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Ernö Robert Csetnek

Habilitation Thesis
(defended on 2 March 2016)

Faculty of Mathematics

University of Vienna





Preface

Several results concerning the solving of monotone inclusion problems by split-
ting methods obtained by the author in the last years are presented in this the-
sis. For convex optimization problems, the optimality conditions characterizing the
set of solutions can be written in many cases in the form of monotone inclusion
problems, justifying the study of problems where the sum of maximally monotone
operators is involved. The present thesis aims to outline the most important contri-
butions of the author to theoretical results and some of their algorithmic realizations
in convex (nondifferentiable) optimization and monotone operator theory.

The first part of the thesis addresses the rate of convergence of a primal-
dual splitting method for solving highly structured monotone inclusion problems.
Primal-dual algorithms of proximal-type are numerical schemes that solve efficiently
primal-dual pairs of monotone inclusions and convex optimization problems consist-
ing of sums, linear compositions, parallel sums, and infimal convolutions by making
use of the resolvents of the monotone operators involved. They are fully decompos-
able in the sense that each operator is evaluated in the algorithm separately.

Proximal-point type algorithms with inertial and memory effects are also ad-
dressed. The incorporation of inertial terms in splitting algorithms is motivated by
the discretization of a differential system of second-order in time, called heavy-ball
method. We focus our attention on the inertial versions of the forward-backward-
forward and Douglas-Rachford splitting methods. Furthermore, we investigate an
inertial proximal-type splitting method for nonconvex optimization problems.

We consider penalty-type splitting algorithms for variational inequalities written
as monotone inclusion problems. We investigate a forward-backward and a Tseng’s
type numerical scheme, the latter allowing us to formulate penalty-type splitting
algorithms for even more complicated monotone inclusion problems involving fi-
nite sums and compositions with linear operators. In particular, we are able to
solve convex optimization problems with intricate objective functions over the set
of minima of a convex and differentiable function.

In the last part of the thesis we approach the solving of monotone inclusion
problems via first and second order dynamical systems of implicit-type. These are
ordinary differential equations formulated by making use of the resolvents of the
monotone operators involved. The existence of the trajectories is guaranteed in the
framework of the Cauchy-Lipschitz-Picard Theorem, while the (weak) asymptoti-
cal convergence of the orbits to a solution is based on Lyapunov analysis. In the
asymptotic analysis performed we report also several results concerning the rate of
convergence of the trajectories and, in some cases, of the objective functions along
the orbits, when considering convex optimization problems.
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Chapter 1

Introduction

The aim of this work is to present a number of contributions in the context of solv-
ing monotone inclusion problems in Hilbert spaces by means of algorithmic schemes
of proximal-splitting-type, a setting which allows the numerical treatment of highly
structured nondifferentiable convex optimization problems with intricate objective
function. Due to its numerous applications in signal and image processing, port-
folio optimization, cluster analysis, location theory, average consensus on colored
networks, image classification via support vector machines (and this enumeration
of fields can be continued), this topic is in the last couple of years of huge interest
for the applied mathematics community.

Finding the set of zeros of monotone operators is motivated by the fact that
optimality conditions for convex optimization problems which fulfill a regularity
condition can be expressed as monotone inclusion problems. Furthermore, the in-
vestigations performed in this more general setting of (maximally) monotone op-
erators bring new insights when considering the problem of solving complicated
nondifferentiable convex optimization problems involving finite sums, compositions
with linear operators or infimal convolutions. Moreover, due to its applications in
the theory of nonlinear partial differential equations, variational inequalities and
optimization theory, the study of monotone inclusions continuous to attract many
mathematicians.

Let us briefly recall the fundamental proximal-splitting algorithms from the
literature in their simpler form, namely the proximal-point algorithm, the forward-
backward splitting, the forward-backward-forward scheme and the Douglas-Rachford
splitting, respectively. One of the first algorithms of this type has been proposed
and analysed by Rockafellar [122] in connection with the problem

find x ∈ H such that 0 ∈ Ax, (1. 1)

where H is a real Hilbert space and A : H⇒ H is a maximally monotone operator.
The so-called proximal-point algorithm generates iteratively a sequence as follows:
chose x0 ∈ H and for n ≥ 0 set

xn+1 = JηA(xn), (1. 2)

where η > 0 and JA : H → H, defined by JA = (IdH+A)−1, is the resolvent of
A. The properties of the latter rely on a seminal result due to Minty in Hilbert
spaces, saying that the sum of the identity and a maximally monotone operator
is surjective. Let us underline that, when considering numerical schemes of this
type, the usual terminology is that we perform a backward step, meaning that the
set-valued operator is evaluated via its resolvent. The asymptotic analysis of the
above algorithm reveals that the sequence generated by (1. 2) weakly converges to
a solution of (1. 1), provided the set of solutions of the latter is nonempty.
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8 CHAPTER 1. INTRODUCTION

Assume now that one is interested in solving the problem

find x ∈ H such that 0 ∈ Ax+Bx, (1. 3)

where A,B : H ⇒ H are maximally monotone operators. Since in general there
exists no closed formula for the resolvent of the sum of two operators in terms of
their resolvents, the above algorithm (1. 2) is from implementation point of view
not suitable for solving (1. 3). The so-called splitting algorithms overcome this
drawback, where the word “splitting” is used in order to stress out that in the
iterative schemes the operators involved are evaluated separately.

For the beginning assume that B : H → H is a (single-valued) β-cocoercive
operator, for β > 0. The forward-backward algorithm has the following form (see
for example [26]): chose x0 ∈ H and for n ≥ 0 set

xn+1 = JηA(xn − ηBxn), (1. 4)

where η ∈ (0, 2β). In this case the sequence generated by (1. 4) converges weakly
to a solution of (1. 3), as soon as the set of solutions of the latter is nonempty. The
terminology forward-backward is justified by the fact that the set-valued mapping
is evaluated through a backward step and the single-valued one via a forward step.

Let us suppose now that the cocoercivity of B is relaxed to monotonicity and
Lipschitz-continuity. Under these premises, Tseng’s numerical scheme [128, 129],
also called forward-backward-forward algorithm, solves the problem (1. 3) according
to (see also [26,62]): chose x0 ∈ H and for n ≥ 0 set

pn = JλnA(xn − λnBxn) (1. 5)

xn+1 = pn + λn(Bxn −Bpn), (1. 6)

where for all n ≥ 0, λn ∈ [ε, (1 − ε)/β] with ε ∈ (0, 1/(β + 1)), β being the Lips-
chitz parameter of B. If we assume that the set of solutions to (1. 3) is nonempty,
both sequences generated by (1. 5)-(1. 6) converge to a solution of the monotone
inclusion problem. Despite the fact that the forward-backward-forward algorithm
requires an additional sequence to be computed, it turned out that this numeri-
cal scheme opens the gate towards the development of the so-called primal-dual
algorithms that are able to solve highly structured monotone inclusion problems
(see [62]).

Finally, in case in (1. 3) both of the operators A and B are set-valued, the
Douglas-Rachford algorithm (see [26,83,97]) solves (1. 3) by the numerical scheme:
chose x0 ∈ H and for n ≥ 0 set

yn = JηB(xn), (1. 7)

zn = JηA(2yn − xn), (1. 8)

xn+1 = xn + zn − yn, (1. 9)

where η > 0 is arbitrary chosen. If the set of solutions to (1. 3) is nonempty,
then the sequences (yn)n∈N and (zn)n∈N converge weakly to the same solution of
(1. 3). We refer also to [84] for further investigations on the Douglas-Rachford
algorithm, where it has been pointed out that this numerical scheme can be viewed
as a proximal-point algorithm (1. 2) for a particular maximal monotone operator.

In the following we will present a short historical overview of those further de-
velopments of the proximal methods which are relevant to this thesis, namely, of the
primal-dual proximal splitting methods, the inertial-type algorithms, the penalty-
type numerical schemes and the dynamical systems of implicit-type associated to
monotone inclusion problems.
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We come now to more involved monotone inclusion problems. Whenever one
of the operators in (1. 3) is replaced by the composition of a maximally mono-
tone operator with a linear and continuous mapping, one faces major difficulties
in applying the aforementioned splitting methods, since the resolvent of such a
composition cannot be expressed in a closed form (excepting some very restrictive
cases). The modern techniques called primal-dual methods overcome this difficulty,
see [59, 62, 76, 130]. First results concerning proximal-type splitting algorithms for
solving convex optimization problems where compositions with linear and continu-
ous operators are involved have been reported by Combettes and Ways [78], Esser,
Zhang and Chan [86] and Chambolle and Pock [69].

Further investigations in the framework of monotone inclusion problems have
been performed by Briceño-Arias and Combettes [62]. They treated monotone inclu-
sion problems involving sums of compositions with linear and continuous operators
by rewriting the original monotone inclusion problem as the sum of a maximally
monotone operator and a linear and skew one in an appropriate product space,
which has been solved through the aforementioned Tseng’s algorithm (1. 5)-(1. 6).
We refer the reader to [62] and [76] for this forward-backward-forward primal-dual
splitting algorithm. Moreover, by taking advantage again of the product space ap-
proach, this time in a suitable renormed space, Vũ succeeded in [130] to give a
primal-dual splitting algorithm of forward-backward type. Finally, by using some
techniques from [130], Boţ and Hendrich presented in [59] a primal-dual algorithm
of Douglas-Rachford type.

Let us underline some highlights of the primal-dual splitting algorithms. These
are methods which solve concomitantly a primal inclusion problem

find x ∈ H such that 0 ∈ Ax+

m∑
i=1

L∗i
(
(Bi�Di)(Lix)

)
+ Cx (1. 10)

together with the dual inclusion in the sense of Attouch-Théra [21]:

find v1 ∈ G1,..., vm ∈ Gm such that ∃x ∈ H :

{
−
∑m
i=1 L

∗
i vi ∈ Ax+ Cx

vi ∈ (Bi�Di)(Lix), i = 1,...,m,
(1. 11)

where H and Gi, i = 1, ...,m are real Hilbert spaces, A : H ⇒ H, C : H → H,
Bi : Gi ⇒ Gi are maximally monotone operators and Li : H → Gi are nonzero linear
continuous operators, i = 1, ...,m.

The primal-dual splitting algorithms are fully decomposable, in the sense that
each operator is evaluated separately in the iterative scheme. The splitting schemes
can be used for solving highly structured nondifferentiable convex optimization
problems of the from

inf
x∈H

{
f(x) +

m∑
i=1

(gi�li)(Lix) + h(x)

}
(1. 12)

and their Fenchel-type dual problems

sup
vi∈Gi, i=1,...,m

{
−
(
f∗�h∗

)(
−

m∑
i=1

L∗i vi

)
−

m∑
i=1

(
g∗i (vi) + l∗i (vi)

)}
(1. 13)

expressed by means of the Fenchel conjugates of the functions involved.
Considering compositions with linear and continuous operators is motivated by

the fact that in image processing the discrete first order total variational functional
used in the reconstruction of images can be represented as such a composition.
The use of infimal convolutions is justified by the fact that the second order total
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variational functional can be expressed in this way, see [29, 57]. Moreover, infimal
convolutions appear naturally also when solving generalized location problems like
the Heron problem, which aims to find a point in a closed convex set which minimizes
the sum of distances to given convex closed sets.

Let us come now to the class of so-called inertial proximal methods. The idea
behind these iterative schemes relies on the use of an implicit discretization of a
differential system of second-order in time, called heavy ball method. One of the
main features of the inertial proximal algorithm is that the next iterate is defined
by making use of the last two iterates. This advantage of taking into account
the ”prehistory“ of the process could accelerate the convergence of the iterates, as
observed for example by Polyak [118] in case of minimizing differentiable functions.
Let us mention here also the fast gradient method of Nesterov [105] and the so-called
FISTA (see [28]), which are iterative schemes involving some inertial terms which
are able to accelerate the convergence for the objective function values.

As emphasized by Ochs, Chen, Brox and Pock in [110, Section 5.1] and Bertsekas
in [30, Exercise 1.3.9] one of the aspects which makes algorithms with inertial/mem-
ory effects useful is the fact that they are able to detect local optimal solutions of
(nonconvex) minimization problems which cannot be found by their non-inertial
variants.

Inertial-type algorithms have been considered for the first time in the context of
monotone inclusion problems by Alvarez and Attouch in [3,5]. The iterative scheme
proposed in [5] (in its simplified version) reads as: chose x0, x1 ∈ H and for n ≥ 1
set

xn+1 = JηA(xn + α(xn − xn−1)). (1. 14)

Under appropriate conditions imposed on the step size η > 0 and on the parameter
α ≥ 0 controlling the inertial term, the generated sequence of iterates converges
weakly to a solution of (1. 1).

Especially noticeable is that these ideas have been also used in the context of
the problem (1. 3) in case B is a (single-valued) cocoercive operator, giving rise to
the so-called inertial forward-backward algorithm considered by Moudafi and Oliny
in [104]: chose x0, x1 ∈ H and for n ≥ 1 set

xn+1 = JηA(xn − ηBxn + α(xn − xn−1)). (1. 15)

One can notice a considerable interest in the class of inertial type algorithms,
see also the works of Alvarez [4], Cabot and Frankel [67], Maingé [99], [100], Pesquet
and Pustelnik [116]. We mention here also the works of Chen, Chan, Ma and Yang
[70,71] and Ghadimi, Feyzmahdavian and Johansson [89], where further convergence
rates for several inertial type algorithms have been reported.

We turn now our attention to penalty-type proximal splitting methods. These are
designed to solve variational inequalities expressed as monotone inclusion problems
of the form

find x ∈ H such that 0 ∈ Ax+NM (x), (1. 16)

where A : H ⇒ H is a maximally monotone operator, M = argmin Ψ is the set
of global minima of the convex function Ψ : H → R, which is supposed to be
differentiable with Lipschitz continuous gradient fulfilling min Ψ = 0, and NM :
H⇒ H is the normal cone of the set M ⊆ H (see the works of Attouch, Czarnecki
and Peypouquet [15,16], Noun and Peypouquet [109,115]. Specifically, one can find
in the literature forward-backward-type algorithms for solving (4. 3) (see [15, 16,
109, 115]), which perform in each iteration a proximal step with respect to A and
a gradient step with respect to the penalization function Ψ: chose x1 ∈ H and for
n ≥ 1 set

xn+1 = JλnA(xn − λnβn∇Ψ(xn)), (1. 17)
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with (λn)n≥1 and (βn)n≥1 sequences of positive real numbers. Ergodic convergence
results are usually obtained assuming the fulfillment of a conditions expressed by
means of the conjugate function of Ψ, which is the discretized counterpart of a
condition introduced by Attouch and Czarnecki in [14] in the context of continuous-
time nonautonomous differential inclusions.

It is worth mentioning that when A is the convex subdifferential of a proper,
convex and lower semicontinuous function Φ : H → R∪{+∞}, the above algorithm
provides an iterative scheme for solving convex optimization problems which can
be formulated as

min
x∈H
{Φ(x) : x ∈ argmin Ψ}. (1. 18)

Finally, let us return to (1. 3) and say a few words about continuous implicit-
type dynamical systems associated with this problem, which are ordinary differential
equations formulated via resolvents of maximal monotone operators. In [31], Bolte
studied the convergence of the trajectories of the following dynamical system{

ẋ(t) + x(t) = projC
(
x(t)− η∇φ(x(t))

)
x(0) = x0.

(1. 19)

where φ : H → R is a convex C1 function defined on a real Hilbert space H, C is
a nonempty, closed and convex subset of H, x0 ∈ H, η > 0 and projC denotes the
projection operator on the set C. In this context it is shown that the trajectory of
(1. 19) converges weakly to a minimizer of the optimization problem

inf
x∈C

φ(x), (1. 20)

provided the latter is solvable. We refer also to the work of Antipin [7] for further
statements and results concerning (1. 19).

The following generalization of the dynamical system (1. 19) has been recently
considered by Abbas and Attouch in [1, Section 5.2]:{

ẋ(t) + x(t) = proxηΦ

(
x(t)− ηB(x(t))

)
x(0) = x0,

(1. 21)

where Φ : H → R ∪ {+∞} is a proper, convex and lower semicontinuous function
defined on a real Hilbert space H, B : H → H is an η-cocoercive operator, x0 ∈ H,
η > 0 and proxηΦ : H → H,

proxηΦ(x) = argmin
y∈H

{
Φ(y) +

1

2η
‖y − x‖2

}
, (1. 22)

denotes the proximal point operator of ηΦ.
According to [1], in case zer(∂Φ + B) 6= ∅, the weak asymptotical convergence

of the orbit x of (1. 21) to an element in zer(∂Φ + B) 6= ∅ is ensured by choosing
the step-size η in a suitable domain bounded by the parameter of cocoercivity
of the operator B (notice that ∂Φ denotes the convex subdifferential of Φ and
proxηΦ = Jη∂Φ).

For the minimization of the smooth and convex function g : H → R over the
nonempty, convex and closed set C ⊆ H, a continuous in time second order gradient-
projection approach has been considered in [7, 8], having as starting point the dy-
namical system {

ẍ(t) + γẋ(t) + x(t) = projC(x(t)− η∇g(x(t)))
x(0) = u0, ẋ(0) = v0,

(1. 23)

with constant damping parameter γ > 0 and constant step size η > 0. The system
(1. 23) becomes in case C = H the ”heavy ball method”, sometimes called also
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”heavy ball method with friction”. This nonlinear oscillator with damping is in
case H = R2 a simplified version of the differential system describing the motion
of a heavy ball that rolls over the graph of g and that keep rolling under its own
inertia until friction stop it at a critical point of g (see [17]).

The investigation of dynamical systems is motivated also by the fact that con-
sidering time discretization of these systems can lead to new discrete-type iterative
schemes for solving monotone inclusion problems, a fact which has been underlined
in the aforementioned papers. As an illustration, notice that the time discretization
of (1. 21) leads to (1. 4) in case A is the (convex) subdifferential of Φ. For more
on the relations between the continuous and discrete dynamics we refer the reader
to [117].

Let us also mention that dynamical systems of implicit type have been considered
in the literature also by Attouch and Svaiter in [20], Attouch, Abbas and Svaiter
in [2] and Attouch, Alvarez and Svaiter in [18].

1.1 A description of the contents

In the following we give a description of the contents of this work, underlying
its most important results. In Section 1.2 of the introduction we include several
preliminary notions and results in order to make the manuscript as self-contained
as possible.

Chapter 2. This chapter is dedicated to the investigation of the rate of con-
vergence of a primal-dual splitting algorithm of forward-backward type introduced
in [130] and designed to solve highly structured monotone inclusion problems as the
ones described in (1. 10)-(1. 11).

In Section 2.1 we focus our attention on complexity results for the iterates gener-
ated by this algorithm. By incorporating variable step sizes, we succeed to accelerate
the aforementioned algorithm and present two main results. For the first modified
algorithm, by assuming that some of the operators involved are strongly monotone,
we achieve for the sequence of primal iterates an order of convergence of O( 1

n ).
Further, under more involved strong monotonicity assumptions, we propose a sec-
ond modified algorithm (this time with constant step sizes), which guarantees linear
convergence for the sequence of both primal and dual iterates. We show how to par-
ticularize the general results in the context of nondifferentiable convex optimization
problems (1. 12)-(1. 13), where some of the functions occurring in the objective are
strongly convex. In the last part of Section 2.1 we present numerical experiments
in image denoising and pattern recognition in cluster analysis and emphasize also
the practical advantages of the modified iterative schemes over the initial one pro-
vided in [130]. Numerical comparisons to other state-of-the-art methods for convex
nondifferentiable optimization problems are also made.

In Section 2.2 we investigate the rate of convergence of the sequence of objective
function values of the algorithm given in [130] for the optimization problems (1. 12)-
(1. 13). For the primal-dual splitting algorithms, mainly convergence statements
for the sequence of iterates are available in the literature. However, especially from
the point of view of solving real-life problems, the investigation of the convergence
of the sequence of objective function values is of equal importance. We are able to
prove a convergence rate of order O( 1

n ) for the so-called primal-dual gap function
attached to the pair of primal-dual problems. We illustrate this theoretical part by
numerical experiments in image processing.

Chapter 3. In this chapter we carry out some investigations on inertial-type
proximal-splitting algorithms.

In Section 3.1 we introduce and investigate the convergence properties of an
inertial version of the Tseng’s algorithm. We present first an inertial forward-
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backward-forward splitting algorithm for solving the monotone inclusion problem
(1. 3) in case B is a (single-valued) monotone and Lipschitz continuous operator.
The proposed scheme represents an extension of Tseng’s forward-backward-forward-
type method (see [62, 128, 129]) and for the study of its convergence properties we
use some generalizations of the Fejér monotonicity techniques provided in [5]. Sub-
sequently, we make use of the product space approach in order to obtain an inertial
primal-dual splitting algorithm designed for solving monotone inclusion problems
involving mixtures of linearly composed and parallel-sum type monotone operators,
as considered in (1. 10)-(1. 11). We also show how the proposed iterative schemes
can be used in order to solve primal-dual pairs of convex optimization problems of
type (1. 12)-(1. 13).

In Section 3.2 we propose an inertial Douglas-Rachford proximal splitting algo-
rithm. In order to prove its convergence we formulate first an inertial version of
the Krasnosel’skĭı–Mann algorithm for approximating the set of fixed points of a
nonexpansive operator and investigate its convergence properties. The convergence
of the inertial Douglas-Rachford scheme for monotone inclusions of type (1. 3) is
then derived by applying the inertial version of the Krasnosel’skĭı–Mann algorithm
to the composition of the reflected resolvents of the maximally monotone operators
involved. Furthermore, we make use of these results when formulating an iner-
tial Douglas-Rachford primal-dual algorithm designed to solve monotone inclusion
problems involving linearly composed and parallel-sum type operators. We con-
sider also the special case of primal-dual pairs of convex optimization problems and
illustrate the theoretical results via some numerical experiments in clustering and
location theory.

It is the aim of Section 3.3 to introduce and study the convergence properties of
an inertial forward-backward proximal-type algorithm for the minimization of the
sum of a nonsmooth and lower semicontinuous function and a smooth one in the full
nonconvex setting. This scheme is characterized by the fact that, for the backward
step we use a generalization of the proximal operator, not only by considering it
to be, as it is natural in the nonconvex setting, a set-valued mapping, but also by
replacing in its standard formulation the squared-norm by the Bregman distance of a
strongly convex and differentiable function with Lipschitz continuous gradient. The
techniques for proving the convergence of the numerical scheme use the same three
main ingredients, as other proximal-type algorithms for nonconvex optimization
problems given in the literature do. More precisely, we show a sufficient decrease
property for the iterates, the existence of a subgradient lower bound for the iterates
gap and, finally, we use the analytic features of the objective function in order
to obtain convergence (see [11, 35]). The limiting (Mordukhovich) subdifferential
and its properties play an important role in the analysis. The main result of this
section shows that, provided an appropriate regularization of the objective satisfies
the Kurdyka- Lojasiewicz property, the convergence of the inertial forward-backward
algorithm is guaranteed. As a particular instance, we also treat the case when the
objective function is semi-algebraic and present the convergence properties of the
algorithm. In the last part of this section we consider two numerical experiments.
The first one has an academic character and shows the ability of algorithms with
inertial/memory effects to detect optimal solutions which are not found by their
non-inertial versions (similar allegations can be found also in [110, Section 5.1]
and [30, Example 1.3.9]). The second one concerns the restoration of a noisy blurred
image by using a nonconvex misfit functional with nonconvex regularization.

Chapter 4. The aim of this chapter is to generalize the existing penalty-type
splitting algorithms to the solving of more involved monotone inclusion problems.

In Section 4.1 we deal with problems of the form

find x ∈ H such that 0 ∈ Ax+Dx+NM (x), (1. 24)
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where A : H ⇒ H is a maximally monotone operator, D : H → H is a (single-
valued) cocoercive operator and M ⊆ H is the (nonempty) set of zeros of another
cocoercive operator B : H → H. We propose a forward-backward penalty algorithm
for solving (1. 24) and prove weak ergodic convergence for the generated sequence
of iterates under a condition which involves the Fitzpatrick function associated to
the operator B. Moreover, we prove strong convergence for the sequence of iterates
whenever A is strongly monotone.

The investigations made are completed in Section 4.2 with the treatment of the
monotone inclusion problem (1. 24), this time by relaxing the cocoercivity of D
and B to monotonicity and Lipschitz continuity. We formulate in this more general
setting a forward-backward-forward penalty type algorithm for solving (1. 24) and
study its convergence properties. This study allows via some primal-dual techniques
to deal with monotone inclusion problems having more complicated structures, for
instance, involving mixtures of linearly composed maximally monotone operators
and parallel-sum operators, like the one described in (1. 10)-(1. 11), but with an
additional normal cone operator to the set of zeros of a single-valued mapping which
is evaluated in the algorithm through a penalty term:

0 ∈ Ax+

m∑
i=1

L∗i (Bi�Di)(Lix) + Cx+NM (x). (1. 25)

In the last part of the chapter we present these results in the context of solving
convex minimization problems with intricate objective functions and consider a
numerical example in image inpainting.

