∈ `p. Then (cf. [14])

qri(`p+) = {(xn)n∈N ∈ `p : xn > 0 ∀n ∈ N},

where `p+ = {(xn)n∈N ∈ `p : xn ≥ 0 ∀n ∈ N} is the positive cone of `p. Moreover,
one can prove that

int(`p+) = core(`p+) = sqri(`p+) = icr(`p+) = ∅.

In the setting of separable Banach spaces every non-empty closed convex subset
has a non-empty quasi-relative interior (cf. [14, Theorem 2.19], see also [12, Theorem
2.8] and [147, Proposition 1.2.9]) and every nonempty convex subset which is not
contained in a hyperplane possesses a non-empty quasi interior (cf. [89]). The
condition X is separable is important as the following example shows.
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Example 2.2 For p ∈ [1,+∞) consider the Banach space

`p(R) = {s : R→ R
∑
r∈R
|s(r)|p <∞},

equipped with the norm ‖·‖ : `p(R)→ R, ‖s‖ =
(∑

r∈R |s(r)|p
)1/p

for all s ∈ `p(R),
where ∑

r∈R
|s(r)|p = sup

F⊆R,F finite

∑
r∈F
|s(r)|p.

Note that the space `p(R) is not separable. Considering the positive cone `p+(R) =
{s ∈ `p(R) : s(r) ≥ 0 ∀r ∈ R}, we have (cf. [14, Example 3.11(iii)], see also [16,
Remark 2.20]) that qri

(
`p+(R)

)
= ∅.

Useful properties of the quasi-relative interior are listed below. For the proof of
(i)− (viii) we refer to [12,14].

Proposition 2.3 Let us consider U and V two non-empty convex subsets of X,
x ∈ X and α ∈ R, α 6= 0. Then

(i) qri(U) + qri(V ) ⊆ qri(U + V );

(ii) qri(U × V ) = qri(U)× qri(V );

(iii) qri(U − x) = qri(U)− x;

(iv) qri(αU) = α qri(U);

(v) t qri(U) + (1− t)U ⊆ qri(U) ∀t ∈ (0, 1], hence qri(U) is a convex set;

(vi) if U is an affine set then qri(U) = U ;

(vii) qri
(

qri(U)
)

= qri(U).

If qri(U) 6= ∅ then

(viii) cl
(

qri(U)
)

= cl(U);

(ix) cl
(

cone
(

qri(U)
))

= cl
(

cone(U)
)
.

Proof. (ix) The inclusion cl
(

cone
(

qri(U)
))
⊆ cl

(
cone(U)

)
is obvious. We prove

that cone(U) ⊆ cl
(

cone
(

qri(U)
))

. Consider x ∈ cone(U) arbitrary. There exist
λ ≥ 0 and u ∈ U such that x = λu. Take x0 ∈ qri(U). Applying the property
(v) we get tx0 + (1 − t)u ∈ qri(U) ∀t ∈ (0, 1], so λtx0 + (1 − t)x = λ(tx0 +
(1 − t)u) ∈ cone

(
qri(U)

)
∀t ∈ (0, 1]. Passing to the limit as t ↘ 0 we obtain

x ∈ cl
(

cone
(

qri(U)
))

and hence the desired conclusion follows. �

Remark 2.2 In case α = 0 and qri(U) = ∅, property (iv) in Proposition 2.3 above
does not hold. However, when qri(U) 6= ∅, this property holds also for α = 0.

The next lemma plays an important role in this chapter.

Lemma 2.1 Let U and V be non-empty convex subsets of X and x ∈ X. Then

(i) if qri(U) ∩ V 6= ∅ and 0 ∈ qi(U − U), then 0 ∈ qi(U − V );

(ii) x ∈ qi(U) if and only if x ∈ qri(U) and 0 ∈ qi(U − U).
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Proof. (i) Take y ∈ qri(U)∩V and an arbitrary x∗ ∈ NU−V (0). We get 〈x∗, u−v〉 ≤
0 for all u ∈ U and all v ∈ V . This implies

〈x∗, u− y〉 ≤ 0 ∀u ∈ U, (2. 2)

that is x∗ ∈ NU (y). As y ∈ qri(U), NU (y) is a linear subspace of X∗ (cf. Proposition
2.1), hence −x∗ ∈ NU (y), which is nothing else than

〈x∗, y − u〉 ≤ 0 ∀u ∈ U. (2. 3)

The relations (2. 2) and (2. 3) give us 〈x∗, u1 − u2〉 ≤ 0 for all u1, u2 ∈ U , so
x∗ ∈ NU−U (0). Since 0 ∈ qi(U − U) we have NU−U (0) = {0} (cf. Proposition 2.2)
and we get x∗ = 0. As x∗ was arbitrarily chosen we obtain NU−V (0) = {0} and,
using again Proposition 2.2, the conclusion follows.

(ii) Suppose that x ∈ qi(U). Then x ∈ qri(U) and since U − x ⊆ U − U and
0 ∈ qi(U−x), the direct implication follows. The reverse one is a direct consequence
of (i) by taking V := {x}. �

Remark 2.3 Let us notice that the assertion (ii) in the above lemma can be proved
directly, not necessarily by using (i).

Remark 2.4 Considering again the setting of Example 2.1 we get from the second
part of the previous lemma (since `p+ − `

p
+ = `p) that

qi(`p+) = qri(`p+) = {(xn)n∈N ∈ `p : xn > 0 ∀n ∈ N}.

Next we give useful separation theorems in terms of the notion of quasi-relative
interior. They will be important in the next two sections in the proof of the strong
duality results.

Theorem 2.1 Let U be a non-empty convex subset of X and x ∈ U. If x 6∈ qri(U),
then there exists x∗ ∈ X∗, x∗ 6= 0, such that

〈x∗, y〉 ≤ 〈x∗, x〉 ∀y ∈ U.

Viceversa, if there exists x∗ ∈ X∗, x∗ 6= 0, such that

〈x∗, y〉 ≤ 〈x∗, x〉 ∀y ∈ U

and
0 ∈ qi(U − U),

then x 6∈ qri(U).

Proof. Suppose that x 6∈ qri(U). According to Proposition 2.1, NU (x) is not a
linear subspace of X∗, hence there exists x∗ ∈ NU (x), x∗ 6= 0. Using the definition
of the normal cone, we get that 〈x∗, y〉 ≤ 〈x∗, x〉 for all y ∈ U .

Conversely, assume that there exists x∗ ∈ X∗, x∗ 6= 0, such that 〈x∗, y〉 ≤ 〈x∗, x〉
for all y ∈ U and 0 ∈ qi(U − U). We obtain x∗ ∈ NU (x). If we suppose that
x ∈ qri(U), then we obtain via Lemma 2.1(ii) that x ∈ qi(U), hence (cf. Proposition
2.2) x∗ = 0, which is a contradiction. In conclusion, x 6∈ qri(U). �

Remark 2.5 (a) A closer look at the above proof shows that a similar separation
theorem can be given in terms of the quasi interior, in which case the condition
0 ∈ qi(U − U) can be removed.

(b) Let us suppose that X is a normed space. In [58, 59] a similar separation
theorem in terms of the quasi-relative interior is given. For the second part of the
above theorem the authors require that the following condition must be fulfilled

cl
(
TU (x)− TU (x)

)
= X,
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where

TU (x) =
{
y ∈ X : y = lim

n→∞
λn(xn − x), λn > 0 , xn ∈ U ∀n ∈ N and lim

n→∞
xn = x

}
is the so-called contingent (Bouligand) cone to U at x ∈ U . In general, we have
the following inclusion: TU (x) ⊆ cl

(
cone(U − x)

)
. If the set U is convex, then

TU (x) = cl
(

cone(U −x)
)

(cf. [78]). As cl
(

cl(E)+cl(F )
)

= cl(E+F ), for arbitrary
sets E,F in X and cone(V ) − cone(V ) = cone(V − V ), if V is a convex subset of
X such that 0 ∈ V , the condition cl(TU (x) − TU (x)) = X can be reformulated as
follows: cl

(
cone(U − U)

)
= X or, equivalently, 0 ∈ qi(U − U). Indeed, for x ∈ U

we have

cl
[

cl
(

cone(U−x)
)
−cl

(
cone(U−x)

)]
= X ⇔ cl

[
cone(U−x)−cone(U−x)

]
= X

⇔ cl
(

cone(U − U)
)

= X ⇔ 0 ∈ qi(U − U).

This means that Theorem 2.1 is a generalization to separated locally convex spaces
of the separation theorem stated in [58,59] in the framework of normed spaces.

The condition x ∈ U in Theorem 2.1 is essential (see [59, Remark 2]). However,
if x is an arbitrary element of X, one can give an alternative separation theorem
based on the following result due to Cammaroto and Di Bella (cf. [53, Theorem
2.1]).

Theorem 2.2 (cf. [53]) Let U and V be non-empty convex subsets of X with
qri(U) 6= ∅, qri(V ) 6= ∅ and such that cl

(
cone

(
qri(U) − qri(V )

))
is not a lin-

ear subspace of X. Then there exists x∗ ∈ X∗, x∗ 6= 0, such that 〈x∗, u〉 ≤ 〈x∗, v〉
for all u ∈ U and all v ∈ V .

The following result is a direct consequence of Theorem 2.2.

Corollary 2.1 Let U be a non-empty convex subset of X and x ∈ X such that
qri(U) 6= ∅ and cl

(
cone(U − x)

)
is not a linear subspace of X. Then there exists

x∗ ∈ X∗, x∗ 6= 0, such that 〈x∗, y〉 ≤ 〈x∗, x〉 for all y ∈ U.

Proof. We take in Theorem 2.2 V := {x}. Then we apply Proposition 2.3 (iii)
and (ix) to obtain the conclusion. �

Remark 2.6 Let us mention that some strict separation theorems involving the
quasi-relative interior have been provided in [54].

2.2 Fenchel duality

In this section we give some new Fenchel duality results stated in terms of the quasi
interior and quasi-relative interior, respectively.

Consider the convex optimization problem

(PF ) inf
x∈X
{f(x) + g(x)},

where X is a separated locally convex space and f, g : X → R are proper and convex
functions such that dom f ∩ dom g 6= ∅. The Fenchel dual problem to (PF ) is

(DF ) sup
x∗∈X∗

{−f∗(−x∗)− g∗(x∗)}.

We denote by v(PF ) and v(DF ) the optimal objective values of the primal and the
dual problem, respectively. Weak duality always holds, that is v(DF ) ≤ v(PF ) (it
follows immediately by applying the Young-Fenchel inequality). Let us recall the
most important regularity conditions from the literature concerning Fenchel duality:
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(RCF1 ) ∃x′ ∈ dom f ∩ dom g such that f (or g) is continuous at x′;

(RCF2 ) X is a Fréchet space, f and g are lower semicontinuous and
0 ∈ int(dom f − dom g);

(RCF3 ) X is a Fréchet space, f and g are lower semicontinuous and
0 ∈ core(dom f − dom g);

(RCF4 ) X is a Fréchet space, f and g are lower semicontinuous,
aff(dom f − dom g) is a closed linear subspace of X and
0 ∈ icr(dom f − dom g)

and

(RCF5 ) X is a Fréchet space, f and g are lower semicontinuous and
0 ∈ sqri(dom f − dom g).

The condition (RCF3 ) was considered by Rockafellar (cf. [121]), (RCF5 ) by
Attouch and Brézis (cf. [2]), Zălinescu (cf. [145]) and Rodrigues (cf. [124]),
while Gowda and Teboulle (cf. [69]) proved that (RCF4 ) and (RCF5 ) are equiv-
alent. Let us notice that all these conditions guarantee strong duality. Moreover,
if we suppose the additional hypotheses that the functions f and g are lower semi-
continuous and X is a Fréchet space, between the above conditions we have the
following relation: (RCF1 ) ⇒ (RCF2 ) ⇒ (RCF3 ) ⇒ (RCF4 ) ⇔ (RCF5 ) (cf. [69], see
also [147, Theorem 2.8.7]).

Remark 2.7 Let us notice that the regularity conditions (RCF2 ) and (RCF3 ) are
equivalent. Indeed, assume that X is a Fréchet space, f, g are proper, convex
and lower semicontinuous functions such that dom f ∩ dom g 6= ∅ and consider the
infimal value function h : X → R, defined by h(y) = infx∈X{f(x) + g(x − y)}
for all y ∈ X. The function h is convex and not necessarily lower semicontinuous,
while one has that domh = dom f − dom g. Nevertheless, the function (x, y) 7→
f(x) + g(x− y) is ideally convex (being convex and lower semicontinuous), hence h
is li-convex (cf. [147, Proposition 2.2.18]). Now by [147, Theorem 2.2.20] it follows
that core(domh) = int(domh), which has as consequence the equivalence of the
regularity conditions (RCF2 ) and (RCF3 ). Let us mention that this fact has been
noticed in the setting of Banach spaces by S. Simons in [128, Corollary 14.3].

Taking into account the relations that exist between the generalized interiority
notions presented in the first section of this chapter a natural question arises: is
the condition 0 ∈ qri(dom f − dom g) sufficient for strong duality? The following
example (which can be found in [69]) shows that even if we impose a stronger
condition, namely 0 ∈ qi(dom f −dom g), the above question has a negative answer
and this means that we need to look for additional assumptions in order to guarantee
Fenchel duality.

Example 2.3 Consider the Hilbert space X = `2(N) and the sets

C = {(xn)n∈N ∈ `2 : x2n−1 + x2n = 0 ∀n ∈ N}

and
S = {(xn)n∈N ∈ `2 : x2n + x2n+1 = 0 ∀n ∈ N},

which are closed linear subspaces of `2 and satisfy C∩S = {0}. Define the functions
f, g : `2 → R by f = δC and g(x) = x1+δS(x), respectively, for all x = (xn)n∈N ∈ `2.
One can see that f and g are proper, convex and lower semicontinuous functions
with dom f = C and dom g = S. As v(PF ) = 0 and v(DF ) = −∞ (cf. [69,
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Example 3.3]), there is a duality gap between the optimal objective values of the
primal problem and its Fenchel dual problem. Moreover, S − C is dense in `2

(cf. [69]), thus cl
(

cone(dom f −dom g)
)

= cl(C−S) = `2. The last relation implies
0 ∈ qi(dom f − dom g), hence 0 ∈ qri(dom f − dom g).

Let us notice that if v(PF ) = −∞, by the weak duality result follows that for
the primal-dual pair (PF )− (DF ) strong duality holds. This is the reason why we
suppose in the following that v(PF ) ∈ R.

Lemma 2.2 The following relation is always true

0 ∈ qri(dom f − dom g)⇒ (0, 1) ∈ qri
(

epi f − êpi(g − v(PF ))
)
.

Proof. One can see that êpi(g − v(PF )) = {(x, r) ∈ X × R : r ≤ −g(x) + v(PF )}.
Let us prove first that (0, 1) ∈ epi f − êpi(g− v(PF )). Since infx∈X{f(x) + g(x)} =
v(PF ) < v(PF ) + 1, there exists x′ ∈ X such that f(x′) + g(x′) < v(PF ) + 1. Then
(0, 1) =

(
x′, v(PF ) + 1− g(x′)

)
−
(
x′,−g(x′) + v(PF )

)
∈ epi f − êpi(g − v(PF )).

Now let (x∗, r∗) ∈ N
epi f−cepi(g−v(PF ))

(0, 1). We have

〈x∗, x− x′〉+ r∗(µ− µ′ − 1) ≤ 0 ∀(x, µ) ∈ epi f ∀(x′, µ′) ∈ êpi(g − v(PF )). (2. 4)

For (x, µ) := (x0, f(x0)) and (x′, µ′) := (x0,−g(x0) + v(PF ) − 2) in (2. 4), where
x0 ∈ dom f ∩ dom g is fixed, we get r∗(f(x0) + g(x0) − v(PF ) + 1) ≤ 0, hence
r∗ ≤ 0. As infx∈X{f(x) + g(x)} = v(PF ) < v(PF ) + 1/2, there exists x1 ∈ X such
that f(x1) + g(x1) < v(PF ) + 1/2. Taking now (x, µ) := (x1, f(x1)) and (x′, µ′) :=
(x1,−g(x1) + v(PF )− 1/2) in (2. 4) we obtain r∗(f(x1) + g(x1)− v(PF )− 1/2) ≤ 0
and so r∗ ≥ 0. Thus r∗ = 0 and (2. 4) gives: 〈x∗, x − x′〉 ≤ 0 for all x ∈ dom f
and all x′ ∈ dom g. Hence x∗ ∈ Ndom f−dom g(0). Since Ndom f−dom g(0) is a linear
subspace of X∗ (cf. Proposition 2.1), we have 〈−x∗, x − x′〉 ≤ 0 for all x ∈ dom f
and x′ ∈ dom g and so −(x∗, r∗) = (−x∗, 0) ∈ N

epi f−cepi(g−v(PF ))
(0, 1), showing

that N
epi f−cepi(g−v(PF ))

(0, 1) is a linear subspace of X∗ ×R. Hence, applying again

Proposition 2.1, we get (0, 1) ∈ qri
(

epi f − êpi(g − v(PF ))
)
. �

Proposition 2.4 Assume that 0 ∈qi
[
(dom f − dom g)− (dom f − dom g)

]
. Then

N
co
[
(epi f−cepi(g−v(PF )))∪{(0,0)}

](0, 0) is a linear subspace of X∗ × R if and only if

N
co
[
(epi f−cepi(g−v(PF )))∪{(0,0)}

](0, 0) = {(0, 0)}.

Proof. The sufficiency is trivial and holds without the additional assumption from
the hypotheses. Now let us suppose that N

co
[
(epi f−cepi(g−v(PF )))∪{(0,0)}

](0, 0) is a

linear subspace of X∗ × R. Take (x∗, r∗) ∈ N
co
[
(epi f−cepi(g−v(PF )))∪{(0,0)}

](0, 0).

Then

〈x∗, x− x′〉+ r∗(µ− µ′) ≤ 0 ∀(x, µ) ∈ epi f ∀(x′, µ′) ∈ êpi(g − v(PF )). (2. 5)

Let x0 ∈ dom f ∩dom g be fixed. Taking (x, µ) := (x0, f(x0)) ∈ epi f and (x′, µ′) :=
(x0,−g(x0) + v(PF ) − 1/2) ∈ êpi(g − v(PF )) in the previous inequality we get
r∗(f(x0) + g(x0) − v(PF ) + 1/2) ≤ 0, which implies r∗ ≤ 0. Taking into account
that the set N

co
[
(epi f−cepi(g−v(PF )))∪{(0,0)}

](0, 0) is a linear subspace of X∗×R, the

same argument applies also for (−x∗,−r∗), implying −r∗ ≤ 0. In this way we get
r∗ = 0. From (2. 5) and the relation (−x∗, 0) ∈ N

co
[
(epi f−cepi(g−v(PF )))∪{(0,0)}

](0, 0)

we obtain

〈x∗, x− x′〉 = 0 ∀(x, µ) ∈ epi f ∀(x′, µ′) ∈ êpi(g − v(PF )),



2.2 FENCHEL DUALITY 25

which is nothing else than 〈x∗, x − x′〉 = 0 for all x ∈ dom f and all x′ ∈ dom g,
thus 〈x∗, x〉 = 0 for all x ∈ dom f − dom g. Since x∗ is linear and continuous, the
last relation implies 〈x∗, x〉 = 0 for all x ∈ cl

(
cone

(
(dom f − dom g) − (dom f −

dom g)
))

= X, hence x∗ = 0 and the conclusion follows. �

Remark 2.8 (a) By (1. 1) one can see that cl
(

cone
(

epi f − êpi(g − v(PF ))
))

=

cl
[

coneco
((

epi f − êpi(g − v(PF ))
)
∪ {(0, 0)}

)]
. As a consequence one has the

following sequence of equivalences: N
co
[
(epi f−cepi(g−v(PF )))∪{(0,0)}

](0, 0) is a linear

subspace of X∗ × R ⇔ (0, 0) ∈ qri
[

co
((

epi f − êpi(g − v(PF ))
)
∪ {(0, 0)}

)]
⇔

cl
[

coneco
((

epi f − êpi(g − v(PF ))
)
∪ {(0, 0)}

)]
is a linear subspace of X × R ⇔

cl
(

cone
(

epi f − êpi(g− v(PF ))
))

is a linear subspace of X ×R. By using Proposi-
tion 2.2, the relation N

co
[
(epi f−cepi(g−v(PF )))∪{(0,0)}

](0, 0) = {(0, 0)} is equivalent

to (0, 0) ∈ qi
[

co
((

epi f − êpi(g − v(PF ))
)
∪ {(0, 0)}

)]
. All together, in case

0 ∈ qi
[
(dom f − dom g)− (dom f − dom g)

]
, the conclusion of the previous propo-

sition can be reformulated as follows

cl
[

cone
(

epi f − êpi(g − v(PF ))
)]

is a linear subspace of X × R

⇔ (0, 0) ∈ qi
[

co
((

epi f − êpi(g − v(PF ))
)
∪ {(0, 0)}

)]
or, equivalently,

(0, 0) ∈ qri
[

co
((

epi f − êpi(g − v(PF ))
)
∪ {(0, 0)}

)]
⇔ (0, 0) ∈ qi

[
co
((

epi f − êpi(g − v(PF ))
)
∪ {(0, 0)}

)]
.

(b) One can prove that the primal problem (PF ) has an optimal solution if and
only if (0, 0) ∈ epi f − êpi(g − v(PF )). This means that if we suppose that the
primal problem has an optimal solution and 0 ∈ qi

[
(dom f − dom g) − (dom f −

dom g)
]
, then the conclusion of the previous proposition can be rewritten as fol-

lows: N
epi f−cepi(g−v(PF ))

(0, 0) is a linear subspace of X∗ × R if and only if we have
N

epi f−cepi(g−v(PF ))
(0, 0) = {(0, 0)} or, equivalently,

(0, 0) ∈ qri
(

epi f − êpi(g − v(PF ))
)
⇔ (0, 0) ∈ qi

(
epi f − êpi(g − v(PF ))

)
.

We introduce in the following some regularity conditions expressed in terms of
the quasi interior and quasi-relative interior:

(RCF6 ) dom f ∩ qri(dom g) 6= ∅, 0 ∈ qi(dom g − dom g) and
(0, 0) /∈ qri

[
co
((

epi f − êpi(g − v(PF ))
)
∪ {(0, 0)}

)]
;

(RCF7 ) 0 ∈ qi(dom f − dom g) and
(0, 0) /∈ qri

[
co
((

epi f − êpi(g − v(PF ))
)
∪ {(0, 0)}

)]
and

(RCF8 ) 0 ∈ qi
[
(dom f − dom g)− (dom f − dom g)

]
,

0 ∈ qri(dom f − dom g) and
(0, 0) /∈ qri

[
co
((

epi f − êpi(g − v(PF ))
)
∪ {(0, 0)}

)]
.
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Let us prove some relations between the above considered regularity conditions.

Lemma 2.3 Under the hypotheses we work with the following statements hold:

(i) (RCF6 )⇒ (RCF7 )⇔ (RCF8 );

(ii) in case the primal problem has an optimal solution, the condition (0, 0) /∈
qri
[

co
((

epi f − êpi(g − v(PF ))
)
∪ {(0, 0)}

)]
can be equivalently written as

(0, 0) /∈ qri
(

epi f − êpi(g − v(PF ))
)
;

(iii) if the condition 0 ∈ qi
[
(dom f − dom g) − (dom f − dom g)

]
is fulfilled, then

(0, 0) /∈ qri
[

co
((

epi f − êpi(g − v(PF ))
)
∪ {(0, 0)}

)]
is equivalent to (0, 0) /∈

qi
[

co
((

epi f − êpi(g − v(PF ))
)
∪ {(0, 0)}

)]
.

Proof. (i) Let us suppose that (RCF6 ) is fulfilled. We apply Lemma 2.1(i) with
U := dom g and V := dom f . We get 0 ∈ qi(dom g − dom f) or, equivalently,
0 ∈ qi(dom f − dom g), that is (RCF7 ) holds. That (RCF7 ) is equivalent to (RCF8 )
is a direct consequence of Lemma 2.1(ii).

(ii) See the comment made at the beginning of Remark 2.8(b).
(iii) See Remark 2.8(a). �

Remark 2.9 Let us notice that a sufficient condition for the fulfillment of 0 ∈
qi
[
(dom f − dom g) − (dom f − dom g)

]
in Lemma 2.3(iii) is the relation 0 ∈

qi(dom f − dom g). This is a direct consequence of the inclusion dom f − dom g ⊆
(dom f − dom g)− (dom f − dom g).

We give now a strong duality result for the primal-dual pair (PF ) − (DF ). We
emphasize that for the functions f and g we suppose only convexity properties and
no lower semicontinuity assumptions are needed for the duality result given below.

Theorem 2.3 Suppose that one of the regularity conditions (RCFi ), i ∈ {6, 7, 8},
is fulfilled. Then v(PF ) = v(DF ) and (DF ) has an optimal solution.

Proof. In view of Lemma 2.3(i), it is enough to give the proof in case (RCF8 ) is
fulfilled, a condition which we assume in the following to be true.

Lemma 2.2 ensures that (0, 1) ∈ qri
(

epi f − êpi(g− v(PF ))
)
, hence qri

(
epi f −

êpi(g − v(PF ))
)
6= ∅. The condition (0, 0) /∈ qri

[
co
((

epi f − êpi(g − v(PF ))
)
∪

{(0, 0)}
)]

, together with the relation cl
[

coneco
((

epi f−êpi(g−v(PF ))
)
∪{(0, 0)}

)]
= cl

(
cone

(
epi f − êpi(g − v(PF ))

))
(cf. (1. 1)), imply that cl

(
cone

(
epi f −

êpi(g − v(PF ))
))

is not a linear subspace of X × R. We apply Corollary 2.1 with

U := epi f − êpi(g − v(PF )) and x = (0, 0). Thus there exists (x∗, λ) ∈ X∗ × R,
(x∗, λ) 6= (0, 0), such that

〈x∗, x〉+ λµ ≥ 〈x∗, x′〉+ λµ′ ∀(x, µ) ∈ êpi(g − v(PF )) ∀(x′, µ′) ∈ epi f. (2. 6)

We claim that λ ≤ 0. Indeed, if λ > 0, then for (x, µ) := (x0,−g(x0) + v(PF )) and
(x′, µ′) := (x0, f(x0) +n), n ∈ N, where x0 ∈ dom f ∩dom g is fixed, we obtain from
(2. 6) that 〈x∗, x0〉 + λ(−g(x0) + v(PF )) ≥ 〈x∗, x0〉 + λ(f(x0) + n) for all n ∈ N.
Passing to the limit as n → +∞ we obtain a contradiction. Next we prove that
λ < 0. Suppose that λ = 0. Then from (2. 6) we have 〈x∗, x〉 ≥ 〈x∗, x′〉 for all
x ∈ dom g and x′ ∈ dom f , hence 〈x∗, x〉 ≤ 0 for all x ∈ dom f − dom g. Using
the condition 0 ∈ qi

[
(dom f − dom g) − (dom f − dom g)

]
and the second part of
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Theorem 2.1 we obtain 0 6∈ qri(dom f − dom g), which contradicts the condition
0 ∈ qri(dom f − dom g) from (RCF8 ). Thus we must have λ < 0 and from (2. 6) we
obtain:〈 1

λ
x∗, x

〉
+ µ ≤

〈 1
λ
x∗, x′

〉
+ µ′ ∀(x, µ) ∈ êpi(g − v(PF )) ∀(x′, µ′) ∈ epi f.

Let r ∈ R be such that

µ′ + 〈x∗0, x′〉 ≥ r ≥ µ+ 〈x∗0, x〉 ∀(x, µ) ∈ êpi(g − v(PF )) ∀(x′, µ′) ∈ epi f,

where x∗0 := (1/λ)x∗. The first inequality yields f(x) ≥ 〈−x∗0, x〉+ r for all x ∈ X,
that is f∗(−x∗0) ≤ −r. The second one gives us −g(x) + v(PF ) + 〈x∗0, x〉 ≤ r for all
x ∈ X, hence g∗(x∗0) ≤ r−v(PF ) and so we have−f∗(−x∗0)−g∗(x∗0) ≥ r+v(PF )−r =
v(PF ). This implies that v(DF ) ≥ v(PF ). As the opposite inequality is always true,
we get v(PF ) = v(DF ) and x∗0 is an optimal solution of the problem (DF ). �

Remark 2.10 (a) The proof given above relies on the separation result given in
Corollary 2.1. Let us notice that alternatively, one can apply Theorem 2.1 with
U := co

((
epi f − êpi(g − v(PF ))

)
∪ {(0, 0)}

)
and x := (0, 0) ∈ U . Relation (2. 6)

follows and the proof can be continued as above.
(b) If the condition (0, 0) /∈ qri

[
co
((

epi f − êpi(g − v(PF ))
)
∪ {(0, 0)}

)]
is

removed, the duality result given above may fail. By using again Example 2.3
we show that this condition is essential. Let us notice that for the problem in
Example 2.3 the condition 0 ∈ qi(dom f − dom g) is fulfilled and 0 is the unique
optimal solution of the primal problem. We prove in the following that in the
aforementioned example we have (0, 0) ∈ qri

(
epi f − êpi(g − v(PF ))

)
. Note that

the scalar product on `2, 〈·, ·〉 : `2 × `2 → R is given by 〈x, y〉 =
∞∑
n=1

xnyn, for all

x = (xn)n∈N, y = (yn)n∈N ∈ `2. For k ∈ N, we denote by e(k) the element in `2 such
that e(k)

n = 1 if n = k and e(k)
n = 0 for all n ∈ N \ {k}. We have epi f = C × [0,∞).

Further, êpi(g − v(PF )) = {(x, r) ∈ `2 × R : r ≤ −g(x)} = {(x, r) ∈ `2 × R : x =
(xn)n∈N ∈ S, r ≤ −x1} = {(x,−x1 − ε) ∈ `2 × R : x = (xn)n∈N ∈ S, ε ≥ 0}. Then
A := epi f − êpi(g − v(PF )) = {(x − x′, x′1 + ε) : x ∈ C, x′ = (x′n)n∈N ∈ S, ε ≥ 0}.
Take (x∗, r∗) ∈ NA(0, 0), where x∗ = (x∗n)n∈N ∈ `2 and r∗ ∈ R. We have

〈x∗, x− x′〉+ r∗(x′1 + ε) ≤ 0 ∀x ∈ C ∀x′ = (x′n)n∈N ∈ S ∀ε ≥ 0. (2. 7)

Taking in (2. 7) x′ = 0 and ε = 0 we get 〈x∗, x〉 ≤ 0 for all x ∈ C. As C is a linear
subspace of X we obtain

〈x∗, x〉 = 0 ∀x ∈ C. (2. 8)

Since e(2k−1) − e(2k) ∈ C for all k ∈ N, relation (2. 8) implies

x∗2k−1 − x∗2k = 0 ∀k ∈ N. (2. 9)

From (2. 7) and (2. 8) we obtain

〈−x∗, x′〉+ r∗(x′1 + ε) ≤ 0 ∀x′ = (x′n)n∈N ∈ S ∀ε ≥ 0. (2. 10)

Taking ε = 0 and x′ := me1 ∈ S in (2. 10), where m ∈ Z is arbitrary, we get
m(−x∗1 + r∗) ≤ 0 for all m ∈ Z, thus r∗ = x∗1. For ε = 0 in (2. 10) we obtain

−
∞∑
n=1

x∗nx
′
n + r∗x′1 ≤ 0 for all x′ ∈ S. Taking into account that r∗ = x∗1, we get

−
∞∑
n=2

x∗nx
′
n ≤ 0 for all x′ ∈ S. As S is a linear subspace of X it follows

∞∑
n=2

x∗nx
′
n = 0
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for all x′ ∈ S, but, since e(2k) − e(2k+1) ∈ S for all k ∈ N, the above relation shows
that

x∗2k − x∗2k+1 = 0 ∀k ∈ N. (2. 11)

Combining (2. 9) with (2. 11) we get x∗ = 0 (since x∗ ∈ `2). Because r∗ = x∗1, we
have also r∗ = 0. Thus NA(0, 0) = {(0, 0)} and Proposition 2.2 leads to the desired
conclusion.

(c) We have the following implication

(0, 0) ∈ qi
[

co
((

epi f − êpi(g − v(PF ))
)
∪ {(0, 0)}

)]
⇒ 0 ∈ qi(dom f − dom g).

Indeed, suppose that (0, 0) ∈ qi
[

co
((

epi f − êpi(g − v(PF ))
)
∪ {(0, 0)}

)]
. Then

cl
[

coneco
((

epi f − êpi(g − v(PF ))
)
∪ {(0, 0)}

)]
= X × R, hence (cf. (1. 1))

cl
[

cone
(

epi f − êpi(g − v(PF ))
)]

= X × R.

Since the inclusion

cl
[

cone
(

epi f − êpi(g − v(PF ))
)]
⊆ cl

(
cone(dom f − dom g)

)
× R

trivially holds, we have cl
(

cone(dom f−dom g)
)

= X, that is 0 ∈ qi(dom f−dom g).
Hence the following implication is fulfilled

0 6∈ qi(dom f − dom g)⇒ (0, 0) /∈ qi
[

co
((

epi f − êpi(g − v(PF ))
)
∪ {(0, 0)}

)]
.

Nevertheless, in the regularity conditions given above one cannot substitute the
condition (0, 0) /∈ qi

[
co
((

epi f − êpi(g− v(PF ))
)
∪ {(0, 0)}

)]
by the stronger, but

more handleable one 0 6∈ qi(dom f − dom g), since in all the regularity conditions
(RCFi ), i ∈ {6, 7, 8}, the other hypotheses imply 0 ∈ qi(dom f −dom g) (cf. Lemma
2.3).

Let us give in the following an example which illustrates the applicability of the
strong duality result introduced above.

Example 2.4 Consider the Hilbert space `2 = `2(N). We define the functions
f, g : `2 → R by

f(x) =
{
‖x‖, if x ∈ x0 − `2+,
+∞, otherwise

and

g(x) =
{
〈c, x〉, if x ∈ `2+,
+∞, otherwise,

respectively, where x0, c ∈ `2+ are arbitrary chosen such that x0
n > 0 for all n ∈ N.

Note that
v(PF ) = inf

x∈`2+∩(x0−`2+)
{‖x‖+ 〈c, x〉} = 0

and the infimum is attained at x = 0. We have dom f = x0 − `2+ = {(xn)n∈N ∈ `2 :
xn ≤ x0

n ∀n ∈ N} and dom g = `2+. By using Example 2.1 we get

dom f ∩ qri(dom g) = {(xn)n∈N ∈ `2 : 0 < xn ≤ x0
n ∀n ∈ N} 6= ∅.