Chapter 5. We approach the solving of monotone inclusion problems of type
(1. 3) in case B is single-valued by considering first and second order implicit-type
dynamical systems.

We begin in Section 5.1 with the asymptotic analysis of a dynamical system
associated with the fixed points set of a nonexpansive operator. While the existence
of the trajectories of the ordinary differential equations is achieved in the framework
of the Cauchy-Lipschitz-Picard Theorem, the (weak) convergence of the orbits to
a fixed point of the operator is based on Lyapunov analysis combined with the
continuous version of the Opial Lemma. We study also the convergence rates of
the fixed point residual of the orbits of the dynamical system, for which we obtain
a rate of convergence of order o(1/

√
t). Further, we propose also a generalization

of the forward-backward continuous version of the dynamical system (1. 21) by
considering instead of the convex subdifferential a maximally monotone operator
A. This gives rise to the dynamical system{

ẋ(t) = λ(t)
[
JηA

(
x(t)− ηB(x(t))

)
− x(t)

]
x(0) = x0,

(1. 26)

which we associate with the inclusion problem (1. 3). In the last part of this section
we show that the trajectory of (1. 26) strongly converges with exponential rate to
the unique solution of (1. 3), provided the sum A+B is strongly monotone.

In Section 5.2 we investigate second order dynamical systems associated to
monotone inclusion problems. We start with ordinary differential equations associ-
ated to the set of zeros of a cocoercive operator. We distinguish between anisotropic
damping parameters induced by an elliptic operator as in [3] and time depended
damping parameters. Further, we approach the problem (1. 3) by the dynamical
system{

ẍ(t) + γ(t)ẋ(t) + λ(t)
[
x(t)− JηA

(
x(t)− ηB(x(t))

)]
= 0

x(0) = u0, ẋ(0) = v0.
(1. 27)
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We specialize these investigations to the minimization of the sum of a nonsmooth
convex function with a smooth convex function one, fact which allows us to re-
cover and improve results given in [7, 8] in the context of studying the dynamical
system (1. 23). When considering the unconstrained minimization of a smooth con-
vex function we prove a rate of O(1/t) for the convergence of the function value
along the ergodic trajectory to its minimum value. The last part of this section
is dedicated to convergence rates for strongly monotone inclusions. By weakening
the assumptions on B to monotonicity and Lipschitz continuity, however, provided
that A + B is strongly monotone, the trajectories of (1. 27) converge strongly to
the unique zero of A+B with an exponential rate. Exponential convergence rates
have been obtained also by Antipin in [7] for the dynamical systems (1. 19) and
(1. 23), by imposing for the smooth function g supplementary strong convexity as-
sumptions. We derive from here convergence rates for the trajectories generated by
dynamical systems associated to the minimization of the sum of a proper, convex
and lower semicontinuous function with a smooth convex one provided the objective
function fulfills a strong convexity assumption. In the particular case of minimizing
a smooth and strongly convex function, we prove that its values converge along the
trajectory to its minimum value with exponential rate, too.

1.2 Preliminary notions and results

This section is dedicated to the presentation of several notations and results which
are used throughout the manuscript. Some (technical) results or notions which are
specific only to some sections are presented where needed. We refer the reader
to [26, 37, 38, 85, 124, 131] for standard notations in monotone operator theory and
convex analysis.

LetH be a real Hilbert space with inner product 〈·, ·〉 and associated norm ‖·‖ =√
〈·, ·〉. The symbols ⇀ and → denote weak and strong convergence, respectively.

The following identity will be used several times (see for example [26, Corollary
2.14]):

‖αx+(1−α)y‖2 +α(1−α)‖x−y‖2 = α‖x‖2 +(1−α)‖y‖2 ∀α ∈ R ∀(x, y) ∈ H×H.
(1. 28)

When G is another Hilbert space and K : H → G a linear continuous operator, then
the norm of K is defined as ‖K‖ = sup{‖Kx‖ : x ∈ H, ‖x‖ ≤ 1}, while K∗ : G → H,
defined by 〈K∗y, x〉 = 〈y,Kx〉 for all (x, y) ∈ H × G, denotes the adjoint operator
of K.

For S ⊆ H a convex set, we denote by

sqriS := {x ∈ S : ∪λ>0λ(S − x) is a closed linear subspace of H}

its strong quasi-relative interior. Notice that we always have intS ⊆ sqriS (in gen-
eral this inclusion may be strict). If H is finite-dimensional, then sqriS coincides
with riS, the relative interior of S, which is the interior of S with respect to its
affine hull. The notion of strong quasi-relative interior belongs to the class of gener-
alized interiority notions and play an important role in the formulation of regularity
conditions which are used in the theory of convex optimization problems in order
to guarantee strong duality, namely the situation when the optimal objective values
of the primal optimization problem and its dual one coincide and the dual has an
optimal solution. We refer to [26,37,38,40,85,124,131] for other interiority notions
and their impact in the duality theory.

An efficient tool for proving weak convergence of a sequence in Hilbert spaces
(without a priori knowledge of the limit) is the celebrated Opial Lemma, which we
recall in the following.
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Lemma 1.1 (Opial) Let C be a nonempty set of H and (xn)n∈N be a sequence in
H such that the following two conditions hold:

(a) for every x ∈ C, limn→+∞ ‖xn − x‖ exists;

(b) every weak sequential cluster point of (xn)n∈N is in C;

Then (xn)n∈N converges weakly to a point in C.

In order to prove the first part of the Opial Lemma, one usually tries to show
that the sequence (‖xn − x‖)n∈N, where x ∈ C, fulfills a Fejér-type inequality. In
this sense the following result is very useful.

Lemma 1.2 Let (an)n∈N, (bn)n∈N and (εn)n∈N be real sequences. Assume that
(an)n∈N is bounded from below, (bn)n∈N is nonnegative, (εn)n∈N ∈ `1 and an+1 −
an + bn ≤ εn for all n ∈ N. Then (an)n∈N is convergent and (bn)n∈N ∈ `1.

Let us recall now some facts about monotone operators. For an arbitrary set-
valued operator A : H⇒ H we denote by

• grA = {(x, u) ∈ H ×H : u ∈ Ax} its graph

• domA = {x ∈ H : Ax 6= ∅} its domain

• ranA = ∪x∈HAx its range

• A−1 : H ⇒ H its inverse operator, defined by (u, x) ∈ grA−1 if and only if
(x, u) ∈ grA

• zerA = {x ∈ H : 0 ∈ Ax} the set of zeros of the operator A.

We say that A is monotone if

〈x− y, u− v〉 ≥ 0 ∀(x, u), (y, v) ∈ grA.

A monotone operator A is said to be maximally monotone, if there exists no proper
monotone extension of the graph of A on H×H. Let us mention that in case A is
maximally monotone, zerA is a convex and closed set [26, Proposition 23.39]. We
refer to [26, Section 23.4] for conditions ensuring that zerA is nonempty. If A is
maximally monotone, then one has the following characterization for the set of its
zeros:

z ∈ zerA if and only if 〈u− z, w〉 ≥ 0 for all (u,w) ∈ grA. (1. 29)

The resolvent of A, JA : H⇒ H, is defined by

JA = (IdH+A)−1,

and the reflected resolvent of A is

RA : H⇒ H, RA = 2JA − IdH,

where IdH : H → H, IdH(x) = x for all x ∈ H, is the identity operator on H.
Moreover, if A is maximally monotone, then JA : H → H is single-valued and
maximally monotone (asee [26, Proposition 23.7 and Corollary 23.10]). For an
arbitrary γ > 0 we have (see [26, Proposition 23.2])

p ∈ JγAx if and only if (p, γ−1(x− p)) ∈ grA
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and (see [26, Proposition 23.18])

JγA + γJγ−1A−1 ◦ γ−1 IdH = IdH . (1. 30)

The resolvent operator will play an important role in the formulation of the
algorithms and dynamical systems considered in connection with determining the
set of zeros of (sums) of monotone operators.

Further, let us mention some classes of operators that are used in the following.
We say that A is demiregular at x ∈ domA, if for every sequence (xn, un)n∈N ∈ grA
and every u ∈ Ax such that xn ⇀ x and un → u, we have xn → x. We refer the
reader to [12, Proposition 2.4] and [62, Lemma 2.4] for conditions ensuring this
property. The operator A is said to be uniformly monotone at x ∈ domA, if there
exists an increasing function φA : [0,+∞)→ [0,+∞] that vanishes only at 0, and

〈x− y, u− v〉 ≥ φA (‖x− y‖) ∀u ∈ Ax and ∀(y, v) ∈ grA.

If this inequality holds for all (x, u), (y, v) ∈ grA, we say that A is uniformly mono-
tone. Let us mention that, if A is uniformly monotone at x ∈ domA, then it is
demiregular at x.

Prominent representatives of the class of uniformly monotone operators are the
strongly monotone operators. Let γ > 0 be arbitrary. We say that A is γ-strongly
monotone if

〈x− y, u− v〉 ≥ γ‖x− y‖2 ∀(x, u), (y, v) ∈ grA. (1. 31)

Notice that if A is maximally monotone and strongly monotone, then zerA is a
singleton, thus nonempty (see [26, Corollary 23.37]). A single-valued operator A :
H → H is said to be γ-cocoercive, if

〈x− y,Ax−Ay〉 ≥ γ‖Ax−Ay‖2 ∀(x, y) ∈ H ×H.

Moreover, A is γ-Lipschitz continuous, if ‖Ax−Ay‖ ≤ γ‖x−y‖ for all (x, y) ∈ H×H.
A single-valued linear operator A : H → H is said to be skew, if 〈x,Ax〉 = 0 for all
x ∈ H.

We consider also the class of nonexpansive operators. An operator T : D → H,
where D ⊆ H is nonempty, is said to be nonexpansive, if ‖Tx− Ty‖ ≤ ‖x− y‖ for
all x, y ∈ D. We use the notation

FixT = {x ∈ D : Tx = x}

for the set of fixed points of T . Let us mention that the resolvent and the reflected
resolvent of a maximally monotone operator are both nonexpansive (see [26, Corol-
lary 23.10]).

The following result, which is a consequence of the demiclosedness principle
(see [26, Theorem 4.17]), will be useful in the proof of the convergence of the inertial
version of the Krasnosel’skĭı–Mann algorithm in Chapter 3. It will be used also in
Chapter 5 in the context of studying dynamical systems associated with the fixed
point set of a nonexpansive operator.

Lemma 1.3 (see [26, Corollary 4.18]) Let D ⊆ H be nonempty closed and convex,
T : D → H be nonexpansive and let (xn)n∈N be a sequence in D and x ∈ H such
that xn ⇀ x and Txn − xn → 0 as n→ +∞. Then x ∈ FixT .

We recall also the following subclass of the nonexpansive operators. Let α ∈
(0, 1) be fixed. We say that R : H → H is α-averaged, if there exists a nonexpansive
operator T : H → H such that R = (1 − α) Id +αT . For α = 1

2 we obtain as
an important representative of this class the firmly nonexpansive operators. For
properties and other insides concerning these families of operators we refer to [26].
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Finally, the parallel sum of two operators A,B : H ⇒ H is defined by A�B :
H⇒ H

A�B = (A−1 +B−1)−1.

In the last part of this section we recall some elements of convex analysis. For a
function f : H → R, where R := R ∪ {±∞} is the extended real line, we denote by

dom f = {x ∈ H : f(x) < +∞}

its effective domain and say that f is proper if dom f 6= ∅ and f(x) 6= −∞ for all
x ∈ H. Concerning calculus rules where ±∞ are involved we make the following
conventions (see [131]): (+∞) + (−∞) = +∞, 0(+∞) = +∞ and 0(−∞) = 0. We
denote by Γ(H) the family of proper, convex and lower semi-continuous extended
real-valued functions defined on H. Let f∗ : H → R,

f∗(u) = sup
x∈H
{〈u, x〉 − f(x)} ∀u ∈ H,

denote the conjugate function of f . We also denote by min f := infx∈H f(x) and
by argmin f := {x ∈ H : f(x) = min f}.

The (convex) subdifferential of f is a set-valued operator ∂f : H ⇒ H defined
by

∂f(x) =

{
{v ∈ H : f(y) ≥ f(x) + 〈v, y − x〉 ∀y ∈ H}, if f(x) ∈ R,
∅, otherwise.

Let us mention that if f is proper, convex, and Fréchet differentiable at x, then
∂f(x) = {∇f(x)} (cf. [131, Corollary 2.4.10 and Theorem 2.4.4(i)]). The Fermat
rule in the nondifferentiable case underlines the usefulness of the subdifferential: if
f is proper, then for x ∈ dom f we have the relation

x ∈ argmin f ⇔ 0 ∈ ∂f(x).

Notice that if f ∈ Γ(H), then ∂f is a maximally monotone operator (cf. [120])
and it holds (∂f)−1 = ∂f∗. For f, g : H → R two proper functions, we consider
their infimal convolution, which is the function f�g : H → R, defined by

(f�g)(x) = inf
y∈H
{f(y) + g(x− y)} ∀x ∈ H.

In case f, g ∈ Γ(H) and a regularity condition is fulfilled, according to [26, Propo-
sition 24.27] we have ∂f�∂g = ∂(f�g), and this justifies the notation used for the
parallel sum of two operators as described above.

Let S ⊆ H be a nonempty set. The indicator function of S, δS : H → R, is the
function which takes the value 0 on S and +∞ otherwise. The subdifferential of the
indicator function is the normal cone of S, that is NS(x) = {u ∈ H : 〈u, y − x〉 ≤
0 ∀y ∈ S}, if x ∈ S and NS(x) = ∅ for x /∈ S. Notice that for x ∈ S, u ∈ NS(x)
if and only if σS(u) = 〈x, u〉, where σS is the support function of S, defined by
σS(u) = supy∈S〈y, u〉.

When f ∈ Γ(H) and γ > 0, for every x ∈ H we denote by proxγf (x) the
proximal point of parameter γ of f at x, which is the unique optimal solution of the
optimization problem

inf
y∈H

{
f(y) +

1

2γ
‖y − x‖2

}
. (1. 32)

Notice that we have the following formula for the resolvent of the subdifferential
operator:

Jγ∂f = (IdH+γ∂f)−1 = proxγf ,



1.2 PRELIMINARIES 19

thus proxγf : H → H is a single-valued operator fulfilling the extended Moreau’s
decomposition formula

proxγf +γ prox(1/γ)f∗ ◦γ−1 IdH = IdH . (1. 33)

Let us also recall that a proper function f : H → R is said to be uniformly
convex, if there exists an increasing function φ : [0,+∞)→ [0,+∞] which vanishes
only at 0 and such that

f(tx+(1−t)y)+t(1−t)φ(‖x−y‖) ≤ tf(x)+(1−t)f(y) ∀x, y ∈ dom f and ∀t ∈ (0, 1).

In case this inequality holds for φ = (γ/2)(·)2, where γ > 0, then f is said to be
γ-strongly convex. Let us mention that this property implies γ-strong monotonicity
of ∂f (see [26, Example 22.3]) (more general, if f is uniformly convex, then ∂f
is uniformly monotone, see [26, Example 22.3]). Furthermore, the proper function
f : H → R is γ-strongly convex, if and only if f − γ

2 ‖ · ‖
2 is a convex function. We

mention also the following interesting connection between the strong convexity of
a function and the differentiability properties of its conjugate: if f ∈ Γ(H), then
f is γ-strongly convex if and only if f∗ is Fréchet differentiable with γ−1-Lipschitz
continuous gradient (see [26, Theorem 18.15], [131, Corollary 3.5.11, Remark 3.5.3]).

Let us mention that for f = δS , where S ⊆ H is a nonempty convex and closed
set, it holds

JγNS = JNS = J∂δS = (IdH+NS)−1 = proxδS = projS , (1. 34)

where projS : H → S denotes the projection operator on S (see [26, Example 23.3
and Example 23.4]).

Finally, the descent lemma which we recall below will be used several times as
a technical tool in order to derive useful inequalities in the convergence analysis of
the algorithms and dynamical systems proposed in the manuscript.

Lemma 1.4 (see [106, Lemma 1.2.3]) Let g : H → R be Fréchet differentiable with
L-Lipschitz continuous gradient. Then

g(y) ≤ g(x) + 〈∇g(x), y − x〉+
L

2
‖y − x‖2 ∀x, y ∈ H.
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Chapter 2

Complexity results for a
primal-dual splitting
algorithm of
forward-backward type

The main goal of this chapter is to present several convergence rates related to
a primal-dual splitting algorithm of forward-backward-type associated with highly
structured monotone inclusion problems. While in Section 2.1 we focus our atten-
tion on complexity results concerning the iterates in case of strongly monotone inclu-
sion problems, in Section 2.2 we consider the case of convex optimization problems
with intricate objective functions and give a rate of convergence for the objective
function values.

We are concerned with the study of the convergence rate of a primal-dual split-
ting algorithm introduced in [130]. The following problem represents the starting
point of our investigations.

Problem 2.1 Let H be a real Hilbert space, z ∈ H, A : H ⇒ H a maximally
monotone operator and C : H → H an η-cocoercive operator for η > 0. Let m be a
strictly positive integer and, for every i ∈ {1,...,m}, let Gi be a real Hilbert space,
ri ∈ Gi, let Bi : Gi ⇒ Gi be a maximally monotone operator, let Di : Gi ⇒ Gi
be a maximally monotone and νi-strongly monotone operator for νi > 0 and let
Li : H → Gi be a nonzero linear continuous operator. The problem is to solve the
primal inclusion

find x ∈ H such that z ∈ Ax+

m∑
i=1

L∗i
(
(Bi�Di)(Lix− ri)

)
+ Cx, (2. 1)

together with the dual inclusion

find v1 ∈ G1,..., vm ∈ Gm such that ∃x ∈ H :

{
z −

∑m
i=1 L

∗
i vi ∈ Ax+ Cx

vi ∈ (Bi�Di)(Lix− ri), i = 1,...,m.
(2. 2)

We say that (x, v1,..., vm) ∈ H× G1×...×Gm is a primal-dual solution to Problem
2.1, if

z −
m∑
i=1

L∗i vi ∈ Ax+ Cx and vi ∈ (Bi�Di)(Lix− ri), i = 1,...,m. (2. 3)

21
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If x ∈ H is a solution to (2. 1), then there exists (v1,..., vm) ∈ G1 × ... × Gm
such that (x, v1,..., vm) is a primal-dual solution to Problem 2.1 and, if (v1,..., vm) ∈
G1×...×Gm is a solution to (2. 2), then there exists x ∈ H such that (x, v1,..., vm) is a
primal-dual solution to Problem 2.1. Moreover, if (x, v1,..., vm) ∈ H× G1×...×Gm is
a primal-dual solution to Problem 2.1, then x is a solution to (2. 1) and (v1,..., vm) ∈
G1 × ...× Gm is a solution to (2. 2).

By employing the classical forward-backward algorithm (see for example [75,
129]) in a renormed product space, Vũ proposed in [130] an iterative scheme for
solving a slightly modified version of Problem 2.1 formulated in the presence of some
given weights wi ∈ (0, 1], i = 1,...,m, with

∑m
i=1 wi = 1 for the terms occurring

in the second summand of the primal inclusion problem. The following result is
an adaption of [130, Theorem 3.1] to Problem 2.1 in the error-free case and when
λn = 1 for all n ≥ 0. Let us mention that under a different approach which relies
on Fejér monotonicity techniques, the convergence of an equivalent form of the
algorithm presented in the theorem below has been investigated in [52] for monotone
inclusions of less involved structures as the ones considered in (2. 5)-(2. 6), where
one additionally assumes that Cx = 0 for all x ∈ H.

Theorem 2.1 (see [130]) In Problem 2.1 suppose that

z ∈ ran

(
A+

m∑
i=1

L∗i
(
(Bi�Di)(Li · −ri)

)
+ C

)
. (2. 4)

Let τ and σi, i = 1,...,m, be strictly positive numbers such that

2 ·min{τ−1, σ−1
1 ,..., σ−1

m } ·min{η, ν1,..., νm}

1−

√√√√τ

m∑
i=1

σi‖Li‖2

 > 1.

Let (x0, v1,0,..., vm,0) ∈ H× G1 ×...× Gm and for all n ≥ 0 set:

xn+1 = JτA
[
xn − τ

(∑m
i=1 L

∗
i vi,n + Cxn − z

)]
yn = 2xn+1 − xn
vi,n+1 = JσiB−1

i
[vi,n + σi(Liyn −D−1

i vi,n − ri)], i = 1,...,m.

Then there exists a primal-dual solution (x, v1,..., vm) to Problem 2.1 such that the
following statements are true:

(a) xn ⇀ x and (v1,n,..., vm,n) ⇀ (v1,..., vm) as n→ +∞;

(b) if C is uniformly monotone, then xn → x, as n→ +∞;

(c) if D−1
i is uniformly monotone for some i ∈ {1, ...,m}, then vi,n → vi as

n→ +∞.

Remark 2.1 Notice that the work in [130] is closely related to [69] and [79], where
primal-dual splitting methods for nonsmooth convex optimization problems are pro-
posed. More exactly, the convergence property of [69, Algorithm 1] proved in [69,
Theorem 1] follow as special instance of the main result in [130]. On the other hand,
Condat proposes in [79] an algorithm which can be seen as an extension of the one
in [69] to optimization problems in the objective of which convex differentiable
functions occur, as well.

Remark 2.2 We would like to stress the fact that the relation (2. 4) is equivalent
to the existence of primal-dual solutions to Problem 2.1 above.
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2.1 On the convergence rate improvement of a
primal-dual splitting algorithm for solving
monotone inclusion problems

In this section we propose under appropriate strong monotonicity assumptions two
modified versions of the algorithm in Theorem 2.1. The first one ensures an order
of convergence of O( 1

n ) for the sequences of primal iterates, while the second one,
under more involved strong monotonicity conditions, guarantees linear convergence
for the sequences of primal and dual iterates.

2.1.1 The case A+ C is strongly monotone

For the beginning, we show that, in case A + C is strongly monotone, one can
guarantee an order of convergence of O( 1

n ) for the sequence (xn)n≥0. To this end,
we update in each iteration the parameters τ and σi, i = 1,...,m, and use a modified
formula for the sequence (yn)n≥0. Let us notice that incorporating variable step sizes
can also increase the dynamic of the sequences involved, with possible numerical
performances, as underlined also in [132] and [69].

Due to technical reasons, we apply this method in case D−1
i is equal to zero for

i = 1,...,m, that is Di(0) = Gi and Di(x) = ∅ for x 6= 0. Let us notice that, by
using the approach proposed in [58, Remark 3.2], one can extend the statement of
Theorem 2.2 below, which is the main result of this subsection, to the primal-dual
pair of monotone inclusions as stated in Problem 2.1.

More precisely, the problem we consider throughout this subsection is as follows.

Problem 2.2 Let H be a real Hilbert space, z ∈ H, A : H ⇒ H a maximally
monotone operator and C : H → H a monotone and η-Lipschitz continuous operator
for η > 0. Let m be a strictly positive integer and, for every i ∈ {1,...,m}, let Gi
be a real Hilbert space, ri ∈ Gi, let Bi : Gi ⇒ Gi be a maximally monotone operator
and let Li : H → Gi be a nonzero linear continuous operator. The problem is to
solve the primal inclusion

find x ∈ H such that z ∈ Ax+

m∑
i=1

L∗i (Bi(Lix− ri)) + Cx, (2. 5)

together with the dual inclusion

find v1 ∈ G1,..., vm ∈ Gm such that ∃x ∈ H :

{
z −

∑m
i=1 L

∗
i vi ∈ Ax+ Cx

vi ∈ Bi(Lix− ri), i = 1,...,m.
(2. 6)

As for Problem 2.1, we say that (x, v1,..., vm) ∈ H× G1 × ...× Gm is a primal-dual
solution to Problem 2.2, if

z −
m∑
i=1

L∗i vi ∈ Ax+ Cx and vi ∈ Bi(Lix− ri), i = 1,...,m. (2. 7)

Remark 2.3 One can notice that, in comparison to Problem 2.1, we relax in Prob-
lem 2.2 the assumptions made on the operator C. It is obvious that, if C is a
η-cocoercive operator for η > 0, then C is monotone and 1/η-Lipschitz continuous.
Although in case C is the gradient of a convex and differentiable function, due to the
celebrated Baillon-Haddad Theorem (see, for instance, [26, Corollary 8.16]), the two
classes of operators coincide, the second one is in general larger. Indeed, nonzero
linear, skew and Lipschitz continuous operators are not cocoercive. For example,
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when H and G are real Hilbert spaces and L : H → G is nonzero linear continuous,
then (x, v) 7→ (L∗v,−Lx) is an operator having all these properties. This operator
appears in a natural way when employing primal-dual approaches in the context of
monotone inclusion problems as done in [62] (see also [52,58,76,130]).

Under the assumption that A+C is γ-strongly monotone for γ > 0 we propose
the following modification of the iterative scheme in Theorem 2.1.

Algorithm 2.1

Initialization: Choose (x0, v1,0,..., vm,0)∈H×G1×...×Gm and

τ0 > 0, σi,0 > 0, i = 1,...,m, such that τ0 < 2γ/η, λ ≥ η + 1,

τ0
∑m
i=1 σi,0‖Li‖2 ≤

√
1 + τ0(2γ − ητ0)/λ

θ0 := 1/
√

1+τ0(2γ−ητ0)/λ
For n ≥ 0 set: xn+1 = J(τn/λ)A

[
xn − (τn/λ)

(∑m
i=1 L

∗
i vi,n + Cxn − z

)]
yn = xn+1 + θn(xn+1 − xn)
vi,n+1 = Jσi,nB−1

i
[vi,n + σi,n(Liyn − ri)], i = 1,...,m

τn+1 = θnτn, θn+1 = 1/
√

1 + τn+1(2γ − ητn+1)/λ,
σi,n+1 = σi,n/θn+1, i = 1,...,m.

Remark 2.4 Notice that in contrast to the algorithm in Theorem 2.1, we allow here
variable step sizes τn and σi,n, 1 = 1, ...,m, which are updated in each iteration.
Moreover, for every n ≥ 0, the iterate yn is defined by means of the sequence θn.
Dynamic step sizes have been first proposed in [132] and then used in [69] in order to
accelerate the convergence of iterative methods when solving convex optimization
problems.

Remark 2.5 The assumption τ0
∑m
i=1 σi,0‖Li‖2 ≤

√
1 + τ0(2γ − ητ0)/λ in Algo-

rithm 2.1 is equivalent to τ1
∑m
i=1 σi,0‖Li‖2 ≤ 1, being fulfilled if τ0 > 0 is chosen

such that

τ0 ≤
γ/λ+

√
γ2/λ2 + (

∑m
i=1 σi,0‖Li‖2)2 + η/λ

(
∑m
i=1 σi,0‖Li‖2)2 + η/λ

.

We present now the following complexity result of the algorithm described above.

Theorem 2.2 Suppose that A + C is γ-strongly monotone for γ > 0 and let
(x, v1,..., vm) be a primal-dual solution to Problem 2.2. Then the sequences gen-
erated by Algorithm 2.1 fulfill for all n ≥ 0

λ‖xn+1 − x‖2

τ2
n+1

+

(
1− τ1

m∑
i=1

σi,0‖Li‖2
)

m∑
i=1

‖vi,n − vi‖2

τ1σi,0

≤ λ‖x1 − x‖2

τ2
1

+

m∑
i=1

‖vi,0 − vi‖2

τ1σi,0
+
‖x1 − x0‖2

τ2
0

+
2

τ0

m∑
i=1

〈Li(x1 − x0), vi,0 − vi〉.

Moreover, lim
n→+∞

nτn = λ
γ , hence one obtains for (xn)n≥0 an order of convergence

of O( 1
n ).

Proof. The idea of the proof relies on showing that the following Fejér-type in-
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equality is true for all n ≥ 0

λ

τ2
n+2

‖xn+2 − x‖2 +

m∑
i=1

‖vi,n+1 − vi‖2

τ1σi,0
+
‖xn+2 − xn+1‖2

τ2
n+1

− 2

τn+1

m∑
i=1

〈Li(xn+2 − xn+1),−vi,n+1 + vi〉 (2. 8)

≤ λ

τ2
n+1

‖xn+1 − x‖2 +

m∑
i=1

‖vi,n − vi‖2

τ1σi,0
+
‖xn+1 − xn‖2

τ2
n

− 2

τn

m∑
i=1

〈Li(xn+1 − xn),−vi,n + vi〉.

To this end we use first that, in the light of the definition of the resolvents, it
holds for all n ≥ 0

λ

τn+1
(xn+1−xn+2)−

(
m∑
i=1

L∗i vi,n+1 + Cxn+1 − z

)
+Cxn+2 ∈ (A+C)xn+2. (2. 9)

Since A+ C is γ-strongly monotone, (2. 7) and (2. 9) yield for all n ≥ 0

γ‖xn+2 − x‖2 ≤
〈
xn+2 − x,

λ

τn+1
(xn+1 − xn+2)

〉
+

〈
xn+2 − x,−

(
m∑
i=1

L∗i vi,n+1 + Cxn+1 − z

)
+ Cxn+2 −

(
z −

m∑
i=1

L∗i vi

)〉

=
λ

τn+1
〈xn+2 − x, xn+1 − xn+2〉+ 〈xn+2 − x,Cxn+2 − Cxn+1〉

+

m∑
i=1

〈Li(xn+2 − x), vi − vi,n+1〉 . (2. 10)

Further, we have

〈xn+2−x, xn+1−xn+2〉 =
‖xn+1 − x‖2

2
− ‖xn+2 − x‖2

2
− ‖xn+1 − xn+2‖2

2
(2. 11)

and, since C is η-Lipschitz continuous,

〈xn+2 − x,Cxn+2 − Cxn+1〉 ≤ ‖xn+2 − x‖ · ‖Cxn+2 − Cxn+1‖

≤ ητn+1

2
‖xn+2 − x‖2 +

η

2τn+1
‖xn+2 − xn+1‖2.

Hence, it follows from (2. 10)–(2. 11) and the last inequality that for all n ≥ 0
it holds (

λ

τn+1
+ 2γ − ητn+1

)
‖xn+2 − x‖2

≤ λ

τn+1
‖xn+1 − x‖2 −

λ− η
τn+1

‖xn+2 − xn+1‖2

+2

m∑
i=1

〈Li(xn+2 − x), vi − vi,n+1〉.
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Taking into account that λ ≥ η + 1, we obtain for all n ≥ 0 that(
λ

τn+1
+ 2γ − ητn+1

)
‖xn+2 − x‖2 ≤

λ

τn+1
‖xn+1 − x‖2 −

1

τn+1
‖xn+2 − xn+1‖2

+2

m∑
i=1

〈Li(xn+2 − x), vi − vi,n+1〉. (2. 12)

On the other hand, for every i = 1,...,m and every n ≥ 0, from

1

σi,n
(vi,n − vi,n+1) + Liyn − ri ∈ B−1

i vi,n+1, (2. 13)

the monotonicity of B−1
i and (2. 7), we obtain

0 ≤
〈

1

σi,n
(vi,n − vi,n+1) + Liyn − ri − (Lix− ri), vi,n+1 − vi

〉
=

1

σi,n
〈vi,n − vi,n+1, vi,n+1 − vi〉+ 〈Li(yn − x), vi,n+1 − vi〉

=
1

2σi,n
‖vi,n − vi‖2 −

1

2σi,n
‖vi,n − vi,n+1‖2 −

1

2σi,n
‖vi,n+1 − vi‖2

+〈Li(yn − x), vi,n+1 − vi〉,

hence

‖vi,n+1 − vi‖2

σi,n
≤ ‖vi,n − vi‖

2

σi,n
−‖vi,n − vi,n+1‖2

σi,n
+2〈Li(yn−x), vi,n+1−vi〉. (2. 14)

Summing up the inequalities in (2. 12) and (2. 14) we obtain for all n ≥ 0(
λ

τn+1
+ 2γ − ητn+1

)
‖xn+2 − x‖2 +

m∑
i=1

‖vi,n+1 − vi‖2

σi,n

≤ λ

τn+1
‖xn+1 − x‖2 +

m∑
i=1

‖vi,n − vi‖2

σi,n

−‖xn+2 − xn+1‖2

τn+1
−

m∑
i=1

‖vi,n − vi,n+1‖2

σi,n

+2

m∑
i=1

〈Li(xn+2 − yn),−vi,n+1 + vi〉. (2. 15)

Further, since yn = xn+1 +θn(xn+1−xn), for every i = 1,...,m and every n ≥ 0,
it holds

〈Li(xn+2 − yn),−vi,n+1 + vi〉
= 〈Li

(
xn+2 − xn+1 − θn(xn+1 − xn)

)
,−vi,n+1 + vi〉

= 〈Li(xn+2 − xn+1),−vi,n+1 + vi〉 − θn〈Li(xn+1 − xn),−vi,n + vi〉
+θn〈Li(xn+1 − xn),−vi,n + vi,n+1〉
≤ 〈Li(xn+2 − xn+1),−vi,n+1 + vi〉 − θn〈Li(xn+1 − xn),−vi,n + vi〉

+
θ2
n‖Li‖2σi,n

2
‖xn+1 − xn‖2 +

‖vi,n − vi,n+1‖2

2σi,n
.
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By combining the last inequality with (2. 15), we obtain for all n ≥ 0(
λ

τn+1
+ 2γ − ητn+1

)
‖xn+2 − x‖2 +

m∑
i=1

‖vi,n+1 − vi‖2

σi,n
+
‖xn+2 − xn+1‖2

τn+1

−2

m∑
i=1

〈Li(xn+2 − xn+1),−vi,n+1 + vi〉 (2. 16)

≤ λ

τn+1
‖xn+1 − x‖2 +

m∑
i=1

‖vi,n − vi‖2

σi,n
+

(
m∑
i=1

‖Li‖2σi,n

)
θ2
n‖xn+1 − xn‖2

−2

m∑
i=1

θn〈Li(xn+1 − xn),−vi,n + vi〉.

After dividing (2. 16) by τn+1 and noticing that for all n ≥ 0

λ

τ2
n+1

+
2γ

τn+1
− η =

λ

τ2
n+2

,

τn+1σi,n = τnσi,n−1 = ... = τ1σi,0

and (∑m
i=1 ‖Li‖2σi,n

)
θ2
n

τn+1
=
τn+1

∑m
i=1 ‖Li‖2σi,n
τ2
n

=
τ1
∑m
i=1 ‖Li‖2σi,0
τ2
n

≤ 1

τ2
n

,

it follows that the Fejér-type inequality (2. 8) is true.
Let N ∈ N, N ≥ 2. Summing up the inequality in (2. 8) from n = 0 to N − 1,

it yields

λ

τ2
N+1

‖xN+1 − x‖2 +

m∑
i=1

‖vi,N − vi‖2

τ1σi,0
+
‖xN+1 − xN‖2

τ2
N

≤ λ

τ2
1

‖x1 − x‖2 +

m∑
i=1

‖vi,0 − vi‖2

τ1σi,0
+
‖x1 − x0‖2

τ2
0

(2. 17)

+2

m∑
i=1

(
1

τN
〈Li(xN+1 − xN ),−vi,N + vi〉 −

1

τ0
〈Li(x1 − x0),−vi,0 + vi〉

)
.

Further, for every i = 1,...,m we use the inequality

2

τN
〈Li(xN+1 − xN ),−vi,N + vi〉

≤ σi,0‖Li‖2

τ2
N (
∑m
i=1 σi,0‖Li‖2)

‖xN+1 − xN‖2 +

∑m
i=1 σi,0‖Li‖2

σi,0
‖vi,N − vi‖2

and obtain from (2. 17) that

λ‖xN+1 − x‖2

τ2
N+1

+

m∑
i=1

‖vi,N − vi‖2

τ1σi,0
≤ λ‖x1 − x‖2

τ2
1

+

m∑
i=1

‖vi,0 − vi‖2

τ1σi,0
+
‖x1 − x0‖2

τ2
0

+
2

τ0

m∑
i=1

〈Li(x1 − x0), vi,0 − vi〉+

m∑
i=1

∑m
j=1 σj,0‖Lj‖2

σi,0
‖vi,N − vi‖2,
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which rapidly yields the inequality in the statement of the theorem.
We close the proof by showing that lim

n→+∞
nτn = λ/γ. Notice that for all n ≥ 0

τn+1 =
τn√

1 + τn
λ (2γ − ητn)

. (2. 18)

Since 0 < τ0 < 2γ/η, it follows by induction that 0 < τn+1 < τn < τ0 < 2γ/η
for all n ≥ 1, hence the sequence (τn)n≥0 converges. In the light of (2. 18) one
easily obtains that lim

n→+∞
τn = 0 and, further, that lim

n→+∞
τn
τn+1

= 1. As ( 1
τn

)n≥0 is a

strictly increasing and unbounded sequence, by applying the Stolz-Cesàro Theorem,
it yields

lim
n→+∞

nτn = lim
n→+∞

n
1
τn

= lim
n→+∞

n+ 1− n
1

τn+1
− 1

τn

= lim
n→+∞

τnτn+1

τn − τn+1

= lim
n→+∞

τnτn+1(τn + τn+1)

τ2
n − τ2

n+1

= lim
n→+∞

τnτn+1(τn + τn+1)

τ2
n+1

τn
λ (2γ − ητn)

= lim
n→+∞

τn + τn+1

τn+1( 2γ
λ −

η
λτn)

= lim
n→+∞

τn
τn+1

+ 1

2γ
λ −

η
λτn

=
λ

γ
.

�

Remark 2.6 Let us mention that, if A + C is γ-strongly monotone with γ > 0,
then the operator A +

∑m
i=1 L

∗
i (Bi(Li · −ri)) + C is strongly monotone, as well,

thus the monotone inclusion problem (2. 5) has at most one solution. Hence, if
(x, v1,..., vm) is a primal-dual solution to Problem 2.2, then x is the unique solution
to (2. 5). Notice that the problem (2. 6) may have more than one solution.

2.1.2 The case A + C and B−1
i +D−1

i , i = 1,...,m, are strongly
monotone

In this subsection we propose a further modified version of the algorithm in Theorem
2.1. The main result of this section is that if A + C and B−1

i + D−1
i , i = 1,...,m,

are strongly monotone, then one achieves linear convergence rate for the sequences
(xn)n≥0 and (vi,n)n≥0, i = 1,...,m. The algorithm aims to solve the primal-dual
pair of monotone inclusions stated in Problem 2.1 under relaxed assumptions for
the operators C and D−1

i , i = 1,...,m. A same comment as in Remark 2.9 can be
made also in this context.

Problem 2.3 Let H be a real Hilbert space, z ∈ H, A : H ⇒ H a maximally
monotone operator and C : H → H a monotone and η-Lipschitz continuous operator
for η > 0. Let m be a strictly positive integer and, for every i ∈ {1,...,m}, let Gi be
a real Hilbert space, ri ∈ Gi, let Bi : Gi ⇒ Gi be a maximally monotone operator, let
Di : Gi ⇒ Gi be a monotone operator such that D−1

i is νi-Lipschitz continuous for
νi > 0 and let Li : H → Gi be a nonzero linear continuous operator. The problem
is to solve the primal inclusion

find x ∈ H such that z ∈ Ax+

m∑
i=1

L∗i
(
(Bi�Di)(Lix− ri)

)
+ Cx, (2. 19)

together with the dual inclusion

find v1 ∈ G1,..., vm ∈ Gm such that ∃x ∈ H :

{
z −

∑m
i=1 L

∗
i vi ∈ Ax+ Cx

vi ∈ (Bi�Di)(Lix− ri), i = 1,...,m.
(2. 20)
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Under the assumption that A+C is γ-strongly monotone for γ > 0 and B−1
i +

D−1
i is δi-strongly monotone with δi > 0, i = 1,....m, we propose the following

modification of the iterative scheme in Theorem 2.1.

Algorithm 2.2
Initialization: Choose µ > 0 such that

µ ≤ min
{
γ2/η2, δ2

1/ν
2
1 ,..., δ

2
m/ν

2
m,
√
γ/ (

∑m
i=1 ‖Li‖2/δi)

}
,

τ = µ/(2γ), σi = µ/(2δi), i = 1, ..,m,
θ ∈ [2/(2 + µ), 1] and (x0, v1,0,..., vm,0) ∈ H× G1 ×...× Gm.

For n ≥ 0 set: xn+1 = JτA
[
xn − τ

(∑m
i=1 L

∗
i vi,n + Cxn − z

)]
yn = xn+1 + θ(xn+1 − xn)
vi,n+1 = JσiB−1

i
[vi,n + σi(Liyn −D−1

i vi,n − ri)], i = 1,...,m.

Remark 2.7 Different to Algorithm 2.1, the step sizes are now constant in each
iteration, as it is also the case in Theorem 2.1. The major difference to the iterative
scheme in Theorem 2.1 is given by the role played by the constant µ, not only in the
definition of the step sizes, but also in the way the sequence (yn)n≥0 is constructed
(through the choice of θ). Notice that the situation when θ = 1 provides the same
definition of the latter as in the algorithm stated in Theorem 2.1.

Theorem 2.3 Suppose that A + C is γ-strongly monotone for γ > 0, B−1
i + D−1

i

is δi-strongly monotone for δi > 0, i = 1,...,m, and let (x, v1,..., vm) be a primal-
dual solution to Problem 2.3 (that is (2. 3) holds). Then the sequences generated
by Algorithm 2.2 fulfill for all n ≥ 0

γ‖xn+1 − x‖2 + (1− ω)

m∑
i=1

δi‖vi,n − vi‖2 ≤

ωn
(
γ‖x1 − x‖2 +

m∑
i=1

δi‖vi,0 − vi‖2

+
γ

2
ω‖x1 − x0‖2 + µω

m∑
i=1

〈Li(x1 − x0), vi,0 − vi〉
)
,

where 0 < ω = 2(1+θ)
4+µ < 1.

Proof. For all n ≥ 0 we have

1

τ
(xn+1 − xn+2)−

(
m∑
i=1

L∗i vi,n+1 + Cxn+1 − z

)
+Cxn+2 ∈ (A+C)xn+2, (2. 21)

thus, since A+ C is γ-strongly monotone, (2. 20) yields

γ‖xn+2 − x‖2 ≤
〈
xn+2 − x,

1

τ
(xn+1 − xn+2)

〉
+

〈
xn+2 − x,−

(
m∑
i=1

L∗i vi,n+1 + Cxn+1 − z

)
+ Cxn+2 −

(
z −

m∑
i=1

L∗i vi

)〉

=
1

τ
〈xn+2 − x, xn+1 − xn+2〉+ 〈xn+2 − x,Cxn+2 − Cxn+1〉

+

m∑
i=1

〈Li(xn+2 − x), vi − vi,n+1〉 . (2. 22)

Further, by using (2. 11) and

〈xn+2 − x,Cxn+2 − Cxn+1〉 ≤
γ

2
‖xn+2 − x‖2 +

η2

2γ
‖xn+2 − xn+1‖2,
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(which is a consequence of the Lipschitz property of the operator C), we get from
(2. 22) that for all n ≥ 0(

1

2τ
+
γ

2

)
‖xn+2 − x‖2 ≤

1

2τ
‖xn+1 − x‖2 −

(
1

2τ
− η2

2γ

)
‖xn+2 − xn+1‖2 +

m∑
i=1

〈Li(xn+2 − x), vi − vi,n+1〉.

After multiplying this inequality with µ and taking into account that

µ

2τ
= γ, µ

(
1

2τ
+
γ

2

)
= γ

(
1 +

µ

2

)
and µ

(
1

2τ
− η2

2γ

)
= γ − η2

2γ
µ ≥ γ

2
,

we obtain for any n ≥ 0

γ
(

1 +
µ

2

)
‖xn+2 − x‖2 ≤ γ‖xn+1 − x‖2 − γ

2 ‖xn+2 − xn+1‖2

+µ
∑m
i=1〈Li(xn+2 − x), vi − vi,n+1〉. (2. 23)

On the other hand, for every i = 1,...,m and every n ≥ 0, from

1

σi
(vi,n− vi,n+1) +Liyn−D−1

i vi,n− ri +D−1
i vi,n+1 ∈ (B−1

i +D−1
i )vi,n+1, (2. 24)

the δi-strong monotonicity of B−1
i +D−1

i and (2. 20), we obtain

δi‖vi,n+1 − vi‖2 ≤
〈

1

σi
(vi,n − vi,n+1), vi,n+1 − vi

〉
+
〈
Liyn − ri −D−1

i vi,n +D−1
i vi,n+1 − (Lix− ri), vi,n+1 − vi

〉
. (2. 25)

Further, for every i = 1,...,m and every n ≥ 0, we have

1

σi
〈vi,n − vi,n+1, vi,n+1 − vi〉 =

1

2σi
‖vi,n − vi‖2 −

1

2σi
‖vi,n − vi,n+1‖2

− 1

2σi
‖vi,n+1 − vi‖2

and, since D−1
i is a νi-Lipschitz continuous operator,

〈D−1
i vi,n+1−D−1

i vi,n, vi,n+1−vi〉 ≤
δi
2
‖vi,n+1−vi‖2 +

ν2
i

2δi
‖vi,n+1−vi,n‖2. (2. 26)

Consequently, from (2. 25) and(2. 26) we obtain for every i = 1,...,m and every
n ≥ 0:(

1

2σi
+
δi
2

)
‖vi,n+1 − vi‖2 ≤

1

2σi
‖vi,n − vi‖2 −

(
1

2σi
− ν2

i

2δi

)
‖vi,n+1 − vi,n‖2 + 〈Li(x− yn), vi − vi,n+1〉,

which, after multiplying it by µ (here is the initial choice of µ determinant), yields

δi

(
1 +

µ

2

)
‖vi,n+1 − vi‖2 ≤ δi‖vi,n − vi‖2 −

δi
2
‖vi,n+1 − vi,n‖2

+ µ〈Li(x− yn), vi − vi,n+1〉. (2. 27)
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We denote

an := γ‖xn+1 − x‖2 +

m∑
i=1

δi‖vi,n − vi‖2 ∀n ≥ 0.

Summing up the inequalities in (2. 23) and (2. 27), we obtain for all n ≥ 0(
1 +

µ

2

)
an+1 ≤ an −

γ

2
‖xn+2 − xn+1‖2 −

m∑
i=1

δi
2
‖vi,n − vi,n+1‖2

+ µ

m∑
i=1

〈Li(xn+2 − yn), vi − vi,n+1〉. (2. 28)

Further, since yn = xn+1 + θ(xn+1−xn) and ω ≤ θ, for every i = 1,...,m and every
n ≥ 0, it holds

〈Li(xn+2 − yn), vi − vi,n+1〉 = 〈Li (xn+2 − xn+1 − θ(xn+1 − xn)) , vi − vi,n+1〉
= 〈Li(xn+2 − xn+1), vi − vi,n+1〉 − ω〈Li(xn+1 − xn), vi − vi,n〉

+ω〈Li(xn+1 − xn), vi,n+1 − vi,n〉+ (θ − ω)〈Li(xn+1 − xn), vi,n+1 − vi〉
≤ 〈Li(xn+2 − xn+1), vi − vi,n+1〉 − ω〈Li(xn+1 − xn), vi − vi,n〉

+ω‖Li‖
(
µω‖Li‖

‖xn+1 − xn‖2

2δi
+ δi
‖vi,n+1 − vi,n‖2

2µω‖Li‖

)
+(θ − ω)‖Li‖

(
µω‖Li‖

‖xn+1 − xn‖2

2δi
+ δi
‖vi,n+1 − vi‖2

2µω‖Li‖

)
= 〈Li(xn+2 − xn+1), vi − vi,n+1〉 − ω〈Li(xn+1 − xn), vi − vi,n〉

+θµω‖Li‖2
‖xn+1 − xn‖2

2δi
+ δi
‖vi,n+1 − vi,n‖2

2µ
+ (θ − ω)δi

‖vi,n+1 − vi‖2

2µω
.

Taking into consideration that

µ2θω

2

m∑
i=1

‖Li‖2

δi
≤ γθ

2
ω ≤ γ

2
ω and 1 +

µ

2
=

1

ω
+
θ − ω
ω

,

from (2. 28), we obtain for all n ≥ 0

1

ω
an+1 +

γ

2
‖xn+2 − xn+1‖2

≤ an +
γ

2
ω‖xn+1 − xn‖2 −

θ − ω
ω

(
an+1 −

m∑
i=1

δi
2
‖vi,n+1 − vi‖2

)

+µ

m∑
i=1

(
〈Li(xn+2 − xn+1), vi − vi,n+1〉 − ω〈Li(xn+1 − xn), vi − vi,n〉

)
.