Also, cl
(

cone(dom g−dom g)
)

= `2 and so 0 ∈ qi(dom g−dom g). Further, epi f =
{(x, r) ∈ `2×R : x ∈ x0−`2+, ‖x‖ ≤ r} = {(x, ‖x‖+ε) ∈ `2×R : x ∈ x0−`2+, ε ≥ 0}
and êpi(g − v(PF )) = {(x, r) ∈ `2 × R : r ≤ −g(x)} = {(x, r) ∈ `2 × R : r ≤
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−〈c, x〉, x ∈ `2+} = {(x,−〈c, x〉−ε) : x ∈ `2+, ε ≥ 0}. We get epi f− êpi(g−v(PF )) =
{(x− x′, ‖x‖+ ε+ 〈c, x′〉+ ε′) : x ∈ x0 − `2+, x′ ∈ `2+, ε, ε′ ≥ 0}, hence

epi f − êpi(g − v(PF )) = {(x− x′, ‖x‖+ 〈c, x′〉+ ε) : x ∈ x0 − `2+, x′ ∈ `2+, ε ≥ 0}.

In the following we prove that (0, 0) /∈ qri
(

epi f − êpi(g − v(PF ))
)
. Assuming

the contrary, we would have that the set cl
[

cone
(

epi f− êpi(g−v(PF ))
)]

is a linear
subspace of `2×R. Since (0, 1) ∈ cl

[
cone

(
epi f− êpi(g−v(PF ))

)]
(take x = x′ = 0

and ε = 1) we must have also that (0,−1) belongs to this set. On the other hand,
one can easily see that for all (x, r) belonging to cl

[
cone

(
epi f − êpi(g − v(PF ))

)]
it holds r ≥ 0. This leads to the desired contradiction.

Hence the regularity condition (RCF6 ) is fulfilled, thus strong duality holds
(cf. Theorem 2.3). On the other hand, `2 is a Fréchet space (being a Hilbert
space), the functions f and g are proper, convex and lower semicontinuous and, as
sqri(dom f − dom g) = sqri(x0 − `2+) = ∅, none of the regularity conditions (RCFi ),
i ∈ {1, 2, 3, 4, 5}, presented at the beginning of this section can be applied for this
optimization problem.

As for all x∗ ∈ `2 it holds g∗(x∗) = δc−`2+(x∗) and (cf. [147, Theorem 2.8.7])

f∗(−x∗) = inf
x∗1+x∗2=−x∗

{‖ · ‖∗(x∗1) + δ∗x0−l2+
(x∗2)} = inf

x∗1+x∗2=−x∗,
‖x∗1‖≤1,x∗2∈`

2
+

〈x∗2, x0〉,

the optimal objective value of the Fenchel dual problem is

v(DF ) = sup
x∗2∈`

2
+−c−x

∗
1 ,

‖x∗1‖≤1,x∗2∈`
2
+

〈−x∗2, x0〉 = sup
x∗2∈`2+

〈−x∗2, x0〉 = 0,

while x∗2 = 0 is the optimal solution of the dual.

The following example underlines the fact that in general the regularity condition
(RCF7 ) (and automatically also (RCF8 ), see Lemma 2.3(i)) is weaker than (RCF6 )
(see also Example 2.7 below).

Example 2.5 Consider the Hilbert space `2(R) and the functions f, g : `2(R)→ R
defined for all s ∈ `2(R) by

f(s) =
{
s(1), if s ∈ `2+(R),
+∞, otherwise

and

g(s) =
{
s(2), if s ∈ `2+(R),
+∞, otherwise,

respectively. The optimal objective value of the primal problem is

v(PF ) = inf
s∈`2+(R)

{s(1) + s(2)} = 0

and s = 0 is an optimal solution (let us notice that the primal problem has infinitely
many optimal solutions). We have qri(dom g) = qri(`2+(R)) = ∅ (cf. Example
2.2), hence the condition (RCF6 ) fails. In the following we show that (RCF7 ) is
fulfilled. One can prove that dom f − dom g = `2+(R) − `2+(R) = `2(R), thus 0 ∈
qi(dom f − dom g). Like in the previous example, the following relation holds

epi f − êpi(g − v(PF )) =
{

(s− s′, s(1) + s′(2) + ε) : s, s′ ∈ `2+(R), ε ≥ 0
}
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and with the same technique one can show that (0, 0) /∈ qri
(

epi f− êpi(g−v(PF ))
)
.

Thus (RCF7 ) is fulfilled and, as a consequence strong duality holds (cf. Theorem
2.3).

Let us take a look at the dual problem. For this we have to calculate the
conjugates of f and g. Let us recall that the scalar product on `2(R), 〈·, ·〉 : `2(R)×
`2(R) → R is defined by 〈s, s′〉 = sup

F⊆R,F finite

∑
r∈F s(r)s

′(r), for s, s′ ∈ `2(R). The

dual space
(
`2(R)

)∗ is identified with `2(R). For an arbitrary u ∈ `2(R) we have

f∗(u) = sup
s∈`2+(R)

{〈u, s〉 − s(1)} = sup
s∈`2+(R)

{
sup

F⊆R,F finite

∑
r∈F

u(r)s(r)− s(1)

}

= sup
F⊆R,F finite

{
sup

s∈`2+(R)

{∑
r∈F

u(r)s(r)− s(1)
}}

.

Consider F = {r1, ..., rk} an arbitrary finite subset of R, where k ∈ N. The inner
supremum can be written as

sup
s∈`2+(R)

{u(r1)s(r1) + ...+ u(rk)s(rk)− s(1)}.

One can easily prove that if 1 /∈ F this supremum is equal to 0 if u(ri) ≤ 0 for all
i ∈ {1, ..., k}, being +∞, otherwise. If 1 ∈ F , with ri0 = 1 (i0 ∈ {1, ..., k}), the
supremum becomes 0, in case u(ri) ≤ 0 for all i ∈ {i, ..., k} \ {i0} and u(1) ≤ 1,
being +∞, otherwise. In conclusion,

f∗(u) =
{

0, if u(r) ≤ 0 ∀r ∈ R \ {1} and u(1) ≤ 1,
+∞, otherwise.

Similarly we compute g∗ and obtain that v(DF ) = 0 and u = 0 is an optimal
solution of the dual (moreover, the dual has infinitely many optimal solutions).

Let us mention that besides the above mentioned generalized interior-point regu-
larity conditions, there exist in the literature the so-called closedness-type regularity
conditions, considered by Burachik and Jeyakumar in Banach spaces (cf. [45])
and by Boţ and Wanka in separated locally convex spaces (cf. [37]). Let us
consider the following condition:

(RCF9 ) f and g are lower semicontinuous and
epi f∗ + epi g∗ is closed in (X∗, w(X∗, X))× R.

We have the following duality result (cf. [37]).

Theorem 2.4 Let f, g : X → R be proper and convex functions such that dom f ∩
dom g 6= ∅. If (RCF9 ) is fulfilled, then

(f + g)∗(x∗) = min{f∗(x∗ − y∗) + g∗(y∗) : y∗ ∈ X∗} ∀x∗ ∈ X∗. (2. 12)

Remark 2.11 (a) Let us notice that in the literature condition (2. 12) is referred
to stable strong duality (see [20,46,128] for more details) and obviously guarantees
strong duality for (PF ) − (DF ). When f, g : X → R are proper, convex and lower
semicontinuous functions with dom f ∩ dom g 6= ∅, the condition (RCF9 ) is fulfilled
if and only if (2. 12) holds (cf. [37, Theorem 3.2]).

(b) In case X is a Fréchet space and f, g are proper, convex and lower semicon-
tinuous functions we have the following relations between the regularity conditions



2.2 FENCHEL DUALITY 31

considered for the primal-dual pair (PF )−(DF ) (cf. [37], see also [69] and [147, The-
orem 2.8.7])

(RCF1 )⇒ (RCF2 )⇔ (RCF3 )⇒ (RCF4 )⇔ (RCF5 )⇒ (RCF9 ).

We refer to [20, 37, 45, 128] for several examples showing that in general the impli-
cations above are strict. The implication (RCF1 ) ⇒ (RCF9 ) holds in the general
setting of separated locally convex spaces (in the hypotheses that f, g are proper,
convex and lower semicontinuous).

We observe that if X is a finite-dimensional space and f, g are proper, convex
and lower semicontinuous, then (RCF6 )⇒ (RCF7 )⇔ (RCF8 )⇒ (RCF9 ). However, in
the infinite-dimensional setting this is no longer true. In the following two examples
we show that in general the conditions (RCF7 ) (and automatically also (RCF8 ), cf.
Lemma 2.3(i)) and (RCF9 ) are not comparable. In the example below, (RCF9 ) is
fulfilled, unlike (RCFi ), i ∈ {6, 7, 8} (we refer to [20, 37, 45, 88, 128] for examples in
the finite-dimensional setting).

Example 2.6 Consider the Hilbert space `2(R) and the functions f, g : `2(R)→ R,
defined by f = δ`2+(R) and g = δ−`2+(R), respectively. We have qri(dom f − dom g) =
qri
(
`2+(R)

)
= ∅ (cf. Example 2.2), hence all the generalized interior-point regularity

conditions (RCFi ), i ∈ {1, 2, 3, 4, 5, 6, 7, 8} fail (cf. Remark 2.11(b) and Lemma
2.3(i)). The conjugate functions of f and g are f∗ = δ−`2+(R) and g∗ = δ`2+(R),
respectively, hence epi f∗ + epi g∗ = `2(R) × [0,∞), that is the condition (RCF9 )
holds. One can see that v(PF ) = v(DF ) = 0 and y∗ = 0 is an optimal solution of
the dual problem.

In the following we provide an example for which this time (RCF7 ) (and auto-
matically also (RCF8 ), cf. Lemma 2.3(i)) is fulfilled, unlike (RCF9 ).

Example 2.7 Like in Example 2.3, consider the Hilbert space X = `2(N) and the
sets

C = {(xn)n∈N ∈ `2 : x2n−1 + x2n = 0 ∀n ∈ N}

and
S = {(xn)n∈N ∈ `2 : x2n + x2n+1 = 0 ∀n ∈ N},

which are closed linear subspaces of `2 and satisfy C∩S = {0}. Define the functions
f, g : `2 → R by f = δC and g = δS , respectively, which are proper, convex and lower
semicontinuous. The optimal objective value of the primal problem is v(PF ) = 0
and x = 0 is the unique optimal solution of v(PF ). Moreover, S − C is dense in
`2 (cf. [69, Example 3.3]), thus cl

(
cone(dom f − dom g)

)
= cl(C − S) = `2. This

implies 0 ∈ qi(dom f − dom g). Further, one has

epi f − êpi(g − v(PF )) = {(x− y, ε) : x ∈ C, y ∈ S, ε ≥ 0} = (C − S)× [0,+∞)

and cl
[

cone
(

epi f−êpi(g−v(PF ))
)]

= `2×[0,+∞), which is not a linear subspace

of `2 ×R, hence (0, 0) /∈ qri
(

epi f − êpi(g− v(PF ))
)

. All together, we get that the

condition (RCF7 ) is fulfilled, hence strong duality holds (cf. Theorem 2.3). One can
prove that f∗ = δC⊥ and g∗ = δS⊥ , where

C⊥ = {(xn)n∈N ∈ `2 : x2n−1 = x2n ∀n ∈ N}

and
S⊥ = {(xn)n∈N ∈ `2 : x1 = 0, x2n = x2n+1 ∀n ∈ N}.
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Further, v(DF ) = 0 and the set of optimal solutions of the dual problem is exactly
C⊥ ∩ S⊥ = {0}.

We show that (RCF9 ) is not fulfilled. Let us consider the element e(1) ∈ `2. We
compute (f + g)∗(e(1)) = supx∈`2{〈e(1), x〉 − f(x)− g(x)} = 0 and (f∗�g∗)(e(1)) =
δC⊥+S⊥(e(1)). If we suppose that e(1) ∈ C⊥+S⊥, then we would have (e(1) +S⊥)∩
C⊥ 6= ∅. However, it has been proved in [69, Example 3.3] that (e(1)+S⊥)∩C⊥ = ∅.
This shows that (f∗�g∗)(e(1)) = +∞ > 0 = (f+g)∗(e(1)). Via Theorem 2.4 follows
that the condition (RCF9 ) is not fulfilled and, consequently, (RCFi ), i ∈ {1, 2, 3, 4, 5},
fail, too (cf. Remark 2.11(b)), unlike condition (RCF7 ). Looking at (RCF6 ), one can
see that this condition is also not fulfilled, since 0 ∈ qi(dom g − dom g) does not
hold.

Finally, let us notice that one can prove directly that (RCF9 ) is not fulfilled.
Indeed, we have epi f∗ + epi g∗ = (C⊥ + S⊥)× [0,∞). As in [69, Example 3.3], one
can show that C⊥ + S⊥ is dense in `2. If we suppose that C⊥ + S⊥ is closed, we
would have C⊥ + S⊥ = `2, which is a contradiction, since e(1) /∈ C⊥ + S⊥.

Remark 2.12 Let us notice that under convexity assumptions of the functions
involved, C. Li, D. Fang, G. López and M.A. López introduced in [88] a
condition which equivalently characterizes stable strong duality, that is relation
(2. 12) (cf. [88, Theorem 4.6]). This condition looks like (cf. [88, Definition 3.1,
Lemma 3.3 and relation (3.5)]):

(CQLFLL) epi(f + g)∗ = epi f∗ + epi g∗.

As noticed in [88, Corollary 3.9], in case f, g are proper, convex and lower semi-
continuous functions, the conditions (CQLFLL) and (RCF9 ) are equivalent. The au-
thors gave also an example (in the finite-dimensional setting) for which (CQLFLL)
holds, but the regularity condition expressed by means of the quasi interior and
quasi-relative interior (RCF8 ) fails (cf. [88, Example 4.1]). Example 2.7 above pro-
vides a situation where the condition (RCF8 ) is fulfilled, unlike (CQLFLL).

In the following, by using the results introduced above, we give regularity con-
ditions for the following convex optimization problem

(PAF ) inf
x∈X
{f(x) + (g ◦A)(x)},

where X and Y are separated locally convex spaces having as topological dual spaces
X∗ and Y ∗, respectively, A : X → Y is a continuous linear mapping, f : X → R
and g : Y → R are proper and convex functions such that A(dom f) ∩ dom g 6= ∅.
The Fenchel dual problem to (PAF ) is

(DA
F ) sup

y∗∈Y ∗
{−f∗(−A∗y∗)− g∗(y∗)}.

We denote by v(PAF ) and v(DA
F ) the optimal objective values of the primal and the

dual problem, respectively. We suppose also that v(PAF ) ∈ R. We consider the set

A× idR(epi f) = {(Ax, r) ∈ Y × R : f(x) ≤ r}.

Let us introduce the following functions: F,G : X × Y → R, F (x, y) = f(x) +
δ{u∈X:Au=y}(x) and G(x, y) = g(y) for all (x, y) ∈ X × Y . The functions F and G
are proper and convex and their domains fulfill the relation

domF − domG = X ×
(
A(dom f)− dom g

)
.
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Since epiF = {(x,Ax, r) : f(x) ≤ r} and êpi(G − v(PAF )) = {(x, y, r) : r ≤
−G(x, y) + v(PAF )} = X × êpi(g − v(PAF )), we obtain

epiF − êpi(G− v(PAF )) = X ×
(
A× idR(epi f)− êpi(g − v(PAF ))

)
.

Moreover,

inf
(x,y)∈X×Y

{F (x, y) +G(x, y)} = inf
x∈X
{f(x) + (g ◦A)(x)} = v(PAF ).

On the other hand, for all (x∗, y∗) ∈ X∗ × Y ∗ we have F ∗(x∗, y∗) = f∗(x∗ +A∗y∗)
and

G∗(x∗, y∗) =
{
g∗(y∗), if x∗ = 0,
+∞, otherwise.

Therefore

sup
x∗∈X∗
y∗∈Y ∗

{−F ∗(−x∗,−y∗)−G∗(x∗, y∗)} = sup
y∗∈Y ∗

{−f∗(−A∗y∗)− g∗(y∗)} = v(DA
F ).

We consider the following regularity conditions:

(RCFA1 ) A(dom f) ∩ qri(dom g) 6= ∅, 0 ∈ qi(dom g − dom g) and
(0, 0) /∈ qri

[
co
((
A× idR(epi f)− êpi(g − v(PAF ))

)
∪ {(0, 0)}

)]
;

(RCFA2 ) 0 ∈ qi
(
A(dom f)− dom g

)
and

(0, 0) /∈ qri
[

co
((
A× idR(epi f)− êpi(g − v(PAF ))

)
∪ {(0, 0)}

)]
and

(RCFA3 ) 0 ∈ qi
[(
A(dom f)− dom g

)
−
(
A(dom f)− dom g

)]
,

0 ∈ qri
(
A(dom f)− dom g

)
and

(0, 0) /∈ qri
[

co
((
A× idR(epi f)− êpi(g − v(PAF ))

)
∪ {(0, 0)}

)]
.

Similar remarks as in Lemma 2.3 can be made also for the regularity conditions
(RCFAi ), i ∈ {1, 2, 3}.

Lemma 2.4 Under the hypotheses we work with the following statements hold:

(i) (RCFA1 )⇒ (RCFA2 )⇔ (RCFA3 );

(ii) in case the primal problem has an optimal solution, the condition (0, 0) /∈
qri
[

co
((
A × idR(epi f) − êpi(g − v(PAF ))

)
∪ {(0, 0)}

)]
can be equivalently

written as (0, 0) /∈ qri
(
A× idR(epi f)− êpi(g − v(PAF ))

)
;

(iii) if 0 ∈ qi
[(
A(dom f) − dom g

)
−
(
A(dom f) − dom g

)]
, then the condition

(0, 0) /∈ qri
[

co
((
A × idR(epi f) − êpi(g − v(PAF ))

)
∪ {(0, 0)}

)]
is equivalent

to (0, 0) /∈ qi
[

co
((
A× idR(epi f)− êpi(g − v(PAF ))

)
∪ {(0, 0)}

)]
.

Remark 2.13 The condition 0 ∈ qi
(
A(dom f) − dom g

)
implies relation 0 ∈

qi
[(
A(dom f)− dom g

)
−
(
A(dom f)− dom g

)]
in Lemma 2.4(iii).
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Applying Theorem 2.3 for the functions F and G defined above and taking
into account the above mentioned properties we obtain the following strong duality
result concerning the primal-dual pair (PAF )− (DA

F ).

Theorem 2.5 Suppose that one of the regularity conditions (RCFAi ), i ∈ {1, 2, 3},
is fulfilled. Then v(PAF ) = v(DA

F ) and (DA
F ) has an optimal solution.

Remark 2.14 Let us notice that Borwein and Lewis gave in [14] some regularity
conditions by means of the quasi-relative interior, in order to guarantee strong
duality for the pair (PAF )− (DA

F ). However, they considered a more restrictive case,
namely that the codomain of the linear operator is finite-dimensional. We consider
here a more general framework, when both of the spaces are infinite-dimensional.

2.3 Lagrange duality

Consider the optimization problem

(PL) inf
x∈S

g(x)∈−C

f(x),

where X and Y are separated locally convex spaces, S is a non-empty convex
subset of X, f : X → R is proper and convex, C ⊆ Y is a non-empty convex cone,
g : X → Y • is proper and C-convex and the feasible set T = {x ∈ S : g(x) ∈ −C}
is assumed to be non-empty. The Lagrange dual problem associated to (PL) is

(DL) sup
λ∈C∗

inf
x∈S
{f(x) + 〈λ, g(x)〉}.

Like in the previous section, let us recall some regularity conditions from the
literature which guarantee strong duality:

(RCL1 ) ∃x′ ∈ dom f ∩ S such that g(x′) ∈ − int(C);

(RCL2 ) X and Y are Fréchet spaces, S is closed, f is lower semicontinuous,
g is C-epi-closed and 0 ∈ int

(
g(dom f ∩ S ∩ dom g) + C

)
;

(RCL3 ) X and Y are Fréchet spaces, S is closed, f is lower semicontinuous,
g is C-epi-closed and 0 ∈ core

(
g(dom f ∩ S ∩ dom g) + C

)
;

(RCL4 ) X and Y are Fréchet spaces, S is closed, f is lower semicontinuous,
g is C-epi-closed, 0 ∈ icr

(
g(dom f ∩ S ∩ dom g) + C

)
and

aff
(
g(dom f ∩ S ∩ dom g) + C

)
is a closed linear subspace of Y

and

(RCL5 ) X and Y are Fréchet spaces, S is closed, f is lower semicontinuous,
g is C-epi-closed and 0 ∈ sqri

(
g(dom f ∩ S ∩ dom g) + C

)
.

Remark 2.15 The condition (RCL1 ) is the classical Slater constraint qualification.
The above regularity conditions guarantee strong duality (cf. [20], see also [80]
and [36] for stronger conditions). In case X and Y are Fréchet spaces, S is closed,
f is lower semicontinuous and g is C-epi-closed, we have (RCL1 ) ⇒ (RCL2 ) ⇔
(RCL3 )⇒ (RCL4 )⇔ (RCL5 ) (cf. [69], see also Remark 2.7). We refer to [80] and [36]
(see also [20]) for the so-called closedness-type regularity conditions which ensure
strong duality, too.
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By using an approach due to Magnanti (cf. [91]), in this section we derive
from the Fenchel duality results given in the previous section duality results con-
cerning the primal optimization problem with geometric and cone constraints and
its Lagrange dual problem.

We work in the following setting. Let X be a topological vector space and S a
non-empty subset of X. Let Y be a separated locally convex space partially ordered
by a non-empty convex cone C ⊆ Y . Let f : S → R and g : S → Y be two functions
such that the pair (f, g) : S → R × Y , defined by (f, g)(x) = (f(x), g(x)) for all
x ∈ S, is convex-like with respect to the cone R+ × C ⊆ R × Y , that is the set
(f, g)(S) + R+ ×C is convex. Let us notice that this property implies that the sets
f(S) + [0,∞) and g(S) + C are convex (the reverse implication does not always
hold). Let us denote by v(PL) and v(DL) the optimal objective values of the primal
and the dual problem, respectively. As in the previous section, we suppose that
v(PL) is a real number.

Consider the following convex set

Ev(PL) = {(f(x) + α− v(PL), g(x) + y) : x ∈ S, α ≥ 0, y ∈ C} ⊆ R× Y.

Let us notice that the set −Ev(PL) is in analogy to the conic extension, a notion
used by F. Giannessi in the theory of image space analysis (see [66]). One can
easily prove that the primal problem (PL) has an optimal solution if and only if
(0, 0) ∈ Ev(PL). Let us introduce the functions f1, f2 : R× Y → R,

f1(r, y) =
{
r, if (r, y) ∈ Ev(PL) + (v(PL), 0),
+∞, otherwise

and f2 = δR×(−C), respectively. One can prove that

dom f1 − dom f2 = R× (g(S) + C). (2. 13)

Further, epi f1 = {(r, y, s) ∈ R × Y × R : (r, y) ∈ Ev(PL) + (v(PL), 0), r ≤ s} =
{(f(x) + α, g(x) + y, s) : x ∈ S, α ≥ 0, y ∈ C, f(x) + α ≤ s} and êpi(f2 − v(PL)) =
{(r, y, s) ∈ R × Y × R : s ≤ −f2(r, y) + v(PL)} = {(r, y, s) ∈ R × Y × R : r ∈
R, y ∈ −C, s ≤ v(PL)} = R× (−C)× (−∞, v(PL)]. Thus epi f1− êpi(f2− v(PL)) =
epi f1 +R×C× [−v(PL),+∞) = {(f(x)+α+a, g(x)+y, s−v(PL)+ε) : x ∈ S, α ≥
0, a ∈ R, y ∈ C, ε ≥ 0, f(x)+α ≤ s} = {(f(x)+α+a, g(x)+y, f(x)+α+ε−v(PL)) :
x ∈ S, α ≥ 0, a ∈ R, y ∈ C, ε ≥ 0} and this means that

epi f1 − êpi(f2 − v(PL)) = R× {(g(x) + y, f(x) + α− v(PL)) : x ∈ S, α ≥ 0, y ∈ C}.

Moreover, as pointed out by Magnanti (cf. [91]), we have

inf
(r,y)∈R×Y

{f1(r, y) + f2(r, y)} = inf
x∈S

g(x)∈−C

f(x) = v(PL) (2. 14)

and

sup
(r∗,y∗)∈R×Y ∗

{−f∗1 (−r∗,−y∗)− f∗2 (r∗, y∗)} = sup
λ∈C∗

inf
x∈S
{f(x) + 〈λ, g(x)〉} = v(DL).

(2. 15)
By considering the relations (RCFi ), i ∈ {6, 7, 8}, for the pair of functions (f1, f2)

and using the approach due to Magnanti, one can derive the following regularity
conditions by means of the quasi interior and quasi-relative interior:

(RCL6 ) cl(C − C) = Y , ∃x′ ∈ S such that g(x′) ∈ − qri(C) and
(0, 0) 6∈ qri

[
co(Ev(PL) ∪ {(0, 0)})

]
;
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(RCL7 ) 0 ∈ qi(g(S) + C) and (0, 0) 6∈ qri
[

co(Ev(PL) ∪ {(0, 0)})
]

and

(RCL8 ) 0 ∈ qi
[
(g(S) + C)− (g(S) + C)

]
, 0 ∈ qri(g(S) + C) and

(0, 0) 6∈ qri
[

co(Ev(PL) ∪ {(0, 0)})
]
.

Remark 2.16 The fact that the condition (RCF6 ) written for the pair (f1, f2) is
equivalent to (RCL6 ) follows from the relation qri(C) + C = qri(C), which is a
direct consequence of Proposition 2.3(v). Let us notice that the condition (RCL6 )
is considered also in [101] in case Y is a normed space.

We study in the following the relations between the above considered regularity
conditions.

Lemma 2.5 Suppose that cl(C − C) = Y and ∃x′ ∈ S such that g(x′) ∈ − qri(C).
Then the following assertions are true

(i) 0 ∈ qi(g(S) + C);

(ii) cl
[

cone
(

qri(g(S) + C)
)]

= Y .

Proof. (i) The condition cl(C − C) = Y implies 0 ∈ qi(C − C), while the Slater-
type condition g(x′) ∈ − qriC ensures that qri(C) ∩ (−g(S) − C) 6= ∅. Hence,
by Lemma 2.1(i) we obtain 0 ∈ qi

(
C − (−g(S) − C)

)
which is nothing else than

0 ∈ qi(g(S) + C).
(ii) From (i) it follows that 0 ∈ qri(g(S)+C), hence qri(g(S)+C) 6= ∅. Applying

Proposition 2.3 (ix) we get cl
[

cone(qri(g(S) + C))
]

= cl
(

cone(g(S) + C)
)

= Y ,
the later equality being a consequence of (i). �

Similar remarks as in Lemma 2.3 can be made also for the regularity conditions
(RCLi ), i ∈ {6, 7, 8}.

Lemma 2.6 Under the hypotheses we work with the following statements hold:

(i) (RCL6 )⇒ (RCL7 )⇔ (RCL8 );

(ii) in case the primal problem has an optimal solution, the condition (0, 0) 6∈
qri
[

co(Ev(PL) ∪ {(0, 0)})
]

can be equivalently written as (0, 0) 6∈ qri
(
Ev(PL)

)
;

(iii) if 0 ∈ qi
[
(g(S)+C)− (g(S)+C)

]
, then the condition (0, 0) 6∈ qri

[
co(Ev(PL)∪

{(0, 0)})
]

is equivalent to (0, 0) 6∈ qi
[

co(Ev(PL) ∪ {(0, 0)})
]
.

Remark 2.17 Let us notice that a sufficient condition for the fulfillment of 0 ∈
qi
[
(g(S) +C)− (g(S) +C)

]
in Lemma 2.6(iii) is 0 ∈ qi(g(S) +C). This is a direct

consequence of the inclusion g(S) + C ⊆ (g(S) + C)− (g(S) + C).

Remark 2.18 Similarly as in Remark 2.10(c), one can prove the implication

(0, 0) ∈ qi
(

co
(
Ev(PL) ∪ {(0, 0)}

))
⇒ 0 ∈ qi(g(S) + C).

Let us mention that one cannot substitute in (RCLi ), i ∈ {6, 7, 8}, the condition
(0, 0) 6∈ qri

[
co
(
Ev(PL) ∪ {(0, 0)}

)]
by 0 6∈ qi(g(S) + C), since this would be in

contradiction with the other assumptions (see Lemma 2.5 and Lemma 2.6).

Applying Theorem 2.3 for the functions f1 and f2 defined above and taking into
account the above presented approach of Magnanti we obtain the following strong
duality result concerning the primal-dual pair (PL)− (DL).
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Theorem 2.6 Suppose that one of the regularity conditions (RCLi ), i ∈ {6, 7, 8},
is fulfilled. Then v(PL) = v(DL) and (DL) has an optimal solution.

Let us give in the following an example which underlines the applicability of the
above strong duality theorem (for another example we refer to [25, Example 4.1]).

Example 2.8 Consider again the Hilbert space `2(N) and the following setting:
S = C = `2+, f : `2+ → R, f(x) = 〈c, x〉 and g : `2+ → `2, g(x) = x − x0, where
c, x0 ∈ `2+ are arbitrary chosen such that x0

n > 0 for all n ∈ N. The feasible set of
the primal problem is T = `2+ ∩ (x0 − `2+) 6= ∅ and it holds

v(PL) = inf
x∈T
〈c, x〉 = 0,

while x = 0 is an optimal solution of the primal problem. The condition cl(C−C) =
`2 is obviously satisfied and we have that (cf. Example 2.1) {x ∈ S : g(x) ∈
− qri(C)} = {x = (xn)n∈N ∈ `2 : 0 ≤ xn < x0

n ∀n ∈ N}. This is a non-empty
set, hence the Slater-type condition is also fulfilled. We prove in the following that
(0, 0) 6∈ qi

(
Ev(PL)

)
. An arbitrary element (r∗, x∗) ∈ R× `2 belongs to NEv(PL)(0, 0)

if and only if

r∗(〈c, x〉+ α) + 〈x∗, x− x0 + y〉 ≤ 0 ∀x ∈ `2+ ∀α ≥ 0 ∀y ∈ `2+.

One can observe that (−1, 0) ∈ NEv(PL)(0, 0), which ensures that NEv(PL)(0, 0) 6=
{(0, 0)}. By using Proposition 2.2 we obtain the conclusion. By Lemma 2.6, the
condition (RCL6 ) is fulfilled and hence strong duality holds. Let us notice that,
since g(S)+C = `2+−x0, none of the regularity conditions (RCLi ), i ∈ {1, 2, 3, 4, 5},
presented in this section can be applied to this problem (see Example 2.1). The
optimal objective value of the Lagrange dual problem is

v(DL) = sup
λ∈`2+

inf
x∈`2+
{〈c, x〉+ 〈λ, x− x0〉}

= sup
λ∈`2+

{
− 〈λ, x0〉+ inf

x∈`2+
〈c+ λ, x〉

}
= sup
λ∈`2+
〈−λ, x0〉 = 0

and λ = 0 is an optimal solution of the dual.

The following example considered by Daniele and Giuffrè in [58] shows that
if the condition (0, 0) 6∈ qri

[
co(Ev(PL) ∪ {(0, 0)})

]
is removed, the strong duality

result may fail.

Example 2.9 Let be X = S = Y = `2 and C = `2+. Take f : `2 → R, f(x) = 〈c, x〉,
where c = (cn)n∈N, cn = (1/n) for all n ∈ N and g : `2 → `2, g(x) = −Ax, where
(Ax)n = (1/2n)xn for all n ∈ N. Then T = {x ∈ `2 : Ax ∈ `2+} = `2+. It holds
cl(`2+ − `2+) = `2 and qri(`2+) = {x = (xn)n∈N ∈ `2 : xn > 0 ∀n ∈ N} 6= ∅ and one
can easily find an x ∈ `2 with g(x) ∈ − qri(`2+). We also have that

v(PL) = inf
x∈T
〈c, x〉 = 0

and x = 0 is an optimal solution of the primal problem. On the other hand, for
λ ∈ C∗ = `2+, it holds

inf
x∈S
{f(x) + 〈λ, g(x)〉} = inf

x∈`2
{〈c, x〉+ 〈λ, g(x)〉}

= inf
x=(xn)n∈N∈`2

( ∞∑
n=1

1
n
xn −

∞∑
n=1

λn
1
2n
xn

)
= inf

(xn)n∈N∈`2

∞∑
n=1

(
1
n
− λn

2n

)
xn
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=
{

0, if λn = 2n

n ∀n ∈ N,
−∞, otherwise.

Since (2n/n)n∈N does not belong to `2, we obtain v(DL) = −∞, hence strong
duality fails.

Moreover, it is not surprising that strong duality does not hold, since not all the
conditions in (RCLi ), i ∈ {6, 7, 8}, are fulfilled. This follows as one can prove that
(0, 0) ∈ qi

(
Ev(PL)

)
. Indeed, take an arbitrary element (r∗, x∗) ∈ NEv(PL)(0, 0) with

x∗ = (x∗n)n∈N ∈ `2 and r∗ ∈ R. Then we have

r∗(〈c, x〉+ α) + 〈x∗, g(x) + y〉 ≤ 0 ∀x ∈ `2 ∀α ≥ 0 ∀y ∈ `2+, (2. 16)

that is

r∗

( ∞∑
n=1

1
n
xn + α

)
+
∞∑
n=1

x∗n

(
− 1

2n
xn + yn

)
≤ 0

∀x = (xn)n∈N ∈ `2 ∀α ≥ 0 ∀y = (yn)n∈N ∈ `2+.

Taking α = 0 and yn = 0 for all n ∈ N in the relation above we get

∞∑
n=1

(
r∗

1
n
− 1

2n
x∗n

)
xn ≤ 0 ∀x = (xn)n∈N ∈ `2,

which implies x∗n = r∗(2n/n) for all n ∈ N. Since x∗ ∈ `2, we must have r∗ = 0
and hence x∗ = 0. Thus NEv(PL)(0, 0) = {(0, 0)} and so (0, 0) ∈ qi

(
Ev(PL)

)
(cf.

Proposition 2.2).

As in the previous section, we show that in general the condition (RCL7 ) (and
automatically also (RCL8 ), see Lemma 2.6(i)) is weaker than (RCL6 ).