As ω ≤ θ and an+1 −
∑m
i=1

δi
2 ‖vi,n+1 − vi‖2 ≥ 0, we further get after multiplying

the last inequality with ω−n the following Fejér-type inequality that holds for all
n ≥ 0

ω−(n+1)an+1 +
γ

2
ω−n‖xn+2 − xn+1‖2

+ µω−n
m∑
i=1

〈Li(xn+2 − xn+1), vi,n+1 − vi〉

≤ ω−nan +
γ

2
ω−(n−1)‖xn+1 − xn‖2

+ µω−(n−1)
m∑
i=1

〈Li(xn+1 − xn), vi,n − vi〉. (2. 29)



32 CHAPTER 2. Complexity results for a primal-dual splitting algorithm

Let N ∈ N, N ≥ 2. Summing up the inequality in (2. 29) from n = 0 to N − 1, it
yields

ω−NaN +
γ

2
ω−N+1‖xN − xN+1‖2 + µω−N+1

m∑
i=1

〈Li(xN+1 − xN ), vi,N − vi〉

≤ a0 +
γ

2
ω‖x1 − x0‖2 + µω

m∑
i=1

〈Li(x1 − x0), vi,0 − vi〉.

Using that

〈Li(xN+1 − xN ), vi,N − vi〉 ≥ −
µ‖Li‖2

4δi
‖xN+1 − xN‖2 −

δi
µ
‖vi,N − vi‖2

i = 1,...,m,

this further yields

ω−NaN + ω−N+1

(
γ

2
− µ2

4

m∑
i=1

‖Li‖2

δi

)
‖xN − xN+1‖2

−ω−N+1
m∑
i=1

δi‖vi,N − vi‖2

≤ a0 +
γ

2
ω‖x1 − x0‖2 + µω

m∑
i=1

〈Li(x1 − x0), vi,0 − vi〉. (2. 30)

Taking into account the way µ has been chosen, we have

γ

2
− µ2

4

m∑
i=1

‖Li‖2

δi
≥ γ

2
− γ

4
> 0,

hence, after multiplying (2. 30) with ω−N , it yields

aN − ω
m∑
i=1

δi‖vi,N − vi‖2

≤ ωN
(
a0 +

γ

2
ω‖x1 − x0‖2 + µω

m∑
i=1

〈Li(x1 − x0), vi,0 − vi〉

)
.

The conclusion follows by taking into account the definition of the sequence (an)n≥0.
�

Remark 2.8 If A + C is γ-strongly monotone for γ > 0 and B−1
i + D−1

i is δi-
strongly monotone for δi > 0, i = 1,...,m, then there exists at most one primal-dual
solution to Problem 2.3. Hence, if (x, v1,..., vm) is a primal-dual solution to Problem
2.3, then x is the unique solution to the primal inclusion (2. 19) and (v1,..., vm) is
the unique solution to the dual inclusion (2. 20).

Remark 2.9 The modified versions Algortihm 2.1 and Algorithm 2.2 can handle
Problem 2.1 under more general hypotheses than the original method given in [130].
Indeed, convergence was shown under more general hypotheses on the operator C
for the first (see also Remark 2.3) and on the operators Di, i = 1, ...,m for the
latter. More than that, we can provide in both cases a rate of convergence for the
sequence of the primal iterates and in case of Algorithm 2.2 one for the sequence of
dual iterates, as well, in particular also strong convergence.
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Remark 2.10 Let us relate now the results above to the ones given in [58], where
accelerated versions of the algorithm from [76] have been proposed. The algorithms
in [58] and the ones proposed in this manuscript are designed to solve the same
type of problems and under the same hypotheses concerning the operators involved
(compare [58, Theorem 3.3] with Theorem 2.2 above and [58, Theorem 3.4] with
Theorem 2.3, respectively). The rates of convergence obtained in [58] and here are
the same.

On the other hand, our schemes differ from the in [58] in some fundamental
aspects. Indeed, we propose here accelerated versions of the algorithm given in [130],
which relies on a forward-backward scheme, while in [58] the accelerated versions
are with respect to a forward-backward-forward scheme. In contrast to the forward-
backward-forward algorithm, which requires additional sequences to be computed,
the forward-backward scheme needs fewer steps, thus presents from theoretical point
of view an important advantage. This applies also for the accelerated versions of
these algorithms. The mentioned advantage is underlined also by the numerical
results presented in the subsection 2.1.4. Moreover, one can notice that in Algorithm
2.1 at every iteration when evaluating the operators Bi different step sizes (in form
of the parameters σi,n) for i = 1, ...,m, have been considered, which is not the
case with the iterative scheme in [58, Theorem 3.3] where for the evaluation of the
same operators the same step size has been used. Individual step sizes possess the
advantage that in this way the operators Bi, i = 1, ...,m, can be more involved in the
algorithm and in the improvement of its convergence properties. A similar remark
can be made also for the iterative scheme in [58, Theorem 3.4] and Algorithm 2.2.

2.1.3 Convex optimization problems

The aim of this section is to show that the two algorithms proposed above and
investigated from the point of view of their convergence properties can be employed
when solving a primal-dual pair of convex optimization problems.

In order to investigate the applicability of the Algorithm 2.1, we consider the
following primal-dual pair of convex optimization problems.

Problem 2.4 Let H be a real Hilbert space, z ∈ H, f ∈ Γ(H) and h : H → R a
convex and differentiable function with a η-Lipschitz continuous gradient for η > 0.
Let m be a strictly positive integer and, for every i ∈ {1,...,m}, let Gi be a real
Hilbert space, ri ∈ Gi, gi ∈ Γ(Gi) and let Li : H → Gi be a nonzero linear continuous
operator. Consider the convex optimization problem

inf
x∈H

{
f(x) +

m∑
i=1

gi(Lix− ri) + h(x)− 〈x, z〉

}
(2. 31)

and its Fenchel-type dual problem

sup
vi∈Gi, i=1,...,m

{
−
(
f∗�h∗

)(
z −

m∑
i=1

L∗i vi

)
−

m∑
i=1

(
g∗i (vi) + 〈vi, ri〉

)}
. (2. 32)

Considering maximal monotone operators

A = ∂f,C = ∇h and Bi = ∂gi, i = 1,...,m,

the monotone inclusion problem (2. 5) reads

find x ∈ H such that z ∈ ∂f(x) +

m∑
i=1

L∗i (∂gi(Lix− ri)) +∇h(x), (2. 33)
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while the dual inclusion problem (2. 6) reads

find v1 ∈ G1,..., vm ∈ Gm such that ∃x ∈ H :

{
z −

∑m
i=1 L

∗
i vi ∈ ∂f(x) +∇h(x)

vi ∈ ∂gi(Lix− ri), i = 1,...,m.
(2. 34)

If (x, v1,..., vm) ∈ H× G1 × ...× Gm is a primal-dual solution to (2. 33)-(2. 34),
namely,

z −
m∑
i=1

L∗i vi ∈ ∂f(x) +∇h(x) and vi ∈ ∂gi(Lix− ri), i = 1,...,m, (2. 35)

then x is an optimal solution of the problem (2. 31), (v1,..., vm) is an optimal
solution of (2. 32) and the optimal objective values of the two problems coincide.
Notice that (2. 35) is nothing else than the system of optimality conditions for the
primal-dual pair of convex optimization problems (2. 31)-(2. 32).

In case a regularity condition is fulfilled, these optimality conditions are also
necessary. More precisely, if the primal problem (2. 31) has an optimal solution
x and a suitable regularity condition is fulfilled, then there exists (v1,..., vm), an
optimal solution to (2. 32), such that (x, v1,..., vm) satisfies the optimality condi-
tions (2. 35). For the readers convenience, let us present some regularity conditions
which are suitable in this context. One of the weakest qualification conditions of
interiority-type reads (see, for instance, [76, Proposition 4.3, Remark 4.4])

(r1,..., rm) ∈ sqri

(
m∏
i=1

dom gi − {(L1x,..., Lmx) : x ∈ dom f}

)
. (2. 36)

The condition (2. 36) is fulfilled if one of the following statements holds (see [76,
Proposition 4.3]):

(i) dom gi = Gi, i = 1,...,m;

(ii) H and Gi are finite-dimensional and there exists x ∈ ri dom f such that Lix−
ri ∈ ri dom gi, i = 1,...,m.

Another useful and easily verifiable qualification condition guaranteeing that the
optimality conditions (2. 35) hold has the following formulation:

(iii) there exists x′ ∈ dom f ∩
⋂m
i=1 L

−1
i (ri + dom gi) such that gi is continuous at

Lix
′ − ri, i = 1,...,m (see [38, Remark 2.5] and [52]).

For other qualification conditions for (2. 31)-(2. 32) we refer the reader to con-
sult [26,37,38,40,131].

The following two statements are particular instances of Algorithm 2.1 and The-
orem 2.2, respectively.

Algorithm 2.3
Initialization: Choose (x0, v1,0,..., vm,0)∈H×G1×...×Gm and

τ0 > 0, σi,0 > 0, i = 1,...,m, such that τ0 < 2γ/η, λ ≥ η + 1,

τ0
∑m
i=1 σi,0‖Li‖2 ≤

√
1 + τ0(2γ − ητ0)/λ

θ0 := 1/
√

1+τ0(2γ−ητ0)/λ
For n ≥ 0 set: xn+1 = prox(τn/λ)f

[
xn − (τn/λ)

(∑m
i=1 L

∗
i vi,n +∇h(xn)− z

)]
yn = xn+1 + θn(xn+1 − xn)
vi,n+1 = proxσi,ng∗i [vi,n + σi,n(Liyn − ri)], i = 1,...,m

τn+1 = θnτn, θn+1 = 1/
√

1 + τn+1(2γ − ητn+1)/λ
σi,n+1 = σi,n/θn+1, i = 1,...,m.
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Theorem 2.4 Suppose that f + h is γ-strongly convex for some γ > 0 and let
(x, v1,..., vm) ∈ H× G1 × ... × Gm be a primal-dual solution to Problem 2.4. Then
the sequences generated by Algorithm 2.3 fulfill for any n ≥ 0 the inequality

λ‖xn+1 − x‖2

τ2
n+1

+

(
1− τ1

m∑
i=1

σi,0‖Li‖2
)

m∑
i=1

‖vi,n − vi‖2

τ1σi,0

≤ λ‖x1 − x‖2

τ2
1

+

m∑
i=1

‖vi,0 − vi‖2

τ1σi,0
+
‖x1 − x0‖2

τ2
0

+
2

τ0

m∑
i=1

〈Li(x1 − x0), vi,0 − vi〉.

Moreover, lim
n→+∞

nτn = λ
γ , hence one obtains for (xn)n≥0 an order of convergence

of O( 1
n ).

Remark 2.11 Due to the strong convexity of the objective function, the optimiza-
tion problem (2. 31) in the above theorem has a unique optimal solution (see for
example [26, Corollary 11.16]).

Remark 2.12 In case h(x) = 0 for all x ∈ H, one has to choose in Algorithm 2.3
as initial points τ0 > 0, σi,0 > 0, i = 1, ..,m, with

τ0

m∑
i=1

σi,0‖Li‖2 ≤
√

1 + 2τ0γ/λ

and λ ≥ 1 and to update the sequence (θn)n≥0 via

θn = 1/
√

1 + 2τnγ/λ

for all n ≥ 0, in order to obtain a suitable iterative scheme for solving the pair
of primal-dual optimization problems (2. 31)-(2. 32) with the same convergence
behavior as of Algorithm 2.3. In this situation, when chosing λ = 1, m = 1, z = 0
and ri = 0, one obtains an algorithm which is equivalent to the one presented by
Chambolle and Pock in [69, Algorithm 2].

We turn now our attention to the Algorithm 2.2 and consider to this end the
following primal-dual pair of convex optimization problems.

Problem 2.5 Let H be a real Hilbert space, z ∈ H, f ∈ Γ(H) and h : H → R a
convex and differentiable function with a η-Lipschitz continuous gradient for η > 0.
Let m be a strictly positive integer and for every i ∈ {1,...,m} let Gi be a real
Hilbert space, ri ∈ Gi, gi, li ∈ Γ(Gi) such that li is ν−1

i -strongly convex for νi > 0 and
Li : H → Gi a nonzero linear continuous operator. Consider the convex optimization
problem

inf
x∈H

{
f(x) +

m∑
i=1

(gi�li)(Lix− ri) + h(x)− 〈x, z〉

}
(2. 37)

and its Fenchel-type dual problem

sup
vi∈Gi, i=1,...,m

{
−
(
f∗�h∗

)(
z −

m∑
i=1

L∗i vi

)
−

m∑
i=1

(
g∗i (vi) + l∗i (vi) + 〈vi, ri〉

)}
.

(2. 38)
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Considering the maximal monotone operators

A = ∂f,C = ∇h,Bi = ∂gi and Di = ∂li, i = 1,...,m,

according to [26, Proposition 17.10, Theorem 18.15], D−1
i = ∇l∗i is a monotone and

νi-Lipschitz continuous operator for i = 1,...,m. The monotone inclusion problem
(2. 19) reads

find x ∈ H such that z ∈ ∂f(x) +

m∑
i=1

L∗i ((∂gi�∂li)(Lix− ri)) +∇h(x), (2. 39)

while the dual inclusion problem (2. 20) reads

find v1 ∈ G1,..., vm ∈ Gm such that ∃x ∈ H :

{
z −

∑m
i=1 L

∗
i vi ∈ ∂f(x) +∇h(x)

vi ∈ (∂gi�∂li)(Lix− ri), i = 1,...,m.
(2. 40)

If (x, v1,..., vm) ∈ H× G1 × ...× Gm is a primal-dual solution to (2. 39)-(2. 40),
namely,

z −
m∑
i=1

L∗i vi ∈ ∂f(x) +∇h(x) and vi ∈ (∂gi�∂li)(Lix− ri), i = 1,...,m, (2. 41)

then x is an optimal solution of the problem (2. 37), (v1,..., vm) is an optimal
solution of (2. 38) and the optimal objective values of the two problems coincide.
Notice that (2. 41) is nothing else than the system of optimality conditions for the
primal-dual pair of convex optimization problems (2. 37)-(2. 38).

The assumptions made on li guarantees that gi�li ∈ Γ(Gi) (see [26, Corollary
11.16, Proposition 12.14]) and, since dom(gi�li) = dom gi + dom li, i = 1,...,m,
one can consider the following qualification condition of interiority-type in order to
guarantee (2. 41)

(r1,..., rm) ∈ sqri

(
m∏
i=1

(dom gi + dom li)− {(L1x,..., Lmx) : x ∈ dom f}

)
. (2. 42)

Arguing as above, the condition (2. 42) is fulfilled if one of the following state-
ments holds (see [76, Proposition 4.3])

(i) dom gi + dom li = Gi, i = 1,...,m;

(ii) H and Gi are finite-dimensional and there exists x ∈ ri dom f such that Lix−
ri ∈ ri dom gi + ri dom li, i = 1,...,m.

The following two statements are particular instances of Algorithm 2.2 and The-
orem 2.3, respectively.

Algorithm 2.4
Initialization: Choose µ > 0 such that

µ ≤ min
{
γ2/η2, δ2

1/ν
2
1 ,..., δ

2
m/ν

2
m,
√
γ/ (

∑m
i=1 ‖Li‖2/δi)

}
,

τ = µ/(2γ), σi = µ/(2δi), i = 1, ..,m,
θ ∈ [2/(2 + µ), 1] and (x0, v1,0,..., vm,0) ∈ H × G1 × ...× Gm.

For n ≥ 0 set: xn+1 = proxτf
[
xn − τ

(∑m
i=1 L

∗
i vi,n +∇h(xn)− z

)]
yn = xn+1 + θ(xn+1 − xn)
vi,n+1 = proxσig∗i [vi,n + σi(Liyn −∇l∗i (vi,n)− ri)], i = 1,...,m.
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Theorem 2.5 Suppose that f + h is γ-strongly convex for γ > 0, g∗i + l∗i is δi-
strongly convex for δi > 0, i = 1,...,m, and let (x, v1,..., vm) ∈ H× G1 × ...× Gm be
a primal-dual solution to Problem 2.5. Then the sequences generated by Algorithm
2.4 fulfill for all n ≥ 0

γ‖xn+1 − x‖2 + (1− ω)

m∑
i=1

δi‖vi,n − vi‖2 ≤

ωn
(
γ‖x1 − x‖2 +

m∑
i=1

δi‖vi,0 − vi‖2

+
γ

2
ω‖x1 − x0‖2 + µω

m∑
i=1

〈Li(x1 − x0), vi,0 − vi〉
)
,

where 0 < ω = 2(1+θ)
4+µ < 1.

Remark 2.13 Due to the strong convexity assumptions, the optimization problems
(2. 37) and (2. 38) in the above theorem possess unique optimal solutions (see for
example [26, Corollary 11.16]).

2.1.4 Numerical experiments

We illustrate the applicability of the theoretical results in the context of two numer-
ical experiments in image processing and pattern recognition in cluster analysis.

Image processing

We compare the numerical performances of Algorithm 2.3 with the ones of other
iterative schemes recently introduced in the literature for image denoising. To this
end, we treat the nonsmooth regularized convex optimization problem

inf
x∈Rk

{
1

2
‖x− b‖2 + αTV (x)

}
, (2. 43)

where TV : Rk → R denotes a discrete total variation functional, α > 0 is a
regularization parameter and b ∈ Rk is the observed noisy image. Notice that we
consider images of size k = M ×N as vectors x ∈ Rk, where each pixel denoted by
xi,j , 1 ≤ i ≤ M , 1 ≤ j ≤ N , ranges in the closed interval from 0 (pure black) to 1
(pure white).

Two popular choices for the discrete total variation functional are the isotropic
total variation TViso : Rk → R,

TViso(x) =

M−1∑
i=1

N−1∑
j=1

√
(xi+1,j − xi,j)2 + (xi,j+1 − xi,j)2

+

M−1∑
i=1

|xi+1,N − xi,N |+
N−1∑
j=1

|xM,j+1 − xM,j | ,

and the anisotropic total variation TVaniso : Rk → R,

TVaniso(x) =

M−1∑
i=1

N−1∑
j=1

|xi+1,j − xi,j |+ |xi,j+1 − xi,j |

+

M−1∑
i=1

|xi+1,N − xi,N |+
N−1∑
j=1

|xM,j+1 − xM,j | ,
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(a) Noisy image, σ = 0.06 (b) Noisy image, σ = 0.12

(c) Denoised image, α = 0.035 (d) Denoised image, α = 0.07

Figure 2.1: The noisy
images in (a) and (b)
were obtained after
adding white Gaussian
noise with standard
deviation σ = 0.06
and σ = 0.12, respec-
tively, to the original
256 × 256 lichtenstein
test image. The outputs
of Algorithm 2.3 after
100 iterations when
solving (2. 43) with
isotropic total variation
are shown in (c) and (d),
respectively.

where in both cases reflexive (Neumann) boundary conditions are assumed. Obvi-
ously, in both situations the qualification condition stated in Theorem 2.4 is fulfilled.

Denote Y = Rk × Rk and define the linear operator L : Rk → Y, xi,j 7→
(L1xi,j , L2xi,j), where

L1xi,j =

{
xi+1,j − xi,j , if i < M
0, if i = M

and L2xi,j =

{
xi,j+1 − xi,j , if j < N
0, if j = N

.

The operator L represents a discretization of the gradient in horizontal and vertical
direction. One can easily check that ‖L‖2 ≤ 8 while for the expression of its adjoint
L∗ : Y → Rk we refer the reader to [68].

ε = 10−5 isotropic TV anisotropic TV

σ = 0.06 σ = 0.12 σ = 0.06 σ = 0.12

FB 10.55s (548) 25.78s (1335) 7.83s (517) 12.36s (829)
Algorithm 2.3 3.12s (177) 4.82s (275) 2.66s (202) 3.87s (290)
FBF 19.71s (698) 48.84s (1676) 15.39s (651) 24.60s (1040)
FBF Acc 3.51s (134) 5.94s (208) 3.51s (146) 4.82s (202)
AMA 19.34s (969) 45.94s (2313) 13.58s (901) 22.14s (1448)
AMA Acc 3.38s (132) 5.31s (205) 3.42s (154) 4.80s (230)
Nesterov (dual) 4.48s (146) 6.94s (230) 3.61s (172) 5.42s (249)
FISTA (dual) 3.26s (148) 5.02s (229) 3.14s (173) 4.52s (256)

Table 2.1: Performance evaluation for the images in Figure 2.1. The entries refer,
respectively, to the CPU times in seconds and the number of iterations in order to
attain a root-mean-square error for the primal iterates below the tolerance level of
ε = 10−5.
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For (y, z), (p, q) ∈ Y, we introduce the inner product

〈(y, z), (p, q)〉 =

M∑
i=1

N∑
j=1

yi,jpi,j + zi,jqi,j

and define ‖(y, z)‖× =
∑M
i=1

∑N
j=1

√
y2
i,j + z2

i,j . One can check that ‖ ·‖× is a norm

on Y and that for every x ∈ Rn it holds

TViso(x) = ‖Lx‖×. (2. 44)

The conjugate function (‖ · ‖×)∗ : Y → R of ‖ · ‖× is for every (p, q) ∈ Y given by

(‖ · ‖×)∗(p, q) =

{
0, if ‖(p, q)‖×∗ ≤ 1
+∞, otherwise

,

where

‖(p, q)‖×∗ = sup
‖(y,z)‖×≤1

〈(p, q), (y, z)〉 = max
1≤i≤M
1≤j≤N

√
p2
i,j + q2

i,j .

Therefore, when considering the isotropic total variation, the problem (2. 43)
can be formulated as

inf
x∈Rk

{h(x) + g(Lx)} , (2. 45)

where h : Rk → R,
h(x) =

1

2
‖x− b‖2

is 1-strongly convex with 1-Lipschitz continuous gradient, and g : Y → R is defined
as

g(u, v) = α‖(u, v)‖×.

One can show (see [58]) that g∗(p, q) = δS(p, q) for every (p, q) ∈ Y, where

S =

(p, q) ∈ Y : max
1≤i≤M
1≤j≤N

√
p2
i,j + q2

i,j ≤ α

 .

Moreover, by taking (p, q) ∈ Y and σ > 0, we have

proxσg∗(p, q) = projS (p, q) ,

the projection operator projS : Y → S being defined via

(pi,j , qi,j) 7→ α
(pi,j , qi,j)

max
{
α,
√
p2
i,j + q2

i,j

} , 1 ≤ i ≤M, 1 ≤ j ≤ N.

On the other hand, when considering the anisotropic total variation, the problem
(2. 43) can be formulated as

inf
x∈Rk

{h(x) + g̃(Lx)} , (2. 46)

where the function h is taken as above and g̃ : Y → R is defined as

g̃(u, v) = α‖(u, v)‖1.
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For every (p, q) ∈ Y we have g̃∗(p, q) = δ[−α,α]k×[−α,α]k(p, q) and therefore

proxσg̃∗1 (p, q) = proj[−α,α]k×[−α,α]k(p, q).

We consider the lichtenstein test image of size 256 times 256 and obtain the
corrupted images shown in Figure 2.1 by adding white Gaussian noise with standard
deviation σ = 0.06 and σ = 0.12, respectively. We then solve (2. 43) by making
use of Algorithm 2.3 and by taking into account both instances of the discrete
total variation functional. For the picture with noise level σ = 0.06, we choose the
regularization parameter α = 0.035, while, in the case when σ = 0.12, we opted
for α = 0.07. As initial choices for the parameters occuring in Algorithm 2.3, we
let γ = 0.35, η = 1, λ = η + 1, τ0 = 0.6 2γ

η , and σ0 = 1
‖L‖2θ0τ0 . The reconstructed

images after 100 iterations for isotropic total variation are shown in Figure 2.1.
We compare Algorithm 2.3 from the point of view of the CPU time in seconds

which is required in order to attain a root-mean-square error (RMSE) below the tol-
erance ε = 10−5 with respect to the primal iterates. Therefore, Table 2.1 shows the
achieved results where the comparison is made with the foward-backward method
(FB) by Vũ in [130], the foward-backward-forward method (FBF) due to Combettes
and Pesquet in [76] and its acceleration (FBF Acc) proposed in [58], the alternating
minimization algorithm (AMA) from [128] and its Nesterov type (cf. [105]) acceler-
ation (AMA Acc), as well as the FISTA (cf. [28]) and Nesterov method (cf. [107]),
both operating on the dual problem.

As supported by Table 2.1, Algorithm 2.3 competes well against all these meth-
ods and provides an accelerated behavior when compared with the forward-backward
method by Vũ in Theorem 2.1. In both of these algorithms, we made use of their
ability to process the continuously differentiable function x 7→ 1

2‖x − b‖2 via a
forward evaluation of its gradient.