Example 2.10 Consider the following setting: X = Y = `2(R), S = C = `2+(R)
and the functions f : `2+(R) → R, g : `2+(R) → `2(R) defined by f(s) = ‖s‖ and
g(s) = −s, for all s ∈ `2+(R), respectively. For the primal problem we have

v(PL) = inf
x∈`2+(R)

‖s‖ = 0

and s = 0 is an optimal solution. Since qri
(
`2+(R)

)
= ∅ (cf. Example 2.2), the

condition (RCL6 ) fails. Further, g(S) + C = −`2+(R) + `2+(R) = `2(R), hence 0 ∈
qi(g(S) + C). Like in Example 2.8 one can prove that (0, 0) 6∈ qi

(
Ev(PL)

)
, thus the

condition (RCL7 ) is fulfilled (see also Lemma 2.6), hence strong duality holds (cf.
Theorem 2.6). The optimal objective value of the dual problem is

v(DL) = sup
λ∈`2+(R)

inf
s∈`2+(R)

{‖s‖ − 〈λ, s〉}.

For every λ ∈ `2+(R) the inner infimum in the above relation can be written as
(cf. [147, Theorem 2.8.7])

inf
s∈`2+(R)

{‖s‖ − 〈λ, s〉} = − sup
s∈`2+(R)

{〈λ, s〉 − ‖s‖} = −(‖ · ‖+ δ`2+(R))
∗(λ)

= −(δB(0,1)�δ−`2+(R))(λ) = −δB(0,1)−`2+(R)(λ),

where B(0, 1) is the closed unit ball of
(
`2(R)

)∗ = `2(R). We get v(DL) = 0 and
every λ ∈ `2+(R)∩

(
B(0, 1)− `2+(R)

)
is an optimal solution of the dual (in particular

also λ = 0).
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Remark 2.19 Let us mention that Jeyakumar and Wolkowicz have intro-
duced in [83] some regularity conditions in terms of the quasi-relative interior, in
order to guarantee Lagrange duality. However, most of these conditions require the
interior of the ordering cone to be non-empty, which is not always fulfilled, as we
pointed out at the beginning of the chapter.

For the rest of this section we revisit some results recently given on this topic
which, unfortunately, have either superfluous or contradictory hypotheses. One can
overcome these drawbacks by using the results presented in this chapter.

A regularity condition for strong duality for the pair (PL)− (DL) was proposed
by Cammaroto and Di Bella in [53, Theorem 2.2]:

Let X be a topological vector space and let S be a non-empty subset of X; let
(Y, ‖ · ‖) be a normed space partially ordered by a convex cone C; let f : S → R and
g : S → Y be two functions such that the function (f, g) : S → R× Y defined above
is convex-like with respect to the cone R+ × C of R × Y , qri(g(S) + C) 6= ∅ and
cl
[

cone(qri(g(S) + C))
]

is not a linear subspace of Y . Let the set T = {x ∈ S :
g(x) ∈ −C} be non-empty. In addition, suppose that qri(C) 6= ∅ and cl(C−C) = Y .
If the problem (PL) is solvable and there exists x′ ∈ S with g(x′) ∈ − qri(C), then
the problem (DL) is also solvable and the extrema of the problems are equal.

Lemma 2.5 shows that this theorem finds no application, since the hypotheses
are contradictory. Let us notice that [53, Theorem 2.2] was used also in [67,68] for
generalized complementarity problems.

In [59] Daniele, Giuffrè, Idone and Maugeri considered the following
notion regarding the problem (PL): we say that Assumption S is fulfilled at x0 ∈ T
if

(Assumption S) TfM (f(x0), 0) ∩ ((−∞, 0)× 0) = ∅,

where
M̃ := {(f(x) + α, g(x) + y) : x ∈ S \ T , α ≥ 0, y ∈ C}.

They also formulated the following strong duality theorem (cf. [59, Theorem 4]):

Let X be a topological vector space and S a non-empty subset of X; let (Y, ‖·‖) be
a normed space partially ordered by a convex cone C. Let f : S → R and g : S → Y
be two functions such that the function (f, g) : S → R× Y defined above is convex-
like with respect to the cone R+×C of R×Y . Let the set T = {x ∈ S : g(x) ∈ −C}
be non-empty and let us assume that qriC 6= ∅, cl(C − C) = Y and there exists
x ∈ S with g(x) ∈ − qriC. Then if the problem (PL) is solvable and Assumption
S is fulfilled at the extremal solution x0 ∈ T to the problem (PL), also the problem
(DL) is solvable, the extrema values of both problems are equal and it results

〈u, g(x0)〉 = 0,

where u ∈ C∗ is the extremal point of the problem (DL).

Remark 2.20 We emphasize that Assumption S is fulfilled at an optimal solution
of the primal problem if and only for the pair (PL)− (DL) strong duality holds (see
[25, Corollary 3.1]). This means that the other assumptions which involve also the
quasi-relative interior in the result presented above are superfluous. Moreover, for
the primal optimization problem with both cone and equality constraints a similar
Assumption S is used in [58, Theorem 3.1]. Again, this condition is equivalent to
strong duality, making the other conditions considered by the authors superfluous
(cf. [25, Corollary 3.1]). For a detailed proof of the above considerations concerning
Assumption S we refer to [25]. Finally, let us mention that the Assumption S,
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together with other conditions expressed via the quasi-relative interior, are used in
other papers too, like [57,99].

Remark 2.21 A valuable strong duality theorem for the primal optimization prob-
lem with cone and equality constraints and its Lagrange dual problem is given in [70]
by means of the quasi interior and quasi-relative interior.

Remark 2.22 A comparison of the regularity conditions introduced in this chapter
by means of the quasi interior and quasi-relative interior with the classical ones
mentioned in the last two sections of this chapter is provided in [24].



Chapter 3

Sequential optimality
conditions in convex
optimization

The theory developed in this chapter is motivated by the followings. Consider the
convex optimization problem

(P 0
F ) inf

x∈D
f(x),

where f : X → R is a proper and convex function, X is a separated locally convex
space and D is a non-empty convex subset of X. The celebrated Pshenichnyi-
Rockafellar Lemma (see [116,120,147]) provides a necessary and sufficient optimality
condition for the problem (P 0

F ), whenever a regularity condition is fulfilled: in case
dom f ∩ int(D) 6= ∅ (or f is continuous at some x0 ∈ dom f ∩ D), an element
a ∈ dom f ∩ D is an optimal solution of the problem (P 0

F ) if and only if 0 ∈
∂f(a) +ND(a). This is a very important result in convex optimization with many
applications. Nevertheless, it has some disadvantages. First of all, a can be a
minimizer of f on D even if 0 6∈ ∂f(a) + ND(a) (as, for instance, the set ∂f(a)
could be empty; see [84] for such an example). Moreover, the regularity conditions
are not always fulfilled even in the finite-dimensional case. The same disadvantages
arise also in the case of optimization problems with geometric and cone constraints.

Trying to eliminate these drawbacks, many mathematicians have given optimal-
ity conditions that do not require any regularity condition. With respect to the
problem (P 0

F ), a nice generalization of the Pshenichnyi-Rockafellar Lemma was re-
cently given by Jeyakumar and Wu in [84]. It is stated in terms of a sequence
of ε-subdifferentials and ε-normal sets and provides a necessary and sufficient opti-
mality condition without asking the fulfillment of any regularity condition.

For the problem with geometric and cone constraints various modified Lagrange
multiplier conditions without regularity conditions have been given in the literature
(cf. [8, 9, 17, 18, 56, 79, 87]). Moreover, in [81] and [86], several qualification free se-
quential optimality conditions for this problem are introduced . In [136] Thibault
gave a sequential form of the Lagrange multiplier rule in the case the cone which
appears in the constraint set is convex, closed and normal. Other sequential char-
acterizations can be found in literature in [77,104,135,137].

Motivated by these considerations we give in Section 3.1 sequential optimality
conditions without any regularity condition for the general convex optimization
problem

(PΦ) inf
x∈X

Φ(x, 0),

41
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where Φ : X × Y → R, the so-called perturbation function, is proper, convex and
lower semicontinuous and X,Y are Banach spaces, X being supposed reflexive.
This sequential characterization is obtained by using the properties of the infimal
value function of the conjugate Φ∗ and the formula for the epigraph of a conjugate
function written in terms of the ε-subdifferential (see (1. 3)). Combining the above
condition with a version of the Brøndsted-Rockafellar Theorem (see Theorem 1.1),
we obtain another qualification free sequential characterization of optimal solutions
involving the classical (convex) subdifferential.

In the last three sections of this chapter we consider particular instances of
the general results, rediscovering and, in many situations, even improving some
sequential optimality conditions given in the literature by Jeyakumar and Wu
and Thibault, respectively. The main results of this chapter are Theorem 3.1 and
Theorem 3.2 and the theory presented here is based on [27,28].

3.1 A general approach via perturbation theory

Consider (X, ‖·‖) a reflexive Banach space, (Y, ‖·‖) a Banach space and (X∗, ‖·‖∗),
(Y ∗, ‖·‖∗) their topological dual spaces, respectively. Although the spaces X,Y and
X∗, Y ∗, respectively, are endowed with different norms, we use the same notations
for these as there is no danger of confusion. Let {x∗n : n ∈ N} be a sequence in

X∗. We write x∗n
ω∗−→ 0 (x∗n

‖·‖∗−→ 0) for the case when x∗n converges to 0 in the weak∗

(strong) topology on X∗. We make the following convention: if in a certain property
for the convergence in the dual space we write x∗n → 0 (n → +∞), we understand
that the property holds no matter which of the two topologies (weak∗ or strong) is
used. The following property will be frequently used in this chapter:

if x∗n → 0 and xn → a (n→ +∞), then 〈x∗n, xn〉 → 0 (n→ +∞),

where {xn : n ∈ N} ⊆ X, a ∈ X and xn → a (n → +∞) means ‖xn − a‖ → 0
(n→ +∞), that is the convergence in the topology induced by the norm on X. On
X × Y we use the norm ‖(x, y)‖ =

√
‖x‖2 + ‖y‖2, for (x, y) ∈ X × Y . The norm

on X∗ × Y ∗ is defined analogously.
Let Φ : X × Y → R be a given function. The so-called perturbation function

Φ plays a determinant role in the duality theory as it can be used for constructing
a dual problem to a given primal optimization problem. More precisely, the dual
problem is defined by using the conjugate of Φ (we refer to [20, 60, 147] for a com-
prehensive study of the perturbation theory). The classical duality approaches, like
Fenchel duality and Lagrange duality, can be seen as particular cases of this general
theory.

In this section we give sequential optimality conditions for the general optimiza-
tion problem

(PΦ) inf
x∈X

Φ(x, 0).

To this end we consider the infimal value function η : X∗ → R of the conjugate
Φ∗ defined by η(x∗) = infy∗∈Y ∗ Φ∗(x∗, y∗) for all x∗ ∈ X∗. Let us notice that, since
Φ∗ is a convex function on X∗ × Y ∗, η is a convex function on X∗. We begin our
investigation by establishing a result which holds also in the framework of separated
locally convex spaces.

Lemma 3.1 Let Φ : X × Y → R be a proper, convex and lower semicontinuous
function such that 0 ∈ prY (dom Φ). Then a ∈ dom Φ(·, 0) is an optimal solution of
the problem (PΦ) if and only if (0,−η∗(a)) ∈ clw∗×R(epi η).
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Proof. One can see that dom η 6= ∅ and η∗(x) = (Φ∗)∗(x, 0) = Φ(x, 0) for all
x ∈ X. We get that η∗ is proper, hence cl η is also proper and η∗∗ = cl η. Then
a ∈ dom Φ(·, 0) is an optimal solution of (PΦ) if and only if a is an optimal solution
of the problem

(Pη) inf
x∈X

η∗(x).

The later is equivalent to 0 ∈ ∂η∗(a), which is nothing else than η∗∗(0) + η∗(a) ≤ 0.
This is the same with (clw∗ η)(0) = η∗∗(0) ≤ −η∗(a), which can be reformulated as
(0,−η∗(a)) ∈ epi(clw∗ η) = clw∗×R(epi η). �

By using Lemma 3.1 and formula (1. 3) one can give now general sequential
optimality conditions for the problem (PΦ) involving ε-subdifferentials.

Theorem 3.1 Let Φ : X × Y → R be a proper, convex and lower semicontinuous
function such that 0 ∈ prY (dom Φ). The following statements are equivalent:

(i) a ∈ dom Φ(·, 0) is an optimal solution of the problem (PΦ);

(ii) there exist sequences {εn} ↓ 0 and (x∗n, y
∗
n) ∈ ∂εn

Φ(a, 0) such that x∗n
‖·‖∗−→ 0

(n→ +∞);

(iii) there exist sequences {εn} ↓ 0 and (x∗n, y
∗
n) ∈ ∂εn

Φ(a, 0) such that x∗n
ω∗−→ 0

(n→ +∞).

Proof. (i) ⇒ (ii) Suppose that a ∈ dom Φ(·, 0) is an optimal solution of the
problem (PΦ). Applying the previous lemma, we have (0,−η∗(a)) ∈ clw∗×R(epi η).
Since η is a convex function and X is a reflexive Banach space we have

clw∗×R(epi η) = cl‖·‖∗×R(epi η).

Hence ∃(x∗n, rn) ∈ X∗ × R such that η(x∗n) ≤ rn, x
∗
n

‖·‖∗−→ 0 and rn → −η∗(a) (n →
+∞). The inequality η(x∗n) ≤ rn yields infy∗∈Y ∗ Φ∗(x∗n, y

∗) < rn+1/n for all n ∈ N,
so there exists a sequence {y∗n : n ∈ N} ⊆ Y ∗ such that Φ∗(x∗n, y

∗
n) < rn + 1/n for

all n ∈ N, thus (x∗n, y
∗
n, rn + 1/n) ∈ epi Φ∗ for all n ∈ N. As (a, 0) ∈ dom Φ, we get

by (1. 3)

epi Φ∗ =
⋃
ε≥0

{
(x∗, y∗, 〈x∗, a〉+ ε− Φ(a, 0)) : (x∗, y∗) ∈ ∂εΦ(a, 0)

}
.

Since (x∗n, y
∗
n, rn + 1/n) ∈ epi Φ∗ for all n ∈ N, there exists a sequence {εn : n ∈

N} ⊆ R+ such that rn+1/n = 〈x∗n, a〉+εn−Φ(a, 0), (x∗n, y
∗
n) ∈ ∂εnΦ(a, 0), x∗n

‖·‖∗−→ 0
(n → +∞). As rn → −η∗(a) = −Φ(a, 0) (n → +∞), from the last equality we
conclude that εn → 0 (n→ +∞).

The implication (ii)⇒ (iii) is trivial.
(iii)⇒ (i) If there exist sequences {εn} ↓ 0 and (x∗n, y

∗
n) ∈ ∂εn

Φ(a, 0) such that

x∗n
ω∗−→ 0 (n→ +∞), then using the definition of the ε-subdifferential of a function

we get

Φ(x, y)− Φ(a, 0) ≥ 〈x∗n, x− a〉+ 〈y∗n, y〉 − εn ∀(x, y) ∈ X × Y ∀n ∈ N.

We obtain
Φ(x, 0)− Φ(a, 0) ≥ 〈x∗n, x− a〉 − εn ∀x ∈ X ∀n ∈ N.

Passing to the limit as n→ +∞, we get Φ(x, 0)− Φ(a, 0) ≥ 0 for all x ∈ X, hence
a ∈ dom Φ(·, 0) is an optimal solution of the problem (PΦ). �
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Combining this result with the Brøndsted-Rockafellar Theorem (Theorem 1.1)
we get necessary and sufficient sequential optimality conditions by means of the
(convex) subdifferential.

Theorem 3.2 Let Φ : X × Y → R be a proper, convex and lower semicontinuous
function such that 0 ∈ prY (dom Φ). The following statements are equivalent:

(i) a ∈ dom Φ(·, 0) is an optimal solution of the problem (PΦ);

(ii) there exist sequences (xn, yn) ∈ dom Φ and (x∗n, y
∗
n) ∈ ∂Φ(xn, yn) such that

x∗n
‖·‖∗−→ 0, xn → a, yn → 0 (n→ +∞) and

Φ(xn, yn)− 〈y∗n, yn〉 − Φ(a, 0)→ 0 (n→ +∞);

(iii) there exist sequences (xn, yn) ∈ dom Φ and (x∗n, y
∗
n) ∈ ∂Φ(xn, yn) such that

x∗n
ω∗−→ 0, xn → a, yn → 0 (n→ +∞) and

Φ(xn, yn)− 〈y∗n, yn〉 − Φ(a, 0)→ 0 (n→ +∞).

Proof. As (ii)⇒ (iii) is always true, we prove only the implications (i)⇒ (ii) and
(iii)⇒ (i).

(i) ⇒ (ii) Suppose that a ∈ dom Φ(·, 0) is an optimal solution of the problem
(PΦ). By Theorem 3.1 there exist {εn} ↓ 0 and (x∗n, y∗n) ∈ ∂εn

Φ(a, 0) such that

x∗n
‖·‖∗−→ 0 (n → +∞). Applying Theorem 1.1 we get that for all n ∈ N there exist

(xn, yn) ∈ X × Y and (x∗n, y
∗
n) ∈ ∂Φ(xn, yn) such that

‖(xn, yn)− (a, 0)‖ ≤
√
εn, ‖(x∗n, y∗n)− (x∗n, y∗n)‖∗ ≤

√
εn

and
|Φ(xn, yn)− 〈(x∗n, y∗n), (xn, yn)− (a, 0)〉 − Φ(a, 0)| ≤ 2εn,

from which we obtain x∗n
‖·‖∗−→ 0, xn → a, yn → 0 (n→ +∞) and Φ(xn, yn)−〈x∗n, xn−

a〉 − 〈y∗n, yn〉 − Φ(a, 0) → 0 (n → +∞). Since 〈x∗n, xn − a〉 → 0 (n → +∞), the
desired result follows.

(iii) ⇒ (i) Assume that there exist sequences (xn, yn) ∈ dom Φ, (x∗n, y
∗
n) ∈

∂Φ(xn, yn) such that x∗n
ω∗−→ 0, xn → a, yn → 0 (n→ +∞) and Φ(xn, yn)−〈y∗n, yn〉−

Φ(a, 0)→ 0 (n→ +∞). Since (x∗n, y
∗
n) ∈ ∂Φ(xn, yn), we have Φ(x, y) ≥ Φ(xn, yn)+

〈(x∗n, y∗n), (x − xn, y − yn)〉 for all (x, y) ∈ X × Y and all n ∈ N. Consequently, for
every x ∈ X the following inequality is true

Φ(x, 0)− Φ(a, 0) ≥ Φ(xn, yn)− 〈y∗n, yn〉 − Φ(a, 0) + 〈x∗n, x− xn〉 ∀n ∈ N.

Passing to the limit as n → +∞, we get Φ(x, 0) − Φ(a, 0) ≥ 0 for all x ∈ X, thus
a ∈ dom Φ(·, 0) is an optimal solution of the problem (PΦ). �

Remark 3.1 Let us notice that in the setting of separated locally convex spaces
the implications (ii)⇒ (iii)⇒ (i) in the theorems 3.1 and 3.2 hold also in the case
the hypothesis of lower semicontinuity of Φ is removed.

Remark 3.2 Using the convention mentioned at the beginning of the section, the
above results can be reformulated as follows. Under the hypotheses of Theorem 3.1
the following assertions are equivalent:

(i) a ∈ dom Φ(·, 0) is an optimal solution of the problem (PΦ);
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(ii) there exist sequences {εn} ↓ 0 and (x∗n, y
∗
n) ∈ ∂εnΦ(a, 0) such that x∗n → 0

(n→ +∞);

(iii) there exist sequences (xn, yn) ∈ dom Φ and (x∗n, y
∗
n) ∈ ∂Φ(xn, yn) such that

x∗n → 0, xn → a, yn → 0 (n→ +∞) and

Φ(xn, yn)− 〈y∗n, yn〉 − Φ(a, 0)→ 0 (n→ +∞).

Remark 3.3 Let us notice that a refined version of the above sequential charac-
terizations expressed by means of the (convex) subdifferential can be given. To
this aim one has to use an idea due to Thibault (cf. [135]) which we present in
the following. Under the hypotheses of Theorem 1.1, applying this result to the
indicator function of epi f , one obtains that for every ε > 0 and every x∗ ∈ ∂εf(a),
there exist (xε, rε) ∈ epi f and (x∗ε,−sε) ∈ Nepi f (xε, rε) such that

‖(xε, rε)− (a, f(a))‖ ≤
√
ε, ‖(x∗ε,−sε)− (x∗,−1)‖ ≤

√
ε

and

|〈x∗ε, xε − a〉 − sε(rε − f(a))| ≤ 2ε.

This yields that

‖xε − a‖ ≤
√
ε, ‖x∗ε − x∗‖∗ ≤

√
ε, f(xε)− f(a) ≤

√
ε,

|sε − 1| ≤
√
ε and |〈x∗ε, xε − a〉| ≤ 3ε+

√
ε.

Considering a sequence {εn} ↓ 0 (for which we can assume without loss of generality
that εn < 1 for all n ∈ N) and x∗εn

∈ ∂εn
f(a), by defining u∗εn

:= (1/sεn
)x∗εn

, we
obtain a family (xεn , u

∗
εn

) fulfilling u∗εn
∈ ∂f(xεn) for all n ∈ N. Using that f is

lower semicontinuous we further get

u∗εn

‖·‖∗−→x∗, xεn → a, f(xεn)→ f(a) and 〈u∗εn
, xεn − a〉 → 0 (n→ +∞).

Let us mention that the conclusion above can be obtained also by applying [104,
Proposition 1.1].

Employing the facts already described one can refine the results in the conclusion
of Theorem 3.2. Considering the same hypotheses the following statements are
equivalent:

(i) a ∈ dom Φ(·, 0) is an optimal solution of the problem (PΦ);

(ii) there exist sequences (xn, yn) ∈ dom Φ and (x∗n, y
∗
n) ∈ ∂Φ(xn, yn) such that

x∗n → 0, xn → a, yn → 0, 〈y∗n, yn〉 → 0 (n→ +∞) and

Φ(xn, yn)− Φ(a, 0)→ 0 (n→ +∞).

However, we work in the following with the conditions given in the theorems 3.1
and 3.2, since their different particularizations deliver us several results from the
literature dealing with sequential optimality conditions.
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3.2 Sequential generalizations of the Pshenichnyi-
Rockafellar Lemma

In this section we particularize the general sequential optimality conditions intro-
duced above to the optimization problem

(PAF ) inf
x∈X
{f(x) + (g ◦A)(x)},

where (X, ‖·‖) is a reflexive Banach space, (Y, ‖·‖) is a Banach space, f : X → R and
g : Y → R are proper, convex and lower semicontinuous functions and A : X → Y
is a continuous linear mapping such that A(dom f) ∩ dom g 6= ∅. To this end we
define the perturbation function ΦA : X × Y → R by ΦA(x, y) = f(x) + g(Ax+ y)
for all (x, y) ∈ X × Y . A simple computation shows that Φ∗A(x∗, y∗) = f∗(x∗ −
A∗y∗) + g∗(y∗) for all (x∗, y∗) ∈ X∗ × Y ∗. Let us prove first the following lemma.

Lemma 3.2 Let (x∗, y∗) ∈ X∗ × Y ∗, a ∈ dom f ∩ A−1(dom g) and ε ≥ 0 be fixed.
The following statements are true:

(i) if (x∗, y∗) ∈ ∂εΦA(a, 0), then x∗ −A∗y∗ ∈ ∂εf(a) and y∗ ∈ ∂εg(Aa);

(ii) if x∗ −A∗y∗ ∈ ∂εf(a) and y∗ ∈ ∂εg(Aa), then (x∗, y∗) ∈ ∂2εΦA(a, 0).

Proof. The pair (x∗, y∗) belongs to ∂εΦA(a, 0) if and only if ΦA(a, 0) + Φ∗A(x∗, y∗)
≤ 〈x∗, a〉+ε, which is equivalent to f(a)+g(Aa)+f∗(x∗−A∗y∗)+g∗(y∗) ≤ 〈x∗, a〉+ε.

(i) If (x∗, y∗) ∈ ∂εΦA(a, 0), then f(a)+g(Aa)+f∗(x∗−A∗y∗)+g∗(y∗) ≤ 〈x∗, a〉+
ε. Let us suppose that x∗ − A∗y∗ 6∈ ∂εf(a). Then f(a) + f∗(x∗ − A∗y∗) > 〈x∗ −
A∗y∗, a〉+ ε. By the Young-Fenchel inequality we have g(Aa) + g∗(y∗) ≥ 〈y∗, Aa〉.
Adding the last two inequalities we obtain f(a) +g(Aa) +f∗(x∗−A∗y∗) +g∗(y∗) >
〈x∗, a〉 + ε, which is a contradiction. Hence x∗ − A∗y∗ ∈ ∂εf(a) and similarly we
get y∗ ∈ ∂εg(Aa).

(ii) As x∗−A∗y∗ ∈ ∂εf(a) and y∗ ∈ ∂εg(Aa), we obtain f(a) +f∗(x∗−A∗y∗) ≤
〈x∗ − A∗y∗, a〉 + ε and g(Aa) + g∗(y∗) ≤ 〈y∗, Aa〉 + ε. The conclusion follows by
adding these two inequalities. �

Theorem 3.3 Let A : X → Y be a continuous linear mapping, f : X → R and g :
Y → R be proper, convex and lower semicontinuous functions such that A(dom f)∩
dom g 6= ∅. Then a ∈ dom f ∩ A−1(dom g) is an optimal solution of the problem
(PAF ) if and only if

∃{εn} ↓ 0,∃x∗n ∈ ∂εn
f(a),∃y∗n ∈ ∂εn

g(Aa) such that x∗n +A∗y∗n → 0 (n→ +∞).
(3. 1)

Proof. The element a ∈ dom f ∩A−1(dom g) is an optimal solution of the problem
(PAF ) if and only if a is an optimal solution of (PΦA

), which is equivalent to (cf.
Theorem 3.1)

∃{εn} ↓ 0,∃(x∗n, y∗n) ∈ ∂εnΦA(a, 0) such that x∗n → 0 (n→ +∞). (3. 2)

We prove that the conditions (3. 1) and (3. 2) are equivalent.
“(3. 2)⇒(3. 1)” Assume that there exist {εn} ↓ 0 and (x∗n, y∗n) ∈ ∂εn

ΦA(a, 0)
such that x∗n → 0 (n → +∞). According to Lemma 3.2(i), x∗n − A∗y∗n ∈ ∂εnf(a)
and y∗n ∈ ∂εng(Aa). By choosing εn := εn, x∗n := x∗n − A∗y∗n and y∗n := y∗n, we see
that (3. 1) is fulfilled.

“(3. 1) ⇒(3. 2)” Assume that there exist {εn} ↓ 0, x∗n ∈ ∂εn
f(a) and y∗n ∈

∂εn
g(Aa) such that x∗n + A∗y∗n → 0 (n → +∞). Take εn := 2εn, x∗n := x∗n + A∗y∗n

and y∗n := y∗n. Then x∗n − A∗y∗n = x∗n ∈ ∂εn
f(a) and y∗n = y∗n ∈ ∂εn

g(Aa), hence
by Lemma 3.2(ii) we have (x∗n, y

∗
n) ∈ ∂εnΦA(a, 0). Moreover, x∗n = x∗n + A∗y∗n → 0

(n→ +∞), so (3. 2) is fulfilled. �
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Remark 3.4 One can notice that the above characterization of the optimal solu-
tions of the problem (PAF ) can be also obtained as a consequence of the so-called
Hiriart-Urruty and Phelps Formula (see [137, Proposition 1]).

Next we derive from Theorem 3.2 a sequential optimality condition for the prob-
lem (PAF ) involving only the (convex) subdifferentials of the functions f and g.

Theorem 3.4 Let A : X → Y be a continuous linear mapping, f : X → R and g :
Y → R be proper, convex and lower semicontinuous functions such that A(dom f)∩
dom g 6= ∅. Then a ∈ dom f ∩ A−1(dom g) is an optimal solution of the problem
(PAF ) if and only if

∃(xn, yn) ∈ dom f × dom g,∃x∗n ∈ ∂f(xn),∃y∗n ∈ ∂g(yn) such that
x∗n +A∗y∗n → 0, xn → a, yn → Aa (n→ +∞),
f(xn)− 〈x∗n, xn − a〉 − f(a)→ 0, (n→ +∞) and
g(yn)− 〈y∗n, yn −Aa〉 − g(Aa)→ 0 (n→ +∞).

(3. 3)

Proof. Applying Theorem 3.2, we get that a is an optimal solution of the problem
(PAF ) if and only if ∃(xn, yn) ∈ X × Y , xn ∈ dom f , Axn + yn ∈ dom g, ∃(x∗n, y∗n) ∈
∂ΦA(xn, yn) such that x∗n → 0, xn → a, yn → 0 and Φ(xn, yn)−〈y∗n, yn〉−Φ(a, 0)→ 0
(n→ +∞). The last condition is equivalent to

f(xn) + g(Axn + yn)− 〈y∗n, yn〉 − f(a)− g(Aa)→ 0 (n→ +∞).

For all n ∈ N we have (x∗n, y
∗
n) ∈ ∂ΦA(xn, yn) if and only if ΦA(xn, yn)+Φ∗A(x∗n, y

∗
n) =

〈x∗n, xn〉+ 〈y∗n, yn〉 ⇔ f(xn) + g(Axn + yn) + f∗(x∗n −A∗y∗n) + g∗(y∗n) = 〈x∗n, xn〉+
〈y∗n, yn〉. Using the Young-Fenchel inequality we obtain

f(xn) + f∗(x∗n −A∗y∗n) + g(Axn + yn) + g∗(y∗n) ≥ 〈x∗n −A∗y∗n, xn〉+ 〈y∗n, Axn + yn〉

= 〈x∗n, xn〉+ 〈y∗n, yn〉,

hence (x∗n, y
∗
n) ∈ ∂ΦA(xn, yn) if and only if f(xn)+f∗(x∗n−A∗y∗n) = 〈x∗n−A∗y∗n, xn〉

and g(Axn + yn) + g∗(y∗n) = 〈y∗n, Axn + yn〉 ⇔ x∗n − A∗y∗n ∈ ∂f(xn) and y∗n ∈
∂g(Axn + yn). In this way we proved that a ∈ dom f ∩ A−1(dom g) is an optimal
solution of the problem (PAF ) if and only if

∃(xn, yn) ∈ X × Y, xn ∈ dom f,Axn + yn ∈ dom g,
∃(x∗n, y∗n) ∈ X∗ × Y ∗, x∗n −A∗y∗n ∈ ∂f(xn), y∗n ∈ ∂g(Axn + yn) such that
x∗n → 0, xn → a, yn → 0 (n→ +∞) and
f(xn) + g(Axn + yn)− 〈y∗n, yn〉 − f(a)− g(Aa)→ 0 (n→ +∞).

(3. 4)
Next we show that the conditions (3. 3) and (3. 4) are equivalent.
“(3. 4)⇒(3. 3)” Suppose that
∃(xn, yn) ∈ X × Y, xn ∈ dom f,Axn + yn ∈ dom g,
∃(x∗n, y∗n) ∈ X∗ × Y ∗, x∗n −A∗y∗n ∈ ∂f(xn), y∗n ∈ ∂g(Axn + yn) such that
x∗n → 0, xn → a, yn → 0 (n→ +∞) and
f(xn) + g(Axn + yn)− 〈y∗n, yn〉 − f(a)− g(Aa)→ 0 (n→ +∞).

Take xn := xn, yn := Axn + yn, x
∗
n := x∗n −A∗y∗n and y∗n := y∗n, for all n ∈ N. Then

xn ∈ dom f, yn ∈ dom g, x∗n ∈ ∂f(xn), y∗n ∈ ∂g(yn), x∗n + A∗y∗n → 0, xn → a and
yn → Aa (n→ +∞). Moreover,

f(xn)− 〈x∗n, xn − a〉 − f(a) = f(xn)− 〈x∗n −A∗y∗n, xn − a〉 − f(a)

= f(xn) + g(Axn + yn)− 〈x∗n, xn − a〉 − 〈y∗n, yn〉 − f(a)− g(Aa)− g(Axn + yn)
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+〈A∗y∗n, xn− a〉+ 〈y∗n, yn〉+ g(Aa) = f(xn) + g(Axn + yn)− 〈x∗n, xn− a〉 − 〈y∗n, yn〉
−f(a)− g(Aa)− g(yn) + g(Aa) + 〈y∗n, yn −Aa〉.

Let us make the following notations: an := f(xn) − 〈x∗n, xn − a〉 − f(a) and bn :=
g(Aa)− g(yn)−〈y∗n, Aa− yn〉. We have an− bn = f(xn) + g(Axn + yn)−〈y∗n, yn〉−
f(a) − g(Aa) − 〈x∗n, xn − a〉 → 0 (n → +∞). Since x∗n ∈ ∂f(xn) we have f(x) −
f(xn) ≥ 〈x∗n, x − xn〉 for all x ∈ X. For x = a in the previous inequality we
get an = f(xn) − 〈x∗n, xn − a〉 − f(a) ≤ 0. Similarly, from y∗n ∈ ∂g(yn) we have
bn = g(Aa) − g(yn) − 〈y∗n, Aa − yn〉 ≥ 0. Thus an ≤ 0 ≤ bn and an − bn → 0
(n→ +∞). As in this case one must have that an → 0 and bn → 0 (n→∞), (3. 3)
is fulfilled.

“(3. 3)⇒(3. 4)” Assume now that (3. 3) holds, namely
∃(xn, yn) ∈ dom f × dom g,∃x∗n ∈ ∂f(xn),∃y∗n ∈ ∂g(yn) such that
x∗n +A∗y∗n → 0, xn → a, yn → Aa (n→ +∞),
f(xn)− 〈x∗n, xn − a〉 − f(a)→ 0 (n→ +∞) and
g(yn)− 〈y∗n, yn −Aa〉 − g(Aa)→ 0 (n→ +∞).

For all n ∈ N take xn := xn, yn := yn − Axn, y∗n := y∗n and x∗n := x∗n + A∗y∗n. Then
xn ∈ dom f,Axn + yn ∈ dom g, x∗n − A∗y∗n ∈ ∂f(xn), y∗n ∈ ∂g(Axn + yn), x∗n →
0, xn → a and yn → 0 (n→ +∞). Moreover,

f(xn) + g(Axn + yn)− 〈y∗n, yn〉 − f(a)− g(Aa) = f(xn) + g(yn)− 〈y∗n, yn −Axn〉

−f(a)− g(Aa) = f(xn)− 〈x∗n, xn − a〉 − f(a) + g(yn)− 〈y∗n, yn −Aa〉 − g(Aa)

+〈x∗n, xn − a〉+ 〈y∗n,−Aa+Axn〉 = f(xn)− 〈x∗n, xn − a〉 − f(a)

+g(yn)− 〈y∗n, yn −Aa〉 − g(Aa) + 〈x∗n +A∗y∗n, xn − a〉 → 0 (n→ +∞),

hence (3. 4) is fulfilled. �

Remark 3.5 Similar characterizations of the optimal solutions of the problem
(PAF ) have been given by Thibault in [137] and as an application they have been
used to provide a new proof of the well known fact that the subdifferential of a
proper, convex and lower semicontinuous function is a maximal monotone operator
(cf. [122]).