Clustering

In cluster analysis one aims for grouping a set of points such that points within
the same group are more similar to each other (usually measured via distance func-
tions) than to points in other groups. Clustering can be formulated as a convex
optimization problem (see, for instance, [73, 92, 96]). In this example, we consider
the minimization problem

inf
xi∈Rn, i=1,...,m

1

2

m∑
i=1

‖xi − ui‖2 + γ
∑
i<j

ωij‖xi − xj‖p

 , (2. 47)

where γ ∈ R+ is a tuning parameter, p ∈ {1, 2} and ωij ∈ R+ represent weights
on the terms ‖xi − xj‖p, for i, j = 1, . . . ,m, i < j. For each given point ui ∈ Rn,
i = 1, . . . ,m, the variable xi ∈ Rn represents the associated cluster center. Since
the objective function is strongly convex, there exists a unique solution to (2. 47).

The tuning parameter γ ∈ R+ plays a central role within the clustering problem.
Taking γ = 0, each cluster center xi will coincide with the associated point ui. As γ
increases, the cluster centers will start to coalesce, where two points ui, uj are said
to belong to the same cluster when xi = xj . One finally obtains a single cluster
containing all points when γ becomes sufficiently large.

Moreover, the choice of the weights is important as well, since cluster centers
may coalesce immediately as γ passes certain critical values. In terms of our weight
selection, we use a K-nearest neighbors strategy, as proposed in [73]. Therefore,
whenever i, j = 1, ...,m, i < j, we set the weight to ωij = ιKij exp(−φ‖xi − xj‖22),
where

ιKij =

{
1, if j is among i’s K-nearest neighbors or vice versa,
0, otherwise.
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Figure 2.2: Clustering two interlocking
half moons. The colors (resp. the shapes)
show the correct affiliations.

p = 2, γ = 5.2 p = 1, γ = 4

ε = 10−4 ε = 10−8 ε = 10−4 ε = 10−8

FB 2.48s (1353) 5.72s (3090) 2.01s (1092) 4.05s (2226)
Algorithm 2.3 2.04s (1102) 4.11s (2205) 1.74s (950) 3.84s (2005)
FBF 7.67s (2123) 17.58s (4879) 6.33s (1781) 13.22s (3716)
FBF Acc 5.05s (1384) 10.27s (2801) 4.83s (1334) 9.98s (2765)
AMA 13.53s (7209) 31.09s (16630) 11.31s (6185) 23.85s (13056)
AMA Acc 3.10s (1639) 15.91s (8163) 2.51s (1392) 12.95s (7148)
Nesterov (dual) 7.85s (3811) 42.69s (21805) 7.46s (3936) > 190s (> 105)
FISTA (dual) 7.55s (4055) 51.01s (27356) 6.55s (3550) 47.81s (26069)

Table 2.2: Performance evaluation for the clustering problem. The entries refer
to the CPU times in seconds and the number of iterations, respectively, needed in
order to attain a root mean squared error for the iterates below the tolerance ε.

We consider the values K = 10 and φ = 0.5, which are the best ones reported in [73]
on a similar dataset.

Let k be the number of nonzero weights ωij . Then, one can introduce a linear
operator A : Rmn → Rkn, such that problem (2. 47) can be equivalently written as

inf
x∈Rmn

{h(x) + g(Ax)} , (2. 48)

the function h being 1-strongly convex and differentiable with 1-Lipschitz continuous
gradient. Also, by taking p ∈ {1, 2}, the proximal points with respect to g∗ admit
explicit representations.

For our numerical tests we consider the standard dataset consisting of two in-
terlocking half moons in R2, each of them being composed of 100 points (see Figure
2.2). The stopping criterion asks the root-mean-square error (RMSE) to be less
than or equal to a given bound ε which is either ε = 10−4 or ε = 10−8. As tuning
parameters we use γ = 4 for p = 1 and γ = 5.2 for p = 2 since both choices lead to
a correct separation of the input data into the two half moons.

By taking into consideration the results given in Table 2.2, it shows that Al-
gorithm 2.3 performs slightly better than the forward-backward (FB) method pro-
posed in [130]. One can also see that the acceleration of the forward-backward-
forward (FBF) has a positive effect on both CPU times and required iterations
compared with the regular method. The alternating minimization algorithm (AMA,
cf. [128]) converges slow in this example. Its Nesterov-type acceleration (cf. [105]),
however, performs better. The two accelerated first-order methods FISTA (cf. [28])
and the one relying in Nesterov’s scheme (cf. [107]), which are both employed on
the dual problem, perform surprisingly bad in this case.
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2.2 On the convergence rate of a forward-backward
type primal-dual splitting algorithm for con-
vex optimization problems

The aim of this section is to investigate the convergence property of the sequence of
objective function values of the primal-dual splitting algorithm stated in Theorem
2.1 in the context of convex optimization problems and their Fenchel-type dual.
By making use of the so-called restricted primal-dual gap function attached to the
problem, we are able to prove a convergence rate of order O(1/n). The results are
formulated in the spirit of the ones given in [69] in a more particular setting.

The starting point of our investigation is the following problem.

Problem 2.6 Let H be a real Hilbert space, z ∈ H, f ∈ Γ(H) and h : H → R
a convex and differentiable function with a η−1-Lipschitz continuous gradient for
η > 0. Let m be a strictly positive integer and for i = 1, ...,m, let Gi be a real
Hilbert space, ri ∈ Gi, gi, li ∈ Γ(Gi) such that li is νi-strongly convex for νi > 0 and
Li : H → Gi a nonzero linear continuous operator. Consider the convex optimization
problem

inf
x∈H

{
f(x) +

m∑
i=1

(gi�li)(Lix− ri) + h(x)− 〈x, z〉

}
(2. 49)

and its Fenchel-type dual problem

sup
vi∈Gi, i=1,...,m

{
−
(
f∗�h∗

)(
z −

m∑
i=1

L∗i vi

)
−

m∑
i=1

(
g∗i (vi) + l∗i (vi) + 〈vi, ri〉

)}
.

(2. 50)

The following result is an adaption of [130, Theorem 3.1] to Problem 2.6 to the
error-free case and when λn = 1 for all n ≥ 0.

Theorem 2.6 (see [130]) In Problem 2.6 suppose that

z ∈ ran

(
∂f +

m∑
i=1

L∗i
(
(∂gi�∂li)(Li · −ri)

)
+∇h

)
. (2. 51)

Let τ and σi, i = 1,...,m, be strictly positive numbers such that

2 ·min{τ−1, σ−1
1 ,..., σ−1

m } ·min{η, ν1,..., νm} ·

1−

√√√√τ

m∑
i=1

σi‖Li‖2

 > 1. (2. 52)

Let (x0, v1,0,..., vm,0) ∈ H× G1 ×...× Gm and for all n ≥ 0 set:

xn+1 = proxτf
[
xn − τ

(∑m
i=1 L

∗
i vi,n +∇h(xn)− z

)]
yn = 2xn+1 − xn
vi,n+1 = proxσig∗i [vi,n + σi(Liyn −∇l∗i (vi,n)− ri)], i = 1,...,m.

Then the following statements are true:

(a) there exist x ∈ H, an optimal solution to (2. 49), and (v1,..., vm) ∈ G1 ×...×
Gm, an optimal solution to (2. 50), such that the optimal objective values of
the two problems coincide, the optimality conditions

z −
m∑
i=1

L∗i vi ∈ ∂f(x) +∇h(x) and vi ∈ (∂gi�∂li)(Lix− ri), i = 1,...,m

(2. 53)
are fulfilled and xn ⇀ x and (v1,n,..., vm,n) ⇀ (v1,..., vm) as n→ +∞;
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(b) if h is strongly convex, then xn → x as n→ +∞;

(c) if l∗i is strongly convex for some i ∈ {1, ...,m}, then vi,n → vi as n→ +∞.

Before we proceed, some comments are in order.

Remark 2.14 Let us notice that the relation (2. 51) in the above theorem is ful-
filled if the primal problem (2. 49) has an optimal solution and the regularity con-
dition (2. 42) holds. Further, let us discuss some conditions ensuring the existence
of a primal optimal solution. Suppose that the primal problem (2. 49) is feasible,
which means that its optimal objective value is not identical +∞. The existence of
optimal solutions for (2. 49) is guaranteed if, for instance, f +h+ 〈·,−z〉 is coercive
(that is lim‖x‖→∞(f + h+ 〈·,−z〉)(x) = +∞) and for all i = 1, ...,m, gi is bounded
from below. Indeed, under these circumstances, the objective function of (2. 49)
is coercive (use also [26, Corollary 11.16 and Proposition 12.14] to show that for
all i = 1, ...,m, gi�li is bounded from below and gi�li ∈ Γ(Gi)) and the statement
follows via [26, Corollary 11.15]. On the other hand, if f + h is strongly convex,
then the objective function of (2. 49) is strongly convex, too, thus (2. 49) has a
unique optimal solution (see [26, Corollary 11.16]).

Remark 2.15 In case z = 0, h ≡ 0, ri = 0 and li = δ{0} for all i = 1, ...,m, the
optimization problems (2. 49) and (2. 50) become

inf
x∈H

{
f(x) +

m∑
i=1

(gi ◦ Li)(x)

}
(2. 54)

and, respectively,

sup
vi∈Gi, i=1,...,m

{
−f∗

(
−

m∑
i=1

L∗i vi

)
−

m∑
i=1

g∗i (vi)

}
. (2. 55)

It is mentioned in [130, Remark 3.3] that the convergence results in Theorem 2.6
hold if one replaces (2. 52) by the condition

τ

m∑
i=1

σi‖Li‖2 < 1. (2. 56)

The convergence (of an equivalent form) of the algorithm obtained in this setting
has been investigated also in [52]. Moreover, the case m = 1 has been addressed
in [69].

2.2.1 Convergence rate for the objective function values

In the setting of Problem 2.6 we introduce for B1 ⊆ H and B2 ⊆ G1×...×Gm given
nonempty sets the restricted primal-dual gap function GB1,B2

: H×G1×...×Gm → R
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defined by

GB1,B2(x, v1, ..., vm) =

sup
(v′1,...,v

′
m)∈B2

{
m∑
i=1

〈Lix− ri, v′i〉+ f(x) + h(x)− 〈x, z〉 −
m∑
i=1

(
g∗i (v′i) + l∗i (v

′
i)
)}

− inf
x′∈B1

{
m∑
i=1

〈Lix′ − ri, vi〉+ f(x′) + h(x′)− 〈x′, z〉 −
m∑
i=1

(
g∗i (vi) + h∗i (vi)

)}
= f(x) + h(x)− 〈x, z〉

+ sup
(v′1,...,v

′
m)∈B2

[
m∑
i=1

〈Lix− ri, v′i〉 −
m∑
i=1

(
g∗i (v′i) + l∗i (v

′
i)
)]

−
{
−

m∑
i=1

(
g∗i (vi) + l∗i (vi) + 〈vi, ri〉

)
+ inf
x′∈B1

[ m∑
i=1

〈Lix′, vi〉+ f(x′) + h(x′)− 〈x′, z〉
]}
.

Remark 2.16 If we consider the primal-dual pair of convex optimization problems
from Remark 2.15 in case m = 1, then the restricted primal-dual gap function
defined above becomes

GB1,B2
(x, v1) =

sup
v′∈B2

{
〈Lx− r, v′〉+ f(x) + h(x)− 〈x, z〉 −

(
g∗(v′) + l∗(v′)

)}
− inf
x′∈B1

{
〈Lx′ − r, v1〉+ f(x′) + h(x′)− 〈x′, z〉 −

(
g∗(v1) + h∗(v1)

)}
,

for B1 ⊆ H and B2 ⊆ G1, which has been considered in [69].

Remark 2.17 The restricted primal-dual gap function defined above has been used
in [58] in order investigate the convergence rate for the sequence of objective function
values for the primal-dual splitting algorithm of forward-backward-forward type
proposed in [76].

Finally, notice that if (x, v1,..., vm) ∈ H × G1 ×...× Gm satisfies the optimality
conditions (2. 53), then GB1,B2(x, v1, ..., vm) ≥ 0 (see also [58,69]).

We are now able to state the main result of this section.

Theorem 2.7 In Problem 2.6 suppose that

z ∈ ran

(
∂f +

m∑
i=1

L∗i
(
(∂gi�∂li)(Li · −ri)

)
+∇h

)
. (2. 57)

Let τ and σi, i = 1,...,m, be strictly positive numbers such that

min{τ−1, σ−1
1 ,..., σ−1

m } ·min{η, ν1,..., νm} ·

1−

√√√√τ

m∑
i=1

σi‖Li‖2

 > 1. (2. 58)

Let (x0, v1,0,..., vm,0) ∈ H× G1 ×...× Gm and for all n ≥ 0 set:

xn+1 = proxτf
[
xn − τ

(∑m
i=1 L

∗
i vi,n +∇h(xn)− z

)]
yn = 2xn+1 − xn
vi,n+1 = proxσig∗i [vi,n + σi(Liyn −∇l∗i (vi,n)− ri)], i = 1,...,m.

Then the following statements are true:
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(a) there exist x ∈ H, an optimal solution to (2. 49), and (v1,..., vm) ∈ G1 ×...×
Gm, an optimal solution to (2. 50), such that the optimal objective values of
the two problems coincide, the optimality conditions

z −
m∑
i=1

L∗i vi ∈ ∂f(x) +∇h(x) and vi ∈ (∂gi�∂li)(Lix− ri), i = 1,...,m

(2. 59)
are fulfilled and xn ⇀ x and (v1,n,..., vm,n) ⇀ (v1,..., vm) as n→ +∞;

(b) if B1 ⊆ H and B2 ⊆ G1×... × Gm are nonempty bounded sets, then for

xN = 1
N

∑N
n=1 xn+1 and vNi = 1

N

∑N
n=1 vi,n we have (xN , vN1 , ..., v

N
m) ⇀

(x, v1, ..., vm) as N → +∞ and for all N ≥ 2

GB1,B2(xN , vN1 , ..., v
N
m) ≤ C(B1, B2)

N
,

where

C(B1, B2) = sup
x∈B1

{ 1

2τ
‖x1 − x‖2

}
+

√
τ
∑m
i=1 σi‖Li‖2
2τ

‖x1 − x0‖2 +

sup
(v1,...,vm)∈B2

{ m∑
i=1

1

2σi
‖vi,0 − vi‖2 +

m∑
i=1

〈Li(x1 − x0), vi,0 − vi〉
}

;

(c) if gi is Lipschitz continuous on Gi for every i = 1, ...,m, then for all N ≥ 2
we have

0 ≤

(
f(xN ) +

m∑
i=1

(gi�li)(Lix
N − ri) + h(xN )− 〈xN , z〉

)

−

(
f(x) +

m∑
i=1

(gi�li)(Lix− ri) + h(x)− 〈x, z〉

)

≤ C(B1, B2)

N
, (2. 60)

where B1 is any bounded and weak sequentially closed set containing the se-
quence (xn)n∈N (which is the case if for instance B1 is bounded, convex and
closed with respect to the strong topology of H and contains the sequence
(xn)n∈N) and B2 is any bounded set containing dom g∗1 × ...× dom g∗m;

(d) if dom gi+dom li = Gi for every i = 1, ...,m and one of the following conditions
is fulfilled:

(d1) H is finite-dimensional;

(d2) Gi is finite-dimensional for every i = 1, ...,m;

(d3) h is strongly convex;

then the inequality (2. 60) holds for all N ≥ 2, where B1 is taken as in (c)
and B2 is any bounded set containing Πm

i=1 ∪N≥2 ∂(gi�li)(LixN − ri).

Proof. (a) The statement is a direct consequence of Theorem 2.6, since condition
(2. 58) implies (2. 52).

(b) The fact that (xN , vN1 , ..., v
N
m) ⇀ (x, v1, ..., vm) as N → +∞ follows from the

Stolz-Cesàro Theorem. Let us show now the inequality concerning the restricted
primal-dual gap function. To this aim we fix for the beginning n ≥ 0.
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From the definition of the iterates we derive

1

τ
(xn+1 − xn+2)−

(
m∑
i=1

L∗i vi,n+1 +∇h(xn+1)− z

)
∈ ∂f(xn+2),

hence the definition of the subdifferential delivers the inequality

f(x) ≥ f(xn+2) +
1

τ
〈xn+1 − xn+2, x− xn+2〉 −

〈
m∑
i=1

L∗i vi,n+1 − z, x− xn+2

〉
−〈∇h(xn+1), x− xn+2〉 ∀x ∈ H. (2. 61)

Similarly, we deduce

1

σi
(vi,n − vi,n+1) + Liyn −∇l∗i (vi,n)− ri ∈ ∂g∗i (vi,n+1) i = 1, ...,m,

hence for all i = 1, ...,m

g∗i (vi) ≥ g∗i (vi,n+1) +
1

σi
〈vi,n − vi,n+1, vi − vi,n+1〉+ 〈Liyn − ri, vi − vi,n+1〉

−〈∇l∗i (vi,n), vi − vi,n+1〉 ∀vi ∈ Gi. (2. 62)

We claim that

h(x)− h(xn+2)− 〈∇h(xn+1), x− xn+2〉 ≥ −
η−1

2
‖xn+2 − xn+1‖2 ∀x ∈ H. (2. 63)

Indeed, we have

h(x)− h(xn+2)− 〈∇h(xn+1), x− xn+2〉
≥ h(xn+1) + 〈∇h(xn+1), x− xn+1〉 − h(xn+2)− 〈∇h(xn+1), x− xn+2〉
= h(xn+1)− h(xn+2) + 〈∇h(xn+1), xn+2 − xn+1〉

≥ −η
−1

2
‖xn+2 − xn+1‖2,

where the first inequality holds since h is convex and the second one follows follows
from Lemma 1.4. Hence (2. 63) holds.

Similarly, one can prove that for all i = 1, ...,m

l∗i (vi)−l∗i (vi,n+1)−〈∇l∗i (vi,n), vi−vi,n+1〉 ≥ −
ν−1
i

2
‖vi,n+1−vi,n‖2 ∀vi ∈ Gi. (2. 64)

By adding the inequalities (2. 61)–(2. 64) and noticing that

〈xn+1 − xn+2, x− xn+2〉 = −‖xn+1 − x‖2

2
+
‖xn+1 − xn+2‖2

2
+
‖xn+2 − x‖2

2

and

〈vi,n − vi,n+1, vi − vi,n+1〉 = −‖vi,n − vi‖
2

2
+
‖vi,n+1 − vi,n‖2

2
+
‖vi,n+1 − vi‖2

2
,



2.2 Convergence rate for a primal-dual splitting algorithm 47

we deduce that for all (x, v1, ..., vm) ∈ H× G1 ×...× Gm

‖xn+1 − x‖2

2τ
+

m∑
i=1

‖vi,n − vi‖2

2σi

≥ ‖xn+2 − x‖2

2τ
+

m∑
i=1

‖vi,n+1 − vi‖2

2σi

+
1− η−1τ

2τ
‖xn+1 − xn+2‖2 +

m∑
i=1

1− ν−1
i σi

2σi
‖vi,n+1 − vi,n‖2

+

(
m∑
i=1

〈Lixn+2 − ri, vi〉+ f(xn+2) + h(xn+2)− 〈xn+2, z〉 −
m∑
i=1

(
g∗i (vi) + l∗i (vi)

))

−

(
m∑
i=1

〈Lix− ri, vi,n+1〉+ f(x) + h(x)− 〈x, z〉 −
m∑
i=1

(
g∗i (vi,n+1) + l∗i (vi,n+1)

))

+

m∑
i=1

〈Li(xn+2 − yn), vi,n+1 − vi〉.

Taking into account the definition of yn, we get the following estimation for the last
term:

〈Li(xn+2 − yn), vi,n+1 − vi〉
=〈Li(xn+2 − xn+1), vi,n+1 − vi〉 − 〈Li(xn+1 − xn), vi,n − vi〉

+ 〈Li(xn+1 − xn), vi,n − vi,n+1〉
≥〈Li(xn+2 − xn+1), vi,n+1 − vi〉 − 〈Li(xn+1 − xn), vi,n − vi〉

−

(
σi‖Li‖2

2
√
τ
∑m
i=1 σi‖Li‖2

‖xn+1 − xn‖2 +

√
τ
∑m
i=1 σi‖Li‖2
2σi

‖vi,n+1 − vi,n‖2
)
,

hence we obtain the inequality

‖xn+1 − x‖2

2τ
+

m∑
i=1

‖vi,n − vi‖2

2σi

≥ ‖xn+2 − x‖2

2τ
+

m∑
i=1

‖vi,n+1 − vi‖2

2σi

+
1− η−1τ

2τ
‖xn+1 − xn+2‖2 −

√
τ
∑m
i=1 σi‖Li‖2
2τ

‖xn+1 − xn‖2

+

m∑
i=1

1− ν−1
i σi −

√
τ
∑m
i=1 σi‖Li‖2

2σi
‖vi,n+1 − vi,n‖2

+

(
m∑
i=1

〈Lixn+2 − ri, vi〉+ f(xn+2) + h(xn+2)− 〈xn+2, z〉 −
m∑
i=1

(
g∗i (vi) + l∗i (vi)

))

−

(
m∑
i=1

〈Lix− ri, vi,n+1〉+ f(x) + h(x)− 〈x, z〉 −
m∑
i=1

(
g∗i (vi,n+1) + l∗i (vi,n+1)

))

+

m∑
i=1

(
〈Li(xn+2 − xn+1), vi,n+1 − vi〉 − 〈Li(xn+1 − xn), vi,n − vi〉

)
.
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Summing up the above inequality from n = 0 to N − 1, where N ∈ N, N ≥ 2, we
get

‖x1 − x‖2

2τ
+

m∑
i=1

‖vi,0 − vi‖2

2σi

≥ ‖xN+1 − x‖2

2τ
+

m∑
i=1

‖vi,N − vi‖2

2σi

+

N−1∑
n=1

1− η−1τ

2τ
‖xn+1 − xn‖2 +

1− η−1τ

2τ
‖xN − xN+1‖2

−
√
τ
∑m
i=1 σi‖Li‖2
2τ

N−1∑
n=1

‖xn+1 − xn‖2 −
√
τ
∑m
i=1 σi‖Li‖2
2τ

‖x1 − x0‖2

+

N−1∑
n=0

m∑
i=1

1− ν−1
i σi −

√
τ
∑m
i=1 σi‖Li‖2

2σi
‖vi,n+1 − vi,n‖2

+

N∑
n=1

(
m∑
i=1

〈Lixn+1 − ri, vi〉+ f(xn+1) + h(xn+1)− 〈xn+1, z〉 −
m∑
i=1

(
g∗i (vi) + l∗i (vi)

))

−
N∑
n=1

(
m∑
i=1

〈Lix− ri, vi,n〉+ f(x) + h(x)− 〈x, z〉 −
m∑
i=1

(
g∗i (vi,n) + l∗i (vi,n)

))

+

m∑
i=1

(
〈Li(xN+1 − xN ), vi,N − vi〉 − 〈Li(x1 − x0), vi,0 − vi〉

)
.

Further, for the last term we use for all i = 1, ...,m the estimate

〈Li(xN+1 − xN ), vi,N − vi〉

≥ −
(

(1− η−1τ)σi‖Li‖2

2τ
∑m
i=1 σi‖Li‖2

‖xN+1 − xN‖2 +
τ
∑m
i=1 σi‖Li‖2

2σi(1− η−1τ)
‖vi,N − vi‖2

)
(notice that 1− η−1τ > 0 due to (2. 58)) and conclude that for all (x, v1, ..., vm) ∈
H× G1 ×...× Gm

‖xN+1 − x‖2

2τ
+

m∑
i=1

1− η−1τ − τ
∑m
i=1 σi‖Li‖2

2σi
‖vi,N − vi‖2

+

N−1∑
n=1

1− η−1τ −
√
τ
∑m
i=1 σi‖Li‖2

2τ
‖xn+1 − xn‖2

+

N−1∑
n=0

m∑
i=1

1− ν−1
i σi −

√
τ
∑m
i=1 σi‖Li‖2

2σi
‖vi,n+1 − vi,n‖2

+

N∑
n=1

(
m∑
i=1

〈Lixn+1 − ri, vi〉+ f(xn+1) + h(xn+1)− 〈xn+1, z〉 −
m∑
i=1

(
g∗i (vi) + l∗i (vi)

))

−
N∑
n=1

(
m∑
i=1

〈Lix− ri, vi,n〉+ f(x) + h(x)− 〈x, z〉 −
m∑
i=1

(
g∗i (vi,n) + l∗i (vi,n)

))

≤ ‖x1 − x‖2

2τ
+

m∑
i=1

‖vi,0 − vi‖2

2σi

+

√
τ
∑m
i=1 σi‖Li‖2
2τ

‖x1 − x0‖2 +

m∑
i=1

〈Li(x1 − x0), vi,0 − vi〉.
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We can discard the first four terms in the left-hand side of the above inequality,
since due to (2. 58) we have

1− η−1τ −

√√√√τ

m∑
i=1

σi‖Li‖2 > 0 (2. 65)

and for all i = 1, ...,m

1− ν−1
i σi −

√√√√τ

m∑
i=1

σi‖Li‖2 > 0. (2. 66)

Thus we obtain for all (x, v1, ..., vm) ∈ H× G1 ×...× Gm that

N∑
n=1

(
m∑
i=1

〈Lixn+1 − ri, vi〉+ f(xn+1) + h(xn+1)− 〈xn+1, z〉 −
m∑
i=1

(
g∗i (vi) + l∗i (vi)

))

−
N∑
n=1

(
m∑
i=1

〈Lix− ri, vi,n〉+ f(x) + h(x)− 〈x, z〉 −
m∑
i=1

(
g∗i (vi,n) + l∗i (vi,n)

))

≤ ‖x1 − x‖2

2τ
+

m∑
i=1

‖vi,0 − vi‖2

2σi
+

√
τ
∑m
i=1 σi‖Li‖2
2τ

‖x1−x0‖2+

m∑
i=1

〈Li(x1−x0), vi,0−vi〉.