If we take Y = X (X is a reflexive Banach space) and A = idX in the above
theorems we obtain the following sequential optimality conditions concerning the
convex optimization problem

(PF ) inf
x∈X
{f(x) + g(x)}.

They are presented in the following as two corollaries.

Corollary 3.1 Let f, g : X → R be proper, convex and lower semicontinuous func-
tions such that dom f ∩ dom g 6= ∅. Then a ∈ dom f ∩ dom g is an optimal solution
of the problem (PF ) if and only if

∃{εn} ↓ 0,∃x∗n ∈ ∂εn
f(a),∃y∗n ∈ ∂εn

g(a) such that x∗n + y∗n → 0 (n→ +∞).

Corollary 3.2 Let f, g : X → R be proper, convex and lower semicontinuous func-
tions such that dom f ∩ dom g 6= ∅. Then a ∈ dom f ∩ dom g is an optimal solution
of the problem (PF ) if and only if

∃(xn, yn) ∈ dom f × dom g,∃x∗n ∈ ∂f(xn),∃y∗n ∈ ∂g(yn) such that
x∗n + y∗n → 0, xn → a, yn → a (n→ +∞),
f(xn)− 〈x∗n, xn − a〉 − f(a)→ 0 (n→ +∞) and
g(yn)− 〈y∗n, yn − a〉 − g(a)→ 0 (n→ +∞).
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Taking g := δD in the previous corollaries, where D ⊆ X is a non-empty, closed
and convex set, we obtain the following sequential optimality conditions regarding
the convex optimization problem

(P 0
F ) inf

x∈D
f(x).

Corollary 3.3 Let f : X → R be a proper, convex and lower semicontinuous
function and D ⊆ X a closed and convex set such that D ∩ dom f 6= ∅. Then
a ∈ D ∩ dom f is an optimal solution of the problem (P 0

F ) if and only if

∃{εn} ↓ 0,∃x∗n ∈ ∂εnf(a),∃y∗n ∈ N
εn

D (a) such that x∗n + y∗n → 0 (n→ +∞).

Corollary 3.4 Let f : X → R be a proper, convex and lower semicontinuous
function and D ⊆ X a closed and convex set such that D ∩ dom f 6= ∅. Then
a ∈ D ∩ dom f is an optimal solution of the problem (P 0

F ) if and only if
∃(xn, yn) ∈ dom f ×D,∃x∗n ∈ ∂f(xn),∃y∗n ∈ ND(yn) such that
x∗n + y∗n → 0, xn → a, yn → a (n→ +∞),
f(xn)− 〈x∗n, xn − a〉 − f(a)→ 0 (n→ +∞) and
〈y∗n, yn − a〉 → 0 (n→ +∞).

Remark 3.6 As shown in this section, the last two results are obtained as par-
ticular cases of the main results of this chapter, theorems 3.1 and 3.2. Moreover,
corollaries 3.3 and 3.4 can be seen as sequential generalizations of the well-known
Pshenichnyi-Rockafellar Lemma, improving in the same time the results of Jeyaku-
mar and Wu (see [84, Theorem 3.3 and Corollary 3.5]). One can notice that in
our case the convergence on X∗ can be considered both in the weak∗ and strong
topology, while in [84] only the weak∗ topology is taken.

Let us give in the following an example to show that even in the situation when
the celebrated Pshenichnyi-Rockafellar Lemma fails, its sequential form given in
Corollary 3.4 is applicable (for other examples illustrating the advantages of having
sequential optimality conditions we refer to [84]).

Example 3.1 Let be X = R2, D = −R2
+ and the function f : R2 → R be defined

by

f(x, y) =
{
x2 −√y, if y ≥ 0,
+∞, otherwise.

Obviously a = (0, 0) ∈ (−∞, 0] × {0} = D ∩ dom f is the unique optimal solution
of the problem (P 0

F ). Since ∂f(a) = ∅, the Pshenichnyi-Rockafellar Lemma cannot
be applied. For all n ∈ N take xn = (0, 1/n) ∈ dom f , yn = (0, 0) ∈ D, x∗n =
(0,−

√
n/2) ∈ ∂f(xn) and y∗n = (0,

√
n/2) ∈ R2

+ = ND(yn). We have xn → a (n→
+∞), yn = a, x∗n + y∗n = 0, f(xn)− 〈x∗n, xn − a〉 − f(a) = −

√
1/n+ (1/2)(1/

√
n) =

−1/(2
√
n) → 0 (n → +∞) and 〈y∗n, yn − a〉 = 0, hence the sequential optimality

conditions in Corollary 3.4 are fulfilled.

3.3 Sequential optimality conditions for the prob-
lem with geometric and cone constraints

Let X be a reflexive Banach space, Y a Banach space and C ⊆ Y a non-empty
convex cone inducing a partial ordering on Y . In this section we deal with the
convex optimization problem with geometric and cone constraints

(PL) inf
x∈S

g(x)∈−C

f(x),
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where S ∩ g−1(−C) ∩ dom f 6= ∅, S is a closed convex subset of X, f : X → R is a
proper, convex and lower semicontinuous function and g : X → Y • is a C-convex
vector-valued function.

3.3.1 The case g is continuous

Additionally to the assumptions made above we suppose in this subsection that
the cone C is closed and g : X → Y is continuous. We derive a sequential form
of the Lagrange multiplier rule for (PL) by applying Theorem 3.2 to the following
perturbation function

ΦC1 : X ×X × Y → R, ΦC1 (x, p, q) =
{
f(x), if x+ p ∈ S and g(x) ∈ q − C,
+∞, otherwise.

The conjugate of ΦC1 is (ΦC1 )∗ : X∗ ×X∗ × Y ∗ → R,

(ΦC1 )∗(x∗, p∗, q∗) = sup
(x,p,q)∈X×X×Y

x+p∈S
g(x)∈q−C

{〈x∗, x〉+ 〈p∗, p〉+ 〈q∗, q〉 − f(x)}.

In order to compute (ΦC1 )∗ we introduce new variables z and y by z := x + p and
q − g(x) := y, respectively. It follows

(ΦC1 )∗(x∗, p∗, q∗) = sup
(x,z,y)∈X×S×C

{〈x∗, x〉+ 〈p∗, z − x〉+ 〈q∗, y + g(x)〉 − f(x)},

and, as the three variables are separated, we get (ΦC1 )∗(x∗, p∗, q∗) = sup
z∈S
〈p∗, z〉 +

sup
x∈X
{〈x∗ − p∗, x〉+ 〈q∗, g(x)〉 − f(x)}+ sup

y∈C
〈q∗, y〉. We obtain the following formula

(ΦC1 )∗(x∗, p∗, q∗) =

{
δ∗S(p∗) + sup

x∈X
{〈x∗ − p∗, x〉+ 〈q∗, g(x)〉 − f(x)}, if q∗ ∈ −C∗,

+∞, otherwise.

A direct application of Theorem 3.2 yields the following result.

Theorem 3.5 The element a ∈ S ∩ g−1(−C)∩ dom f is an optimal solution of the
problem (PL) if and only if

∃(xn, ωn, tn) ∈ dom f × S × (−C),∃(u∗n, v∗n, ω∗n, q∗n) ∈ X∗ ×X∗ ×X∗ × C∗,
u∗n ∈ ∂f(xn), v∗n ∈ ∂(q∗ng)(xn), ω∗n ∈ NS(ωn), 〈q∗n, tn〉 = 0 ∀n ∈ N,
u∗n + v∗n + ω∗n → 0, ωn → a, xn → a, tn → g(a) (n→ +∞) and
f(xn)− f(a) + 〈q∗n, g(xn)〉 − 〈ω∗n, ωn − xn〉 → 0 (n→ +∞).

(3. 5)

Proof. According to Theorem 3.2, the element a ∈ S ∩ g−1(−C)∩ dom f is an op-
timal solution of the problem (PL) if and only if there exist sequences (xn, pn, qn) ∈
dom ΦC1 and (x∗n, p

∗
n,−q∗n) ∈ ∂ΦC1 (xn, pn, qn) such that

x∗n → 0, xn → a, (pn, qn)→ (0, 0) (n→ +∞) and

ΦC1 (xn, pn, qn)− 〈(p∗n,−q∗n), (pn, qn)〉 − ΦC1 (a, 0, 0)→ 0 (n→ +∞).

Since (xn, pn, qn) ∈ dom ΦC1 , we get xn ∈ dom f, xn + pn ∈ S and g(xn) ∈ qn − C,
for all n ∈ N. We have (x∗n, p

∗
n,−q∗n) ∈ ∂ΦC1 (xn, pn, qn) if and only if

ΦC1 (xn, pn, qn) + (ΦC1 )∗(x∗n, p
∗
n,−q∗n) = 〈x∗n, xn〉+ 〈p∗n, pn〉+ 〈−q∗n, qn〉
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⇔ f(xn) + δ∗S(p∗n) + (f + q∗ng)∗(x∗n − p∗n) = 〈x∗n, xn〉+ 〈p∗n, pn〉+ 〈−q∗n, qn〉.

The previous relation holds if and only if

(f + q∗ng)∗(x∗n − p∗n) + (f + q∗ng)(xn)− 〈x∗n − p∗n, xn〉

+〈q∗n, qn − g(xn)〉+ δ∗S(p∗n)− 〈p∗n, xn + pn〉 = 0 ∀n ∈ N.

As qn − g(xn) ∈ C and q∗n ∈ C∗, we have 〈q∗n, qn − g(xn)〉 ≥ 0 for all n ∈ N.
Moreover, the Young-Fenchel inequality yields

(f + q∗ng)∗(x∗n − p∗n) + (f + q∗ng)(xn)− 〈x∗n − p∗n, xn〉 ≥ 0

and
δ∗S(p∗n)− 〈p∗n, xn + pn〉 ≥ 0,

hence (x∗n, p
∗
n,−q∗n) ∈ ∂ΦC1 (xn, pn, qn) if and only if x∗n − p∗n ∈ ∂(f + q∗ng)(xn), p∗n ∈

∂δS(xn + pn) = NS(xn + pn) and 〈q∗n, qn − g(xn)〉 = 0 for all n ∈ N. The relation
ΦC1 (xn, pn, qn) − 〈(p∗n,−q∗n), (pn, qn)〉 − ΦC1 (a, 0, 0) → 0 (n → +∞) is equivalent
to f(xn) − 〈p∗n, pn〉 + 〈q∗n, qn〉 − f(a) → 0 (n → +∞). Hence the element a ∈
S ∩ g−1(−C) ∩ dom f is an optimal solution of the problem (PL) if and only if

∃(xn, pn, qn) ∈ dom f ×X × Y, xn + pn ∈ S, g(xn)− qn ∈ −C,
∃(x∗n, p∗n, q∗n) ∈ X∗ ×X∗ × C∗ such that
x∗n − p∗n ∈ ∂(f + q∗ng)(xn), p∗n ∈ NS(xn + pn), 〈q∗n, qn − g(xn)〉 = 0 ∀n ∈ N,
x∗n → 0, xn → a, pn → 0, qn → 0 (n→ +∞) and
f(xn)− f(a) + 〈q∗n, qn〉 − 〈p∗n, pn〉 → 0 (n→ +∞).

(3. 6)
Introducing the new variables tn, ωn, u∗n and ω∗n instead of qn, pn, x∗n and p∗n, by
tn := g(xn) − qn, ωn := pn + xn, u∗n := x∗n − p∗n and ω∗n := p∗n for all n ∈ N,
respectively, the condition (3. 6) can be reformulated as follows

∃(xn, ωn, tn) ∈ dom f × S × (−C),∃(u∗n, ω∗n, q∗n) ∈ X∗ ×X∗ × C∗,
u∗n ∈ ∂(f + q∗ng)(xn), ω∗n ∈ NS(ωn), 〈q∗n, tn〉 = 0 ∀n ∈ N,
u∗n + ω∗n → 0, ωn → a, xn → a, tn → g(a) (n→ +∞) and
f(xn)− f(a) + 〈q∗n, g(xn)〉 − 〈ω∗n, ωn − xn〉 → 0 (n→ +∞).

(3. 7)

The function g being continuous, we obtain that the following subdifferential sum
formula holds

∂(f + q∗ng)(xn) = ∂f(xn) + ∂(q∗ng)(xn)

(see [147, Theorem 2.8.7]). Thus u∗n ∈ ∂(f + q∗ng)(xn) if and only if there exist
u∗n ∈ ∂f(xn) and v∗n ∈ ∂(q∗ng)(xn) such that u∗n = u∗n + v∗n for all n ∈ N and the
desired conclusion follows. �

Remark 3.7 Let us introduce now the following real sequences: ln := f(xn) −
f(a)+〈q∗n, g(xn)〉−〈ω∗n, ωn−xn〉 (see Theorem 3.5), l1n := 〈q∗n, tn−g(a)〉+〈ω∗n, ωn−a〉
and l2n := f(xn)− f(a) + 〈q∗n, g(xn)− g(a)〉+ 〈ω∗n, xn − a〉 for all n ∈ N. We prove
that if the condition (xn, ωn, tn) ∈ dom f × S × (−C), (u∗n, v

∗
n, ω

∗
n, q
∗
n) ∈ X∗ ×X∗ ×X∗ × C∗,

u∗n ∈ ∂f(xn), v∗n ∈ ∂(q∗ng)(xn), ω∗n ∈ NS(ωn), 〈q∗n, tn〉 = 0 ∀n ∈ N and
u∗n + v∗n + ω∗n → 0, xn → a (n→ +∞),

(3. 8)
is satisfied, then we have

ln → 0 (n→ +∞) if and only if l1n → 0 and l2n → 0 (n→ +∞). (3. 9)
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Indeed, if (3. 8) is fulfilled, then

ln = l2n − l1n , (3. 10)

hence the sufficiency of relation (3. 9) is trivial (in fact for this implication we need
only the fulfillment of 〈q∗n, tn〉 = 0 for all n ∈ N).

Assume now that ln → 0 (n→ +∞). Since ω∗n ∈ NS(ωn), we have 〈ω∗n, a−ωn〉 ≤
0 and, as q∗n ∈ C∗, we get

l1n ≥ 0 ∀n ∈ N. (3. 11)

From v∗n ∈ ∂(q∗ng)(xn) we obtain the inequality (q∗ng)(a)− (q∗ng)(xn) ≥ 〈v∗n, a−xn〉,
that is 〈q∗n, g(xn)−g(a)〉 ≤ 〈v∗n, xn−a〉. This inequality leads to l2n ≤ f(xn)−f(a)+
〈v∗n+ω∗n, xn−a〉 for all n ∈ N. Since u∗n ∈ ∂f(xn) we have f(a)−f(xn) ≥ 〈u∗n, a−xn〉
for all n ∈ N. Combining the last two inequalities we obtain l2n ≤ 〈u∗n+v∗n+ω∗n, xn−
a〉 for all n ∈ N. This implies, using relation (3. 10) and inequality (3. 11), that

0 ≤ l1n = l2n − ln ≤ 〈u∗n + v∗n + ω∗n, xn − a〉 − ln ∀n ∈ N,

hence l1n → 0 (n→ +∞). From (3. 10) we obtain that l2n → 0 (n→ +∞).

By using the remarks made above we can state the following result.

Theorem 3.6 The element a ∈ S ∩ g−1(−C)∩ dom f is an optimal solution of the
problem (PL) if and only if

∃(xn, ωn, tn) ∈ dom f × S × (−C),∃(u∗n, v∗n, ω∗n, q∗n) ∈ X∗ ×X∗ ×X∗ × C∗,
u∗n ∈ ∂f(xn), v∗n ∈ ∂(q∗ng)(xn), ω∗n ∈ NS(ωn), 〈q∗n, tn〉 = 0 ∀n ∈ N,
u∗n + v∗n + ω∗n → 0, ωn → a, xn → a, tn → g(a) (n→ +∞),
〈q∗n, tn − g(a)〉+ 〈ω∗n, ωn − a〉 → 0 (n→ +∞) and
f(xn)− f(a) + 〈q∗n, g(xn)− g(a)〉+ 〈ω∗n, xn − a〉 → 0 (n→ +∞).

(3. 12)

In order to show the applicability of the last statement, let us consider the
following example.

Example 3.2 We work in the following setting: X = Y = R, S = C = R+ and
the functions f : R→ R,

f(x) =
{
−
√
x, if x ≥ 0,

+∞, otherwise,

and g : R → R, g(x) = x, for all x ∈ R. Trivially, a = 0 is the unique optimal
solution of the problem (PL). For all n ∈ N take xn = 1/n ∈ dom f , ωn = 0 ∈ S,
tn = 0 ∈ −C, u∗n = −

√
n/2 ∈ ∂f(xn), q∗n =

√
n/2 ∈ R+ = C∗, v∗n =

√
n/2 ∈

∂(q∗ng)(xn) and ω∗n = 0 ∈ −R+ = NS(ωn). It holds f(xn) − f(a) + 〈q∗n, g(xn) −
g(a)〉+ 〈ω∗n, xn−a〉 = f(xn)+ 〈q∗n, g(xn)〉 = −

√
1/n+(

√
n/2)(1/n) = −1/(2

√
n)→

0 (n → +∞) and one can easily see that all the conditions in Theorem 3.6 are
fulfilled.

In case dom f = X and f is continuous we obtain from Theorem 3.6 the following
corollary.

Corollary 3.5 The element a ∈ S∩g−1(−C)∩dom f is an optimal solution of the
problem (PL) if and only if

∃(xn, ωn, tn) ∈ X × S × (−C),∃(u∗n, v∗n, ω∗n, q∗n) ∈ X∗ ×X∗ ×X∗ × C∗,
u∗n ∈ ∂f(xn), v∗n ∈ ∂(q∗ng)(xn), ω∗n ∈ NS(ωn), 〈q∗n, tn〉 = 0 ∀n ∈ N,
u∗n + v∗n + ω∗n → 0, ωn → a, xn → a, tn → g(a) (n→ +∞),
〈q∗n, tn − g(a)〉+ 〈ω∗n, ωn − a〉 → 0 (n→ +∞) and
〈q∗n, g(xn)− g(a)〉+ 〈ω∗n, xn − a〉 → 0 (n→ +∞).

(3. 13)
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Remark 3.8 Thibault obtained the same characterization as in Corollary 3.5
under the additional hypotheses that C is a normal cone and Y is reflexive (cf. [136,
Theorem 4.1]). Let us recall that C ⊆ Y is normal if and only if the norm function
(on Y ) is C-increasing on C. Although in [136] it is not mentioned, the pair (ωn, tn)
must belong to the set S× (−C) for all n ∈ N and if one looks carefully at the proof
given by Thibault, one can see that this must be assumed also in [136, Theorem
4.1].

3.3.2 The case g is C-epi-closed

Let us consider the setting from the beginning of Section 3.3. Additionally we
suppose that g : X → Y • is C-epi-closed. In the following we derive another
sequential form of the Lagrange multiplier rule for the problem (PL) by applying
again Theorem 3.2, this time to the following perturbation function

ΦC2 : X ×X × Y → R, ΦC2 (x, p, q) =
{
f(x+ p), if x ∈ S and g(x) ∈ q − C,
+∞, otherwise.

One can easily show that ΦC2 is proper, convex and lower semicontinuous such that
(0, 0) ∈ prX×Y (dom ΦC2 ). The conjugate of ΦC2 is (ΦC2 )∗ : X∗ ×X∗ × Y ∗ → R,

(ΦC2 )∗(x∗, p∗, q∗) =
{
f∗(p∗) + (−q∗g + δS)∗(x∗ − p∗), if q∗ ∈ −C∗,
+∞, otherwise,

as a straightforward calculation shows.

Theorem 3.7 The element a ∈ S ∩ g−1(−C)∩ dom f is an optimal solution of the
problem (PL) if and only if

∃(xn, pn, qn) ∈ S × dom f × Y, g(xn) ≤C qn,∃(u∗n, v∗n, q∗n) ∈ X∗ ×X∗ × C∗,
u∗n ∈ ∂f(pn), v∗n ∈ ∂(q∗ng + δS)(xn), 〈q∗n, qn − g(xn)〉 = 0 ∀n ∈ N,
u∗n + v∗n → 0, xn → a, pn → a, qn → 0 (n→ +∞) and
f(pn)− 〈u∗n, pn − xn〉+ 〈q∗n, qn〉 − f(a)→ 0 (n→ +∞).

(3. 14)

Proof. According to Theorem 3.2, the element a ∈ S ∩ g−1(−C)∩ dom f is an op-
timal solution of the problem (PL) if and only if there exist sequences (xn, pn, qn) ∈
dom ΦC2 , (x∗n, p

∗
n,−q∗n) ∈ ∂ΦC2 (xn, pn, qn) such that

x∗n → 0, xn → a, (pn, qn)→ (0, 0) (n→ +∞) and

ΦC2 (xn, pn, qn)− 〈(p∗n,−q∗n), (pn, qn)〉 − ΦC2 (a, 0, 0)→ 0 (n→ +∞).

Since (xn, pn, qn) ∈ dom ΦC2 we get xn ∈ S, xn + pn ∈ dom f and g(xn) ≤C qn for
all n ∈ N. We have (x∗n, p

∗
n,−q∗n) ∈ ∂ΦC2 (xn, pn, qn) if and only if

ΦC2 (xn, pn, qn) + (ΦC2 )∗(x∗n, p
∗
n,−q∗n) = 〈x∗n, xn〉+ 〈p∗n, pn〉+ 〈−q∗n, qn〉 ⇔

f(xn + pn) + f∗(p∗n) + (q∗ng + δS)∗(x∗n − p∗n) = 〈x∗n, xn〉+ 〈p∗n, pn〉+ 〈−q∗n, qn〉,

where q∗n ∈ C∗ for all n ∈ N. As qn − g(xn) ∈ C we obtain 〈q∗n, qn − g(xn)〉 ≥ 0 for
all n ∈ N. Using this and the Young-Fenchel inequality we get f(xn+pn)+f∗(p∗n)+
(q∗ng + δS)∗(x∗n − p∗n) ≥ 〈p∗n, xn + pn〉+ 〈x∗n − p∗n, xn〉 − (q∗ng + δS)(xn) = 〈x∗n, xn〉+
〈p∗n, pn〉 + 〈−q∗n, g(xn)〉 ≥ 〈x∗n, xn〉 + 〈p∗n, pn〉 + 〈−q∗n, qn〉. Hence (x∗n, p

∗
n,−q∗n) ∈

∂ΦC2 (xn, pn, qn) if and only if p∗n ∈ ∂f(xn + pn), x∗n − p∗n ∈ ∂(q∗ng + δS)(xn) and
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〈q∗n, qn − g(xn)〉 = 0 for all n ∈ N. As a consequence, we obtain that a ∈ S ∩
g−1(−C) ∩ dom f is an optimal solution of the problem (PL) if and only if
∃(xn, pn, qn) ∈ S ×X × Y, xn + pn ∈ dom f, g(xn) ≤C qn,
∃(x∗n, p∗n, q∗n) ∈ X∗ ×X∗ × C∗, p∗n ∈ ∂f(xn + pn), x∗n − p∗n ∈ ∂(q∗ng + δS)(xn),
〈q∗n, qn − g(xn)〉 = 0 ∀n ∈ N, x∗n → 0, xn → a, pn → 0, qn → 0 (n→ +∞) and
f(xn + pn)− 〈p∗n, pn〉+ 〈q∗n, qn〉 − f(a)→ 0 (n→ +∞).

(3. 15)
Introducing the new variables p′n, u

∗
n and v∗n instead of pn, p∗n and x∗n by p′n :=

xn + pn, u
∗
n := p∗n and v∗n := x∗n − p∗n for all n ∈ N, respectively, one can see that

(3. 15) is equivalent to (3. 14) (again denoting p′n by pn for all n ∈ N), which com-
pletes the proof. �

For the special case when S = X, we obtain the following sequential character-
ization of the optimal solutions of the optimization problem

(P ′L) inf
g(x)∈−C

f(x).

We use this result in subsection 3.4.1 when deriving necessary and sufficient sequen-
tial optimality conditions for composed convex optimization problems.

Corollary 3.6 The element a ∈ g−1(−C) ∩ dom f is an optimal solution of the
problem (P ′L) if and only if

∃(xn, pn, qn) ∈ X × dom f × Y, g(xn) ≤C qn,∃(u∗n, v∗n, q∗n) ∈ X∗ ×X∗ × C∗,
u∗n ∈ ∂f(pn), v∗n ∈ ∂(q∗ng)(xn), 〈q∗n, qn − g(xn)〉 = 0 ∀n ∈ N,
u∗n + v∗n → 0, xn → a, pn → a, qn → 0 (n→ +∞) and
f(pn)− 〈u∗n, pn − xn〉+ 〈q∗n, qn〉 − f(a)→ 0 (n→ +∞).

(3. 16)

3.4 Sequential optimality conditions for composed
convex optimization problems

Let us turn our attention to a more general optimization problem than the ones
treated in the last two sections. We work in the following setting: X is a reflexive
Banach space and Y is a Banach space partially ordered by the non-empty convex
cone C ⊆ Y . The optimization problem considered in this section is

(PCC) inf
x∈X
{f(x) + (g ◦ h)(x)},

where f : X → R is proper, convex and lower semicontinuous, h : X → Y • is proper
and C-convex and g : Y • → R is proper, convex and lower semicontinuous with
g(∞C) = +∞. We suppose also that dom f ∩ domh ∩ h−1(dom g) 6= ∅.

3.4.1 The case h is C-epi-closed

Throughout this subsection we assume additionally that Y is reflexive, h is C-epi-
closed and g is C-increasing on h(domh) + C. The problem (PCC) is a convex
optimization problem and for characterizing its optimal solutions the following se-
quential optimality condition can be derived from Corollary 3.6 (see Remark 3.12(b)
for a discussion on the several reasons why we apply this method).
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Theorem 3.8 The element a ∈ dom f ∩domh∩h−1(dom g) is an optimal solution
of the problem (PCC) if and only if

∃(xn, pn, qn, q′n) ∈ X × dom f × dom g × Y, h(xn) ≤C q′n,
∃(u∗n, e∗n, u∗n

′, q∗n), q∗n ∈ C∗, u∗n ∈ ∂f(pn), q∗n + e∗n ∈ ∂g(qn),
u∗n
′ ∈ ∂(q∗nh)(xn), 〈q∗n, q′n − h(xn)〉 = 0 ∀n ∈ N,

u∗n + u∗n
′ → 0, e∗n → 0, xn → a, pn → a, qn → h(a), q′n → h(a) (n→ +∞),

f(pn)− 〈u∗n, pn − xn〉+ 〈q∗n, h(xn)− h(a)〉 − f(a)→ 0 (n→ +∞) and
g(qn)− 〈q∗n, qn − h(a)〉 − g(h(a))→ 0 (n→ +∞).

(3. 17)

Proof. One can prove that a ∈ dom f ∩ domh∩ h−1(dom g) is an optimal solution
of the problem (PCC) if and only if (a, h(a)) is an optimal solution of the problem

(P ′L) inf
G(x,y)∈−C

F (x, y),

where F : X×Y → R, F (x, y) = f(x)+g(y) and G : X×Y → Y •, G(x, y) = h(x)−y
for all (x, y) ∈ X × Y . The hypotheses regarding the functions f, g and h imply
that F is proper, convex and lower semicontinuous, while G is proper, C-convex and
C-epi-closed. Applying Corollary 3.6 to the problem (P ′L), which is an optimization
problem with cone constraints in X×Y , we get that a ∈ dom f∩domh∩h−1(dom g)
is an optimal solution of the problem (PCC) if and only if

∃(xn, yn, pn, qn, q′n) : (pn, qn) ∈ domF,G(xn, yn) ≤C q′n,
∃(u∗n, v∗n, u∗n

′, v∗n
′, q∗n) : q∗n ∈ C∗, (u∗n, v∗n) ∈ ∂F (pn, qn),

(u∗n
′, v∗n

′) ∈ ∂(q∗nG)(xn, yn), 〈q∗n, q′n −G(xn, yn)〉 = 0 ∀n ∈ N,
(u∗n, v

∗
n) + (u∗n

′, v∗n
′)→ (0, 0), (xn, yn)→ (a, h(a)), (pn, qn)→ (a, h(a)),

q′n → 0 and F (pn, qn)− 〈(u∗n, v∗n), (pn, qn)− (xn, yn)〉+
〈q∗n, q′n〉 − F (a, h(a))→ 0 (n→ +∞).

(3. 18)
We have domF = dom f × dom g, F ∗(x∗, y∗) = f∗(x∗) + g∗(y∗) and thus

(x∗, y∗) ∈ ∂F (x, y) ⇔ x∗ ∈ ∂f(x) and y∗ ∈ ∂g(y), for (x, y) ∈ X × Y and
(x∗, y∗) ∈ X∗ × Y ∗. Further, for λ ∈ C∗ it holds

(λG)∗(x∗, y∗) =
{

(λh)∗(x∗), if y∗ + λ = 0,
+∞, otherwise,

and (x∗, y∗) ∈ ∂(λG)(x, y) if and only if y∗ + λ = 0 and x∗ ∈ ∂(λh)(x). Hence
a ∈ dom f ∩domh∩h−1(dom g) is an optimal solution of the problem (PCC) if and
only if
∃(xn, yn, pn, qn, q′n) ∈ X × Y × dom f × dom g × Y : h(xn) ≤C yn + q′n,
∃(u∗n, v∗n, u∗n

′, q∗n) : q∗n ∈ C∗, u∗n ∈ ∂f(pn), v∗n ∈ ∂g(qn), u∗n
′ ∈ ∂(q∗nh)(xn),

〈q∗n, q′n + yn − h(xn)〉 = 0 ∀n ∈ N, u∗n + u∗n
′ → 0, v∗n − q∗n → 0, xn → a, pn → a,

yn → h(a), qn → h(a), q′n → 0 (n→ +∞) and f(pn) + g(qn)− 〈u∗n, pn − xn〉−
〈v∗n, qn − yn〉+ 〈q∗n, q′n〉 − f(a)− g(h(a))→ 0 (n→ +∞).

(3. 19)
With the notations q′′n := yn + q′n and e∗n := v∗n − q∗n for all n ∈ N, we obtain

that (3. 19) is equivalent to
∃(xn, yn, pn, qn, q′′n) ∈ X × Y × dom f × dom g × Y : h(xn) ≤C q′′n,
∃(u∗n, e∗n, u∗n

′, q∗n) : q∗n ∈ C∗, u∗n ∈ ∂f(pn), q∗n + e∗n ∈ ∂g(qn), u∗n
′ ∈ ∂(q∗nh)(xn),

〈q∗n, q′′n − h(xn)〉 = 0 ∀n ∈ N, u∗n + u∗n
′ → 0, e∗n → 0, xn → a, pn → a, yn → h(a),

qn → h(a), q′′n → h(a) (n→ +∞) and f(pn) + g(qn)− 〈u∗n, pn − xn〉−
〈q∗n + e∗n, qn − yn〉+ 〈q∗n, q′′n − yn〉 − f(a)− g(h(a))→ 0 (n→ +∞).

(3. 20)



56 CHAPTER 3. SEQUENTIAL OPTIMALITY CONDITIONS

Since 〈e∗n, qn−yn〉 → 0 (n→ +∞), we obtain that the element a ∈ dom f ∩domh∩
h−1(dom g) is an optimal solution of the problem (PCC) if and only if
∃(xn, yn, pn, qn, q′′n) ∈ X × Y × dom f × dom g × Y : h(xn) ≤C q′′n,
∃(u∗n, e∗n, u∗n

′, q∗n) : q∗n ∈ C∗, u∗n ∈ ∂f(pn), q∗n + e∗n ∈ ∂g(qn), u∗n
′ ∈ ∂(q∗nh)(xn),

〈q∗n, q′′n − h(xn)〉 = 0 ∀n ∈ N, u∗n + u∗n
′ → 0, e∗n → 0, xn → a, pn → a,

yn → h(a), qn → h(a), q′′n → h(a) (n→ +∞) and
f(pn) + g(qn)− 〈u∗n, pn − xn〉 − 〈q∗n, qn − q′′n〉 − f(a)− g(h(a))→ 0 (n→ +∞).

(3. 21)
Let us notice that the sequence {yn : n ∈ N} plays no role in (3. 21), which is

thus equivalent to
∃(xn, pn, qn, q′′n) ∈ X × dom f × dom g × Y : h(xn) ≤C q′′n,
∃(u∗n, e∗n, u∗n

′, q∗n) : q∗n ∈ C∗, u∗n ∈ ∂f(pn), q∗n + e∗n ∈ ∂g(qn), u∗n
′ ∈ ∂(q∗nh)(xn),

〈q∗n, q′′n − h(xn)〉 = 0 ∀n ∈ N, u∗n + u∗n
′ → 0, e∗n → 0, xn → a, pn → a,

qn → h(a), q′′n → h(a) (n→ +∞) and
f(pn) + g(qn)− 〈u∗n, pn − xn〉 − 〈q∗n, qn − q′′n〉 − f(a)− g(h(a))→ 0 (n→ +∞).

(3. 22)
Indeed, the direct implication is obvious, while for the reverse one we take yn := h(a)
for all n ∈ N.

Let us introduce now the following real sequences: an := f(pn)+g(qn)−〈u∗n, pn−
xn〉 − 〈q∗n, qn − q′′n〉 − f(a) − g(h(a)), bn := g(qn) − 〈q∗n, qn − h(a)〉 − g(h(a)) and
cn := f(pn)−〈u∗n, pn−xn〉+ 〈q∗n, h(xn)−h(a)〉− f(a) for all n ∈ N. We prove that
if the condition (xn, pn, qn, q′′n) ∈ X × dom f × dom g × Y, u∗n ∈ ∂f(pn), q∗n + e∗n ∈ ∂g(qn),

u∗n
′ ∈ ∂(q∗nh)(xn), 〈q∗n, q′′n − h(xn)〉 = 0 ∀n ∈ N and

u∗n + u∗n
′ → 0, e∗n → 0, xn → a, qn → h(a) (n→ +∞)

(3. 23)
is satisfied, then we have

an → 0 (n→ +∞) if and only if bn → 0 and cn → 0 (n→ +∞). (3. 24)

Indeed, if (3. 23) is fulfilled, then

an = bn + cn, (3. 25)

hence the sufficiency of relation (3. 24) is trivial. We point out that for this impli-
cation we need only the fulfillment of 〈q∗n, q′′n − h(xn)〉 = 0 for all n ∈ N.