The conclusion follows by passing into the previous inequality to the supremum
over x ∈ B1 and (v1, ..., vm) ∈ B2 and by taking into account the definition of
(xN , vNi , ..., v

N
m) and the convexity of the functions f, h and g∗i , h

∗
i , i = 1, ...,m.

(c) According to [37, Proposition 4.4.6], the set dom g∗i is bounded for i =
1, ...,m. Since B1 is weak sequentially closed and xn ⇀ x, we have x ∈ B1.

Let be N ≥ 2 fixed. We get from (b) that

C(B1, B2)

N
≥ G(xN , vN1 , ..., v

N
m) ≥

f(xN ) + h(xN )− 〈xN , z〉+

m∑
i=1

sup
v′i∈dom g∗i

{
〈LixN − ri, v′i〉 − (g∗i (v′i) + l∗i (v

′
i)
}

−

(
m∑
i=1

〈Lix− ri, vNi 〉+ f(x) + h(x)− 〈x, z〉 −
m∑
i=1

(
g∗i (vNi ) + l∗i (v

N
i )
))

.

Further, since dom l∗i = Gi for i = 1, ...,m, it follows

sup
v′i∈dom g∗i

{
〈LixN − ri, v′i〉 − (g∗i (v′i) + l∗i (v

′
i)
}

= sup
v′i∈dom g∗i ∩dom l∗i

{
〈LixN − ri, v′i〉 − (g∗i (v′i) + l∗i (v

′
i)
}

= (g∗i + l∗i )
∗(Lix

N − ri) = (g∗∗i �l∗∗i )(Lix
N − ri) = (gi�li)(Lix

N − ri),

where we used [26, Proposition 15.2] and the celebrated Fenchel-Moreau Theorem
(see for example [26, Theorem 13.32]). Furthermore, the Young-Fenchel inequality
(see [26, Proposition 13.13]) guarantees that for all i = 1, ...,m

g∗i (vNi )+l∗i (v
N
i )−〈Lix−ri, vNi 〉 = (gi�hi)

∗(vNi )−〈Lix−ri, vNi 〉 ≥ −(gi�li)(Lix−ri)

and the conclusion follows.
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(d) We notice first that each of the conditions (d1),(d2) and (d3) implies that

Lix
N → Lix as N → +∞ for all i = 1, ...,m. (2. 67)

Indeed, in case of (d1) we use that xN ⇀ x as N → +∞, in case (d2) that
Lix

N ⇀ Lix as N → +∞ (which is a consequence of xN ⇀ x as N → +∞), while
in the last case we appeal Theorem 2.1(b).

We fix i ∈ {1, ...,m} and show first that ∪N≥1∂(gi�li)(LixN−ri) is a nonempty
bounded set. The function gi�li belongs to Γ(H), as already mentioned in Re-
mark 2.14. Further, as dom(gi�li) = dom gi + dom li = Gi, it follows that gi�li
is everywhere continuous (see [26, Corollary 8.30]) and, consequently, everywhere
subdifferentiable (see [26, Proposition 16.14(iv)]). Hence, the claim concerning the
nonemptiness of the set ∪N≥1∂(gi�li)(LixN − ri) is true. Moreover, since the sub-
differential of gi�li is locally bounded at Lix − ri (see [26, Proposition 16.14(iii)])
and Lix

N − ri → Lix − ri as N → +∞ we easily derive from [26, Proposition
16.14(iii) and (ii)] that the set ∪N≥1∂(gi�li)(LixN − ri) is bounded.

Now we prove that the inequality (2. 60) holds. Similarly as in (c), we have

C(B1, B2)

N
≥ G(xN , vN1 , ..., v

N
m) ≥

f(xN ) + h(xN )− 〈xN , z〉

+

m∑
i=1

sup
v′i∈∪N′≥2∂(gi�li)(LixN

′−ri)

{
〈LixN − ri, v′i〉 − (g∗i (v′i) + l∗i (v

′
i)
}

−

(
m∑
i=1

〈Lix− ri, vNi 〉+ f(x) + h(x)− 〈x, z〉 −
m∑
i=1

(
g∗i (vNi ) + l∗i (v

N
i )
))

.

Further, for all i = 1, ...,m and for all N ≥ 1 we have

sup
v′i∈∪N′≥2∂(gi�li)(LixN

′−ri)

{
〈LixN − ri, v′i〉 − (g∗i (v′i) + l∗i (v

′
i)
}

≥ sup
v′i∈∂(gi�li)(LixN−ri)

{
〈LixN − ri, v′i〉 − (g∗i (v′i) + l∗i (v

′
i)
}

= (gi�li)(Lix
N − ri),

where the last equality follows since ∂(gi�li)(LixN − ri) 6= ∅ via

〈LixN−ri, v′i〉−(g∗i (v′i)+l
∗
i (v
′
i)) = 〈LixN−ri, v′i〉−(gi�hi)

∗(v′i) = (gi�li)(Lix
N−ri),

which holds for every v′i ∈ ∂(gi�li)(LixN − ri) (see [26, Proposition 16.9]).
Using the same arguments as at the end of the proof of statement (c), the

conclusion follows. �

Remark 2.18 When considering the particular instance as described in Remark
2.15 with the additional assumption m = 1, similar results to Theorem 2.7 have
been reported in [69] for an equivalent form of the algorithm.

Remark 2.19 The conclusion of the above theorem remains true if condition (2. 58)
is replaced by (2. 52), (2. 65) and (2. 66). Moreover, if one works in the setting
of Remark 2.15, one can show that the conclusion of Theorem 2.7 remains valid if
instead of (2. 58) one assumes (2. 56).

Remark 2.20 Let us mention that in Theorem 2.7(c) and (d) one can chose for
B1 any bounded set containing x.
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Remark 2.21 If f is Lipschitz continuous, then, similarly to Theorem 2.7(c), one
can prove via Theorem 2.7(b) a convergence rate of order O(1/n) for the sequence
of values of the objective function of the dual problem (2. 38). The same conclusion
follows in case f has full domain and one of the conditions (d1), (d2) and (d3’) is
fulfilled, where (d3’) assumes that l∗i is strongly convex for any i = 1, ...,m.

Remark 2.22 For more recent advances concerning convergence rates for the ob-
jective function values via primal-dual splitting techniques we invite the reader to
consult [81, 82], where also nonergodic convergence results are reported and also
to [72], where a multi-step acceleration scheme in the sense of Nesterov is incorpo-
rated into the primal-dual method in order to increase the speed of convergence.

2.2.2 Numerical experiments

We illustrate the theoretical results obtained in the previous subsection by means
of a problem occurring in imaging. For the applications discussed in this section
the images have been normalized in order to make their pixels range in the closed
interval from 0 to 1.

TV-based image deblurring

The considered numerical experiment addresses an ill-conditioned linear inverse
problem which arises in image deblurring. For a given matrix A ∈ Rn×n describing
a blur operator and a given vector b ∈ Rn representing the blurred and noisy image,
the task is to estimate the unknown original image x ∈ Rn fulfilling

Ax ≈ b.

To this end we solve the following regularized convex minimization problem

inf
x∈[0,1]n

{
‖Ax− b‖1 + λ(TViso(x) + ‖x‖2)

}
, (2. 68)

where λ > 0 is a regularization parameter and TViso : Rn → R is the discrete
isotropic total variation functional. In this context, x ∈ Rn represents the vectorized
image X ∈ RM×N , where n = M ·N and xi,j denotes the normalized value of the
pixel located in the i-th row and the j-th column, for i = 1, . . . ,M and j = 1, . . . , N .

We invite the reader to consult the section corresponding to the numerical ex-
periments in chapter 2 for the definition of the isotropic total variational functional.
By using also the notations specified there, the optimization problem (2. 68) can
be written in the form of

inf
x∈Rn

{f(x) + g1(Ax) + g2(Lx) + h(x)},

where
f : Rn → R, f(x) = δ[0,1]n(x),

g1 : Rn → R, g1(y) = ‖y − b‖1 ,

g2 : Y → R, g2(y, z) = λ ‖(y, z)‖×
and

h : Rn → R, h(x) = λ‖x‖2

(notice that the functions li are taken to be δ{0} for i = 1, 2). For every p ∈ Rn, it
holds

g∗1(p) = δ[−1,1]n(p) + pT b,
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(a) Original image (b) Blurred and noisy image (c) Reconstructed image

Figure 2.3: Figure (a) shows the original 256 × 256 boat test image, figure (b) shows
the blurred and noisy image and figure (c) shows the averaged iterate generated by the
algorithm after 400 iterations.

while for every (p, q) ∈ Y, we have

g∗2(p, q) = δS(p, q),

with S = {(p, q) ∈ Y : ‖(p, q)‖×∗ ≤ λ}. Moreover, h is differentiable with η−1 := 2λ-
Lipschitz continuous gradient. We solved this problem by the algorithm considered
in Theorem 2.7 above and to this end we made use of the following formulae

proxγf (x) = proj[0,1]n (x) ∀x ∈ Rn

proxγg∗1 (p) = proj[−1,1]n (p− γb) ∀p ∈ Rn

proxγg∗2 (p, q) = projS (p, q) ∀(p, q) ∈ Y,

where γ > 0 and the projection operator projS : Y → S is defined as (see [58])

(pi,j , qi,j) 7→ λ
(pi,j , qi,j)

max
{
λ,
√
p2
i,j + q2

i,j

} , 1 ≤ i ≤M, 1 ≤ j ≤ N.

For the experiments we considered the 256×256 boat test image and constructed
the blurred image by making use of a Gaussian blur operator of size 9 × 9 and
standard deviation 4. In order to obtain the blurred and noisy image we added a
zero-mean white Gaussian noise with standard deviation 10−3. Figure 2.3 shows
the original boat test image and the blurred and noisy one. It also shows the image
reconstructed by the algorithm after 400 iterations in terms of the averaged iterate,
when taking as regularization parameter λ = 0.001 and by choosing as parameters
σ1 = 0.01, σ2 = 0.7, τ = 0.49. On the other hand, in Figure 2.4 a comparison of
the decrease of the objective function values is provided, in terms of the last and
averaged iterates, underlying the rate of convergence of order O(1/n) for the latter.



2.2 Convergence rate for a primal-dual splitting algorithm 53

10
0

10
1

10
2

10
−1

10
0

10
1

10
2

iterations

 

 

Last iterate
Averaged iterate
O(1/n)

Figure 2.4: The figure shows the relative error in terms of function values for both the
last and the averaged iterate generated by the algorithm after 400 iterations.
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Chapter 3

Splitting algorithms
involving inertial terms

In this chapter we introduce and investigate several inertial-type proximal-splitting
algorithms designed for solving highly structured monotone inclusion problems. In
Section 3.1 we propose an inertial version of the forward-backward-forward proxi-
mal splitting algorithm, while in Section 3.2 the attention is focused on primal-dual
algorithms of Douglas-Rachford-type. In Section 3.3 we formulate and investigate
an inertial forward-backward algorithm in the context of solving nonconvex opti-
mization problems with analytic futures.

The following convergence results will be used in the proof of the main results
in this chapter. These statements can be seen as generalizations of Lemma 1.2 and
turn out to be useful for proving the first property in the Opial Lemma.

Lemma 3.1 (see [3–5]) Let (ϕn)n∈N, (δn)n∈N and (αn)n∈N be sequences in [0,+∞)
such that ϕn+1 ≤ ϕn + αn(ϕn − ϕn−1) + δn for all n ≥ 1,

∑
n∈N δn < +∞ and

there exists a real number α with 0 ≤ αn ≤ α < 1 for all n ∈ N. Then the following
statements hold:

(i)
∑
n≥1[ϕn − ϕn−1]+ < +∞, where [t]+ = max{t, 0};

(ii) there exists ϕ∗ ∈ [0,+∞) such that limn→+∞ ϕn = ϕ∗.

An easy consequence of Lemma 3.1 is the following result.

Lemma 3.2 Let (ϕn)n∈N, (δn)n∈N, (αn)n∈N and (βn)n∈N be sequences in [0,+∞)
such that ϕn+1 ≤ −βn + ϕn + αn(ϕn − ϕn−1) + δn for all n ≥ 1,

∑
n∈N δn < +∞

and there exists a real number α with 0 ≤ αn ≤ α < 1 for all n ∈ N. Then the
following statements hold:

(i)
∑
n≥1[ϕn − ϕn−1]+ < +∞, where [t]+ = max{t, 0};

(ii) there exists ϕ∗ ∈ [0,+∞) such that limn→+∞ ϕn = ϕ∗;

(iii)
∑
n∈N βn < +∞.

3.1 Tseng’s type inertial primal-dual algorithms
for monotone inclusions

In this section we propose an inertial forward-backward-forward-type proximal split-
ting algorithms associated to a monotone inclusion problem. An essential argument

55
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in the favor of Tseng’s type splitting algorithms is given by the fact that they can
be used when solving a larger class of monotone inclusion problems. This is for
instance of importance when considering primal-dual splitting methods, as shown
by the approach described in [62].

3.1.1 An inertial forward-backward-forward splitting algo-
rithm

This section is dedicated to the formulation of an inertial forward-backward-forward
splitting algorithm which approaches the set of zeros of the sum of two maximally
monotone operators, one of them being single-valued and Lipschitz continuous, and
to the investigation of its convergence properties.

Theorem 3.1 Let A : H⇒ H be a maximally monotone operator and B : H → H
a monotone and β-Lipschitz continuous operator for some β > 0. Suppose that
zer(A+B) 6= ∅ and consider the following iterative scheme:

(∀n ≥ 1)

{
pn = JλnA[xn − λnBxn + α1,n(xn − xn−1)]
xn+1 = pn + λn(Bxn −Bpn) + α2,n(xn − xn−1),

where x0 and x1 are arbitrarily chosen in H. Consider λ, σ > 0 and α1, α2 ≥ 0
such that

12α2
2 + 9(α1 + α2) + 4σ < 1 and λ ≤ λn ≤

1

β

√
1− 12α2

2 − 9(α1 + α2)− 4σ

12α2
2 + 8(α1 + α2) + 4σ + 2

∀n ≥ 1

(3. 1)
and for i = 1, 2 the nondecreasing sequences (αi,n)n≥1 fulfilling

0 ≤ αi,n ≤ αi ∀n ≥ 1.

Then there exists x ∈ zer(A+B) such that the following statements are true:

(a)
∑
n∈N ‖xn+1 − xn‖2 < +∞ and

∑
n≥1 ‖xn − pn‖2 < +∞;

(b) xn ⇀ x and pn ⇀ x as n→ +∞;

(c) Suppose that one of the following conditions is satisfied:

(i) A+B is demiregular at x;

(ii) A or B is uniformly monotone at x.

Then xn → x and pn → x as n→ +∞.

Proof. Let z be a fixed element in zer(A+B), that is −Bz ∈ Az, and n ≥ 1. From
the definition of the resolvent we deduce

1

λn
(xn − pn)−Bxn +

α1,n

λn
(xn − xn−1) ∈ Apn.

Further, taking into account the relation between pn and xn+1 in the algorithm, we
obtain

1

λn
(xn − xn+1)−Bpn +

α1,n + α2,n

λn
(xn − xn−1) ∈ Apn. (3. 2)

The monotonicity of A delivers the inequality

0 ≤
〈

1

λn
(xn − xn+1)−Bpn +

α1,n + α2,n

λn
(xn − xn−1) +Bz, pn − z

〉
,
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hence

0 ≤ 1

λn
〈xn − xn+1, pn − z〉+ 〈Bz −Bpn, pn − z〉

+
α1,n + α2,n

λn
〈xn − xn−1, pn − z〉. (3. 3)

Since B is monotone, we have

〈Bz −Bpn, pn − z〉 ≤ 0.

Moreover,

〈xn − xn+1, pn − z〉 = 〈xn − xn+1, pn − xn+1〉+ 〈xn − xn+1, xn+1 − z〉

=
‖xn − xn+1‖2

2
+
‖pn − xn+1‖2

2
− ‖xn − pn‖

2

2

+
‖xn − z‖2

2
− ‖xn − xn+1‖2

2
− ‖xn+1 − z‖2

2
.

In a similar way we obtain

〈xn − xn−1, pn − z〉 = 〈xn − xn−1, xn − z〉+ 〈xn − xn−1, pn − xn〉

=
‖xn − xn−1‖2

2
+
‖xn − z‖2

2
− ‖xn−1 − z‖2

2

+
‖pn − xn−1‖2

2
− ‖xn − xn−1‖2

2
− ‖xn − pn‖

2

2
.

Further, by using that B is β-Lipschitz continuous, we have

‖xn+1 − pn‖2 ≤ 2λ2
nβ

2‖xn − pn‖2 + 2α2
2,n‖xn − xn−1‖2

and
‖pn − xn−1‖2 ≤ 2‖xn − pn‖2 + 2‖xn − xn−1‖2.

The above estimates together with (3. 3) imply

0 ≤
(

1

2λn
+
α1,n + α2,n

2λn

)
‖xn − z‖2

− 1

2λn
‖xn+1 − z‖2 −

α1,n + α2,n

2λn
‖xn−1 − z‖2

+

(
λnβ

2 − 1

2λn
+
α1,n + α2,n

λn
− α1,n + α2,n

2λn

)
‖xn − pn‖2

+

(
α2

2,n

λn
+
α1,n + α2,n

λn

)
‖xn − xn−1‖2,

from which we further obtain, after multiplying with 2λn,

‖xn+1 − z‖2 − (1 + α1,n + α2,n)‖xn − z‖2 + (α1,n + α2,n)‖xn−1 − z‖2

≤ −(1− α1,n − α2,n − 2λ2
nβ

2)‖xn − pn‖2

+ 2(α2
2,n + α1,n + α2,n)‖xn − xn−1‖2. (3. 4)

By using the bounds given for the sequences (λn)n≥1, (α1,n)n≥1 and (α2,n)n≥1,
one can easily show by taking into account (3. 1) that

2λ2
nβ

2 < 1− α1 − α2 ≤ 1− α1,n − α2,n,
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thus
1− α1,n − α2,n − 2λ2

nβ
2 > 0.

Furthermore, since

‖xn+1 − xn‖2 = ‖pn − xn + λn(Bxn −Bpn) + α2,n(xn − xn−1)‖2

≤ 2(1 + λnβ)2‖xn − pn‖2 + 2α2
2,n‖xn − xn−1‖2,

we obtain from (3. 4)

‖xn+1 − z‖2 − (1 + α1,n + α2,n)‖xn − z‖2 + (α1,n + α2,n)‖xn−1 − z‖2

≤ −1− α1,n − α2,n − 2λ2
nβ

2

2(1 + λnβ)2
‖xn+1 − xn‖2 + γn‖xn − xn−1‖2, (3. 5)

where

γn := 2(α2
2,n + α1,n + α2,n) +

α2
2,n(1− α1,n − α2,n − 2λ2

nβ
2)

(1 + λnβ)2
> 0.

(a) For the proof of this statement we are going to use some techniques from [5].
We define the sequences

ϕn := ‖xn − z‖2 ∀n ∈ N

and
µn := ϕn − (α1,n + α2,n)ϕn−1 + γn‖xn − xn−1‖2 ∀n ≥ 1.

Using the monotonicity of (αi,n)n≥1, i = 1, 2, and the fact that ϕn ≥ 0 for all n ∈ N,
we get

µn+1 − µn ≤ ϕn+1 − (1 + α1,n + α2,n)ϕn + (α1,n + α2,n)ϕn−1

+ γn+1‖xn+1 − xn‖2 − γn‖xn − xn−1‖2,

which gives by (3. 5)

µn+1 − µn ≤ −
(

1− α1,n − α2,n − 2λ2
nβ

2

2(1 + λnβ)2
− γn+1

)
‖xn+1 − xn‖2 ∀n ≥ 1. (3. 6)

We claim that

1− α1,n − α2,n − 2λ2
nβ

2

2(1 + λnβ)2
− γn+1 ≥ σ ∀n ≥ 1. (3. 7)

Indeed, this follows by taking into account that for all n ≥ 1

α1,n + α2,n + 2(λnβ)2 + 2(1 + λnβ)2(γn+1 + σ)

≤ α1 + α2 + 2(λnβ)2 + 2(1 + λnβ)2(3α2
2 + 2(α1 + α2) + σ)

≤ α1 + α2 + 2(λnβ)2 + 4(1 + (λnβ)2)(3α2
2 + 2(α1 + α2) + σ)

≤ 1.

In the above estimates we used the upper bounds for (αi,n)n≥1, i = 1, 2, that

γn+1 ≤ 2(α2
2 + α1 + α2) + α2

2 ∀n ∈ N

and the assumptions in (3. 1).
We obtain from (3. 6) and (3. 7) that

µn+1 − µn ≤ −σ‖xn+1 − xn‖2 ∀n ≥ 1. (3. 8)
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Hence, the sequence (µn)n≥1 is nonincreasing and so, we can let M ≥ 0 be an
upper bound of it, that is µn ≤M for all n ≥ 1. The bounds for (αi,n)n≥1, i = 1, 2,
deliver

−(α1 + α2)ϕn−1 ≤ ϕn − (α1 + α2)ϕn−1 ≤ µn ≤M ∀n ≥ 1. (3. 9)

We obtain for all n ≥ 1

ϕn ≤ (α1 + α2)nϕ0 +M

n−1∑
k=0

(α1 + α2)k

≤ (α1 + α2)nϕ0 +
M

1− α1 − α2
.

Combining (3. 8) and (3. 9) we have for all n ≥ 1

σ
n∑
k=1

‖xk+1 − xk‖2 ≤ µ1 − µn+1

≤ µ1 + (α1 + α2)ϕn

≤ µ1 + (α1 + α2)n+1ϕ0 +
M(α1 + α2)

1− α1 − α2
,

which shows that
∑
n∈N ‖xn+1 − xn‖2 < +∞.

Combining this relation with (3. 4) and Lemma 3.2 it yields∑
n≥1

(
1− α1,n − α2,n − 2λ2

nβ
2
)
‖xn − pn‖2 < +∞.

Moreover, from (3. 7) we have 1− α1,n − α2,n − 2λ2
nβ

2 ≥ 2σ(1 + λβ)2 for all n ≥ 1
and obtain, consequently,

∑
n≥1 ‖xn − pn‖2 < +∞.

(b) We are going to use Lemma 1.1 for the proof of this statement. We proved
above that for an arbitrary z ∈ zer(A + B) the inequality (3. 4) is true. By part
(a) and Lemma 3.2 it follows that limn→+∞ ‖xn − z‖ exists. On the other hand,
let x be a weak sequential cluster point of (xn)n∈N, that is, let be the subsequence
(xnk)k∈N fulfilling xnk ⇀ x as k → +∞. Since xn − pn → 0 as n → +∞, we get
pnk ⇀ x as k → +∞. Since A+B is maximally monotone (see [26, Corollary 20.25
and Corollary 24.4]), its graph is sequentially closed in the weak-strong topology
of H ×H (see [26, Proposition 20.33(ii)]). As (λn)n≥1 and (αi,n)n≥1, i = 1, 2, are
bounded, we derive from (3. 2) and part (a) that 0 ∈ (A+B)x, hence x ∈ zer(A+B).
By Lemma 1.1 there exists x ∈ zer(A+B) such that xn ⇀ x as n→ +∞. In view
of (a) we have pn ⇀ x as n→ +∞.