Assume now that an → 0 (n → +∞). Since u∗n ∈ ∂f(pn) we have f(a) −
f(pn) ≥ 〈u∗n, a− pn〉 for all n ∈ N. Moreover, u∗n

′ ∈ ∂(q∗nh)(xn), hence 〈q∗n, h(a)〉 −
〈q∗n, h(xn)〉 ≥ 〈u∗n

′, a − xn〉 for all n ∈ N. We obtain that cn ≤ 〈u∗n, pn − a〉 +
〈u∗n
′, xn − a〉 − 〈u∗n, pn − xn〉 = 〈u∗n + u∗n

′, xn − a〉. Also, from q∗n + e∗n ∈ ∂g(qn) we
get g(h(a))− g(qn) ≥ 〈q∗n + e∗n, h(a)− qn〉 and so

bn ≤ 〈q∗n + e∗n, qn − h(a)〉 − 〈q∗n, qn − h(a)〉 = 〈e∗n, qn − h(a)〉.

On the other hand, we have

bn = an − cn ≥ an − 〈u∗n + u∗n
′, xn − a〉.

Combining the last two inequalities we obtain bn → 0 (n→ +∞). From (3. 25) we
also get cn → 0 (n→ +∞) and hence (3. 24) is fulfilled.

Thus the condition (3. 22) is equivalent to (3. 17) and the proof is complete.�

In the following corollary we give a sequential characterization of the subgradi-
ents of the function g ◦ h at a ∈ domh ∩ h−1(dom g).
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Corollary 3.7 For a ∈ domh∩h−1(dom g) we have x∗ ∈ ∂(g ◦h)(a) if and only if
∃(xn, qn, q′n) ∈ X × dom g × Y, h(xn) ≤C q′n,∃(e∗n, x∗n, q∗n), q∗n ∈ C∗,
q∗n + e∗n ∈ ∂g(qn), x∗n ∈ ∂(q∗nh)(xn), 〈q∗n, q′n − h(xn)〉 = 0 ∀n ∈ N,
xn → a, qn → h(a), q′n → h(a), x∗n → x∗, e∗n → 0 (n→ +∞),
g(qn)− 〈q∗n, qn − h(a)〉 − g(h(a))→ 0 (n→ +∞) and
〈q∗n, h(xn)− h(a)〉 → 0 (n→ +∞).

(3. 26)

Proof. We have x∗ ∈ ∂(g ◦ h)(a) ⇔ 0 ∈ ∂(−x∗ + g ◦ h)(a) ⇔ a is an optimal
solution of the problem (PCC) with f : X → R defined by f(x) = 〈−x∗, x〉 for all
x ∈ X. According to Theorem 3.8 we get that x∗ ∈ ∂(g ◦ h)(a) if and only if

∃(xn, pn, qn, q′n) ∈ X ×X × dom g × Y, h(xn) ≤C q′n,∃(e∗n, u∗n
′, q∗n), q∗n ∈ C∗,

q∗n + e∗n ∈ ∂g(qn), u∗n
′ ∈ ∂(q∗nh)(xn), 〈q∗n, q′n − h(xn)〉 = 0 ∀n ∈ N,

xn → a, pn → a, qn → h(a), q′n → h(a), u∗n
′ → x∗, e∗n → 0 (n→ +∞),

g(qn)− 〈q∗n, qn − h(a)〉 − g(h(a))→ 0 (n→ +∞) and
〈q∗n, h(xn)− h(a)〉 → 0 (n→ +∞),

(3. 27)
where we used the continuity of the function f and the fact that ∂f(x) = {−x∗}
for all x ∈ X. The desired conclusion follows easily, since in the condition (3. 27)
the sequence {pn : n ∈ N} is superfluous (we made the notation x∗n := u∗n

′ for all
n ∈ N). �

Remark 3.9 Corollary 3.7 above is exactly the result given by Thibault in [136,
Theorem 3.1].

3.4.2 The case h is continuous

We consider again the setting from the beginning of Section 3.4, with the additional
hypotheses that h : X → Y is continuous and g : Y → R is C-increasing on Y .
We want to mention that, unlike in the previous subsection, the results in this
subsection hold even in the case Y is not reflexive. We consider the perturbation
function ΦCC : X × Y → R,

ΦCC(x, y) = f(x) + g(h(x) + y) ∀(x, y) ∈ X × Y, (3. 28)

which is in this situation proper, convex and lower semicontinuous. The conjugate
function (ΦCC)∗ : X∗ × Y ∗ → R has for all (x∗, y∗) ∈ X∗ × Y ∗ the following form

(ΦCC)∗(x∗, y∗) =
{

(f + y∗h)∗(x∗) + g∗(y∗), if y∗ ∈ C∗,
+∞, otherwise,

where we took into consideration that g∗(y∗) = +∞ for all y∗ ∈ Y ∗ \C∗. By means
of the general result Theorem 3.2 applied for this perturbation function we obtain
the following sequential optimality conditions for (PCC).

Theorem 3.9 The element a ∈ dom f ∩ h−1(dom g) is an optimal solution of the
problem (PCC) if and only if

∃(xn, yn) ∈ dom f × dom g,∃(u∗n, v∗n, y∗n) ∈ X∗ ×X∗ × C∗,
u∗n ∈ ∂f(xn), v∗n ∈ ∂(y∗nh)(xn), y∗n ∈ ∂g(yn) ∀n ∈ N,
u∗n + v∗n → 0, xn → a, yn → h(a) (n→ +∞),
f(xn) + 〈y∗n, h(xn)− h(a)〉 − f(a)→ 0 (n→ +∞) and
g(yn)− 〈y∗n, yn − h(a)〉 − g(h(a))→ 0 (n→ +∞).

(3. 29)
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Proof. Applying Theorem 3.2 we obtain that a ∈ dom f∩h−1(dom g) is an optimal
solution of the problem (PCC) if and only if ∃(xn, yn) ∈ X × Y, xn ∈ dom f, h(xn) + yn ∈ dom g,

∃(x∗n, y∗n) ∈ ∂ΦCC(xn, yn) ∀n ∈ N, x∗n → 0, xn → a, yn → 0 (n→ +∞) and
ΦCC(xn, yn)− 〈y∗n, yn〉 − ΦCC(a, 0)→ 0 (n→ +∞).

(3. 30)
The condition (x∗n, y

∗
n) ∈ ∂ΦCC(xn, yn) is equivalent to y∗n ∈ C∗ and f(xn) +

g(h(xn) + yn) + (f + y∗nh)∗(x∗n) + g∗(y∗n) = 〈x∗n, xn〉 + 〈y∗n, yn〉 for all n ∈ N. By
using the Young-Fenchel inequality one can see that for all n ∈ N we have

f(xn) + (y∗nh)(xn) + (f + y∗nh)∗(x∗n)− 〈x∗n, xn〉 ≥ 0

and
g(h(xn) + yn) + g∗(y∗n)− 〈y∗n, h(xn) + yn〉 ≥ 0.

Since the sum of the terms in the left-hand side of the inequalities above is equal
to zero, both of them must be equal to zero. This is the case if and only if x∗n ∈
∂(f+y∗nh)(xn) and y∗n ∈ ∂g(h(xn)+yn) for all n ∈ N. Hence a ∈ dom f∩h−1(dom g)
is an optimal solution of (PCC) if and only if

∃(xn, yn) ∈ X × Y, xn ∈ dom f, h(xn) + yn ∈ dom g,
∃(x∗n, y∗n) ∈ X∗ × C∗, x∗n ∈ ∂(f + y∗nh)(xn), y∗n ∈ ∂g(h(xn) + yn) ∀n ∈ N,
x∗n → 0, xn → a, yn → 0 (n→ +∞) and
f(xn) + g(h(xn) + yn)− 〈y∗n, yn〉 − f(a)− g(h(a))→ 0 (n→ +∞).

(3. 31)
The function h being continuous, the following subdifferential sum formula holds:

∂(f + y∗nh)(xn) = ∂f(xn) + ∂(y∗nh)(xn) ∀n ∈ N (3. 32)

(cf. [147, Theorem 2.8.7]). Thus x∗n ∈ ∂(f + y∗nh)(xn) if and only if there exist
u∗n ∈ ∂f(xn) and v∗n ∈ ∂(y∗nh)(xn) such that x∗n = u∗n+v∗n for all n ∈ N. Introducing
a new variable by y′n := h(xn) + yn for all n ∈ N and employing once more the
continuity of the function h we get that (3. 31) is equivalent to

∃(xn, y′n) ∈ dom f × dom g,∃(u∗n, v∗n, y∗n) ∈ X∗ ×X∗ × C∗,
u∗n ∈ ∂f(xn), v∗n ∈ ∂(y∗nh)(xn), y∗n ∈ ∂g(y′n) ∀n ∈ N,
u∗n + v∗n → 0, xn → a, y′n → h(a) (n→ +∞) and
f(xn) + g(y′n)− 〈y∗n, y′n − h(xn)〉 − f(a)− g(h(a))→ 0 (n→ +∞).

(3. 33)

Let us consider now the following real sequences: αn := f(xn)+g(y′n)−〈y∗n, y′n−
h(xn)〉 − f(a)− g(h(a)), βn := f(xn)− f(a) + 〈y∗n, h(xn)− h(a)〉 and γn := g(y′n)−
g(h(a))− 〈y∗n, y′n − h(a)〉 for all n ∈ N. We have αn = βn + γn for all n ∈ N and if
the condition (xn, y′n) ∈ dom f × dom g, (u∗n, v

∗
n, y
∗
n) ∈ X∗ ×X∗ × C∗,

u∗n ∈ ∂f(xn), v∗n ∈ ∂(y∗nh)(xn), y∗n ∈ ∂g(y′n) ∀n ∈ N,
u∗n + v∗n → 0, xn → a, (n→ +∞),

(3. 34)

is satisfied, then

αn → 0 (n→ +∞) if and only if βn → 0 and γn → 0 (n→ +∞). (3. 35)

We omit the proof of (3. 35), since it can be done in the lines of the one given for
the relation (3. 24) in the proof of Theorem 3.8. Hence the condition (3. 33) is
equivalent to (3. 29). �
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Remark 3.10 Particularizing Theorem 3.9 to the case C = {0} and h = A, where
A : X → Y is a continuous linear mapping, we rediscover Theorem 3.4. The details
are left to the reader.

For the special case when f = −x∗, where x∗ ∈ X∗ is fixed, we obtain from
Theorem 3.9 the following result concerning the subgradients of the function g ◦ h.

Corollary 3.8 For a ∈ h−1(dom g) we have x∗ ∈ ∂(g ◦ h)(a) if and only if
∃(xn, yn) ∈ X × dom g,∃(v∗n, y∗n) ∈ X∗ × C∗, v∗n ∈ ∂(y∗nh)(xn), y∗n ∈ ∂g(yn),
v∗n → x∗, xn → a, yn → h(a) (n→ +∞),
g(yn)− 〈y∗n, yn − h(a)〉 − g(h(a))→ 0 (n→ +∞) and
〈y∗n, h(xn)− h(a)〉 → 0 (n→ +∞).

(3. 36)

Remark 3.11 The above sequential characterization of an arbitrary x∗ ∈ ∂(g ◦
h)(a) was given by Thibault in case X and Y are reflexive Banach spaces, C is
a closed, convex and normal cone and g is C-increasing on h(X) + C (see [136,
Corollary 3.2]). We proved that if the function g is C-increasing on Y , then this
result holds even if the cone C is not normal and Y is an arbitrary Banach space.
Moreover, the closedness condition regarding the cone C, requested by Thibault
in [136, Corollary 3.2], is not needed anymore in this situation.

Remark 3.12 (a) One can prove that the perturbation function defined at the
beginning of subsection 3.4.2 is lower semicontinuous even in the more general case
when h is star C-lower semicontinuous (this is a direct consequence of the equality
(ΦCC)∗∗(x, y) = ΦCC(x, y) for all (x, y) ∈ X × Y , which can be proved by direct
calculations, see also [34, Section 3]). This means that it is possible to derive
sequential optimality conditions even in this case. Nevertheless, in order to obtain
the result given by Thibault in [136, Corollary 3.2], we have to suppose that h is
continuous, as this fact was used twice in the proof of Theorem 3.9 above. Even
if the subdifferential sum formula (3. 32) holds also in the case h is star C-lower
semicontinuous and f is continuous (because we take f = −x∗ in order to obtain
the result of Thibault), we still need the continuity of the function h in order to
ensure that the sequence y′n has the limit h(a) as n → +∞ (see the equivalence
between the conditions (3. 31) and (3. 33) in the proof of Theorem 3.9).

(b) Under the hypotheses mentioned at the beginning of subsection 3.4.1 one
cannot prove that the perturbation function ΦCC defined in the relation (3. 28) is
lower semicontinuous and hence in case h is C-epi-closed, Theorem 3.2 is not applica-
ble for this perturbation function. This is one of the reasons why the first sequential
optimality condition for the composed convex optimization problem (PCC), namely
Theorem 3.8, is derived via Corollary 3.6, a result which is given for an optimiza-
tion problem with cone constraints (of course, Corollary 3.6 is obtained from the
general result Theorem 3.2). Another reason is that the condition g is C-increasing
on h(dom(h)) + C (which is the case in subsection 3.4.1) is not sufficient in order
to guarantee the convexity of the above mentioned perturbation function. In order
to ensure the convexity of the function ΦCC , g has to be C-increasing on Y , which
is actually the case in subsection 3.4.2.

Remark 3.13 Let us notice that by using the general sequential optimality condi-
tions given in Remark 3.3, several sequential characterizations of optimal solutions
for composed optimization problems with geometric and cone constraints are ob-
tained in [30]. These conditions are then applied to equivalently characterize the
properly efficient solutions (in the sense of linear scalarization) of vector optimiza-
tion problems with geometric and cone constraints.
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Chapter 4

Applications of the duality
theory to enlargements of
maximal monotone operators

Due to its applications in the theory of partial differential equations, the maximal
monotonicity of operators defined on Banach spaces has been intensively studied
since the beginning of this theory in the 1960’s. We mention here the papers of
Browder [40], Minty [100] and Rockafellar [122, 123] who made the first
important steps in this field. A comprehensive study of the theory of monotone
operators can be found in the monographs of Simons [126, 128] and the lecture
notes due to Phelps [112], which are relevant references for anyone interested in
this topic.

To an arbitrary monotone operator defined on a Banach space, Fitzpatrick
associated in 1988 a convex and lower semicontinuous function which, in case the
operator is maximally monotone, provides a characterization of the graph of the
operator (cf. [63]). In this way, the theory of maximal monotone operators is linked
with convex analysis. Unfortunately, these properties were not exploited until 2001,
when the Fitzpatrick function was rediscovered by Mart́ınez-Legaz and Théra
in [98], and independently, by Burachik and Svaiter in [49]. Since then, convex
analysis, and in particular conjugate duality, plays an important role in the theory
of maximal monotone operators.

Enlargements of maximal monotone operators were introduced and studied in
order to find the zeros of a maximal monotone operator, that is to solve the problem

find x ∈ X such that 0 ∈ S(x), (4. 1)

where S : X ⇒ X∗ is a monotone operator and X is a Banach space. It is use-
ful in this sense to consider an “enlargement” of S, that is a set-valued operator
S′ : R+ ×X ⇒ X∗ with the property that S(x) ⊆ S′(ε, x) for all ε ≥ 0 and x ∈ X.
Several examples of enlargements where introduced in the literature with the help
of which one can develop algorithms to solve the problem (4. 1) (the first one was
introduced by Burachik, Iusem and Svaiter in [44] with applications to varia-
tional inequalities). We refer to the monograph of Burachik and Iusem [43] for
more details regarding enlargements of monotone operators and their applications.

We give in this chapter applications of the duality theory to enlargements of
maximal monotone operators, proving once more the usefulness of convex analysis
in the theory of monotone operators. Motivated by a classical result concerning the
ε-subdifferential of the sum of two proper, convex and lower semicontinuous func-
tions, we generalize this result to the context of enlargements of maximal monotone

61
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operators. An answer to an open problem posed by Burachik and Iusem is given
and finally we introduce a regularity condition which ensures that the sum of the
images of the enlargements of two maximal monotone operators is weak∗-closed.
The main results of this chapter are Corollary 4.2 (which is then applied in Section
4.3), Theorem 4.5, Corollary 4.6 and Theorem 4.8. The results presented in this
chapter are based on [21,23].

4.1 A bivariate infimal convolution formula

For the problem of establishing the maximal monotonicity of the sum of two max-
imal monotone operators defined on a reflexive Banach space it is important to
give sufficient conditions for a so-called bivariate infimal convolution formula (see
[111, 130]). This approach is useful when one tries to give a formula for the ε-
enlargement of the sum of two maximal monotone operators (see Section 4.3). This
is the reason why in the following we focus our attention on conditions which ensure
this bivariate infimal convolution formula (see Corollary 4.2).

Let us consider X and Y separated locally convex spaces and X∗, Y ∗ their
topological dual spaces, respectively. Part (i) of the next lemma plays an important
role in deriving an equivalent characterization of the bivariate infimal convolution
formula. Part (ii) finds applications in Section 4.5.

Lemma 4.1 Let Φ : X × Y → R be a proper, convex and lower semicontinuous
function.

(i) If 0 ∈ prY (dom Φ) then

(Φ(·, 0))∗ = clw∗
(

inf
y∗∈Y ∗

Φ∗(·, y∗)
)

(4. 2)

and
epi(Φ(·, 0))∗ = clw∗×R

(
prX∗×R(epi Φ∗)

)
. (4. 3)

(ii) For all x ∈ prX(dom Φ) we have

prY ∗(dom Φ∗) ⊆ dom(Φ(x, ·))∗ ⊆ clw∗
(

prY ∗(dom Φ∗)
)
. (4. 4)

Proof. For (i) we refer to [34, Theorem 1 and Theorem 2]. Let us notice that
relation (4. 2) was observed also in [148, page 197] and [110, pp. 628–629].

(ii) Let x ∈ prX(dom Φ) be fixed and define Ψ : Y × X → R by Ψ(y, u) =
Φ(x + u, y) for all (y, u) ∈ Y × X. The function Ψ is proper, convex and lower
semicontinuous and fulfills Ψ(y, 0) = Φ(x, y) for all y ∈ Y . Since x ∈ prX(dom Φ)
one has that 0 ∈ prX(dom Ψ).

According to (4. 2) we have that

(Ψ(·, 0))∗ = clw∗
(

inf
x∗∈X∗

Ψ∗(·, x∗)
)
.

Consequently,

dom
(

inf
x∗∈X∗

Ψ∗(·, x∗)
)
⊆ dom

(
clw∗

(
inf

x∗∈X∗
Ψ∗(·, x∗)

))
⊆ clw∗

(
dom

(
inf

x∗∈X∗
Ψ∗(·, x∗)

))
.

Further we have that v∗ ∈ dom (infx∗∈X∗ Ψ∗(·, x∗)) if and only if there exists x∗ ∈
X∗ such that Ψ∗(v∗, x∗) < +∞. Since

Ψ∗(v∗, x∗) = sup
v∈Y,u∈X

{〈v∗, v〉+ 〈x∗, u〉 − Φ(x+ u, v)}
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= sup
v∈Y,t∈X

{〈v∗, v〉+ 〈x∗, t− x〉 − Φ(t, v)} = −〈x∗, x〉+ Φ∗(x∗, v∗),

this is the same with having that Φ∗(x∗, v∗) < +∞ or, equivalently, (x∗, v∗) ∈
dom Φ∗. Therefore dom (infx∗∈X∗ Ψ∗(·, x∗)) = prY ∗(dom Φ∗) and the conclusion
follows. �

Before we proceed, let us recall the following concept. For M,Z two subsets
of X, we say that M is closed regarding the set Z if M ∩ Z = cl(M) ∩ Z. It is
worth noting that a closed set is closed regarding any set. Several weak regularity
conditions (in the theory of maximal monotone operators and convex optimization)
are expressed by using this notion, see [26,32–34].

Theorem 4.1 Let Φ : X × Y → R be a proper, convex and lower semicontinuous
function such that 0 ∈ prY (dom Φ) and U be a non-empty subset of X∗. Then the
following statements are equivalent:

(i) supx∈X{〈x∗, x〉 − Φ(x, 0)} = miny∗∈Y ∗ Φ∗(x∗, y∗) for all x∗ ∈ U ;

(ii) prX∗×R(epi Φ∗) is closed regarding U × R in (X∗, ω(X∗, X))× R.

Proof. (i)⇒(ii) Take an arbitrary element (x∗, r) ∈ clw∗×R
(

prX∗×R(epi Φ∗)
)
∩

(U × R). Lemma 4.1(i) guarantees that (x∗, r) ∈ epi(Φ(·, 0))∗, which implies
(Φ(·, 0))∗(x∗) ≤ r, that is supx∈X{〈x∗, x〉 − Φ(x, 0)} ≤ r. From (i) we obtain
the existence of an element y∗ ∈ Y ∗ such that Φ∗(x∗, y∗) ≤ r, thus (x∗, r) ∈
prX∗×R(epi Φ∗) ∩ (U × R). Hence we have clw∗×R

(
prX∗×R(epi Φ∗)

)
∩ (U × R) ⊆

prX∗×R(epi Φ∗) ∩ (U × R), and since the reverse inclusion is always satisfied, we
obtain that (ii) is fulfilled.

Conversely, suppose that (ii) is true and take x∗ ∈ U arbitrary. From the
Young-Fenchel inequality we obtain

(Φ(·, 0))∗(x∗) ≤ inf
y∗∈Y ∗

Φ∗(x∗, y∗). (4. 5)

In case (Φ(·, 0))∗(x∗) = +∞, then (i) is obviously satisfied. So we may suppose
that (Φ(·, 0))∗(x∗) < +∞. Taking into consideration that 0 ∈ prY (dom Φ) we
easily derive that (Φ(·, 0))∗(x∗) ∈ R. We get by relation (4. 3) and (ii) that
(x∗, (Φ(·, 0))∗(x∗)) ∈ epi(Φ(·, 0))∗∩(U×R) = clw∗×R

(
prX∗×R(epi Φ∗)

)
∩(U×R) =(

prX∗×R(epi Φ∗)
)
∩ (U × R). Hence there exists an element y∗ ∈ Y ∗ such that

Φ∗(x∗, y∗) ≤ (Φ(·, 0))∗(x∗). Combining this with (4. 5) we obtain (Φ(·, 0))∗(x∗) =
Φ∗(x∗, y∗) = miny∗∈Y ∗ Φ∗(x∗, y∗). As x∗ ∈ U was arbitrary taken, the proof is
complete. �

Remark 4.1 One can give an alternative proof of the above theorem. To this
end, let (X, τ) be a topological space, where τ is the corresponding topology on
X, U ⊆ X and A ⊆ X × R. One can prove that A ∩ (U × R) = clτ×R(A) ∩
(U × R) if and only if A ∩ ({u} × R) = clτ×R(A) ∩ ({u} × R) for all u ∈ U .
Using this remark, one can deduce Theorem 4.1 from the corresponding state-
ment with U a singleton. Indeed, for U = {x∗}, the statement (i) is nothing
else than (Φ(·, 0))∗(x∗) = clw∗

(
infy∗∈Y ∗ Φ∗(·, y∗)

)
(x∗) = infy∗∈Y ∗ Φ∗(x∗, y∗) and

the infimum is attained, while (ii) asserts that for A := prX∗×R(epi Φ∗) one has
A ∩ ({x∗} × R) = clw∗×R(A) ∩ ({x∗} × R). For x∗ = 0 the equivalence of (i) and
(ii) is nothing else than [114, Theorem 4.3.1] (see also [113, pp. 6]). The statement
for x∗ 6= 0 can be deduced by making a translation.

Remark 4.2 Considering in the previous theorem U := X∗ we obtain, under the
same hypotheses as in Theorem 4.1, that the following conditions are equivalent:
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(i) supx∈X{〈x∗, x〉 − Φ(x, 0)} = miny∗∈Y ∗ Φ∗(x∗, y∗) for all x∗ ∈ X∗;

(ii) prX∗×R(epi Φ∗) is closed in (X∗, ω(X∗, X))× R.

This statement can be deduced from [115, Theorem 2.2] and it was proved in [46] in
the case of Banach spaces and in [34] in the framework of separated locally convex
spaces. Let us notice that in the literature condition (i) is referred to stable strong
duality (see [20,34,46,128] for more details).

An important special case of Theorem 4.1 follows.

Corollary 4.1 Let f, g : X → R be proper, convex and lower semicontinuous func-
tions such that dom f ∩ dom g 6= ∅ and U be a non-empty subset of X∗. Then the
following statements are equivalent:

(i) (f + g)∗(x∗) = (f∗�g∗)(x∗) and f∗�g∗ is exact at x∗ for all x∗ ∈ U ;

(ii) epi f∗ + epi g∗ is closed regarding U × R in (X∗, ω(X∗, X))× R.

Proof. Consider the function Φ : X ×X → R defined by Φ(x, y) = f(x) + g(x+ y)
for all (x, y) ∈ X × X. A simple computation shows that Φ∗(x∗, y∗) = f∗(x∗ −
y∗) + g∗(y∗) for all (x∗, y∗) ∈ X∗ ×X∗. One can prove easily that the hypotheses
of Theorem 4.1 are satisfied for this particular choice of the function Φ. The result
follows now by applying Theorem 4.1. �

Remark 4.3 In case U = X∗, the previous corollary was established by Burachik
and Jeyakumar in Banach spaces (cf. [45, Theorem 1]) and by Boţ and Wanka
in separated locally convex spaces (cf. [37, Theorem 3.2]).

The following result will lead us to the bivariate inf-convolution formula.

Theorem 4.2 Let h1, h2 : X × Y → R be proper, convex and lower semicontin-
uous functions such that prX(domh1) ∩ prX(domh2) 6= ∅ and V be a non-empty
subset of Y ∗. Consider the functions h1�2h2 : X × Y → R, (h1�2h2)(x, y) =
inf{h1(x, u) + h2(x, v) : u, v ∈ Y, u + v = y} and h∗1�1h

∗
2 : X∗ × Y ∗ → R,

(h∗1�1h
∗
2)(x∗, y∗) = inf{h∗1(u∗, y∗) + h∗2(v∗, y∗) : u∗, v∗ ∈ X∗, u∗ + v∗ = x∗}. Then

the following conditions are equivalent:

(i) (h1�2h2)∗(x∗, y∗) = (h∗1�1h
∗
2)(x∗, y∗) and h∗1�1h

∗
2 is exact at (x∗, y∗) (that is,

the infimum in the definition of (h∗1�1h
∗
2)(x∗, y∗) is attained) for all (x∗, y∗) ∈

X∗ × V ;

(ii) {(a∗ + b∗, u∗, v∗, r) : h∗1(a∗, u∗) + h∗2(b∗, v∗) ≤ r} is closed regarding the set
X∗×∆V ×R in (X∗, ω(X∗, X))× (Y ∗, ω(Y ∗, Y ))× (Y ∗, ω(Y ∗, Y ))×R, where
∆V = {(y∗, y∗) : y∗ ∈ V }.

Proof. Take an arbitrary (x∗, y∗) ∈ X∗ × Y ∗. The following equality can be easily
derived

(h1�2h2)∗(x∗, y∗) = sup
x∈X,u,v∈Y

{〈x∗, x〉+ 〈y∗, u+ v〉 − h1(x, u)− h2(x, v)}. (4. 6)

Define now the functions F,G : X × Y × Y → R, by F (x, u, v) = h1(x, u) and
G(x, u, v) = h2(x, v) for all (x, u, v) ∈ X × Y × Y . It holds (h1�2h2)∗(x∗, y∗) =
(F + G)∗(x∗, y∗, y∗). One can show that for all (x∗, u∗, v∗) ∈ X∗ × Y ∗ × Y ∗, the
conjugate functions F ∗, G∗ : X∗ × Y ∗ × Y ∗ → R have the following formulations

F ∗(x∗, u∗, v∗) =
{
h∗1(x∗, u∗), if v∗ = 0,
+∞, otherwise
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and

G∗(x∗, u∗, v∗) =
{
h∗2(x∗, v∗), if u∗ = 0,
+∞, otherwise,

respectively. Further we have (F ∗�G∗)(x∗, y∗, y∗) = (h∗1�1h
∗
2)(x∗, y∗). Hence the

condition (i) is fulfilled if and only if (F+G)∗(x∗, y∗, y∗) = (F ∗�G∗)(x∗, y∗, y∗) and
(F ∗�G∗)(x∗, y∗, y∗) is exact at (x∗, y∗, y∗) for all (x∗, y∗, y∗) ∈ X∗×∆V . In view of
Corollary 4.1, the last condition is equivalent to epiF ∗ + epiG∗ is closed regarding
the set X∗×∆V ×R in (X∗, ω(X∗, X))× (Y ∗, ω(Y ∗, Y ))× (Y ∗, ω(Y ∗, Y ))×R. Fi-
nally the equality epiF ∗+epiG∗ = {(a∗+b∗, u∗, v∗, r) : h∗1(a∗, u∗)+h∗2(b∗, v∗) ≤ r},
whose proof presents no difficulty, gives the desired result. �

For the particular case when V := Y ∗ we obtain a necessary and sufficient
condition for the bivariate infimal convolution formula (relation (i) in the result
below).

Corollary 4.2 Let h1, h2 : X×Y → R be proper, convex and lower semicontinuous
functions such that prX(domh1) ∩ prX(domh2) 6= ∅. The following statements are
equivalent:

(i) (h1�2h2)∗ = h∗1�1h
∗
2 and h∗1�1h

∗
2 is exact;

(ii) {(a∗ + b∗, u∗, v∗, r) : h∗1(a∗, u∗) + h∗2(b∗, v∗) ≤ r} is closed regarding the set
X∗ ×∆Y ∗ × R in (X∗, ω(X∗, X))× (Y ∗, ω(Y ∗, Y ))× (Y ∗, ω(Y ∗, Y ))× R.

Remark 4.4 A generalized interior-point condition which guarantees relation (i)
in Corollary 4.2 (and implicitly also (ii)) has been given by Simons and Zălinescu
in the framework of Banach spaces (cf. [130, Theorem 4.2]), namely:

(CQSZ) 0 ∈ sqri
(

prX(domh1)− prX(domh2)
)
.

Nevertheless, unlike the condition (ii), which is necessary and sufficient for (i),
the condition (CQSZ) is only sufficient, as the following example, which can be
found in [26], shows.

Example 4.1 Take X = Y = R2, equipped with the Euclidean norm ‖ · ‖2, f, g :
R2 → R, f = ‖ · ‖2 + δR2

+
, g = δ−R2

+
,

h1(x, x∗) = f(x) + f∗(x∗) for all (x, x∗) ∈ R2 × R2

and, respectively,

h2(x, x∗) = g(x) + g∗(x∗) for all (x, x∗) ∈ R2 × R2.

One can see that g∗ = δR2
+

and f∗ = δB(0,1)−R2
+

, where B(0, 1) is the closed unit

ball of R2. We have

{(x∗ + y∗, x, y, r) : f(x) + f∗(x∗) + g(y) + g∗(y∗) ≤ r} =

R2 × {(x, y, r) : x ∈ R2
+, y ∈ −R2

+, ‖x‖2 ≤ r},

which is closed, hence closed regarding the set R2×∆R2×R. Thus, by Corollary 4.2,
(i) is fulfilled. However, condition (CQSZ) becomes: R2

+ is a closed linear subspace
of R2, which is of course a false statement.

By taking in Theorem 4.2 Y = X∗ and V = X, where X is supposed to be a
normed space (in this case V = X can be seen as a subspace of Y ∗ = X∗∗), we
obtain the following result.
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Corollary 4.3 Let h1, h2 : X × X∗ → R be proper, convex and lower semi-
continuous functions in the strong topology of X × X∗ such that prX(domh1) ∩
prX(domh2) 6= ∅. The following statements are equivalent:

(i) (h1�2h2)∗(x∗, x) = (h∗1�1h
∗
2)(x∗, x) and h∗1�1h

∗
2 is exact at (x∗, x) for all

(x∗, x) ∈ X∗ ×X;

(ii) {(a∗+ b∗, u∗∗, v∗∗, r) : h∗1(a∗, u∗∗) +h∗2(b∗, v∗∗) ≤ r} is closed regarding the set
X∗×∆X×R in (X∗, ω(X∗, X))×(X∗∗, ω(X∗∗, X∗))×(X∗∗, ω(X∗∗, X∗))×R.

4.2 Monotone operators and enlargements

In this section we recall some notations and results concerning monotone operators
and enlargements. Consider further X a nontrivial Banach space, X∗ its topological
dual space and X∗∗ its bidual space. A set-valued operator S : X ⇒ X∗ is said to
be monotone if

〈y∗ − x∗, y − x〉 ≥ 0, whenever y∗ ∈ S(y) and x∗ ∈ S(x).

The monotone operator S is called maximal monotone if its graph

G(S) = {(x, x∗) : x∗ ∈ S(x)} ⊆ X ×X∗

is not properly contained in the graph of any other monotone operator S′ : X ⇒ X∗.
For S we consider also its domain D(S) = {x ∈ X : S(x) 6= ∅} = prX(G(S)) and its
range R(S) = ∪x∈XS(x) = prX∗(G(S)). The classical example of a maximal mono-
tone operator is the subdifferential of a proper, convex and lower semicontinuous
function (this result is due to Rockafellar, cf. [122]). However, there exist maximal
monotone operators which are not subdifferentials (cf. [126,128]).

An element (x0, x
∗
0) ∈ X ×X∗ is said to be monotonically related to the graph

of S if
〈y∗ − x∗0, y − x0〉 ≥ 0 for all (y, y∗) ∈ G(S).

One can show that a monotone operator S is maximal monotone if and only if the
set of monotonically related elements to G(S) is exactly G(S).