(c) Since (ii) implies that A+B is uniformly monotone at x, hence demiregular
at x, it is sufficient to prove the statement under condition (i). Since pn ⇀ x and
1
λn

(xn − xn+1) +
α1,n+α2,n

λn
(xn − xn−1) → 0 as n → +∞, the result follows easily

from (3. 2) and the definition of demiregular operators. �

Remark 3.1 Assuming that α2 = 0, which enforces α2,n = 0 for all n ≥ 1, the
conclusions of Theorem 3.1 remains valid if one takes as upper bound for (λn)n≥1

the expression 1
β

√
1−5α1−2σ
4α1+2σ+1 . This is due to the fact that in this situation one can

use in its proof the improved inequalities ‖xn+1 − pn‖2 ≤ λ2
nβ

2‖xn − pn‖2 and
‖xn+1 − xn‖2 ≤ (1 + λnβ)2‖xn − pn‖2 for all n ≥ 1. On the other hand, let us
also notice that the algorithmic scheme obtained in this way and its convergence
properties can be seen as generalizations of the corresponding statements given for
the error-free case of the classical forward-backward-forward algorithm proposed by
Tseng in [129] (see also [62, Theorem 2.5]). Indeed, if we further set α1 = 0, having
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as consequence that α1,n = 0 for all n ≥ 1, we obtain nothing else than the iterative
scheme from [62, 129]. Notice that for ε ∈ (0, 1/(β + 1)), one can chose λ := ε

and σ := 1−(1−ε)2
2(1+(1−ε)2) . In this case the sequence (λn)n≥1 must fulfill the inequalities

ε ≤ λn ≤ 1
β

√
1−2σ
2σ+1 = 1−ε

β for all n ≥ 1, which is exactly the situation considered

in [62].

Remark 3.2 In case Bx = 0 for all x ∈ H the iterative scheme in Theorem 3.1
becomes

xn+1 = JλnA[xn + α1,n(xn − xn−1)] + α2,n(xn − xn−1) ∀n ≥ 1,

and is to the best of our knowledge new and can be regarded as an extension of the
classical proximal-point algorithm (see [122]) in the context of solving the monotone
inclusion problem 0 ∈ Ax. If, additionally, α2 = 0, which enforces as already noticed
α2,n = 0 for all n ≥ 1, we get the algorithm

xn+1 = JλnA[xn + α1,n(xn − xn−1)],

the convergence of which has been investigated in [5].

3.1.2 Solving monotone inclusion problems involving mix-
tures of linearly composed and parallel-sum type oper-
ators

In this section we employ the inertial forward-backward-forward splitting algorithm
proposed above to the concomitantly solving of a primal monotone inclusion prob-
lem involving mixtures of linearly composed and parallel-sum type operators and
its Attouch-Théra-type dual problem. We consider the following setting.

Problem 3.1 Let H be a real Hilbert space, z ∈ H, A : H ⇒ H a maximally
monotone operator and C : H → H a monotone and µ-Lipschitz continuous operator
for µ > 0. Let m be a strictly positive integer and, for every i ∈ {1,...,m}, let Gi be
a real Hilbert space, ri ∈ Gi, let Bi : Gi ⇒ Gi be a maximally monotone operator, let
Di : Gi ⇒ Gi be monotone such that D−1

i is νi-Lipschitz continuous for νi > 0 and
let Li : H → Gi be a nonzero linear continuous operator. The problem is to solve
the primal inclusion

find x ∈ H such that z ∈ Ax+

m∑
i=1

L∗i
(
(Bi�Di)(Lix− ri)

)
+ Cx (3. 10)

together with the dual inclusion

find v1 ∈ G1,..., vm ∈ Gm such that ∃x ∈ H :

{
z −

∑m
i=1 L

∗
i vi ∈ Ax+ Cx

vi ∈ (Bi�Di)(Lix− ri), i = 1,...,m.
(3. 11)

Similar to Problem 2.1, one can define primal-dual solutions to Problem 3.1.
Problem 3.1 covers a large class of monotone inclusion problems and we refer

the reader to consult [76] for several interesting particular instances of it. The main
result of this section follows.

Theorem 3.2 In Problem 3.1 suppose that

z ∈ ran

(
A+

m∑
i=1

L∗i
(
(Bi�Di)(Li · −ri)

)
+ C

)
. (3. 12)
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Chose x0, x1 ∈ H and vi,0, vi,1 ∈ Gi, i = 1, ...,m, and set

(∀n ≥ 1)



p1,n = JλnA[xn − λn(Cxn +
∑m
i=1 L

∗
i vi,n − z) + α1,n(xn − xn−1)]

p2,i,n = JλnB−1
i

[vi,n + λn(Lixn −D−1
i vi,n − ri) + α1,n(vi,n − vi,n−1)],

i = 1, ...,m
vi,n+1 = λnLi(p1,n − xn) + λn(D−1

i vi,n −D−1
i p2,i,n) + p2,i,n

+α2,n(vi,n − vi,n−1), i = 1, ...,m
xn+1 = λn

∑m
i=1 L

∗
i (vi,n − p2,i,n) + λn(Cxn − Cp1,n) + p1,n

+α2,n(xn − xn−1).

Consider λ, σ > 0 and α1, α2 ≥ 0 such that

12α2
2 + 9(α1 +α2) + 4σ < 1 and λ ≤ λn ≤

1

β

√
1− 12α2

2 − 9(α1 + α2)− 4σ

12α2
2 + 8(α1 + α2) + 4σ + 2

∀n ≥ 1,

where

β = max{µ, ν1, ..., νm}+

√√√√ m∑
i=1

‖Li‖2,

and for i = 1, 2 the nondecreasing sequences (αi,n)n≥1 fulfilling

0 ≤ αi,n ≤ αi ∀n ≥ 1.

Then the following statements are true:

(a)
∑
n∈N ‖xn+1 − xn‖2 < +∞,

∑
n≥1 ‖xn − p1,n‖2 < +∞ and, for i = 1, ...,m,∑

n∈N ‖vi,n+1 − vi,n‖2 < +∞ and
∑
n≥1 ‖vi,n − p2,i,n‖2 < +∞;

(b) There exists (x, v1,..., vm) ∈ H× G1×...×Gm a primal-dual solution to Problem
3.1 such that the following hold:

(i) xn ⇀ x, p1,n ⇀ x and, for i = 1, ...,m, vi,n ⇀ vi and p2,i,n ⇀ vi as
n→ +∞;

(ii) If A + C is uniformly monotone at x, then xn → x and p1,n → x as
n→ +∞.

(iii) If B−1
i +D−1

i is uniformly monotone at vi for some i ∈ {1, ...,m}, then
vi,n → vi and p2,i,n → vi as n→ +∞.

Proof. We apply Theorem 3.1 in an appropriate product space and make use to
this end of a construction similar to the one considered in [76]. We endow the
product space K = H× G1 × ... × Gm with the inner product and the associated
norm defined for all (x, v1, ..., vm), (y, w1, ..., wm) ∈ K as

〈(x, v1, ..., vm), (y, w1, ..., wm)〉K = 〈x, y〉H +

m∑
i=1

〈vi, wi〉Gi

and

‖(x, v1, ..., vm)‖K =

√√√√‖x‖2H +

m∑
i=1

‖vi‖2Gi ,

respectively.
We introduce the operators M : K ⇒ K,

M(x, v1, ..., vm) = (−z +Ax)× (r1 +B−1
1 v1)× ....× (rm +B−1

m vm)
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and Q : K→ K,

Q(x, v1, ..., vm) =
(
Cx+

m∑
i=1

L∗i vi,−L1x+D−1
1 v1, ...,−Lmx+D−1

m vm

)
and show that Theorem 3.1 can be applied for the operators M and Q in the
product space K. Let us start by noticing that

(3. 12)⇔ zer(M + Q) 6= ∅

and

(x, v1, ..., vm) ∈ zer(M+Q)⇔ (x, v1, ..., vm) is a primal-dual solution of Problem 3.1.
(3. 13)

Further, since A and Bi, i = 1, ...,m, are maximally monotone, M is maximally
monotone, too (see [26, Propositions 20.22 and 20.23]). On the other hand, Q is
monotone and β-Lipschitz continuous (see, for instance, the proof of [76, Theorem
3.1]).

For every (x, v1, ..., vm) ∈ K and every λ > 0 we have (see [26, Proposition
23.16])

JλM (x, v1, ..., vm) = (JλA(x+ λz), JλB−1
1

(v1 − λr1), ..., JλB−1
m

(vm − λrm)).

Set

xn = (xn, v1,n, ..., vm,n) ∀n ∈ N and pn = (p1,n, p2,1,n, ..., p2,m,n) ∀n ≥ 1.

In the light of the above considerations it follows that the iterative scheme in
the statement of Theorem 3.2 can be equivalently written as

(∀n ≥ 1)

{
pn = JλnM [xn − λnQxn + α1,n(xn − xn−1)]
xn+1 = pn + λn(Qxn −Qpn) + α2,n(xn − xn−1),

which is nothing else than the algorithm stated in Theorem 3.1 formulated for the
operators M and Q.

(a) Is a direct consequence of Theorem 3.1(a).
(b)(i) Is a direct consequence of Theorem 3.1(b) and (3. 13).
(b)(ii) Let n ≥ 1 be fixed. From the definition of the resolvent we get

1

λn
(xn − p1,n)− Cxn −

m∑
i=1

L∗i vi,n + z +
α1,n

λn
(xn − xn−1) ∈ Ap1,n.

The update rule for xn yields

1

λn
(p1,n − xn+1) + Cxn +

m∑
i=1

L∗i (vi,n − p2,i,n) +
α2,n

λn
(xn − xn−1) = Cp1,n,

hence,

1

λn
(xn − xn+1)−

m∑
i=1

L∗i p2,i,n + z +
α1,n + α2,n

λn
(xn − xn−1) ∈ (A+ C)p1,n.

Further, since z −
∑m
i=1 L

∗
i vi ∈ (A + C)x and A + C is uniformly monotone at x,

there exists an increasing function φA,C : [0,+∞)→ [0,+∞] that vanishes only at
0, such that
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〈
p1,n − x,

1

λn
(xn − xn+1)−

m∑
i=1

L∗i p2,i,n + z

+
α1,n + α2,n

λn
(xn − xn−1)−

(
z −

m∑
i=1

L∗i vi

)〉
≥ φA,C(‖p1,n − x‖),

thus

1

λn
〈p1,n − x, xn − xn+1〉+

〈
p1,n − x,

m∑
i=1

L∗i (vi − p2,i,n)

〉
+
α1,n + α2,n

λn
〈p1,n − x, xn − xn−1〉 ≥ φA,C(‖p1,n − x‖). (3. 14)

In a similar way, for i = 1, ...,m, the definition of p2,i,n yields

1

λn
(vi,n − p2,i,n) + Lixn −D−1

i vi,n − ri +
α1,n

λn
(vi,n − vi,n−1) ∈ B−1

i p2,i,n

and from

1

λn
(p2,i,n − vi,n+1) + Lip1,n − Lixn +D−1

i vi,n +
α2,n

λn
(vi,n − vi,n−1) = D−1

i p2,i,n

we further obtain

1

λn
(vi,n − vi,n+1) + Lip1,n − ri +

α1,n + α2,n

λn
(vi,n − vi,n−1) ∈ (B−1

i +D−1
i )p2,i,n.

Moreover, since Lix− ri ∈ (B−1
i +D−1

i )vi, the monotonicity of B−1
i +D−1

i , i =
1, ...,m, yields the inequality〈 1

λn
(vi,n − vi,n+1) + Lip1,n − ri

+
α1,n + α2,n

λn
(vi,n − vi,n−1)− (Lix− ri), p2,i,n − vi

〉
≥ 0

hence

1

λn

m∑
i=1

〈vi,n − vi,n+1, p2,i,n − vi〉+

〈
p1,n − x,

m∑
i=1

L∗i (p2,i,n − vi)

〉

+
α1,n + α2,n

λn

m∑
i=1

〈vi,n − vi,n−1, p2,i,n − vi〉 ≥ 0. (3. 15)

Summing up the inequalities (3. 14) and (3. 15) we obtain for all n ≥ 1

1

λn
〈p1,n − x, xn − xn+1〉+

α1,n + α2,n

λn
〈p1,n − x, xn − xn−1〉

+
1

λn

m∑
i=1

〈vi,n − vi,n+1, p2,i,n − vi〉+
α1,n + α2,n

λn

m∑
i=1

〈vi,n − vi,n−1, p2,i,n − vi〉

≥ φA,C(‖p1,n − x‖). (3. 16)
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It then follows from (a), (b)(i) and the boundedness of the sequences (αi,n)n≥1,
i = 1, 2 and (λn)n≥1 that limn→+∞ φA,C(‖p1,n−x‖) = 0, thus p1,n → x as n→ +∞.
From (a) we get that xn → x as n→ +∞.

(b)(iii) In this case one can show that instead of (3. 16) one has for all n ≥ 1

1

λn
〈p1,n − x, xn − xn+1〉+

α1,n + α2,n

λn
〈p1,n − x, xn − xn−1〉

+
1

λn

m∑
j=1

〈vj,n − vj,n+1, p2,j,n − vj〉+
α1,n + α2,n

λn

m∑
j=1

〈vj,n − vj,n−1, p2,j,n − vj〉

≥ φB−1
i ,D−1

i
(‖p2,i,n − vi‖). (3. 17)

where φB−1
i ,D−1

i
: [0,+∞) → [0,+∞] is an increasing function that vanishes only

at 0. The same arguments as in (b)(ii) provide the desired conclusion. �

Remark 3.3 The case α1 = α2 = 0, which enforces α1,n = α2,n = 0 for all
n ≥ 1, shows that the error-free case of the forward-backward-forward algorithm
considered in [76, Theorem 3.1] is a particular case of the iterative scheme introduced
in Theorem 3.2. We refer to Remark 3.1 for a discussion on how to choose the
parameters λ and σ in order to get exactly the bounds from [76, Theorem 3.1].

3.1.3 Convex optimization problems

The aim of this section is to show how the inertial forward-backward-forward primal-
dual algorithm can be implemented when solving a primal-dual pair of convex op-
timization problems.

Problem 3.2 Let H be a real Hilbert space, z ∈ H, f ∈ Γ(H) and h : H → R a
convex and differentiable function with a µ-Lipschitz continuous gradient for µ > 0.
Let m be a strictly positive integer and for all i ∈ {1,...,m} let Gi be a real Hilbert
space, ri ∈ Gi, gi, li ∈ Γ(Gi) such that li is ν−1

i -strongly convex for νi > 0 and
Li : H → Gi a nonzero linear continuous operator. Consider the convex optimization
problem

inf
x∈H

{
f(x) +

m∑
i=1

(gi�li)(Lix− ri) + h(x)− 〈x, z〉

}
(3. 18)

and its Fenchel-type dual problem

sup
vi∈Gi, i=1,...,m

{
−
(
f∗�h∗

)(
z −

m∑
i=1

L∗i vi

)
−

m∑
i=1

(
g∗i (vi) + l∗i (vi) + 〈vi, ri〉

)}
.

(3. 19)

Considering the maximal monotone operators

A = ∂f,C = ∇h,Bi = ∂gi and Di = ∂li, i = 1,...,m,

according to [26, Proposition 17.10, Theorem 18.15], D−1
i = ∇l∗i is a monotone and

νi-Lipschitz continuous operator for i = 1,...,m. The monotone inclusion problem
(3. 10) reads

find x ∈ H such that z ∈ ∂f(x) +

m∑
i=1

L∗i ((∂gi�∂li)(Lix− ri)) +∇h(x), (3. 20)

while the dual inclusion problem (3. 11) reads

find v1 ∈ G1,..., vm ∈ Gm such that ∃x ∈ H :

{
z −

∑m
i=1 L

∗
i vi ∈ ∂f(x) +∇h(x)

vi ∈ (∂gi�∂li)(Lix− ri), i = 1,...,m.
(3. 21)
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The optimality conditions concerning the primal-dual pair of optimization prob-
lems (3. 18)-(3. 19) are nothing else than

z −
m∑
i=1

L∗i vi ∈ ∂f(x) +∇h(x) and vi ∈ (∂gi�∂li)(Lix− ri), i = 1,...,m. (3. 22)

Notice that the aforementioned optimality conditions are also necessary in case the
regularity condition (2. 42) is fulfilled.

The following statement is a particular instance of Theorem 3.2.

Theorem 3.3 In Problem 3.2 suppose that

z ∈ ran

(
∂f +

m∑
i=1

L∗i
(
(∂gi�∂li)(Li · −ri)

)
+∇h

)
. (3. 23)

Chose x0, x1 ∈ H and vi,0, vi,1 ∈ Gi, i = 1, ...,m, and set

(∀n ≥ 1)



p1,n = proxλnf [xn − λn(∇f(xn) +
∑m
i=1 L

∗
i vi,n − z) + α1,n(xn − xn−1)]

p2,i,n = proxλng∗i [vi,n + λn(Lixn −∇l∗i (vi,n)− ri) + α1,n(vi,n − vi,n−1)],

i = 1, ...,m
vi,n+1 = λnLi(p1,n − xn) + λn(∇l∗i (vi,n)−∇l∗i (p2,i,n)) + p2,i,n

+α2,n(vi,n − vi,n−1), i = 1, ...,m
xn+1 = λn

∑m
i=1 L

∗
i (vi,n − p2,i,n) + λn(∇h(xn)−∇h(p1,n)) + p1,n

+α2,n(xn − xn−1).

Consider λ, σ > 0 and α1 ≥ 0, α2 ≥ 0 such that

12α2
2 + 9(α1 +α2) + 4σ < 1 and λ ≤ λn ≤

1

β

√
1− 12α2

2 − 9(α1 + α2)− 4σ

12α2
2 + 8(α1 + α2) + 4σ + 2

∀n ≥ 1,

where

β = max{µ, ν1, ..., νm}+

√√√√ m∑
i=1

‖Li‖2,

and for i = 1, 2 the nondecreasing sequences (αi,n)n≥1 fulfilling

0 ≤ αi,n ≤ αi ∀n ≥ 1.

Then the following statements are true:

(a)
∑
n∈N ‖xn+1 − xn‖2 < +∞,

∑
n≥1 ‖xn − p1,n‖2 < +∞ and, for i = 1, ...,m,∑

n∈N ‖vi,n+1 − vi,n‖2 < +∞ and
∑
n≥1 ‖vi,n − p2,i,n‖2 < +∞;

(b) There exists (x, v1,..., vm) ∈ H× G1× ...×Gm satisfying the optimality condi-
tions (3. 22), hence x is an optimal solution of the problem (3. 18), (v1,..., vm)
is an optimal solution of (3. 19) and the optimal objective values of the two
problems coincide, such that the following hold:

(i) xn ⇀ x, p1,n ⇀ x and, for i = 1, ...,m, vi,n ⇀ vi and p2,i,n ⇀ vi as
n→ +∞;

(ii) If f + h is uniformly convex, then xn → x and p1,n → x as n→ +∞;

(iii) If g∗i + l∗i is uniformly convex for some i ∈ {1, ...,m}, then vi,n → vi and
p2,i,n → vi as n→ +∞.

Remark 3.4 Under the hypotheses considered in Problem 3.2, condition (3. 23)
is fulfilled if the primal problem (3. 18) has an optimal solution and the regularity
condition (2. 42) holds.
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3.2 Inertial Douglas–Rachford splitting for mono-
tone inclusions

The aim of this section is the investigation of an inertial-type Douglas-Rachford
algorithm for solving monotone inclusion problems and the illustration of the nu-
merical advantages in comparison with its noninertial version.

3.2.1 An inertial Douglas–Rachford splitting algorithm

This subsection is dedicated to the formulation of an inertial Douglas–Rachford
splitting algorithm for finding the set of zeros of the sum of two maximally monotone
operators and to the investigation of its convergence properties.

In the first part we propose an inertial version of the Krasnosel’skĭı–Mann algo-
rithm for approximating the set of fixed points of a nonexpansive operator, a result
which has its own interest. Notice that due to the presence of affine combinations
in the iterative scheme, we have to restrict the setting to nonexpansive operators
defined on affine subspaces. Let us underline that this assumption is fulfilled when
considering the composition of the reflected resolvents of maximally monotone op-
erators, which will be the case for the inertial Douglas–Rachford algorithm. Let us
also mention that some inertial versions of the Krasnosel’skĭı–Mann algorithm have
been proposed also in [99], which, however, in order to ensure the convergence of
the generated sequence of iterates, ask for a summability condition formulated in
terms of this sequence.

Theorem 3.4 Let M be a nonempty closed affine subset of H and T : M → M
a nonexpansive operator such that FixT 6= ∅. We consider the following iterative
scheme:

xn+1 = xn+αn(xn−xn−1)+λn

[
T
(
xn+αn(xn−xn−1)

)
−xn−αn(xn−xn−1)

]
∀n ≥ 1

(3. 24)
where x0, x1 are arbitrarily chosen in M , (αn)n≥1 is nondecreasing and fulfills

0 ≤ αn ≤ α < 1 ∀n ≥ 1

and λ, σ, δ > 0 are such that

δ >
α2(1 + α) + ασ

1− α2
and 0 < λ ≤ λn ≤

δ − α
[
α(1 + α) + αδ + σ

]
δ
[
1 + α(1 + α) + αδ + σ

] ∀n ≥ 1. (3. 25)

Then the following statements are true:

(i)
∑
n∈N ‖xn+1 − xn‖2 < +∞;

(ii) (xn)n∈N converges weakly to a point in FixT .

Proof. We start with the remark that, due to the choice of δ, λn ∈ (0, 1) for every
n ≥ 1. Furthermore, we would like to notice that, since M is affine, the iterative
scheme provides a well-defined sequence in M .

(i) We denote

wn := xn + αn(xn − xn−1) ∀n ≥ 1.

Then the iterative scheme reads for every n ≥ 1:

xn+1 = wn + λn(Twn − wn). (3. 26)
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We fix an element y ∈ FixT and n ≥ 1. It follows from (1. 28) and the nonexpan-
siveness of T that

‖xn+1 − y‖2 = (1− λn)‖wn − y‖2 + λn‖Twn − Ty‖2 − λn(1− λn)‖Twn − wn‖2

≤ ‖wn − y‖2 − λn(1− λn)‖Twn − wn‖2. (3. 27)

Applying (1. 28) again, we have

‖wn − y‖2 = ‖(1 + αn)(xn − y)− αn(xn−1 − y)‖2

= (1 + αn)‖xn − y‖2 − αn‖xn−1 − y‖2 + αn(1 + αn)‖xn − xn−1‖2,

hence from (3. 27) we obtain

‖xn+1 − y‖2 − (1 + αn)‖xn − y‖2 + αn‖xn−1 − y‖2 ≤− λn(1− λn)‖Twn − wn‖2

+ αn(1 + αn)‖xn − xn−1‖2.
(3. 28)

Furthermore, we have

‖Twn − wn‖2 =

∥∥∥∥ 1

λn
(xn+1 − xn) +

αn
λn

(xn−1 − xn)

∥∥∥∥2

=
1

λ2
n

‖xn+1 − xn‖2 +
α2
n

λ2
n

‖xn − xn−1‖2 + 2
αn
λ2
n

〈xn+1 − xn, xn−1 − xn〉

≥ 1

λ2
n

‖xn+1 − xn‖2 +
α2
n

λ2
n

‖xn − xn−1‖2

+
αn
λ2
n

(
−ρn‖xn+1 − xn‖2 −

1

ρn
‖xn − xn−1‖2

)
, (3. 29)

where we denote ρn := 1
αn+δλn

.
We derive from (3. 28) and (3. 29) the inequality

‖xn+1 − y‖2 − (1 + αn)‖xn − y‖2 + αn‖xn−1 − y‖2

≤ (1− λn)(αnρn − 1)

λn
‖xn+1 − xn‖2 + γn‖xn − xn−1‖2, (3. 30)

where

γn := αn(1 + αn) + αn(1− λn)
1− ρnαn
ρnλn

> 0, (3. 31)

since ρnαn < 1 and λn ∈ (0, 1).
Again, taking into account the choice of ρn, we have

δ =
1− ρnαn
ρnλn

and, from (3. 31), it follows

γn = αn(1 + αn) + αn(1− λn)δ ≤ α(1 + α) + αδ ∀n ≥ 1. (3. 32)

In the following we use some techniques from [5] adapted to our setting. We
define the sequences

ϕn := ‖xn − y‖2 ∀n ∈ N

and
µn := ϕn − αnϕn−1 + γn‖xn − xn−1‖2 ∀n ≥ 1.
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Using the monotonicity of (αn)n≥1 and the fact that ϕn ≥ 0 for all n ∈ N, we get

µn+1 − µn ≤ ϕn+1 − (1 + αn)ϕn + αnϕn−1 + γn+1‖xn+1 − xn‖2 − γn‖xn − xn−1‖2.

Employing (3. 30), we have

µn+1 − µn ≤
(

(1− λn)(αnρn − 1)

λn
+ γn+1

)
‖xn+1 − xn‖2 ∀n ≥ 1. (3. 33)

We claim that

(1− λn)(αnρn − 1)

λn
+ γn+1 ≤ −σ ∀n ≥ 1. (3. 34)

Let be n ≥ 1. Indeed, by the choice of ρn, it holds

(1− λn)(αnρn − 1)

λn
+ γn+1 ≤ −σ

⇐⇒ λn(γn+1 + σ) + (αnρn − 1)(1− λn) ≤ 0

⇐⇒ λn(γn+1 + σ)− δλn(1− λn)

αn + δλn
≤ 0

⇐⇒ (αn + δλn)(γn+1 + σ) + δλn ≤ δ.