To an arbitrary monotone operator S : X ⇒ X∗ we associate the Fitzpatrick
function ϕS : X ×X∗ → R, defined by

ϕS(x, x∗) = sup{〈y∗, x〉+ 〈x∗, y〉 − 〈y∗, y〉 : y∗ ∈ S(y)},

which is obviously convex and strong-weak∗ lower semicontinuous (it is even weak-
weak∗ lower semicontinuous) in the corresponding topology on X×X∗. Introduced
by Fitzpatrick in 1988 (cf. [63]) and rediscovered after some years in [49, 98],
it proved to be very important in the theory of maximal monotone operators,
revealing important connections between convex analysis and monotone opera-
tors (see [5, 11, 26, 32, 33, 49, 96, 105–107, 111, 128, 130, 140, 149] and the references
therein). Considering the function c : X × X∗ → R, c(x, x∗) = 〈x∗, x〉 for all
(x, x∗) ∈ X×X∗, we get the equality ϕS(x, x∗) = c∗S(x∗, x) for all (x, x∗) ∈ X×X∗,
where cS = c + δG(S) and we are considering the natural injection X ⊆ X∗∗. The
function ψS = cl‖·‖×‖·‖∗(co cS), where the closure is taken in the strong topology of
X ×X∗, is well-linked to the Fitzpatrick function. Its properties were intensively
studied in reflexive Banach spaces in [107] and in general Banach spaces in [49]. Let
us mention that on X ×X∗ we have ψ∗>S = ϕS and, in the framework of reflexive
Banach spaces the equality ϕ∗>S = ψS holds (cf. [49, Remark 5.4]). Let us recall the
most important properties of the Fitzpatrick function.
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Lemma 4.2 (cf. [63]) Let S : X ⇒ X∗ be a maximal monotone operator. Then

(i) ϕS(x, x∗) ≥ 〈x∗, x〉 for all (x, x∗) ∈ X ×X∗;

(ii) G(S) = {(x, x∗) ∈ X ×X∗ : ϕS(x, x∗) = 〈x∗, x〉}.

Motivated by these properties of the Fitzpatrick function, the notion of rep-
resentative function of a monotone operator was introduced and studied in the
literature.

Definition 4.1 For S : X ⇒ X∗ a monotone operator, we call representative
function of S a convex and lower semicontinuous function hS : X × X∗ → R (in
the strong topology of X ×X∗) fulfilling

hS ≥ c and G(S) ⊆ {(x, x∗) ∈ X ×X∗ : hS(x, x∗) = 〈x∗, x〉}.

We observe that if G(S) 6= ∅ (in particular if S is maximal monotone), then every
representative function of S is proper. It follows immediately that the Fitzpatrick
function associated to a maximal monotone operator is a representative function
of the operator. The following proposition is a direct consequence of some results
given in [49] (see also [92, Proposition 1.2 and Theorem 4.2 (1)]).

Proposition 4.1 Let S : X ⇒ X∗ be a maximal monotone operator and hS be a
representative function of S. Then

(i) ϕS ≤ hS ≤ ψS;

(ii) the canonical restriction of h∗>S to X × X∗ is also a representative function
of S;

(iii) {(x, x∗) ∈ X ×X∗ : hS(x, x∗) = 〈x∗, x〉} = {(x, x∗) ∈ X ×X∗ : h∗>S (x, x∗) =
〈x∗, x〉} = G(S).

One can see by Proposition 4.1 that a convex and lower semicontinuous function
f : X×X∗ → R is a representative function of the maximal monotone operator S if
and only if ϕS ≤ f ≤ ψS . In particular, ϕS and ψS are representative functions of
S and are the extremal elements of the family of representative functions associated
to S

H(S) =
{
h : X ×X∗ → R :

h is convex and lower semicontinuous, h ≥ c and
G(S) ⊆ {(x, x∗) ∈ X ×X∗ : h(x, x∗) = 〈x∗, x〉}

}
,

which was introduced by Burachik and Svaiter in [49].
Let us notice that if f : X → R is a proper, convex and lower semicontinuous

function, then a representative function of the maximal monotone operator ∂f :
X ⇒ X∗ is the function (x, x∗) 7→ f(x) + f∗(x∗). This follows by the Young-
Fenchel inequality and from the definition of the subdifferential of f . Moreover,
according to [41, Theorem 3.1] (see also [106, Example 3]), if f is a sublinear and
lower semicontinuous function, then the operator ∂f : X ⇒ X∗ has a unique
representative function, namely the function (x, x∗) 7→ f(x) + f∗(x∗).

If X is a Hilbert space, then there exists a unique representative function of
the maximal monotone operator ∂δC : X ⇒ X, where C is a non-empty closed
convex set in X. Indeed, by [6, Example 3.1], the Fitzpatrick function of ∂δC is
ϕ∂δC

(x, x∗) = δC(x) + δ∗C(x∗). This implies that ψ∂δC
= ϕ∗>∂δC

= ϕ∂δC
. As f∂δC

is a
representative function of ∂δC if and only if ϕ∂δC

≤ f∂δC
≤ ψ∂δC

, we get that the
unique representative function is (x, x∗) 7→ δC(x) + δ∗C(x∗).

For more on the properties of representative functions we refer to [11,26,49,96,
111] and the references therein.
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Remark 4.5 In many situations the representative functions are lower semicon-
tinuous in the strong-weak∗ topology, as it is the case for example for the Fitz-
patrick functions of monotone operators. As Proposition 4.1(ii) shows, for every
representative function of a maximal monotone operator one obtains a correspond-
ing representative function which is strong-weak∗ lower semicontinuous. Moreover,
when S = ∂f , where f : X → R is a proper, convex and lower semicontinuous
function, then the function (x, x∗) 7→ f(x) + f∗(x∗), which is a representative of
∂f , is lower semicontinuous in the strong-weak∗ topology. Hence, for S : X ⇒ X∗

a monotone operator, it is natural to consider also the subfamily of H(S) formed
by those representative functions of S which are lower semicontinuous with respect
to the strong-weak∗ topology of X × X∗. Let us notice that in general this is a
proper subfamily (cf. [141, Remark 1]), while in the setting of reflexive Banach
spaces it coincides with H(S). In Section 4.5 we will consider strong-weak∗ lower
semicontinuous representative functions of maximal monotone operators.

Let us give the following maximality criteria valid in reflexive Banach spaces
(cf. [50, Theorem 3.1] and [111, Proposition 2.1]; see also [126] for other maximality
criteria in reflexive spaces). We refer to [92, Theorem 4.2] for a generalization of
the next result to arbitrary Banach spaces.

Theorem 4.3 (cf. [50,111]) Let X be a reflexive Banach space and f : X×X∗ → R
a proper, convex and lower semicontinuous function such that f ≥ c. Then the
operator whose graph is the set {(x, x∗) ∈ X ×X∗ : f(x, x∗) = 〈x∗, x〉} is maximal
monotone if and only if f∗> ≥ c.

The following particular class of maximal monotone operators has been recently
introduced in [92], being also studied in [142].

Definition 4.2 An operator S : X ⇒ X∗ is said to be strongly-representable
whenever there exists a proper, convex and strong lower semicontinuous function
h : X ×X∗ → R such that

h ≥ c, h∗(x∗, x∗∗) ≥ 〈x∗∗, x∗〉 ∀(x∗, x∗∗) ∈ X∗ ×X∗∗

and
G(S) = {(x, x∗) ∈ X ×X∗ : h(x, x∗) = 〈x∗, x〉}.

In this case h is called a strong-representative of S.

If S : X ⇒ X∗ is strongly-representable, then S is maximal monotone (see [92,
Theorem 4.2] and [142, Theorem 8]) and ϕS is a strong-representative of S.

Remark 4.6 Marques Alves and Svaiter recently proved that the class of
strongly-representable operators, the class of maximal monotone operators of type
(NI) and the class of maximal monotone operators of Gossez type (D) coincide
(cf. [93, Theorem 1.2] and [94, Theorem 4.4]).

The following definition of a family of enlargements associated to a monotone
operator was introduced by Svaiter (cf. [132]).

Definition 4.3 (cf. [132]) Let S : X ⇒ X∗ be a monotone operator. Define E(S)
as the family of multifunctions E : R+×X ⇒ X∗ satisfying the following properties:

(i) E is an enlargement of S, i.e.:

S(x) ⊆ E(ε, x) for all ε ≥ 0 and x ∈ X;
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(ii) E is non-decreasing, that is for all x ∈ X, E(ε1, x) ⊆ E(ε2, x) provided that
ε1 ≤ ε2;

(iii) E satisfies the transportation formula: for every (ε1, x
1, v1), (ε2, x

2, v2) ∈
G(E) and for every λ ∈ [0, 1] we have (ε, x, v) ∈ G(E), where ε := λε1 + (1−
λ)ε2 +λ(1−λ)〈v1−v2, x1−x2〉, x := λx1 +(1−λ)x2 and v := λv1 +(1−λ)v2.

A particular choice of E ∈ E(S) was considered in [44] and it has for ε ≥ 0 and
x ∈ X the following definition

Se(ε, x) = {x∗ ∈ X∗ : 〈y∗ − x∗, y − x〉 ≥ −ε for all (y, y∗) ∈ G(S)}.

Introduced in [44], this enlargement turned out to have some useful applications
and properties similar to those of the ε-subdifferential (several properties like lo-
cal boundedness, demiclosed graph, Lipschitz continuity, the Brøndsted-Rockafellar
property were studied in [44, 48, 49, 132]). Notice that the Brøndsted-Rockafellar
type property for the enlargement of a maximal monotone operator has been estab-
lished for the first time in [138, Proposition 6.17] (see also [128, Theorem 29.9]). It
is worth noting that G

(
Se(0, ·)

)
is exactly the set of the elements that are mono-

tonically related to G(S), hence the monotone operator S is maximal monotone if
and only if G(S) = G

(
Se(0, ·)

)
(cf. [44, Proposition 2] and [117, Proposition 3.1]).

In case S is maximal monotone, the operator Se belongs to Ec(S) (the family of
enlargements E ∈ E(S) such that G(E) is closed with respect to the strong topol-
ogy on X × X∗) and in fact it is the biggest element of Ec(S) (cf. [132]). The
enlargement Se can be characterized via the Fitzpatrick function associated to S
as follows: for ε ≥ 0 and x ∈ X we have

Se(ε, x) = {x∗ ∈ X∗ : ϕS(x, x∗) ≤ ε+ 〈x∗, x〉}.

The family Ec(S) has also a smallest element, namely the enlargement Sse defined
for all (ε, x) ∈ R+ ×X by

Sse(ε, x) =
⋂

E∈Ec(S)

E(ε, x).

Remark 4.7 Given E : R+ ×X ⇒ X∗, we define the closure of E, E : R+ ×X ⇒
X∗ by (cf. [132])

E(ε, x) := {x∗ ∈ X∗ : (ε, x, x∗) ∈ cl
(
G(E)

)
} ∀(ε, x) ∈ R+ ×X.

We say that E is closed if E = E. One can see that G(E) = cl
(
G(E)

)
. Consider

in the following S : X ⇒ X∗ a maximal monotone operator. The smallest element
of the family Ec(S) was introduced in [49] by the following procedure. Define
MS : R+ ×X ⇒ X∗, by

MS(ε, x) :=
⋂

E∈E(S)

E(ε, x) ∀(ε, x) ∈ R+ ×X.

Then MS is the smallest element of Ec(S) (cf. [49, Proposition 2.6]). In the following
we show that MS = Sse. Indeed, from the definitions above one has G(MS) ⊆
G(Sse), hence G(MS) ⊆ G(Sse) (one can prove that G(Sse) is closed). On the
other hand, take (ε, x) ∈ R+ ×X and x∗ ∈ Sse(ε, x) arbitrary. Then x∗ ∈ E(ε, x)
for all E ∈ Ec(S), hence in particular (since MS ∈ Ec(S), cf. [49, Proposition 2.6])
x∗ ∈MS(ε, x). Thus G(Sse) ⊆ G(MS). All together, we obtain MS = Sse. Let us
notice that MS is the smallest element of E(S) (cf. [132, Lemma 3.6]).
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For an arbitrary representative function hS one can consider the following en-
largement of S (see [49,51]): ShS

: R+ ×X ⇒ X∗,

ShS
(ε, x) := {x∗ ∈ X∗ : hS(x, x∗) ≤ ε+ 〈x∗, x〉} for all (ε, x) ∈ R+ ×X.

Let us notice that for all ε ≥ 0 the set ShS
(ε, x) is convex and closed (weak∗-closed)

if hS is lower semicontinuous in the strong (strong-weak∗) topology of X × X∗.
It follows immediately from the definitions above that SϕS

= Se. It was proved
(see [49]) that for a maximal monotone operator S, ShS

∈ Ec(S) and actually
(cf. [49, Theorem 3.6]) there exists a one-to-one correspondence between Ec(S) and
the setH(S) (moreover, this correspondence is an isomorphism with respect to some
suitable operations, see [51]). Hence, in case S is a maximal monotone operator,
there exists a unique function belonging to H(S) such that Sse = ShS

and in fact
Sse = SψS

(cf. [49, relation (35)], see also Remark 4.7 above). Further, for all
(ε, x) ∈ R+ ×X we have

S(x) ⊆ Sse(ε, x) = SψS
(ε, x) ⊆

ShS
(ε, x)

Sh∗S (ε, x)
⊆ SϕS

(ε, x) = Se(ε, x),

where Sh∗S (ε, x) = {x∗ ∈ X∗ : h∗S(x∗, x) ≤ ε+〈x∗, x〉}, as well as S(x) = Sse(0, x) =
ShS

(0, x) = Sh∗S (0, x) = Se(0, x).

Remark 4.8 If S = ∂f , where f is a proper, convex and lower semicontinuous
function, then for all ε ≥ 0 and all x ∈ X we have

∂f(x) ⊆ ∂εf(x) ⊆ ∂εf(x) := (∂f)e(ε, x),

and the inclusions can be strict (see [44, 97]). Moreover, taking h : X ×X∗ → R,
h(x, x∗) = f(x)+f∗(x∗) for all (x, x∗) ∈ X×X∗, which is a representative function
of ∂f , we see that (∂f)h(ε, x) = (∂f)h∗(ε, x) = ∂εf(x) for all ε ≥ 0 and all x ∈ X.

4.3 The ε-enlargement of the sum of two maximal
monotone operators

We show that the necessary and sufficient regularity condition given in Section 4.1
for the bivariate infimal convolution formula delivers a closedness-type regularity
condition which equivalently characterizes the ε-enlargement of the sum of two
maximal monotone operators. Let us begin with the following result concerning the
representability of the sum operator. In this section X is a Banach space.

Theorem 4.4 Let S, T : X ⇒ X∗ be two maximal monotone operators with repre-
sentative functions hS and hT , respectively, such that prX(domhS)∩prX(domhT ) 6=
∅ and consider the function h : X ×X∗ → R, h(x, x∗) = (hS�2hT )∗(x∗, x) for all
(x, x∗) ∈ X ×X∗. If

{(a∗ + b∗, u∗∗, v∗∗, r) : h∗S(a∗, u∗∗) + h∗T (b∗, v∗∗) ≤ r} is closed regarding the set
X∗ ×∆X × R in (X∗, ω(X∗, X))× (X∗∗, ω(X∗∗, X∗))× (X∗∗, ω(X∗∗, X∗))× R,

then h is a representative function of the monotone operator S+T . If, additionally,
X is reflexive, then S + T is a maximal monotone operator.

Proof. The function h is obviously convex and strong-weak∗ lower semicontinuous,
hence lower semicontinuous in the strong topology of X ×X∗. Applying Corollary
4.3 we obtain h(x, x∗) = (h∗S�1h

∗
T )(x∗, x) and h∗S�1h

∗
T is exact at (x∗, x) for all
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(x∗, x) ∈ X∗ ×X. By using Proposition 4.1 we have for all (x, x∗) ∈ X ×X∗ that
h(x, x∗) = (h∗S�1h

∗
T )(x∗, x) = inf{h∗S(u∗, x) + h∗T (v∗, x) : u∗, v∗ ∈ X∗, u∗ + v∗ =

x∗} ≥ inf{〈u∗, x〉+ 〈v∗, x〉 : u∗, v∗ ∈ X∗, u∗ + v∗ = x∗} = 〈x∗, x〉, hence h ≥ c.
It remains to show that G(S + T ) ⊆ {(x, x∗) : h(x, x∗) = 〈x∗, x〉}. Take an

arbitrary (x, x∗) ∈ G(S + T ). There exist u∗ ∈ S(x) and v∗ ∈ T (x) such that
x∗ = u∗ + v∗. Employing once more Proposition 4.1 we obtain

〈x∗, x〉 ≤ h(x, x∗) = (h∗S�1h
∗
T )(x∗, x)

≤ h∗S(u∗, x) + h∗T (v∗, x) = 〈u∗, x〉+ 〈v∗, x〉 = 〈x∗, x〉,

thus G(S + T ) ⊆ {(x, x∗) : h(x, x∗) = 〈x∗, x〉}.
Actually, we prove that in this case

G(S + T ) = {(x, x∗) : h(x, x∗) = 〈x∗, x〉}. (4. 7)

Take an arbitrary (x, x∗) such that h(x, x∗) = 〈x∗, x〉. Since we have that h(x, x∗) =
(h∗S�1h

∗
T )(x∗, x) and h∗S�1h

∗
T is exact at (x∗, x), there exist u∗, v∗ ∈ X∗, u∗+ v∗ =

x∗ such that
h∗S(u∗, x) + h∗T (v∗, x) = 〈u∗, x〉+ 〈v∗, x〉. (4. 8)

The function hS and hT being representative, from Proposition 4.1 we have h∗S(u∗, x)
≥ 〈u∗, x〉 and h∗T (v∗, x) ≥ 〈v∗, x〉, hence, in view of (4. 8), the inequalities above
must be fulfilled as equalities. Thus, by Proposition 4.1 we get u∗ ∈ S(x) and
v∗ ∈ T (x), so x∗ = u∗ + v∗ ∈ S(x) + T (x) = (S + T )(x) and (4. 7) is fulfilled.

Suppose now that X is a reflexive Banach space. Since in this case the weak∗

topology coincides with the weak topology (on X∗) and the weak closure of a con-
vex set is exactly the strong closure of the same set, the regularity condition becomes

{(a∗ + b∗, u, v, r) : h∗S(a∗, u) + h∗T (b∗, v) ≤ r} is closed regarding the subspace
X∗ ×∆X × R in the strong topology of X∗ ×X ×X × R,

which is exactly the condition given in [26] for the maximal monotonicity of the
operator S + T . However, we give in the following a different proof of this result.

Since hS and hT are representative functions we have hS�2hT ≥ c. As the
duality product is continuous with respect to the strong topology of X × X∗, it
follows cl‖·‖×‖·‖∗(hS�2hT ) ≥ c. Taking into account that the space X is reflex-
ive and the functions hS and hT are convex, from the definition of h we obtain
h∗> = cl‖·‖×w∗(hS�2hT ) = cl‖·‖×‖·‖∗(hS�2hT ) ≥ c. The conclusion follows now by
combining Theorem 4.3 with relation (4. 7). �

Remark 4.9 In case of reflexive Banach spaces the condition given in the above
theorem is the weakest one given so far which guarantees the maximality of the sum
of two maximal monotone operators. Let us notice that a stronger closedness-type
regularity condition is considered in [85]. We refer to [26, 32, 33] for a discussion
regarding several other conditions given in the literature on this topic by means of
generalized interiority notions. We mention here the Rockafellar Condition, namely
int
(

dom(S)
)
∩ dom(T ) 6= ∅ (cf. [123]), which is one of the oldest introduced in

the literature for the maximal monotonicity of the sum of two maximal monotone
operators in reflexive Banach spaces. In the nonreflexive case, it is still an open
question whether this condition is sufficient. Some important steps in the study
of maximal monotone operators in nonreflexive Banach spaces have been made by
Bauschke, Wang and Yao (cf. [7]), Borwein (cf. [11]), Marques Alves and
Svaiter (cf. [92–94]), Simons (cf. [128]), Voisei (cf. [140]), Zagrodny (cf. [144]),
respectively Voisei and Zălinescu (cf. [142]).



72 CHAPTER 4. ENLARGEMENTS OF MONOTONE OPERATORS

Let us state now the main result of this section.

Theorem 4.5 Let S, T : X ⇒ X∗ be two maximal monotone operators with repre-
sentative functions hS and hT , respectively, such that prX(domhS)∩prX(domhT ) 6=
∅ and consider again the function h defined as in the previous theorem. Then the
following statements are equivalent:

(i) {(a∗+b∗, u∗∗, v∗∗, r) : h∗S(a∗, u∗∗)+h∗T (b∗, v∗∗) ≤ r} is closed regarding the set
X∗×∆X×R in (X∗, ω(X∗, X))×(X∗∗, ω(X∗∗, X∗))×(X∗∗, ω(X∗∗, X∗))×R;

(ii) (S + T )h(ε, x) =
⋃

ε1,ε2≥0
ε1+ε2=ε

(
Sh∗S (ε1, x) + Th∗T (ε2, x)

)
for all ε ≥ 0 and x ∈ X;

where for every x ∈ X and ε ≥ 0, (S + T )h(ε, x) := {x∗ ∈ X∗ : h(x, x∗) ≤
ε+ 〈x∗, x〉}.

Proof. Let us suppose that (i) is fulfilled and take x ∈ X and ε ≥ 0. We show first
the inclusion ⋃

ε1,ε2≥0
ε1+ε2=ε

(
Sh∗S (ε1, x) + Th∗T (ε2, x)

)
⊆ (S + T )h(ε, x). (4. 9)

Indeed, take ε1, ε2 ≥ 0, ε1 + ε2 = ε, u∗ ∈ Sh∗S (ε1, x) and v∗ ∈ Th∗T (ε2, x). Then
h(x, u∗ + v∗) = (hS�2hT )∗(u∗ + v∗, x) ≤ (h∗S�1h

∗
T )(u∗ + v∗, x) ≤ h∗S(u∗, x) +

h∗T (v∗, x) ≤ ε1+〈u∗, x〉+ε2+〈v∗, x〉 = ε+〈u∗+v∗, x〉, hence u∗+v∗ ∈ (S+T )h(ε, x),
that is, the inclusion (4. 9) is true. Let us mention that this inclusion is always
fulfilled, as there is no need of (i) to prove (4. 9).

However, to show the opposite inclusion, we use condition (i). Take x∗ ∈
(S + T )h(ε, x). We have (hS�2hT )∗(x∗, x) ≤ ε + 〈x∗, x〉. By applying Corol-
lary 4.3, we get (h∗S�1h

∗
T )(x∗, x) ≤ ε+ 〈x∗, x〉 and the infimum in the definition of

(h∗S�1h
∗
T )(x∗, x) is attained. Hence, there exist u∗, v∗ ∈ X∗ such that u∗+ v∗ = x∗

and
h∗S(u∗, x) + h∗T (v∗, x) ≤ ε+ 〈u∗, x〉+ 〈v∗, x〉. (4. 10)

Take ε1 := h∗S(u∗, x) − 〈u∗, x〉 and ε2 := ε − ε1. By using Proposition 4.1 and
the inequality (4. 10) we obtain ε1 ≥ 0 and ε2 ≥ h∗T (v∗, x) − 〈v∗, x〉 ≥ 0. Thus
u∗ ∈ Sh∗S (ε1, x) and v∗ ∈ Th∗T (ε2, x), that is

x∗ = u∗ + v∗ ∈
⋃

ε1,ε2≥0
ε1+ε2=ε

(
Sh∗S (ε1, x) + Th∗T (ε2, x)

)
,

so (ii) is fulfilled.
Conversely, assume that (ii) is true. We start by proving that

h(x, x∗) ≥ 〈x∗, x〉 for all (x, x∗) ∈ X ×X∗. (4. 11)

Let us suppose that there exists (x0, x
∗
0) ∈ X ×X∗ such that h(x0, x

∗
0) ≤ 〈x∗0, x0〉.

By using the condition (ii) for ε = 0 we obtain x∗0 ∈ (S + T )h(0, x0) = Sh∗S (0, x0) +
Th∗T (0, x0) = S(x0) + T (x0). Hence there exist u∗0 ∈ S(x0) and v∗0 ∈ T (x0) such
that x∗0 = u∗0 + v∗0 . From Proposition 4.1 we obtain hS(x0, u

∗
0) = 〈u∗0, x0〉 and

hT (x0, v
∗
0) = 〈v∗0 , x0〉. Like in (4. 6) we get

h(x0, x
∗
0) = sup

x∈X,u∗,v∗∈X∗
{〈x∗0, x〉+ 〈u∗, x0〉+ 〈v∗, x0〉 − hS(x, u∗)− hT (x, v∗)}

≥ 〈x∗0, x0〉+ 〈u∗0, x0〉+ 〈v∗0 , x0〉 − hS(x0, u
∗
0)− hT (x0, v

∗
0) = 〈x∗0, x0〉,
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thus (4. 11) is fulfilled.
In view of Corollary 4.3, it is sufficient to show that h(x, x∗) = (h∗S�1h

∗
T )(x∗, x)

and h∗S�1h
∗
T is exact at (x∗, x) for all (x∗, x) ∈ X∗×X. Take an arbitrary (x∗, x) ∈

X∗ ×X. The inequality

h(x, x∗) ≤ (h∗S�1h
∗
T )(x∗, x) (4. 12)

is always true. In case when h(x, x∗) = +∞, there is nothing to be proved. The
relation (4. 11) ensures h(x, x∗) > −∞, so we may suppose that h(x, x∗) ∈ R.
Let us denote by r := h(x, x∗). We have h(x, x∗) = 〈x∗, x〉 + (r − 〈x∗, x〉). With
ε := r − 〈x∗, x〉 ≥ 0 (cf. (4. 11)), we obtain x∗ ∈ (S + T )h(ε, x). Since (ii) is
true, there exist ε1, ε2 ≥ 0, ε1 + ε2 = ε and u∗ ∈ Sh∗S (ε1, x) and v∗ ∈ Th∗T (ε2, x),
respectively, such that x∗ = u∗ + v∗. Further, adding the two inequalities

h∗S(u∗, x) ≤ ε1 + 〈u∗, x〉

and
h∗T (v∗, x) ≤ ε2 + 〈v∗, x〉

we obtain

h∗S(u∗, x) + h∗T (v∗, x) ≤ ε1 + ε2 + 〈u∗ + v∗, x〉 = r = h(x, x∗),

hence, in view of (4. 12) we get h(x, x∗) = h∗S(u∗, x) +h∗T (v∗, x) = (h∗S�1h
∗
2)(x∗, x)

and the proof is complete. �

Remark 4.10 In view of Theorem 4.4, in case the condition (i) in the theorem
above is fulfilled, then h is a representative function of the operator S + T , hence
the notation (S + T )h(ε, x) := {x∗ ∈ X∗ : h(x, x∗) ≤ ε + 〈x∗, x〉} is justified.
Conversely, when the condition (ii) is true, then (i) is also fulfilled (see the proof
above), thus also in this case the use of this notation makes sense.

One can give also a generalized interior-point regularity condition in order to
guarantee the equality (ii) in the previous result. The following corollary is a direct
consequence of Theorem 4.5 combined with Remark 4.4.

Corollary 4.4 Let S, T : X ⇒ X∗ be two maximal monotone operators with repre-
sentative functions hS and hT , respectively, such that prX(domhS)∩prX(domhT ) 6=
∅. If the following condition is satisfied

(CQSZ) 0 ∈ sqri
(
prX(domhS)− prX(domhT )

)
,

then (S + T )h(ε, x) =
⋃

ε1,ε2≥0
ε1+ε2=ε

(
Sh∗S (ε1, x) + Th∗T (ε2, x)

)
for all ε ≥ 0 and x ∈ X.

Remark 4.11 The condition (CQSZ) in Corollary 4.4 is only sufficient for the
equality (ii) in Theorem 4.5, as it can be seen by taking X = R2, S = ∂f , T = ∂g,
where f, g, hS and hT are defined as in Example 4.1.

We show in the following that a result stated in [45, Theorem 1] for ε-subdifferentials
can be derived from Theorem 4.5.

Corollary 4.5 Let f, g : X → R be proper, convex and lower semicontinuous such
that dom f ∩ dom g 6= ∅. The following statements are equivalent:

(i) epi f∗ + epi g∗ is closed in (X∗, ω(X∗, X))× R;
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(ii) ∂ε(f + g)(x) =
⋃

ε1,ε2≥0
ε1+ε2=ε

(
∂ε1f(x) + ∂ε2g(x)

)
for all ε ≥ 0 and x ∈ X.

Proof. Consider the functions h1, h2 : X × X∗ → R defined by h1(x, x∗) =
f(x) + f∗(x∗) and h2(x, x∗) = g(x) + g∗(x∗) for all (x, x∗) ∈ X × X∗. We
have h∗1(x∗, x∗∗) = f∗∗(x∗∗) + f∗(x∗) and h∗2(x∗, x∗∗) = g∗∗(x∗∗) + g∗(x∗) for all
(x∗, x∗∗) ∈ X∗ ×X∗∗. Further, the condition (h1�2h2)∗(x∗, x) = (h∗1�1h

∗
2)(x∗, x)

and h∗1�1h
∗
2 is exact at (x∗, x) for all (x∗, x) ∈ X∗ × X is fulfilled if and only if

(f + g)∗ = f∗�g∗ and f∗�g∗ is exact. Applying Corollary 4.1 for U = X∗, (i)
is fulfilled if and only if (f + g)∗ = f∗�g∗ and f∗�g∗ is exact, which is equiva-
lent to (h1�2h2)∗(x∗, x) = (h∗1�1h

∗
2)(x∗, x) and h∗1�1h

∗
2 is exact at (x∗, x) for all

(x∗, x) ∈ X∗ ×X. The later one is equivalent to (see Corollary 4.3)

{(a∗+b∗, u∗∗, v∗∗, r) : h∗1(a∗, u∗∗)+h∗2(b∗, v∗∗) ≤ r} is closed regarding the subspace
X∗ ×∆X × R in (X∗, ω(X∗, X))× (X∗∗, ω(X∗∗, X∗))× (X∗∗, ω(X∗∗, X∗))× R.

Since h1 and h2 are representative functions of the maximal monotone operators
∂f and ∂g, respectively, we obtain, by Theorem 4.5, applied to the operators S = ∂f
and T = ∂g, that (i) is fulfilled if and only if for all ε ≥ 0 and all x ∈ X the following
equality holds

(∂f + ∂g)h(ε, x) =
⋃

ε1,ε2≥0
ε1+ε2=ε

(
(∂f)h∗1 (ε1, x) + (∂g)h∗2 (ε2, x)

)
,

where h : X ×X∗ → R, h(x, x∗) = (h1�2h2)∗(x∗, x) = (f + g)(x) + (f + g)∗(x∗) for
all (x, x∗) ∈ X ×X∗. Taking into consideration that (∂f + ∂g)h(ε, x) = {x∗ ∈ X∗ :
(f + g)(x) + (f + g)∗(x∗) ≤ ε+ 〈x∗, x〉} = ∂ε(f + g)(x) and (∂f)h∗1 (ε1, x) = ∂ε1f(x),
respectively, (∂g)h∗2 (ε2, x) = ∂ε2g(x) (cf. Remark 4.8), we get the desired conclusion.
�

Remark 4.12 (a) The equivalence in Corollary 4.5 holds also in the framework
of separated locally convex spaces (cf. [35, Theorem 5]). The direct implication is
shown in [72, Theorem 2.1]. Sufficient conditions which guarantee the equality in
Corollary 4.5(ii) can be found in [147, Theorem 2.8.7].

(b) In reflexive Banach spaces one can deduce the equivalence in Corollary 4.5 by
using the results presented in [51] for enlargements of monotone operators (see [51,
Theorem 6.9]).

(c) Following the approach presented above, one can give a similar result to
Theorem 4.5, where, instead of S + T one can consider the operator S + A∗TA,
where S : X ⇒ X∗ and T : Y ⇒ Y ∗ are maximal monotone operators, X,Y are
Banach spaces and A : X → Y is a continuous linear operator.

4.4 A characterization of the maximal monotone
operators which are fully enlargeable by Sse

In this section we give an answer to an open problem posed by Burachik and
Iusem in [42]. Let us recall first the notion of full enlargeability introduced in [42].
We consider X a Banach space.

Definition 4.4 (cf. [42]) Let S : X ⇒ X∗ be a maximal monotone operator and
consider an element E ∈ E(S). We say that
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(i) the enlargement E fully enlarges S at the point x ∈ D(S) if and only if for all
ε > 0 there exists δ = δ(x, ε) > 0 such that S(x) + B(0, δ) ⊆ E(ε, x) (B(0, δ)
is the closed ball centered at the origin with radius δ);

(ii) E is a full enlargement of S when property (i) holds for all x ∈ D(S).

The operators which are fully enlargeable by Se are characterized in [42, Theo-
rem 3.2]. The question posed in [42] concerning the characterization of the maximal
monotone operators that are fully enlargeable by Sse was left as an open problem.
We give below an answer to this question. Actually we provide a more general
result, namely a characterization of the maximal monotone operators S which are
fully enlargeable by ShS

, where hS is an arbitrary representative function of S.
To this end for an operator S : X ⇒ X∗ we introduce, as in [42], the function
βS : X × X∗ → R, βS(x, x∗) = hS(x, x∗) − 〈x, x∗〉 and for x∗ ∈ X∗ and U ⊆ X∗

consider the metric distance from x∗ to U , that is d(x∗, U) = infu∗∈U ‖u∗ − x∗‖.

Theorem 4.6 Let S : X ⇒ X∗ be a maximal monotone operator and hS be a
representative function of S. Then the following statements are equivalent:

(i) ShS
is a full enlargement of S;

(ii) for all x ∈ D(S), hS(x, ·) is uniformly continuous on S(x).

Proof. We give first the proof of the implication (i) ⇒ (ii), which is similar
to the proof of implication (a) ⇒ (b) in [42, Theorem 3.2]. Let be x ∈ D(S).
Taking into consideration the definition of the function βS , the uniform continuity
of hS(x, ·) is equivalent to the uniform continuity of βS(x, ·). For x∗ ∈ S(x) we
fix ε > 0 and consider δ > 0 such that S(x) + B(0, δ) ⊆ ShS

(ε, x), which exists
by the definition of full enlargeability. Take y∗ ∈ X∗ such that d(y∗, S(x)) < δ.
Consequently, there exists u∗ ∈ S(x) such that y∗ − u∗ ∈ B(0, δ). Hence y∗ =
u∗ + (y∗ − u∗) ∈ S(x) + B(0, δ) ⊆ ShS

(ε, x), that is βS(x, y∗) ≤ ε. We obtain
|βS(x, y∗) − βS(x, x∗)| = βS(x, y∗) ≤ ε for all x∗ ∈ S(x). As δ depends only on x
and ε, (ii) holds.

Assume now that (ii) holds and fix x ∈ D(S) and ε > 0. Since the function
βS(x, ·) is uniformly continuous on S(x), there exists δ > 0 (which depends on x
and ε) fulfilling

βS(x, y∗) ≤ ε, for all y∗ ∈ X∗ such that d(y∗, S(x)) < δ. (4. 13)

We claim that for δ := (1/2)δ we have S(x) + B(0, δ) ⊆ ShS
(ε, x). Indeed, take

x∗ ∈ S(x) and v∗ ∈ B(0, δ). Then d(x∗ + v∗, S(x)) = infu∗∈S(x) ‖x∗ + v∗ − u∗‖ ≤
‖v∗‖ ≤ δ < δ. Combining this inequality with (4. 13) we get βS(x, x∗ + v∗) ≤ ε,
which is nothing else than x∗+ v∗ ∈ ShS

(ε, x) and the claim is proved. Hence (i) is
fulfilled and the proof is complete. �

Remark 4.13 By taking hS = ϕS in Theorem 4.6 we obtain exactly the equiva-
lence (a)⇔ (b) in [42, Theorem 3.2]. In this case a further equivalent characteriza-
tion of full enlargeability of S by Se can be given (see [42, Theorem 3.2 (c)]).

By taking in the previous result hS = ψS we obtain a characterization of the
maximal monotone operators which are fully enlargeable by Sse (remember that
Sse = SψS

, see Section 4.2).

Corollary 4.6 Let S : X ⇒ X∗ be a maximal monotone operator. Then the
following statements are equivalent:

(i) Sse is a full enlargement of S;

(ii) for all x ∈ D(S), ψS(x, ·) is uniformly continuous on S(x).
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4.5 Guaranteeing the weak∗-closedness of the set
ShS(ε1, x) + ThT (ε2, x)

In this section we provide a weak generalized interior-point regularity condition
which ensures that for S, T : X ⇒ X∗ maximal monotone operators with strong-
weak∗ lower semicontinuous representative functions hS and hT , respectively, the
set ShS

(ε1, x) + ThT
(ε2, x) is weak∗-closed, for all ε1, ε2 ≥ 0 and all x ∈ X. Some

comments concerning similar results given in the literature are also made.
In the following we assume that the Banach space X is endowed with the

strong topology, while its topological dual X∗ is endowed with the weak∗ topol-
ogy ω(X∗, X). Thus for a given function f : X∗ → R its conjugate function
f∗ : X → R is defined by f∗(x) = supx∗∈X∗{〈x∗, x〉−f(x∗)} for all x ∈ X, while for
h : X×X∗ → R, h∗ : X∗×X → R is defined as h∗(z∗, z) = supx∈X,x∗∈X∗{〈z∗, x〉+
〈x∗, z〉−h(x, x∗)} for all (z∗, z) ∈ X∗×X. We prove first a preliminary result which
will be useful in the proof of the main theorem of this section and which is of its
own interest.

Theorem 4.7 Let f, g : X∗ → R be two proper, convex and weak∗ lower semicon-
tinuous functions such that 0 ∈ dom f∗ ∩ dom g∗ and consider the sets F = {x∗ ∈
X∗ : f(x∗) ≤ 0} and G = {x∗ ∈ X∗ : g(x∗) ≤ 0}. If 0 ∈ sqri(dom f∗ − dom g∗),
then F +G is weak∗-closed.

Proof. The sets F and G are both convex and weak∗-closed. If F + G is empty,
then there is nothing to be proved. Therefore we assume that F +G is a non-empty
set and consider σF , σG : X → R the support functions of F and G defined by
σF (x) = supx∗∈F 〈x∗, x〉 and σG(x) = supx∗∈G〈x∗, x〉 for all x ∈ X. Both functions
σF and σG are proper, convex and lower semicontinuous (both in ω(X,X∗) and in
the strong topology) and 0 ∈ domσF ∩ domσG. Therefore, whenever the condition

0 ∈ sqri(domσF − domσG) (4. 14)

is fulfilled, one has (cf. [147, Theorem 2.8.7 (vii)]) that

σ∗F+G = (σF + σG)∗ = σ∗F�σ∗G = δF�δG = δF+G

and this guarantees that the set F +G is weak∗-closed.
To obtain the conclusion we show that the condition 0 ∈ sqri(dom f∗ − dom g∗)

from the hypotheses secures (4. 14). To this aim we consider the function h : X → R
defined by h = infλ>0(λf)∗. Since the function

(x, λ) 7→
{

(λf)∗(x), if λ > 0,
+∞, otherwise

is convex (on X × R), one has that h is convex, too. Moreover, from the definition
of the function h we obtain that h(x) ≥ 〈x∗, x〉 for all x ∈ X and all x∗ ∈ F . Hence
clh ≥ σF > −∞ and consequently clh = h∗∗. We claim that h∗∗ = σF . By using
that f is proper, convex and weak∗ lower semicontinuous, we get for all x∗ ∈ X∗

h∗(x∗) = sup
x∈X
{〈x∗, x〉 − inf

λ>0
(λf)∗(x)} = sup

x∈X
λ>0

{〈x∗, x〉 − (λf)∗(x)}

= sup
λ>0

{
sup
x∈X
{〈x∗, x〉 − (λf)∗(x)}

}
= sup

λ>0
(λf)∗∗(x∗) = sup

λ>0
{λf(x∗)} = δF (x∗).

Hence h∗ = δF and taking the conjugates we obtain h∗∗ = σF . All together we get
clh = σF , thus domh ⊆ domσF ⊆ cl(domh). On the other hand, x ∈ domh if and
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only if there exists λ > 0 such that (λf)∗(x) = λf∗((1/λ)x) < +∞. This is further
equivalent to the existence of λ > 0 such that x ∈ λ dom f∗ or, in other words, to
x ∈ ∪λ>0λ dom f∗. Consequently, domh = ∪λ>0λ dom f∗, that is

∪λ>0λ dom f∗ ⊆ domσF ⊆ cl
(
∪λ>0 λ dom f∗

)
.

Similarly one can prove that

∪λ>0λ dom g∗ ⊆ domσG ⊆ cl
(
∪λ>0 λ dom g∗

)
.

On the one hand it holds

∪
λ>0

λ(dom f∗ − dom g∗) ⊆ ∪
λ>0

λ dom f∗ − ∪
µ>0

µdom g∗ ⊆ domσF − domσG

and, on the other hand, that

domσF − domσG ⊆ cl
(
∪
λ>0

λ dom f∗
)
− cl

(
∪
µ>0

µdom g∗
)

⊆ cl
(
∪
λ>0

λ dom f∗ − ∪
µ>0

µdom g∗
)
.

For λ, µ > 0, x ∈ dom f∗ and y ∈ dom g∗, using that 0 ∈ dom f∗ ∩ dom g∗ and the
convexity of the sets dom f∗ and dom g∗, we have

λx−µy = (λ+µ) (λ/(λ+ µ)(x− 0) + µ/(λ+ µ)(0− y)) ∈ (λ+µ)(dom f∗−dom g∗)

⊆ ∪λ>0λ(dom f∗ − dom g∗).

Thus

∪
λ>0

λ(dom f∗ − dom g∗) ⊆ domσF − domσG ⊆ cl
(
∪
λ>0

λ
(

dom f∗ − dom g∗
))

and from here

∪
λ>0

λ(dom f∗−dom g∗) ⊆ ∪
λ>0

λ(domσF−domσG) ⊆ cl
(
∪
λ>0

λ
(

dom f∗ − dom g∗
))

.

The hypotheses ensure that ∪λ>0 λ(dom f∗ − dom g∗) is a closed linear sub-
space of X and this means that the inclusions in the relation above are fulfilled as
equalities. This has as consequence the fact that ∪λ>0 λ(domσF − domσG) is a
closed linear subspace of X too, or, equivalently, 0 ∈ sqri(domσF −domσG), which
completes the proof. �

Remark 4.14 The function h was introduced in the above proof in order to show
that in case F 6= ∅ we have cl(domσF ) = cl

(
∪λ>0 λ dom f∗

)
. Let us give an

alternative proof of this fact which relies on some techniques of asymptotic analysis.
Recall that for A ⊆ X we denote by A∞ its recession cone and for u : X → R, the
function u∞ : X → R, whose epigraph is (epiu)∞ is called its recession function
(sometimes called asymptotic function). The function f being proper, convex and
weak∗ lower semicontinuous, we get f∞ = σdom f∗ (cf. [147, Exercise 2.23]) and
F∞ = {x∗ ∈ X∗ : f∞(x∗) ≤ 0} (cf. [147, page 74, relation (2.29)]. We have

F∞ = {x∗ ∈ X∗ : σdom f∗(x∗) ≤ 0}

= {x∗ ∈ X∗ : 〈x∗, y〉 ≤ 0 ∀y ∈ dom f∗} = Ndom f∗(0).



78 CHAPTER 4. ENLARGEMENTS OF MONOTONE OPERATORS

Since f∗ is convex and 0 ∈ dom f∗,
(
Ndom f∗(0)

)− = cl
(
∪λ>0λ dom f∗

)
. Moreover,

as F is convex and weak∗-closed, we have (cf. [143, page 142], see also [71, relation
(7)] or [52, page 259, relation (A.2)])

cl(domσF ) =
[(

cl(co(F ))
)
∞

]−
= F−∞.

All together the desired conclusion follows. For more on asymptotic analysis we
refer to the monograph of Auslender and Teboulle [3].

We come now to the proof of the main result of this section.

Theorem 4.8 Let S, T : X ⇒ X∗ be two maximal monotone operators with rep-
resentative functions hS and hT , respectively, which are lower semicontinuous with
respect to the strong-weak∗ topology of X ×X∗. If

0 ∈ sqri
(
prX(domh∗S)− prX(domh∗T )

)
,

then for all ε1, ε2 ≥ 0 and all x ∈ X the set ShS
(ε1, x) + ThT

(ε2, x) is weak∗-closed.

Proof. Let ε1, ε2 ≥ 0 and x ∈ X be fixed. Assume that ShS
(ε1, x) + ThT

(ε2, x)
is non-empty. Thus x ∈ prX(domhS) ∩ prX(domhT ). Consider the functions
f, g : X∗ → R defined by f(x∗) = hS(x, x∗)− 〈x∗, x〉 − ε1 and g(x∗) = hT (x, x∗)−
〈x∗, x〉 − ε2 for all x∗ ∈ X∗. The functions f and g are proper, convex and weak∗

lower semicontinuous. Since infx∗∈X∗ f(x∗) ≥ −ε1 > −∞ and infx∗∈X∗ g(x∗) ≥
−ε2 > −∞, it yields 0 ∈ dom f∗ ∩ dom g∗. Moreover, ShS

(ε1, x) = {x∗ ∈ X∗ :
f(x∗) ≤ 0} and ThT

(ε2, x) = {x∗ ∈ X∗ : g(x∗) ≤ 0}.
We apply Lemma 4.1(ii) (remember that on X∗ we consider the weak∗ topology,

hence X ×X∗ and X∗ ×X are in duality) and obtain

prX(domh∗S) ⊆ dom(hS(x, ·))∗ ⊆ clw(X,X∗) (prX(domh∗S)) = cl‖·‖ (prX(domh∗S))

and, similarly,

prX(domh∗T ) ⊆ dom(hT (x, ·))∗ ⊆ cl (prX(domh∗T )) .

Consequently,

prX(domh∗S)− prX(domh∗T ) ⊆ dom(hS(x, ·))∗ − dom(hT (x, ·))∗

⊆ cl
(

prX(domh∗S)
)
− cl

(
prX(domh∗T )

)
⊆ cl

(
prX(domh∗S)− prX(domh∗T )

)
and from here one has

∪
λ>0

λ
(

prX(domh∗S)− prX(domh∗T )
)
⊆ ∪
λ>0

λ
(

dom(hS(x, ·))∗ − dom(hT (x, ·))∗
)

⊆ cl
(
∪
λ>0

λ
(

prX(domh∗S)− prX(domh∗T )
))

.

The hypotheses guarantee that the set ∪λ>0λ
(
prX(domh∗S) − prX(domh∗T )

)
is a

closed linear subspace of X. Therefore ∪λ>0 λ
(

dom(hS(x, ·))∗ − dom(hT (x, ·))∗
)

is a closed linear subspace of X too, or, equivalently, 0 ∈ sqri
(

dom(hS(x, ·))∗ −
dom(hT (x, ·))∗

)
.

For all u ∈ X we have f∗(u) = supx∗∈X∗{〈x∗, u + x〉 − hS(x, x∗)} + ε1 =
(hS(x, ·))∗(u+ x) + ε1 and therefore dom f∗ = dom(hS(x, ·))∗−x. Analogously, we
obtain dom g∗ = dom(hT (x, ·))∗− x, which implies that 0 ∈ sqri(dom f∗− dom g∗).
Finally, Theorem 4.7 guarantees that the set ShS

(ε1, x)+ThT
(ε2, x) is weak∗-closed.

�

The following theorem follows as a direct consequence of the result above by
considering as representative functions of S and T their Fitzpatrick functions.
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Theorem 4.9 Let S, T : X ⇒ X∗ be two maximal monotone operators. If

0 ∈ sqri
(
prX(domϕ∗S)− prX(domϕ∗T )

)
,

then for all ε1, ε2 ≥ 0 and all x ∈ X the set Se(ε1, x) + T e(ε2, x) is weak∗-closed.

In the following we give another regularity condition which is sufficient for ob-
taining the same conclusion like in the theorem above, this time involving the do-
mains of the two operators. To this end we recall a result stated in [130, Lemma 5.3],
the proof of which uses techniques taken from [126, pp. 57–62 and pp. 87–88], in
case X is a reflexive Banach space and the representative functions are exactly the
Fitzpatrick functions. It can be proved in an analogous way (by using Proposition
4.1) that the result remains valid in a general Banach space and when considering
arbitrary representative functions.

Lemma 4.3 Let S, T : X ⇒ X∗ be two maximal monotone operators with repre-
sentative functions hS and hT , respectively. The following statements are true

(a) If F is a closed subspace of X, w ∈ X and D(S) ⊆ F+w, then prX(domhS) ⊆
F + w;

(b) ∪λ>0λ
(

prX(domhS)− prX(domhT )
)
⊆ cl

(
lin
(
D(S)−D(T )

))
.

Remark 4.15 It follows easily from Proposition 4.1 and Lemma 4.3 that for S, T :
X ⇒ X∗ maximal monotone operators the following inclusions hold:

∪
λ>0

λ
(
D(S)−D(T )

)
⊆ ∪
λ>0

λ
(

co(D(S))− co(D(T ))
)

⊆ ∪
λ>0

λ
(

prX(domϕ∗S)− prX(domϕ∗T )
)
⊆ ∪
λ>0

λ
(

prX(domϕS)− prX(domϕT )
)

⊆ cl
(

lin
(
D(S)−D(T )

))
⊆ cl

(
lin
(

co(D(S))− co(D(T ))
))

⊆ cl
(

lin
(

prX(domϕ∗S)− prX(domϕ∗T )
))

⊆ cl
(

lin
(

prX(domϕS)− prX(domϕT )
))
⊆ cl

(
lin
(
D(S)−D(T )

))
,

thus
cl
(

lin
(
D(S)−D(T )

))
= cl

(
lin
(

co(D(S))− co(D(T ))
))

=

cl
(

lin
(

prX(domϕ∗S)−prX(domϕ∗T )
))

= cl
(

lin
(

prX(domϕS)−prX(domϕT )
))
.

The remark above allows us to formulate the following result.

Theorem 4.10 Let S, T : X ⇒ X∗ be two maximal monotone operators. If

0 ∈ sqri
(

co(D(S))− co(D(T ))
)
,

then for all ε1, ε2 ≥ 0 and all x ∈ X the set Se(ε1, x) + T e(ε2, x) is weak∗-closed.

For a particular instance of Theorem 4.10, when ε1 = ε2 = 0 and the stronger
regularity condition 0 ∈ core

(
co(D(S)) − co(D(T ))

)
is considered, we refer the

reader to [139, Corollary 2.3].
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Remark 4.16 In case X is a reflexive Banach space the generalized interior-point
regularity conditions stated in Theorem 4.9 and Theorem 4.10 for the weak∗-
closedness of the set Se(ε1, x)+T e(ε2, x), when ε1, ε2 ≥ 0 and x ∈ X, are equivalent.
More than that, they are further equivalent to (see [149])

0 ∈ sqri
(
D(S)−D(T )

)
and to

0 ∈ sqri
(
prX(domϕS)− prX(domϕT )

)
.

In case X is a general Banach space and the operators S and T are strongly-
representable, then whenever 0 ∈ sqri

(
prX(domϕS) − prX(domϕT )

)
or, equiva-

lently (see [142, Theorem 16]), 0 ∈ sqri
(

co(D(S))− co(D(T ))
)
, or 0 ∈ sqri

(
D(S)−

D(T )
)
, then we also have that for ε1, ε2 ≥ 0 and x ∈ X the set Se(ε1, x) +T e(ε2, x)

is weak∗-closed.

Remark 4.17 By using tools from the functional analysis, Garćıa, Lassonde
and Revalski proved in [65, Theorem 3.7] that in case X is a Banach space and
S, T : X ⇒ X∗ are two maximal monotone operators which satisfy the condition
0 ∈ core

(
prX(domϕS) − prX(domϕT )

)
, one has for all ε ≥ 0 and all x ∈ X that

Se(ε, x)+T e(ε, x) is weak∗-closed (in fact, the result works even for ε1 6= ε2). When
X is reflexive, or when S and T are strongly-representable, the regularity conditions
given in Remark 4.16 turn out to be weaker than the one in [65]. Nevertheless, it is
still an open question whether the condition 0 ∈ sqri

(
prX(domϕS)−prX(domϕT )

)
is in general sufficient for the weak∗-closedness of the set Se(ε1, x) + T e(ε2, x).



Chapter 5

Enlargements of positive sets

Stephen Simons proposed in [127] a more general setting for the study of monotone
operators. He introduced the notion of a positive set with respect to a quadratic
form q defined on a so-called symmetrically self-dual Banach space (Banach SSD
space) (see also [128]) as an extension of the notion of a monotone set in Banach
spaces. Several results from the theory of monotone operators have been successfully
generalized to this more abstract framework. In his investigations Simons has
mainly used some techniques based on the extension of the notion of Fitzpatrick
function from the theory of monotone operators to a similar concept for positive
sets. These investigations have been continued by the same author in [129], where
notions and results recently introduced in the theory of monotone operators in
general Banach spaces have known an appropriate generalization to positive sets in
Banach SSD spaces. Let us mention here also the paper of Mart́ınez-Legaz [95],
in which some further considerations and results are presented for maximally q-
positive sets. Let us notice that the term Simons space is already used in the
community when referring to the notion of Banach SSD space (see [22,108]).

In analogy to the enlargement of a monotone operator, in this chapter we intro-
duce and study the notion of enlargement of a positive set in (Banach) SSD spaces.
The main results of this chapter are Theorem 5.1, where a one-to-one correspon-
dence between a special family of enlargements of a maximally q-positive set and
the family of representative functions associated to it is established, respectively
Proposition 5.8, where it is shown that the extremal elements of the above men-
tioned family of representative functions associated to a maximally q-positive set
are two functions recently introduced and studied by Simons in [129]. In this way
we extend to (Banach) SSD spaces several results given for monotone and maxi-
mally monotone sets by Burachik and Svaiter in [48,49,132]. The results from
this chapter rely on [22].

5.1 Algebraic properties

Let us start by recalling the definition of an SSD space B along with some examples
given in [129] and by giving a calculus rule for the quadratic form q : B → R
considered on it.

Definition 5.1 (cf. [129, Definition 1.2]) (i) We say that (B, b·, ·c) is a symmetri-
cally self-dual space (SSD space) if B is a nonzero vector space and b·, ·c : B×B → R
is a symmetric bilinear form. We consider the quadratic form q : B → R defined by
q(b) = 1

2bb, bc for all b ∈ B.
(ii) A subset A of B is said to be q-positive if A 6= ∅ and q(b − c) ≥ 0 for all

81
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b, c ∈ A. We say that A is maximally q-positive if A is q-positive and maximal
(with respect to the inclusion) in the family of q-positive subsets of B.

Remark 5.1 (a) In every SSD space B the following calculus rule is fulfilled:

q(αb+ γc) = α2q(b) + γ2q(c) + αγbb, cc for all α, γ ∈ R and b, c ∈ B. (5. 1)

(b) Let B be an SSD space and A ⊆ B be a q-positive set. Then A is maximally
q-positive if and only if for all b ∈ B the implication below holds

q(b− c) ≥ 0 for all c ∈ A⇒ b ∈ A.

Example 5.1 (cf. [129]) (a) If B is a Hilbert space with inner product (b, c) 7→ 〈b, c〉
then B is an SSD space with bb, cc = 〈b, c〉 and q(b) = 1

2‖b‖
2 and every non-empty

subset of B is q-positive.
(b) If B is a Hilbert space with inner product (b, c) 7→ 〈b, c〉 then B is an SSD

space with bb, cc = −〈b, c〉, q(b) = − 1
2‖b‖

2 and the q-positive sets are the singletons.
(c) One can prove that R3 is an SSD space with b(b1, b2, b3), (c1, c2, c3)c = b1c2 +

b2c1 + b3c3 and q(b1, b2, b3) = b1b2 + 1
2b

2
3. See [129] for a discussion regarding the

q-positive sets in this setting.
(d) Consider X a nonzero Banach space and B = X ×X∗. For all b = (x, x∗)

and c = (y, y∗) ∈ B we set bb, cc = 〈y∗, x〉 + 〈x∗, y〉. Then B is an SSD space,
q(b) = 〈x∗, x〉 and q(b − c) = 〈x∗ − y∗, x − y〉. Hence for A ⊆ B we have that A
is q-positive exactly when A is a non-empty monotone subset of X × X∗ in the
usual sense and A is maximally q-positive exactly when A is a maximally monotone
subset of X ×X∗ in the usual sense.

Let us consider in the following an arbitrary SSD space B and a function f :
B → R. We write f@ for the conjugate of f with respect to the pairing b·, ·c, that
is f@(c) = supb∈B{bc, bc − f(b)}. We write P(f) = {b ∈ B : f(b) = q(b)}. If f is
proper and convex, f ≥ q on B and P(f) 6= ∅, then P(f) is a q-positive subset of B
(see [129, Lemma 1.9]). Conditions under which P(f) is maximally q-positive are
given in [129, Theorem 2.9].

We introduce in the following the concept of enlargement of a positive set and
study some of its algebraic properties.

Definition 5.2 Let B be an SSD space. Given A a q-positive subset of B, we say
that the multifunction E : R+ ⇒ B is an enlargement of A if

A ⊆ E(ε) for all ε ≥ 0.

Example 5.2 Let B be an SSD space and A a q-positive subset of B. The multi-
function EA : R+ ⇒ B defined by

EA(ε) = {b ∈ B : q(b− c) ≥ −ε for all c ∈ A}

is an enlargement of A. Let us notice that A is maximally q-positive if and only if
A = EA(0). Moreover, in the framework of Example 5.1(d), for the graph of EA

we have G(EA) = {(ε, x, x∗) : 〈x∗ − y∗, x − y〉 ≥ −ε for all (y, y∗) ∈ A}, hence in
this case G(EA) = G(Ae) (see Section 4.2 for the definition of Ae).

The following definition extends to SSD spaces a notion given in [47,48] (see also [49,
Definition 2.3] and Definition 4.3).

Definition 5.3 We say that the multifunction E : R+ ⇒ B satisfies the trans-
portation formula if for every ε1, ε2 ≥ 0, b1 ∈ E(ε1), b2 ∈ E(ε2) and every
α1, α2 ≥ 0, α1 + α2 = 1 we have ε := α1ε1 + α2ε2 + α1α2q(b1 − b2) ≥ 0 and
α1b

1 + α2b
2 ∈ E(ε).
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Proposition 5.1 Let B be an SSD space and A ⊆ B be a maximally q-positive set.
Then EA satisfies the transportation formula.

Proof. Take ε1, ε2 ≥ 0, b1 ∈ EA(ε1), b2 ∈ EA(ε2) and α1, α2 ≥ 0, α1 +α2 = 1. We
have to show that

q(α1b
1 + α2b

2 − c) ≥ −α1ε1 − α2ε2 − α1α2q(b1 − b2) for all c ∈ A (5. 2)

and
α1ε1 + α2ε2 + α1α2q(b1 − b2) ≥ 0. (5. 3)

Let c ∈ A be arbitrary. By using the inequalities q(b1−c) ≥ −ε1 and q(b2−c) ≥ −ε2

and the calculus rule (5. 1) we obtain

q(α1b
1 + α2b

2 − c) = q
(
α1(b1 − c) + α2(b2 − c)

)
= α2

1q(b
1 − c) + α2

2q(b
2 − c)

+α1α2bb1−c, b2−cc = α2
1q(b

1−c)+α2
2q(b

2−c)+α1α2

(
q(b1−c)+q(b2−c)−q(b1−b2)

)
= α1q(b1 − c) + α2q(b2 − c)− α1α2q(b1 − b2) ≥ −α1ε1 − α2ε2 − α1α2q(b1 − b2).

Let us suppose that α1ε1 + α2ε2 + α1α2q(b1 − b2) < 0. From (5. 2) we obtain

q(α1b
1 + α2b

2 − c) > 0 for all c ∈ A. (5. 4)

Since A is maximally q-positive we get α1b
1 + α2b

2 ∈ A (cf. Remark 5.1(b)). By
choosing c := α1b

1 + α2b
2 ∈ A in (5. 4) we get 0 > 0, which is a contradiction.

Hence (5. 3) is also fulfilled and the proof is complete. �

The following result establishes a connection between the transportation formula
and convexity (see also [132, Lemma 3.2]).

Proposition 5.2 Let B be an SSD space, E : R+ ⇒ B a multifunction and define
the function Ψ : R×B → R×B, Ψ(ε, b) = (ε+ q(b), b) for all (ε, b) ∈ R×B. The
following statements are equivalent:

(i) E satisfies the transportation formula;

(ii) E satisfies the generalized transportation formula (or the n-point transporta-
tion formula), that is for all n ≥ 1, εi ≥ 0, bi ∈ E(εi) and αi ≥ 0, i = 1, ..., n,
with

∑n
i=1 αi = 1 we have ε :=

∑n
i=1 αiεi +

∑n
i=1 αiq

(
bi −

∑n
j=1 αjb

j
)
≥ 0

and
∑n
i=1 αib

i ∈ E(ε);

(iii) Ψ(G(E)) is a convex subset of R×B.

Proof. We notice first that Ψ is a bijective function with inverse Ψ−1 : R × B →
R×B, Ψ−1(ε, b) = (ε− q(b), b) for all (ε, b) ∈ R×B.

(ii)⇒(i) Take ε1, ε2 ≥ 0, b1 ∈ E(ε1), b2 ∈ E(ε2) and α1, α2 ≥ 0, α1 + α2 = 1.
Then for ε := α1ε1 +α2ε2 +α1q

(
b1− (α1b

1 +α2b
2)
)

+α2q
(
b2− (α1b

1 +α2b
2)
)
≥ 0

we get α1b
1 + α2b

2 ∈ E(ε). Since

ε = α1ε1 +α2ε2 +α1α
2
2q(b

1− b2) +α2α
2
1q(b

1− b2) = α1ε1 +α2ε2 +α1α2q(b1− b2),

this implies that E satisfies the transportation formula.
(i)⇒(iii) Let be (µ1, b

1), (µ2, b
2) ∈ Ψ(G(E)) and α1, α2 ≥ 0 with α1 + α2 = 1.

Then there exist ε1, ε2 ≥ 0 such that µ1 = ε1+q(b1), b1 ∈ E(ε1) and µ2 = ε2+q(b2),
b2 ∈ E(ε2). By (i) we have that ε := α1ε1 + α2ε2 + α1α2q(b1 − b2) ≥ 0 and
α1b

1 + α2b
2 ∈ E(ε). Using (5. 1) we further get that

ε+q(α1b
1 +α2b

2) = α1ε1 +α2ε2 +α1α2

(
q(b1)+q(b2)−bb1, b2c

)
+α2

1q(b
1)+α2

2q(b
2)+
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α1α2bb1, b2c = α1ε1 + α2ε2 + α1q(b1) + α2q(b2) = α1µ1 + α2µ2.

Thus
α1(µ1, b

1) + α2(µ2, b
2) =

(
ε+ q(α1b

1 + α2b
2), α1b

1 + α2b
2
)

= Ψ(ε, α1b
1 + α2b

2) ∈ Ψ(G(E))

and this provides the convexity of Ψ(G(E)).
(iii)⇒(ii) Let be n ≥ 1, εi ≥ 0, bi ∈ E(εi) and αi ≥ 0, i = 1, ..., n, with∑n
i=1 αi = 1. This means that (εi+q(bi), bi) ∈ Ψ(G(E)) for i = 1, ..., n. Let us make

the following notations: b :=
∑n
i=1 αib

i and ε :=
∑n
i=1 αi

(
εi+q(bi)

)
−q(b). By using

the convexity of Ψ(G(E)) one has (ε+ q(b), b) =
∑n
i=1 αi

(
εi+ q(bi), bi

)
∈ Ψ(G(E)),

which implies that Ψ−1(ε + q(b), b) = (ε, b) ∈ G(E). From here if follows that
ε =

∑n
i=1 αiεi +

∑n
i=1 αiq(b

i) − q(b) ≥ 0 and b =
∑n
i=1 αib

i ∈ E(ε). To finish the
proof we have only to show that

∑n
i=1 αiq(b

i − b) =
∑n
i=1 αiq(b

i)− q(b). Indeed,

n∑
i=1

αiq(bi − b) =
n∑
i=1

αiq(bi) +
n∑
i=1

αiq(b)−
n∑
i=1

αibbi, bc =
n∑
i=1

αiq(bi) + q(b)− bb, bc

=
n∑
i=1

αiq(bi) + q(b)− 2q(b) =
n∑
i=1

αiq(bi)− q(b)

and, consequently, the generalized transportation formula holds. �

Like in [132, Definition 3.3] (see also [49, Definition 2.5]) one can introduce a family
of enlargements associated to a positive set (see also Definition 4.3).

Definition 5.4 Let B be an SSD space and A ⊆ B be a q-positive set. We define
E(A) as being the family of multifunctions E : R+ ⇒ B satisfying the following
properties:

(r1) E is an enlargement of A, that is

A ⊆ E(ε) for all ε ≥ 0;

(r2) E is nondecreasing, that is

0 ≤ ε1 ≤ ε2 ⇒ E(ε1) ⊆ E(ε2);

(r3) E satisfies the transportation formula.

If A is maximally q-positive then EA satisfies the properties (r1)-(r3) (cf. Ex-
ample 5.2 and Proposition 5.1, while (r2) is obviously satisfied), hence in this case
the family E(A) is non-empty. Let us define the multifunction EA : R+ ⇒ B,
EA(ε) :=

⋂
E∈E(A)E(ε) for all ε ≥ 0.

Proposition 5.3 Let B be an SSD space and A ⊆ B be a maximally q-positive set.
Then:

(i) EA, E
A ∈ E(A);

(ii) EA and EA are, respectively, the smallest and the biggest elements in E(A)
with respect to the partial ordering inclusion relation of the graphs, that is
G(EA) ⊆ G(E) ⊆ G(EA) for all E ∈ E(A).
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Proof. (i) That EA ∈ E(A) was pointed out above. The statement EA ∈ E(A)
follows immediately, if we take into consideration the definition of EA.

(ii) EA is obviously the smallest element in E(A). We prove in the following that
EA is the biggest element in E(A). Suppose that EA is not the biggest element
in E(A), namely that there exist E ∈ E(A) and (ε, b) ∈ G(E) \ G(EA). Since
(ε, b) 6∈ G(EA), there exists c ∈ A such that q(b − c) < −ε. Let λ ∈ (0, 1) be
fixed. As E satisfies (r1), we have c ∈ A ⊆ E(0), that is (0, c) ∈ G(E). As
(ε, b), (0, c) ∈ G(E), λ ∈ (0, 1) and E satisfies the transportation formula, we obtain
λε+ λ(1− λ)q(b− c) ≥ 0, hence ε+ (1− λ)q(b− c) ≥ 0. Since this inequality must
hold for arbitrary λ ∈ (0, 1), we get ε+ q(b− c) ≥ 0, which is a contradiction. �

Lemma 5.1 Let B be an SSD space, A ⊆ B a maximally q-positive set and E ∈
E(A). Then

E(0) =
⋂
ε>0

E(ε) = A.

Proof. By using the properties (r1) and (r2), Proposition 5.3, the definition of EA

and Example 5.2 we get

A ⊆ E(0) ⊆
⋂
ε>0

E(ε) ⊆
⋂
ε>0

EA(ε) = EA(0) = A

and the conclusion follows. �

5.2 Topological properties

We start by recalling the definition of a Banach SSD space, a concept introduced by
Stephen Simons, and further we study some topological properties of enlargements
of positive sets in this framework.

Definition 5.5 We say that B is a Banach SSD space if B is an SSD space and
‖ · ‖ is a norm on B with respect to which B is a Banach space with norm-dual B∗,

1
2
‖ · ‖2 + q ≥ 0 on B (5. 5)

and there exists ι : B → B∗ linear and continuous such that

〈ι(c), b〉 = bb, cc for all b, c ∈ B. (5. 6)

Remark 5.2 (i) From (5. 6) we obtain |bb, cc| ≤ ‖ι‖‖b‖‖c‖. Hence for (b, c), (b̄, c̄) ∈
B ×B it holds

|bb, cc − bb̄, c̄c| = |bb− b̄, c− c̄c+ bb̄, c− c̄c+ bb− b̄, c̄c|

≤ ‖ι‖
(
‖b− b̄‖‖c− c̄‖+ ‖b̄‖‖c− c̄‖+ ‖b− b̄‖‖c̄‖

)
.

The function (b, c) 7→ bb, cc is, consequently, continuous and from here one gets
immediately the continuity of q, b·, cc and bb, ·c for all b, c ∈ B.

(ii) For a function f : B → R we have f@(c) = supb∈B{〈ι(c), b〉 − f(b)} =
f∗(ι(c)), that is f@ = f∗ ◦ ι on B.

Example 5.3 (a) The SSD spaces considered in Example 5.1(a)-(c) are Banach
SSD spaces (see [129, Remark 2.2]).

(b) Consider again the framework of Example 5.1(d), that is X is a nonzero
Banach space and B = X×X∗. The canonical embedding of X into X∗∗ is defined
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by ̂: X → X∗∗, 〈x̂, x∗〉 := 〈x∗, x〉 for all x ∈ X and all x∗ ∈ X∗. The dual of B
(with respect to the norm topology) is X∗ ×X∗∗ under the pairing

〈c∗, b〉 = 〈y∗, x〉+ 〈y∗∗, x∗〉 ∀b = (x, x∗) ∈ B ∀c∗ = (y∗, y∗∗) ∈ B∗.

ThusX×X∗ is a Banach SSD space, where ι : X×X∗ → X∗×X∗∗, ι(x, x∗) = (x∗, x̂)
for all (x, x∗) ∈ X ×X∗.

For E : R+ ⇒ B we define E : R+ ⇒ B by E(ε) := {b ∈ B : (ε, b) ∈ cl
(
G(E)

)
}.

The multifunction E is said to be closed if E = E. One can see that E is closed if
and only if G(E) is closed. For A ⊆ B, consider also the subfamily Ec(A) = {E ∈
E(A) : E is closed}.

Proposition 5.4 Let B be a Banach SSD space and A ⊆ B be a maximally q-
positive set. The following statements are true:

(i) If E ∈ E(A) then E ∈ Ec(A).

(ii) If E ∈ Ec(A) then E(ε) is closed, for all ε ≥ 0.

(iii) EA and EA are, respectively, the smallest and the biggest elements in Ec(A),
with respect to the partial ordering inclusion relation of the graphs, that is
G(EA) ⊆ G(E) ⊆ G(EA) for all E ∈ Ec(A).

Proof. (i) Let be E ∈ E(A). One can notice that the continuity of the function q
implies that if E satisfies the transportation formula, then E satisfies this formula,
too. Further, if E is nondecreasing, then E is also nondecreasing. Hence the first
assertion follows.

(ii) The second statement of the proposition is a consequence of the fact that E
is closed if and only if G(E) is closed.

(iii) Employing once more the continuity of the function q we get that G(EA)
is closed. Combining Proposition 5.3 and Proposition 5.4(i) we obtain EA, E

A ∈
Ec(A). The proof of the minimality, respectively, maximality of these elements
presents no difficulty. �

In the following we establish a one-to-one correspondence between Ec(A) and a
family of convex functions associated to A. This is done be extending to Banach
SSD spaces the techniques used by Burachik and Svaiter in [49, Section 3].

Consider B a Banach SSD space. To A ⊆ B × R we associate the so-called
lower envelope of A (cf. [4]), defined as leA : B → R, leA(b) = inf{r ∈ R : (b, r) ∈
A}. Obviously, A ⊆ epi(leA). If, additionally, A is closed and has an epigraphical
structure, that is (b, r1) ∈ A⇒ (b, r2) ∈ A for all r2 ∈ [r1,+∞), then A = epi(leA).

Let us consider now a multifunction E : R+ ⇒ B and define λE : B → R,
λE(b) = inf{ε ≥ 0 : b ∈ E(ε)}. It is easy to observe that λE(b) = inf{r ∈ R :
(b, r) ∈ G(E−1)}, where E−1 : B ⇒ R+ is the inverse of the multifunction E. One
has G(E−1) = {(b, ε) : (ε, b) ∈ G(E)}. Hence λE is the lower envelope of G(E−1).
We have G(E−1) ⊆ epi(λE). If E is closed and nondecreasing, then G(E−1) is
closed and has an epigraphical structure, so in this case G(E−1) = epi(λE). As
in [49, Proposition 3.1] we obtain the following result.

Proposition 5.5 Let B be a Banach SSD space and E : R+ ⇒ B be a multifunction
which is closed and nondecreasing. Then

(i) G(E−1) = epi(λE);

(ii) λE is lower semicontinuous;
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(iii) λE ≥ 0;

(iv) E(ε) = {b ∈ B : λE(b) ≤ ε} for all ε ≥ 0.

Moreover, λE is the only function from B to R satisfying (iii) and (iv).

Given E : R+ ⇒ B, we define the function ΛE : B → R, ΛE := λE + q. Let us
notice that ΛE is the lower envelope of Ψ(G(E−1)) (the function Ψ was defined in
Proposition 5.2) and epi(ΛE) = Ψ(epi(λE)). From these observations, Proposition
5.5(i) and Proposition 5.2 we obtain the following result.

Corollary 5.1 Let B be Banach SSD space and E : R+ ⇒ B a closed and nonde-
creasing enlargement of the maximally q-positive set A ⊆ B. Then E ∈ E(A) if and
only if ΛE is convex.

Proposition 5.6 Let B be a Banach SSD space, A ⊆ B a maximally q-positive
set and E ∈ Ec(A). Then ΛE is convex, lower semicontinuous, ΛE ≥ q on B and
A ⊆ P(ΛE).

Proof. The first three assertions follow from Corollary 5.1 and Proposition 5.5(ii)
and (iii). Take an arbitrary b ∈ A. Since E is an enlargement of A we get b ∈ E(0),
hence λE(b) = 0 and the conclusion follows. �

To every maximally q-positive set we introduce the following family of convex func-
tions (compare with Definition 4.1).

Definition 5.6 Let B be a Banach SSD space and A ⊆ B be a maximally q-positive
set. We define H(A) as the family of convex and lower semicontinuous functions
h : B → R such that

h ≥ q on B and A ⊆ P(h).

Remark 5.3 Combining Proposition 5.6 and Proposition 5.5(i) we obtain that the
map E 7→ ΛE is one-to-one from Ec(A) to H(A).

For h ∈ H(A) we define the multifunction Ah : R+ ⇒ B,

Ah(ε) := {b ∈ B : h(b) ≤ ε+ q(b)} for all ε ≥ 0.

Proposition 5.7 Let B be a Banach SSD space and A ⊆ B be a maximally q-
positive set. If h ∈ H(A), then Ah ∈ Ec(A) and ΛAh

= h.

Proof. Take an arbitrary h ∈ H(A). The properties of the function h imply
that Ah is a closed enlargement of A. Obviously Ah is nondecreasing. Trivially,
Ah(ε) = {b ∈ B : l(b) ≤ ε}, where l : B → R, l := h− q. By Proposition 5.5 we get
λAh

= l, implying ΛAh
= h. The convexity of h and Corollary 5.1 guarantee that

Ah ∈ Ec(A). �

As a consequence of the above results we obtain a bijection between the family
of closed enlargements (which satisfy condition (r1)-(r3) from Definition 5.4) asso-
ciated to a maximally q-positive set and the family of convex functions introduced
in Definition 5.6.

Theorem 5.1 Let B be a Banach SSD space and A ⊆ B be a maximally q-positive
set. The map

Ec(A)→ H(A),

E 7→ ΛE
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is a bijection, with inverse given by

H(A)→ Ec(A),

h 7→ Ah.

Moreover, AΛE
= E for all E ∈ Ec(A) and ΛAh

= h for all h ∈ H(A).

The following corollary shows that for a maximally q-positive set A, the elements
of H(A) are closely related to A.

Corollary 5.2 Let B be a Banach SSD space and A ⊆ B be a maximally q-positive
set. Take h ∈ H(A). Then A = P(h).

Proof. We have A ⊆ P(h) by the definition of H(A). Take an arbitrary b ∈ P(h)
and define E := Ah. Then b ∈ E(0). Applying Theorem 5.1 we get E ∈ Ec(A).
Further, by Lemma 5.1 we have E(0) = A, hence b ∈ A and the proof is complete.
�

Remark 5.4 In what follows, we call an arbitrary element h of H(A) a represen-
tative function of A. The word “representative” is justified by Corollary 5.2. Since
for A a q-positive set, we have A 6= ∅ (see Definition 5.1(ii)), every representative
function of A is proper.

Corollary 5.3 Let B be a Banach SSD space and A ⊆ B be a maximally q-positive
set. Take E ∈ Ec(A) and b1 ∈ E(ε1), b2 ∈ E(ε2), where ε1, ε2 ≥ 0 are arbitrary.
Then

q(b1 − b2) ≥ −(
√
ε1 +

√
ε2)2.

Proof. By Theorem 5.1, there exists a representative function h ∈ H(A) such that
E = Ah. By using the definition of Ah and by applying [129, Lemma 1.6] we obtain

−q(b1 − b2) ≤
[√

(h− q)(b1) +
√

(h− q)(b2)
]2 ≤ (

√
ε1 +

√
ε2)2

and the proof is complete. �

Remark 5.5 In case B is taken as in Example 5.3(b) and E = Ae (see Example
5.2), the above lower bound is established in [48, Corollary 3.12]. Here we generalize
this result to Banach SSD spaces and to an arbitrary E ∈ Ec(A).

In the following we investigate the properties of the functions ΛEA and ΛEA

and rediscover in this way the functions introduced and studied by S. Simons
in [127–129] (see Proposition 5.8(iii) from below).

Corollary 5.4 Let B be a Banach SSD space and A ⊆ B be a maximally q-positive
set.

(i) The functions ΛEA and ΛEA
∈ H(A) and are, respectively, the minimum and

the maximum of this family, that is

ΛEA ≤ h ≤ ΛEA
for all h ∈ H(A). (5. 7)

(ii) Conversely, if h : B → R is a convex and lower semicontinuous function such
that

ΛEA ≤ h ≤ ΛEA
, (5. 8)

then h ∈ H(A).
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(iii) It holds H(A) = {h : B → R | h convex, lower semicontinuous and ΛEA ≤
h ≤ ΛEA

}.

Proof. (i) This follows immediately from Theorem 5.1 and Proposition 5.4.
(ii) If h : B → R is a convex and lower semicontinuous function satisfying (5. 8),

then (since ΛEA ∈ H(A))
h ≥ ΛEA ≥ q on B. (5. 9)

Further, for b ∈ A we obtain (employing that ΛEA
∈ H(A)) that h(b) ≤ ΛEA

(b) =
q(b). In view of (5. 9) it follows that b ∈ P(h), hence h ∈ H(A).

(iii) This characterization of H(A) is a direct consequence of (i) and (ii). �

Definition 5.7 (cf. [129]) Let B be a Banach SSD space and A ⊆ B be a q-positive
set. We define the functions ΘA : B∗ → R, ΦA : B → R and ∗ΘA : B → R by

ΘA(b∗) := sup
a∈A
{〈b∗, a〉 − q(a)} for all b∗ ∈ B∗,

ΦA := ΘA ◦ ι

and, respectively,

∗ΘA(c) := sup
b∗∈B∗

{〈b∗, c〉 −ΘA(b∗)} for all c ∈ B.

By a ∨ b we denote the maximum value of a, b ∈ R. The following properties of
the functions defined above appear in [129, Lemma 2.13 and Theorem 2.16]. The
property (vii) is a direct consequence of (i)-(vi).

Lemma 5.2 Let B be a Banach SSD space and A ⊆ B be a q-positive set. Then
(i) For all b ∈ B, ΦA(b) = supa∈A{bb, ac − q(a)} = q(b)− infc∈A q(b− c).
(ii) ΦA is proper, convex, lower semicontinuous and A ⊆ P(ΦA).
(iii) (∗ΘA)∗ = ΘA and (∗ΘA)@ = ΦA.
(iv) ∗ΘA is proper, convex, lower semicontinuous, ∗ΘA ≥ Φ@

A ≥ ΦA ∨ q on B
and

∗ΘA = Φ@
A = q on A.

(v) ∗ΘA = sup{h : B → R | h proper, convex, lower semicontinuous, h ≤
q on A}.

If, additionally, A is maximally q-positive, then
(vi) ∗ΘA ≥ Φ@

A ≥ ΦA ≥ q on B and A = P(∗ΘA) = P(Φ@
A) = P(ΦA).

(vii) ∗ΘA,Φ@
A,ΦA ∈ H(A).

Next we give other characterizations of the function ∗ΘA and establish the con-
nection between ΛEA ,ΛEA

and ΦA, ∗ΘA, respectively.

Proposition 5.8 Let B be a Banach SSD space and A ⊆ B be a q-positive set.
Then

(i) ∗ΘA = sup{h : B → R | h proper, convex, lower semicontinuous, h ≥
q on B and A ⊆ P(h)}.

(ii) ∗ΘA = cl co(q + δA).
If, additionally, A is maximally q-positive, then
(iii) ΛEA = ΦA and ΛEA

= ∗ΘA.
(iv) If h : B → R is a function such that h ∈ H(A), then h@ ∈ H(A).
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Proof. (i) We have

{h : B → R | h proper, convex, lower semicontinuous, h ≥ q on B and A ⊆ P(h)}

⊆ {h : B → R | h proper, convex, lower semicontinuous, h ≤ q on A},
hence from Lemma 5.2(v) we get

sup{h : B → R | h proper, convex, lower semicontinuous,

h ≥ q on B and A ⊆ P(h)} ≤ ∗ΘA.

On the other hand, by Lemma 5.2(iv), ∗ΘA is proper, convex and lower semicon-
tinuous and it fulfills ∗ΘA ≥ q on B and A ⊆ P(∗ΘA). Thus the equality follows.

(ii) Since ∗ΘA ≤ q on A we have ∗ΘA ≤ q + δA on B, hence

∗ΘA ≤ cl co(q + δA) ≤ q + δA. (5. 10)

The above inequality shows that cl co(q+ δA) is a proper, convex, lower semicontin-
uous function such that cl co(q + δA) ≤ q on A. Applying Lemma 5.2(v) we obtain
∗ΘA ≥ cl co(q + δA), which combined with (5. 10) delivers the desired result.

(iii) From Lemma 5.2(i) and the definition of EA we obtain

b ∈ EA(ε)⇔ q(b− c) ≥ −ε for all c ∈ A⇔ inf
c∈A

q(b− c) ≥ −ε

⇔ q(b)− ΦA(b) ≥ −ε⇔ ΦA(b) ≤ ε+ q(b).

This is nothing else than EA = AΦA
. Theorem 5.1 implies that ΛEA = ΛAΦA

= ΦA.
The equality ΛEA

= ∗ΘA follows from (i) and Corollary 5.4.
(iv) From (iii), Corollary 5.4 and [129, Theorem 2.15 (b)] we get h@ ≥ q on B

and P(h) = P(h@) = A. The function h@ is proper and convex, while its lower
semicontinuity follows from the definition of h@ and Remark 5.2, hence h@ ∈ H(A).
�

Remark 5.6 Proposition 5.8(iv) is a generalization of [49, Theorem 5.3] to Banach
SSD spaces.

Remark 5.7 In general, the functions ∗ΘA and Φ@
A are not identical. A striking

example in this sense was given by C. Zălinescu (see [129, Remark 2.14]) for B a
Banach space and b·, ·c = 0 on B×B. An alternative example, considered by M.D.
Voisei and C. Zălinescu in another context, is given below (see Example 5.4).

Before we present this example, we need the following remark.

Remark 5.8 Consider again the particular setting of Example 5.1(d) and Example
5.3(b), namely when B = X ×X∗, where X is a nonzero Banach space. Let A be
a non-empty monotone subset of X × X∗. In this case q(x, x∗) = 〈x∗, x〉 for all
(x, x∗) ∈ X ×X∗ and the function ΘA : X∗ ×X∗∗ → R is defined by

ΘA(x∗, x∗∗) = sup
(s,s∗)∈A

{〈s∗, x〉+ 〈x∗∗, s∗〉 − 〈s∗, s〉} for all (x∗, x∗∗) ∈ X∗ ×X∗∗.

The function ΦA : X ×X∗ → R has the following formula

ΦA(x, x∗) = sup
(s,s∗)∈A

{〈x∗, s〉+ 〈s∗, x〉 − 〈s∗, s〉} for all (x, x∗) ∈ X ×X∗,

that is ΦA is the Fitzpatrick function of A (see Section 4.2). By applying the
Fenchel-Moreau Theorem we obtain

Φ@
A = cls×w∗ co(q + δA) (5. 11)
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(the closure is taken with respect to the strong-weak∗ topology on X ×X∗). The
function ∗ΘA : X ×X∗ → R has for all (y, y∗) ∈ X ×X∗ the following formula

∗ΘA(y, y∗) = sup
(x∗,x∗∗)∈X∗×X∗∗

{〈x∗, y〉+ 〈x∗∗, y∗〉 −ΘA(x∗, x∗∗)}.

Example 5.4 As in [141, page 5] we consider E a nonreflexive Banach space, X :=
E∗ and A := {0} × Ê, which is a monotone subset of X ×X∗. Let us notice that
the relation q + δA = δA is fulfilled. By applying Proposition 5.8(ii) we obtain
∗ΘA = cl co δA = δA (the closure is taken with respect to the strong topology
of X × X∗). Further, by using (5. 11) and the Goldstine Theorem we get Φ@

A =
cls×w∗ co δA = δ{0}×E∗∗ 6= ∗ΘA (the closure is considered with respect to the strong-
weak∗ topology of X ×X∗).

Remark 5.9 Let us notice that the above example was given in [141] in order
to show that in the nonreflexive case for a given monotone operator the family
of representative functions which are strong-weak∗ lower semicontinuous does not
coincide with the family of representative functions which are lower semicontinuous
in the strong topology (see also the comments made in Remark 4.5). However, let
us mention that the set A in Example 5.4 is not a maximal monotone subset of
X ×X∗.

In the last part of the section we deal with another subfamily of E(A), namely
the one of closed and additive enlargements. In this way we extend the results
from [49,132] to Banach SSD spaces.

Definition 5.8 Let B be a Banach SSD space. We say that the multifunction
E : R+ ⇒ B is additive if for all ε1, ε2 ≥ 0 and b1 ∈ E(ε1), b2 ∈ E(ε2) one has

q(b1 − b2) ≥ −(ε1 + ε2).

In case A ⊆ B is a maximally q-positive set we denote Eca(A) := {E ∈ Ec(A) :
E is additive}.

We have the following characterization of the set Eca(A).

Theorem 5.2 Let B be a Banach SSD space, A ⊆ B be a maximally q-positive set
and E ∈ Ec(A). Then

E ∈ Eca(A)⇔ Λ@
E ≤ ΛE .

Proof. Assume first that E ∈ Eca(A) and take b1, b2 two arbitrary elements in B.
By Proposition 5.5(iii) follows that λE(b1) ≥ 0 and λE(b2) ≥ 0. We claim that

q(b1 − b2) ≥ −(λE(b1) + λE(b2)).

In case λE(b1) = +∞ or λE(b2) = +∞ (or both), this fact is obvious. If λE(b1) and
λE(b2) are finite, the inequality above follows by using that (cf. Proposition 5.5(i))
(b1, λE(b1)), (b2, λE(b2)) ∈ epi(λE) = G(E−1) and that E is additive. Consequently,
for all b1, b2 ∈ B we have (see also (5. 1))

λE(b1) + q(b1) ≥ bb1, b2c − (λE(b2) + q(b2))⇔ ΛE(b1) ≥ bb1, b2c − ΛE(b2).

This means that for all b1 ∈ B, Λ@
E(b1) ≤ ΛE(b1).

Assume now that Λ@
E ≤ ΛE and take arbitrary ε1, ε2 ≥ 0 and b1 ∈ E(ε1),

b2 ∈ E(ε2). This means that λE(b1) ≤ ε1 and λE(b2) ≤ ε2. Since ΛE(b1) ≥ Λ@
E(b1),

one has
λE(b1) + q(b1) ≥ bb1, b2c − (λE(b2) + q(b2)),



92 CHAPTER 5. ENLARGEMENTS OF POSITIVE SETS

which yields (see also (5. 1))

q(b1 − b2) ≥ −(λE(b1) + λE(b2)) ≥ −(ε1 + ε2).

This concludes the proof. �

The above characterization of the family of closed and additive enlargements
associated to a maximally q-positive set yields in particular that this family is non-
empty. This result is stated below.

Proposition 5.9 Let B be a Banach SSD space and A ⊆ B be a maximally q-
positive set. Then EA ∈ Eca(A), hence Eca(A) 6= ∅.

Proof. By Proposition 5.8(iii) and Lemma 5.2(iii)-(iv) we have (ΛEA
)@ = (∗ΘA)@ =

ΦA ≤ ∗ΘA = ΛEA
. Theorem 5.2 guarantees that EA ∈ Eca(A) and the proof is

completed. �



Theses

1. The convex optimization problem

(PF ) inf
x∈X
{f(x) + g(x)}

is considered, where X is a separated locally convex space and f, g : X → R
are proper and convex functions such that dom f ∩ dom g 6= ∅. The Fenchel
dual problem associated to (PF ) is

(DF ) sup
x∗∈X∗

{−f∗(−x∗)− g∗(x∗)},

where X∗ is the topological dual space of X and f∗, g∗ are the Fenchel-Moreau
conjugates of f , respectively g. We introduce some new regularity conditions
expressed by means of the quasi interior and quasi-relative interior (a gen-
eralized interiority notion introduced by Borwein and Lewis in [14]). By
using some separation theorems available for these notions, we prove that the
regularity conditions introduced are sufficient for strong duality, the situation
when the optimal objective values of the two problems coincide and the dual
has an optimal solution. Moreover, these conditions offer an alternative for
the case when the classical regularity conditions from the literature cannot be
applied and this is illustrated by an example.

Further, corresponding regularity conditions are derived for the convex opti-
mization problem

(PAF ) inf
x∈X
{f(x) + (g ◦A)(x)},

where X and Y are separated locally convex spaces with topological dual
spaces X∗ and Y ∗, respectively, A : X → Y is a continuous linear mapping,
f : X → R and g : Y → R are proper and convex functions such that
A(dom f) ∩ dom g 6= ∅. The Fenchel dual problem associated to (PAF ) is

(DA
F ) sup

y∗∈Y ∗
{−f∗(−A∗y∗)− g∗(y∗)},

where A∗ : Y ∗ → X∗ is the adjoint operator of A (see [29]).

2. Consider the optimization problem with geometric and cone constraints

(PL) inf
x∈S

g(x)∈−C

f(x),

where X is a topological vector space, Y is a separated locally convex space,
S is a non-empty subset of X, C ⊆ Y is a non-empty convex cone, f : S → R,
g : S → Y and the constraint set T = {x ∈ S : g(x) ∈ −C} is assumed to be
non-empty. The Lagrange dual problem associated to (PL) is

(DL) sup
λ∈C∗

inf
x∈S
{f(x) + 〈λ, g(x)〉},
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where C∗ = {x∗ ∈ X∗ : 〈x∗, x〉 ≥ 0 ∀x ∈ C} is the positive dual cone of C.
The pair (f, g) : S → R× Y , defined by (f, g)(x) = (f(x), g(x)) for all x ∈ S,
is assumed to be convex-like with respect to the cone R+ × C ⊆ R× Y , that
is the set (f, g)(S) + R+ × C is convex.
We give regularity conditions for strong duality by means of the notions of
quasi interior and quasi-relative interior. This is done by using an approach
due to Magnanti (cf. [91]). He introduced a technique showing that Fenchel
and Lagrange duality are “equivalent”, in the sense that the classical Fenchel
duality result can be derived from the classical Lagrange duality result and
viceversa.
We also discuss some results recently given on this topic which are proved to
have either superfluous or contradictory assumptions. Several examples are
illustrating the theoretical considerations (see [25,29]).

3. We give necessary and sufficient sequential optimality conditions for the gen-
eral optimization problem

(PΦ) inf
x∈X

Φ(x, 0),

where X and Y are Banach spaces, X is reflexive and Φ : X × Y → R is a
proper, convex and lower semicontinuous function fulfilling 0 ∈ prY (dom Φ).
The sequential optimality conditions are expressed via the ε-subdifferential
of the function Φ. By using a version of the Brøndsted-Rockafellar Theorem
we derive sequential optimality conditions by means of the classical (convex)
subdifferential.
We specialize these conditions to the optimization problem

(PAF ) inf
x∈X
{f(x) + (g ◦A)(x)},

obtaining in particular several sequential generalizations of the Pshenichnyi-
Rockafellar Lemma and improving the sequential optimality conditions given
by Jeyakumar and Wu in [84].
For an appropriate choice of the function Φ, we also get some sequential
Lagrange multiplier conditions regarding the optimization problem with geo-
metric and cone constraints

(PL) inf
x∈S

g(x)∈−C

f(x),

showing that in the sequential optimality conditions given by Thibault in
[136, Theorem 4.1] the hypothesis of normality for the cone C can be removed
(see [27]).
By particularizing the general conditions given for Φ, we obtain sequential
optimality conditions for the composed convex optimization problem

(PCC) inf
x∈X
{f(x) + (g ◦ h)(x)},

where X is a reflexive Banach space, Y is a Banach space partially ordered
by the non-empty convex cone C ⊆ Y , f : X → R is proper, convex and
lower semicontinuous, h : X → Y • = Y ∪ {∞C} is proper and C-convex and
g : Y • → R is proper, convex and lower semicontinuous with g(∞C) = +∞.
We consider two cases, namely when h is C-epi-closed and g is C-increasing
on h(domh) + C (in which case Y is considered reflexive), respectively when
h : X → Y is continuous and g is C-increasing on Y . We rediscover in this
way (and improve in some conditions) several sequential optimality conditions
given by Thibault in [136] (see [28]).
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4. A necessary and sufficient closedness-type regularity condition is given in order
to guarantee the following bivariate infimal convolution formula

(h1�2h2)∗ = h∗1�1h
∗
2 and h∗1�1h

∗
2 is exact,

where X and Y are separated locally convex spaces and h1, h2 : X×Y → R are
proper, convex and lower semicontinuous functions such that prX(domh1) ∩
prX(domh2) 6= ∅. Here, h1�2h2 : X×Y → R, (h1�2h2)(x, y) = inf{h1(x, u)+
h2(x, v) : u, v ∈ Y, u+v = y} and h∗1�1h

∗
2 : X∗×Y ∗ → R, (h∗1�1h

∗
2)(x∗, y∗) =

inf{h∗1(u∗, y∗) + h∗2(v∗, y∗) : u∗, v∗ ∈ X∗, u∗ + v∗ = x∗}. As pointed out
by many authors (see for example [111, 130]), such a formula is useful when
dealing with the maximality of the sum of two maximal monotone operators
in reflexive Banach spaces (see [21]).

5. Consider X a Banach space, S, T : X ⇒ X∗ two maximal monotone operators
with representative functions hS , hT , respectively, such that prX(domhS) ∩
prX(domhT ) 6= ∅ and the function h : X × X∗ → R defined by h(x, x∗) =
(hS�2hT )∗(x∗, x) for all (x, x∗) ∈ X × X∗. We give an application of the
bivariate infimal convolution formula to enlargements of monotone operators
and establish a necessary and sufficient condition for the following formula

(S + T )h(ε, x) =
⋃

ε1,ε2≥0
ε1+ε2=ε

(
Sh∗S (ε1, x) + Th∗T (ε2, x)

)
∀ε ≥ 0 and ∀x ∈ X,

where for M : X ⇒ X∗ a maximal monotone operator and hM : X×X∗ → R
a representative function of M , MhM

: R+×X ⇒ X∗, defined by MhM
(ε, x) =

{x∗ ∈ X∗ : hM (x, x∗) ≤ ε + 〈x∗, x〉} is an enlargement of M . We generalize
in this way the formula

∂ε(f + g)(x) =
⋃

ε1,ε2≥0
ε1+ε2=ε

(
∂ε1f(x) + ∂ε2g(x)

)
∀ε ≥ 0 and ∀x ∈ X,

which is equivalently characterized (in case f and g are proper, convex and
lower semicontinuous functions such that dom f ∩dom g 6= ∅) by the condition
epi f∗ + epi g∗ is weak∗-closed (see [21]).

6. We give an answer to the open problem posed in [42] concerning the charac-
terization of the maximal monotone operators S : X ⇒ X∗ which are fully
enlargeable by Sse, the smallest element of Ec(S), a special family of enlarge-
ments associated to the maximal monotone operator S (see [23]).

7. Under a generalized interior-point condition we establish the weak∗-closedness
of the set ShS

(ε1, x) + ThT
(ε2, x), where S, T : X ⇒ X∗ are two maximal

monotone operators with strong-weak∗ lower semicontinuous representative
functions hS and hT , respectively. In case X is a reflexive Banach space, or
X is Banach and S and T are of Gossez type (D), we improve a result given
by Garćıa, Lassonde and Revalski in [65, Theorem 3.7 (1)] (see [23]).

8. Consider (B, b·, ·c) a symmetrically self-dual space (SSD space), a notion in-
troduced and studied by Simons in [127]. The theory of monotone operators
can be studied in this more general context. We introduce the notion of en-
largement of a positive set in SSD spaces. To a maximally positive set A
we associate a family of enlargements E(A) and characterize the smallest and
biggest element in this family with respect to the inclusion relation. A one-
to-one correspondence between the subfamily of closed enlargements of E(A)
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and the family of so-called representative functions of A is established in the
framework of Banach SSD spaces. We show that the extremal elements of
the latter family are two functions recently introduced and studied by Si-
mons in [129]. In this way we extend to (Banach) SSD spaces some former
results stated for monotone and maximally monotone sets in Banach spaces
by Burachik and Svaiter in [48,49,132] (see [22]).



Index of notation

∀ for all

∃ there exists (at least one)

N the set of positive integers {1, 2, ...}

Z the set of integer numbers

R the set of real numbers

R the extended set of real numbers

Rm+ the non-negative orthant of Rm

≤C the partial ordering introduced by a non-empty convex cone C

C∗ the positive dual cone of the cone C

co(U) the convex hull of the set U

cone(U) the conic hull of the set U

coneco(U) the convex conic hull of the set U

int(U) the interior of the set U

ri(U) the relative interior of the set U

core(U) the algebraic interior of the set U

icr(U) the relative algebraic interior of the set U

sqri(U) the strong quasi-relative interior of the set U

qi(U) the quasi interior of the set U

qri(U) the quasi-relative interior of the set U

cl(U) the closure of the set U

aff(U) the affine hull of the set U

lin(U) the linear subspace generated by the set U

dom f the domain of the function f

epi f the epigraph of the function f

epiC g the C-epigraph of g

co f the convex hull of the function f

cl f the lower semicontinuous hull of the function f

f∗ the Fenchel-Moreau conjugate of the function f

〈·, ·〉 the bilinear pairing between two vector spaces which are in duality
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∂f the (convex) subdifferential of the function f

∂εf the ε-subdifferential of the function f

A∗ the adjoint of the continuous linear mapping A

δU the indicator function of the set U

σU the support function of the set U

v(P ) the optimal objective value of the optimization problem (P )

NU (x) the normal cone to the set U at x ∈ U

TU (x) the contingent (Bouligand) cone to the set U at x ∈ U

X∗ the topological dual space of the topological vector space X

w(X,X∗) the weak topology on X induced by X∗

w∗(X∗, X) the weak∗ topology on X∗ induced by X

R the usual topology on R

S : X ⇒ Y a set valued operator from X to Y

ϕS the Fitzpatrick function of the monotone operator S : X ⇒ X∗

(B, b·, ·c) an SSD space
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[23] R.I. Boţ, E.R. Csetnek, On two properties of enlargements of maximal mono-
tone operators, Journal of Convex Analysis 16 (3-4), 713–725, 2009.
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[25] R.I. Boţ, E.R. Csetnek, A. Moldovan, Revisiting some duality theorems via the
quasirelative interior in convex optimization, Journal of Optimization Theory
and Applications 139 (1), 67–84, 2008.
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[36] R.I. Boţ, G. Wanka, An alternative formulation for a new closed cone con-
straint qualification, Nonlinear Analysis: Theory, Methods & Applications 64
(6), 1367–1381, 2006.
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[59] P. Daniele, S. Giuffrè, G. Idone, A. Maugeri, Infinite dimensional duality and
applications, Mathematische Annalen 339 (1), 221–239, 2007.



BIBLIOGRAPHY 103

[60] I. Ekeland, R. Temam, Convex Analysis and Variational Problems, North-
Holland Publishing Company, Amsterdam, 1976.
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[65] Y. Garćıa, M. Lassonde, J.P. Revalski, Extended sums and extended composi-
tions of monotone operators, Journal of Convex Analysis 13 (3-4), 721–738,
2006.

[66] F. Giannessi, Constrained Optimization and Image Space Analysis, Vol. 1.
Separation of Sets and Optimality Conditions, Mathematical Concepts and
Methods in Science and Engineering 49, Springer, New York, 2005.
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[88] C. Li, D. Fang, G. López, M.A. López, Stable and total Fenchel duality for
convex optimization problems in locally convex spaces, SIAM Journal on Op-
timization 20 (2), 1032–1051, 2009.

[89] M.A. Limber, R.K. Goodrich, Quasi interiors, Lagrange multipliers, and Lp

spectral estimation with lattice bounds, Journal of Optimization Theory and
Applications 78 (1), 143–161, 1993.

[90] D.T. Luc, Theory of Vector Optimization, Springer-Verlag, Berlin, 1989.

[91] T.L. Magnanti, Fenchel and Lagrange duality are equivalent, Mathematical
Programming 7, 253–258, 1974.



BIBLIOGRAPHY 105

[92] M. Marques Alves, B.F. Svaiter, Brønsted-Rockafellar property and maximal-
ity of monotone operators representable by convex functions in non-reflexive
Banach spaces, Journal of Convex Analysis 15 (4), 693–706, 2008.

[93] M. Marques Alves, B.F. Svaiter, A new old class of maximal monotone oper-
ators, Journal of Convex Analysis 16 (3-4), 881–890, 2009.

[94] M. Marques Alves, B.F. Svaiter, On Gossez type (D) maximal monotone op-
erators, Journal of Convex Analysis 17 (3-4), 2010.

[95] J.E. Mart́ınez-Legaz, On maximally q-positive sets, Journal of Convex Anal-
ysis 16 (3-4), 891–898, 2009.

[96] J.E. Mart́ınez-Legaz, B.F. Svaiter, Monotone operators representable by l.s.c.
convex functions, Set-Valued Analysis 13 (1), 21–46, 2005.
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Académie des Sciences. Paris 338 (11), 853–858, 2004.

[107] J.-P. Penot, The relevance of convex analysis for the study of monotonicity,
Nonlinear Analysis: Theory, Methods & Applications 58 (7-8), 855–871,
2004.

[108] J.-P. Penot, Positive sets, conservative sets and dissipative sets, Journal of
Convex Analysis 16 (3-4), 973–986, 2009.
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des multiplicateurs de Lagrange et stabilité, PhD Thesis, P. and M. Curie
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[142] M.D. Voisei, C. Zălinescu, Strongly-representable monotone operators, Journal
of Convex Analysis 16 (3-4), 1011–1033, 2009.

[143] M. Volle, On the subdifferential of an upper envelope of convex functions, Acta
Mathematica Vietnamica 19 (2), 137–148, 1994.

[144] D. Zagrodny, The convexity of the closure of the domain and the range of a
maximal monotone multifunction of type NI, Set-Valued Analysis 16 (5-6),
759–783, 2008.
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[146] C. Zălinescu, A comparison of constraint qualifications in infinite-dimensional
convex programming revisited, Journal of Australian Mathematical Society
Series B 40 (3), 353–378, 1999.



108 BIBLIOGRAPHY
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