By using (3. 32), we further get

(αn + δλn)(γn+1 + σ) + δλn ≤ (α+ δλn)
(
α(1 + α) + αδ + σ

)
+ δλn ≤ δ,

where the last inequality follows by using the upper bound for (λn)n≥1 in (3. 25).
Hence, the claim in (3. 34) is true.

We obtain from (3. 33) and (3. 34) that

µn+1 − µn ≤ −σ‖xn+1 − xn‖2 ∀n ≥ 1. (3. 35)

Hence, the sequence (µn)n≥1 is nonincreasing and we take M ≥ 0 an upper
bound of it, that is µn ≤M for all n ≥ 1. The bound for (αn)n≥1 delivers

−αϕn−1 ≤ ϕn − αϕn−1 ≤ µn ≤M ∀n ≥ 1. (3. 36)

We obtain

ϕn ≤ αnϕ0 +M

n−1∑
k=0

αk ≤ αnϕ0 +
M

1− α
∀n ≥ 1.

Combining (3. 35) and (3. 36), we get for all n ≥ 1

σ

n∑
k=1

‖xk+1 − xk‖2 ≤ µ1 − µn+1

≤ µ1 + αϕn

≤ µ1 + αn+1ϕ0 +
Mα

1− α
,

which shows that
∑
n∈N ‖xn+1 − xn‖2 < +∞.

(ii) We prove this statement by using the result of Opial given in Lemma 1.1.
We have proven above that for an arbitrary y ∈ FixT the inequality (3. 30) is true.
By part (i), (3. 32) and Lemma 3.1 we derive that limn→+∞ ‖xn − y‖ exists (we
take into consideration also that in (3. 30) αnρn < 1 for all n ≥ 1). On the other
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hand, let x be a weak sequential cluster point of (xn)n∈N, that is, the latter has a
subsequence (xnk)k∈N fulfilling xnk ⇀ x as k → +∞. By part (i), the definition of
wn and the upper bound for (αn)n≥1, we get wnk ⇀ x as k → +∞. Furthermore,
from (3. 26) we have

‖Twn − wn‖ =
1

λn
‖xn+1 − wn‖

≤ 1

λ
‖xn+1 − wn‖

≤ 1

λ

(
‖xn+1 − xn‖+ α‖xn − xn−1‖

)
, (3. 37)

thus by (i) we obtain Twnk − wnk → 0 as k → +∞. Applying now Lemma 1.3
for the sequence (wnk)k∈N we conclude that x ∈ FixT . Since the two assumptions
of Lemma 1.1 are verified, it follows that (xn)n∈N converges weakly to a point in
FixT . �

Remark 3.5 Assuming that α = 0 (which forces αn = 0 for all n ≥ 1), the
iterative scheme in the previous theorem is nothing else than the one in the classical
Krasnosel’skĭı–Mann algorithm:

xn+1 = xn + λn(Txn − xn) ∀n ≥ 1. (3. 38)

Let us mention that the convergence of this iterative scheme can be proved under
more general hypotheses, namely when M is a nonempty closed and convex set and
the sequence (λn)n∈N satisfies the relation

∑
n∈N λn(1−λn) = +∞ (see [26, Theorem

5.14]).

Let us recall some technical results which are needed in the following.
If A,B : H ⇒ H are monotone, then we have the following characterization of

the set of zeros of their sum (see [26, Proposition 25.1(ii)]):

zer(A+B) = JγB(FixRγARγB) ∀γ > 0. (3. 39)

The following result is a direct consequence of [26, Corollary 25.5] and it will
be used in the proof of the convergence of the inertial Douglas–Rachford splitting
algorithm.

Lemma 3.3 Let A,B : H ⇒ H be maximally monotone operators and the se-
quences (xn, un)n∈N ∈ grA, (yn, vn)n∈N ∈ grB such that xn ⇀ x, un ⇀ u, yn ⇀
y, vn ⇀ v, un + vn → 0 and xn − yn → 0 as n → +∞. Then x = y ∈ zer(A + B),
(x, u) ∈ grA and (y, v) ∈ grB.

We are now in position to state the inertial Douglas–Rachford splitting algorithm
and to present its convergence properties.

Theorem 3.5 (Inertial Douglas–Rachford splitting algorithm) Let A,B : H ⇒ H
be maximally monotone operators such that zer(A+B) 6= ∅. Consider the following
iterative scheme:

(∀n ≥ 1)

 yn = JγB [xn + αn(xn − xn−1)]
zn = JγA[2yn − xn − αn(xn − xn−1)]
xn+1 = xn + αn(xn − xn−1) + λn(zn − yn)

where γ > 0, x0, x1 are arbitrarily chosen in H, (αn)n≥1 is nondecreasing and fulfills

0 ≤ αn ≤ α < 1 ∀n ≥ 1
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and λ, σ, δ > 0 are such that

δ >
α2(1 + α) + ασ

1− α2
and 0 < λ ≤ λn ≤ 2

δ − α
[
α(1 + α) + αδ + σ

]
δ
[
1 + α(1 + α) + αδ + σ

] ∀n ≥ 1.

Then there exists x ∈ Fix(RγARγB) such that the following statements are true:

(i) JγBx ∈ zer(A+B);

(ii)
∑
n∈N ‖xn+1 − xn‖2 < +∞;

(iii) (xn)n∈N converges weakly to x;

(iv) yn − zn → 0 as n→ +∞;

(v) (yn)n≥1 converges weakly to JγBx;

(vi) (zn)n≥1 converges weakly to JγBx;

(vii) if A or B is uniformly monotone, then (yn)n≥1 and (zn)n≥1 converge strongly
to the unique point in zer(A+B).

Proof. We use again the notation wn = xn + αn(xn − xn−1) for all n ≥ 1. Taking
into account the iteration rules and the definition of the reflected resolvent, the
iterative scheme in the enunciation of the theorem can be written as

(∀n ≥ 1) xn+1 = wn + λn

[
JγA ◦ (2JγB − Id)wn − JγBwn

]
= wn + λn

[(
Id +RγA

2
◦RγB

)
wn −

Id +RγB
2

wn

]
= wn +

λn
2

(Twn − wn), (3. 40)

where T := RγA ◦RγB : H → H is a nonexpansive operator. From (3. 39) we have
zer(A+B) = JγB(FixT ), hence FixT 6= ∅. By applying Theorem 3.4, there exists
x ∈ FixT such that (i)-(iii) hold.

(iv) Follows from Theorem 3.4, (3. 37) and zn − yn = 1
2 (Twn − wn) for n ≥ 1.

(v) We will show that (yn)n≥1 is bounded and that JγBx is the unique weak
sequential cluster point of (yn)n≥1. From here the conclusion will automatically
follow. By using that JγB is nonexpansive, for all n ≥ 1 we have

‖yn − y1‖ = ‖JγBwn − JγBw1‖ ≤ ‖wn − w1‖ = ‖xn − x1 + αn(xn − xn−1)‖.

Since (xn)n∈N is bounded (by (iii)) and (αn)n≥1 is also bounded, so is the sequence
(yn)n≥1.

Now let y be a sequential weak cluster point of (yn)n≥1, that is, the latter has
a subsequence (ynk)k∈N fulfilling ynk ⇀ y as k → +∞. We use the notations
un := 2yn − wn − zn and vn := wn − yn for all n ≥ 1. The definitions of the
resolvent yields

(zn, un) ∈ gr(γA), (yn, vn) ∈ gr(γB) and un + vn = yn − zn ∀n ≥ 1. (3. 41)

Furthermore, by (ii), (iii) and (iv) we derive

znk ⇀ y,wnk ⇀ x, unk ⇀ y − x and vnk ⇀ x− y as k → +∞.

Using again (ii) and Lemma 3.3 we obtain y ∈ zer(γA+γB) = zer(A+B), (y, y−x) ∈
gr γA and (y, x− y) ∈ gr γB. As a consequence, y = JγBx.
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(vi) Follows from (iv) and (v).
(vii) We prove the statement in case A is uniformly monotone, the situation

when B fulfills this condition being similar. Denote y = JγBx. There exists an
increasing function φA : [0,+∞) → [0,+∞] that vanishes only at 0 such that (see
also (3. 41) and the considerations made in the proof of (v))

γφA(‖zn − y‖) ≤ 〈zn − y, un − y + x〉 ∀n ≥ 1.

Moreover, since B is monotone we have (see (3. 41))

0 ≤ 〈yn − y, vn − x+ y〉 = 〈yn − y, yn − zn − un − x+ y〉 ∀n ≥ 1.

Summing up the last two inequalities we obtain

γφA(‖zn − y‖) ≤ 〈zn − yn, un − yn + x〉 = 〈zn − yn, yn − zn − wn + x〉 ∀n ≥ 1.

Since zn − yn → 0 and wn ⇀ x as n → +∞, from the last inequality we get
limn→+∞ φA(‖zn − y‖) = 0, hence zn → y and therefore yn → y as n→ +∞. �

Remark 3.6 In case α = 0, which forces αn = 0 for all n ≥ 1, the iterative
scheme in Theorem 3.5 becomes the classical Douglas–Rachford splitting algorithm
(see [26, Theorem 25.6]):

(∀n ≥ 1)

 yn = JγBxn
zn = JγA(2yn − xn)
xn+1 = xn + λn(zn − yn),

the convergence of which holds under the assumption
∑
n∈N λn(2 − λn) = +∞.

Let us mention that the weak convergence of the sequence (yn)n≥1 to a point in
zer(A+B) has been for the first time reported in [127].

Remark 3.7 In case Bx = 0 for all x ∈ H, the iterative scheme in Theorem 3.5
becomes

xn+1 = λnJγA
(
xn + αn(xn − xn−1)

)
+ (1− λn)(xn + αn(xn − xn−1)) ∀n ≥ 1,

which was already considered in [4] as a proximal-point algorithm (see [122]) in
the context of solving the monotone inclusion problem 0 ∈ Ax. Notice that in
this scheme in each iteration a constant step-size γ > 0 is considered. Proximal-
point algorithms of inertial-type with variable step-sizes have been proposed and
investigated, for instance, in [5, Theorem 2.1], [4] and [44, Remark 7].

3.2.2 Solving monotone inclusion problems involving mix-
tures of linearly composed and parallel-sum type oper-
ators

We apply the inertial Douglas–Rachford algorithm proposed in the previous section
to a highly structured primal-dual system of monotone inclusions by making use of
appropriate splitting techniques. The problem under investiagtion reads as follows.

Problem 3.3 Let A : H ⇒ H be a maximally monotone operator and let z ∈ H.
Moreover, let m be a strictly positive integer and for every i ∈ {1,...,m}, let ri ∈ Gi,
Bi : Gi ⇒ Gi and Di : Gi ⇒ Gi be maximally monotone operators and let Li : H → Gi
be nonzero linear continuous operators. The problem is to solve the primal inclusion

find x ∈ H such that z ∈ Ax+

m∑
i=1

L∗i (Bi�Di)(Lix− ri) (3. 42)
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together with the dual inclusion

find v1 ∈ G1,..., vm ∈ Gm such that (∃x ∈ H)

{
z −

∑m
i=1 L

∗
i vi ∈ Ax

vi ∈(Bi�Di)(Lix− ri), i = 1,...,m.

(3. 43)

We say that (x, v1,..., vm) ∈ H×G1 ...×Gm is a primal-dual solution to Problem
3.3, if

z −
m∑
i=1

L∗i vi ∈ Ax and vi ∈ (Bi�Di)(Lix− ri), i = 1,...,m. (3. 44)

Several particular instances of the primal-dual system of monotone inclusions
(3. 42)–(3. 43) when applied to convex optimization problems can be found in [76,
130].

The inertial primal-dual Douglas-Rachford algorithm we would like to propose
for solving (3. 42)–(3. 43) is formulated as follows.

Algorithm 3.1 Let x0, x1 ∈ H, vi,0, vi,1 ∈ Gi, i = 1,...,m, and τ, σi > 0, i =
1,...,m, be such that

τ

m∑
i=1

σi‖Li‖2 < 4.

Furthermore, let (αn)n≥1 be a nondecreasing sequence fulfilling 0 ≤ αn ≤ α < 1 for
every n ≥ 1 and λ, σ, δ > 0 and the sequence (λn)n≥1 be such that

δ >
α2(1 + α) + ασ

1− α2
and 0 < λ ≤ λn ≤ 2

δ − α
[
α(1 + α) + αδ + σ

]
δ
[
1 + α(1 + α) + αδ + σ

] ∀n ≥ 1.

For all n ≥ 1 set

p1,n = JτA
(
xn + αn(xn − xn−1)− τ

2

∑m
i=1 L

∗
i (vi,n + αn(vi,n − vi,n−1)) + τz

)
w1,n = 2p1,n − xn − αn(xn − xn−1)
For i = 1,...,m⌊
p2,i,n = JσiB−1

i

(
vi,n + αn(vi,n − vi,n−1) + σi

2 Liw1,n − σiri
)

w2,i,n = 2p2,i,n − vi,n − αn(vi,n − vi,n−1)
z1,n = w1,n − τ

2

∑m
i=1 L

∗
iw2,i,n

xn+1 = xn + αn(xn − xn−1) + λn(z1,n − p1,n)
For i = 1,...,m⌊
z2,i,n = JσiD−1

i

(
w2,i,n + σi

2 Li(2z1,n − w1,n)
)

vi,n+1 = vi,n + αn(vi,n − vi,n−1) + λn(z2,i,n − p2,i,n).

(3. 45)

Theorem 3.6 In Problem 3.3, suppose that

z ∈ ran

(
A+

m∑
i=1

L∗i (Bi�Di)(Li · −ri)
)
, (3. 46)

and consider the sequences generated by Algorithm 3.1. Then there exists an element
(x, v1,..., vm) ∈ H × G1 ...× Gm such that the following statements are true:

(i) By setting

p1 = JτA

(
x− τ

2

m∑
i=1

L∗i vi + τz

)
,

p2,i = JσiB−1
i

(
vi +

σi
2
Li(2p1 − x)− σiri

)
, i = 1,...,m,
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the element (p1, p2,1,..., p2,m) ∈ H× G1 ×...× Gm is a primal-dual solution to
Problem 3.3;

(ii)
∑
n∈N ‖xn+1 − xn‖2 < +∞ and

∑
n∈N ‖vi,n+1 − vi,n‖2 < +∞, i = 1,...,m;

(iii) (xn, v1,n,..., vm,n)n∈N converges weakly to (x, v1,..., vm);

(iv) (p1,n − z1,n, p2,1,n − z2,1,n,..., p2,m,n − z2,m,n)→ 0 as n→ +∞;

(v) (p1,n, p2,1,n,..., p2,m,n)n≥1 converges weakly to (p1, p2,1,..., p2,m);

(vi) (z1,n, z2,1,n,..., z2,m,n)n≥1 converges weakly to (p1, p2,1,..., p2,m);

(vii) if A and B−1
i , i = 1,...,m, are uniformly monotone, then the sequences

(p1,n, p2,1,n,..., p2,m,n)n≥1 and (z1,n, z2,1,n,..., z2,m,n)n≥1 converge strongly to
the unique primal-dual solution (p1, p2,1,..., p2,m) to Problem 3.3.

Proof. For the proof we use Theorem 3.5 and adapt the techniques from [59] (see
also [130]) to the given settings. We consider the Hilbert space K = H × G1 ×
...×Gm endowed with inner product and associated norm defined, for (x, v1,..., vm),
(y, q1,..., qm) ∈ K, via

〈(x, v1,..., vm), (y, q1,..., qm)〉K = 〈x, y〉H +

m∑
i=1

〈vi, qi〉Gi

and

‖(x, v1,..., vm)‖K =

√√√√‖x‖2H +

m∑
i=1

‖vi‖2Gi ,

(3. 47)

respectively. Furthermore, we consider the set-valued operator

M : K ⇒ K, (x, v1,..., vm) 7→ (−z +Ax, r1 +B−1
1 v1,..., rm +B−1

m vm),

which is maximally monotone, since A and Bi, i = 1,...,m, are maximally mono-
tone (see [26, Proposition 20.22 and Proposition 20.23]), and the linear continuous
operator

S : K→ K, (x, v1,..., vm) 7→

(
m∑
i=1

L∗i vi,−L1x,...,−Lmx

)
,

which is skew-symmetric (i. e. S∗ = −S) and hence maximally monotone (see [26,
Example 20.30]). Moreover, we consider the set-valued operator

Q : K ⇒ K, (x, v1,..., vm) 7→
(
0, D−1

1 v1,..., D
−1
m vm

)
,

which is once again maximally monotone, since Di is maximally monotone for i =
1,...,m. Therefore, since domS = K, both 1

2S + Q and 1
2S + M are maximally

monotone (see [26, Corollary 24.4(i)]). Furthermore, one can easily notice that

(3. 46)⇔ zer (M + S + Q) 6= ∅

and

(x, v1,..., vm) ∈ zer (M + S + Q)

⇒(x, v1,..., vm) is a primal-dual solution to Problem 3.3.
(3. 48)
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We also introduce the linear continuous operator

V : K→ K, (x, v1,..., vm) 7→

(
x

τ
− 1

2

m∑
i=1

L∗i vi,
v1

σ1
− 1

2
L1x,...,

vm
σm
− 1

2
Lmx

)
,

which is self-adjoint and ρ-strongly positive (see [59]) for

ρ :=

1− 1

2

√√√√τ

m∑
i=1

σi‖Li‖2

min

{
1

τ
,

1

σ1
, . . . ,

1

σm

}
> 0,

namely, the following inequality holds

〈x,V x〉K ≥ ρ‖x‖
2
K ∀x ∈ K.

Therefore, its inverse operator V −1 exists and it fulfills ‖V −1‖ ≤ 1
ρ .

Note that for all n ≥ 1, the algorithmic scheme (3. 45) is equivalent to

xn−p1,n
τ + αn

xn−xn−1

τ − 1
2

∑m
i=1 L

∗
i (vi,n + αn(vi,n − vi,n−1)) ∈ Ap1,n − z

w1,n = 2p1,n − xn − αn(xn − xn−1)
For i = 1,...,m vi,n−p2,i,n

σi
+ αn

vi,n−vi,n−1

σi
− 1

2Li(xn − p1,n + αn(xn − xn−1))

∈ − 1
2Lip1,n +B−1

i p2,i,n + ri
w2,i,n = 2p2,i,n − vi,n − αn(vi,n − vi,n−1)

w1,n−z1,n
τ − 1

2

∑m
i=1 L

∗
iw2,i,n = 0

xn+1 = xn + αn(xn − xn−1) + λn(z1,n − p1,n)
For i = 1,...,m⌊ w2,i,n−z2,i,n

σi
− 1

2Li(w1,n − z1,n) ∈ − 1
2Liz1,n +D−1

i z2,i,n

vi,n+1 = vi,n + αn(vi,n − vi,n−1) + λn(z2,i,n − p2,i,n).

(3. 49)

By considering for all n ≥ 1 the notations

xn = (xn, v1,n,..., vm,n),

yn = (p1,n, p2,1,n,..., p2,m,n)

and
zn = (z1,n, z2,1,n,..., z2,m,n),

the scheme (3. 49) can equivalently be written in the form

(∀n ≥ 1)

 V (xn − yn + αn(xn − xn−1)) ∈
(

1
2S + M

)
yn

V (2yn − xn − zn − αn(xn − xn−1)) ∈
(

1
2S + Q

)
zn

xn+1 = xn + αn(xn − xn−1) + λn (zn − yn) ,
(3. 50)

which is equivalent to

(∀n ≥ 1)

 yn =
(
Id +V −1( 1

2S + M)
)−1

(xn + αn(xn − xn−1))

zn =
(
Id +V −1( 1

2S + Q)
)−1

(2yn − xn − αn(xn − xn−1))
xn+1 = xn + αn(xn − xn−1) + λn (zn − yn) ,

(3. 51)

In the following, we consider the Hilbert space KV with inner product and norm
respectively defined, for x,y ∈ K, via

〈x,y〉KV
= 〈x,V y〉K and ‖x‖KV

=
√
〈x,V x〉K. (3. 52)
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As the set-valued operators 1
2S + M and 1

2S + Q are maximally monotone on K,
the operators

B := V −1

(
1

2
S + M

)
and A := V −1

(
1

2
S + Q

)
(3. 53)

are maximally monotone on KV . Moreover, since V is self-adjoint and ρ-strongly
positive, weak and strong convergence in KV are equivalent with weak and strong
convergence in K, respectively.

Taking this into account, it shows that (3. 51) becomes

(∀n ≥ 1)

 yn = JB (xn + αn(xn − xn−1))
zn = JA (2yn − xn − αn(xn − xn−1))
xn+1 = xn + αn(xn − xn−1) + λn (zn − yn) ,

(3. 54)

which is the inertial Douglas–Rachford algorithm presented in Theorem 3.5 in the
space KV for γ = 1. Furthermore, we have

zer(A + B) = zer(V −1 (M + S + Q)) = zer(M + S + Q).

(i) By Theorem 3.5 (i), there exists x = (x, v1, ..., vm) ∈ Fix(RARB), such that
JBx ∈ zer(A + B) = zer(M + S + Q). The claim follows from (3. 48) and by
identifying JBx.

(ii) Since V is ρ-strongly positive, we obtain from Theorem 3.5 (ii) that

ρ
∑
n∈N
‖xn+1 − xn‖2K ≤

∑
n∈N
‖xn+1 − xn‖2KV

< +∞,

and therefore the claim follows by considering (3. 47).
(iii)–(vi) Follows directly from Theorem 3.5 (iii)–(vi).
(vii) The uniform monotonicity of A and B−1

i , i = 1,...,m, implies uniform
monotonicity of M on K (see, for instance, [59, Theorem 2.1 (ii)]), while this
further implies uniform monotonicity of B on KV . Therefore, the claim follows
from Theorem 3.5 (vii). �

3.2.3 Convex optimization problems

The aim of this section is to show how the inertial Douglas-Rachford primal-dual al-
gorithm can be implemented when solving a primal-dual pair of convex optimization
problems.

We deal with the following problem.

Problem 3.4 Let H be a real Hilbert space and let f ∈ Γ(H), z ∈ H. Let m be a
strictly positive integer and for every i ∈ {1,...,m}, suppose that Gi is a real Hilbert
space, let gi, li ∈ Γ(Gi), ri ∈ Gi and let Li : H → Gi be a nonzero bounded linear
operator. Consider the convex optimization problem

(P ) inf
x∈H

{
f(x) +

m∑
i=1

(gi�li)(Lix− ri)− 〈x, z〉

}
(3. 55)

and its conjugate dual problem

(D) sup
(v1,...,vm)∈G1× ...×Gm

{
−f∗

(
z −

m∑
i=1

L∗i vi

)
−

m∑
i=1

(g∗i (vi) + l∗i (vi) + 〈vi, ri〉)

}
.

(3. 56)
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By taking into account the maximal monotone operators

A = ∂f, Bi = ∂gi and Di = ∂li, i = 1,...,m,

the monotone inclusion problem (3. 42) reads

find x ∈ H such that z ∈ ∂f(x) +

m∑
i=1

L∗i (∂gi�∂li)(Lix− ri), (3. 57)

while the dual inclusion problem (3. 43) reads

find v1 ∈ G1, ..., vm ∈ Gm such that (∃x ∈ H)

{
z −

∑m
i=1 L

∗
i vi ∈ ∂f(x)

vi ∈(∂gi�∂li)(Lix− ri), i = 1,...,m.

(3. 58)

If (x, v1,..., vm) ∈ H×G1 ...×Gm is a primal-dual solution to (3. 57)–(3. 58), namely,

z −
m∑
i=1

L∗i vi ∈ ∂f(x) and vi ∈ (∂gi�∂li)(Lix− ri), i = 1,...,m, (3. 59)

then x is an optimal solution to (P ), (v1,..., vm) is an optimal solution to (D) and
the optimal objective values of the two problems, which we denote by v(P ) and
v(D), respectively, coincide (thus, strong duality holds).

Combining this statement with Algorithm 3.1 and Theorem 3.6 gives rise to the
following iterative scheme and corresponding convergence theorem for the primal-
dual pair of optimization problems (P )–(D).

Algorithm 3.2 Let x0, x1 ∈ H, vi,0, vi,1 ∈ Gi, i = 1,...,m, and τ, σi > 0, i =
1,...,m, be such that

τ

m∑
i=1

σi‖Li‖2 < 4.

Furthermore, let (αn)n≥1 be a nondecreasing sequence fulfilling 0 ≤ αn ≤ α < 1 for
every n ≥ 1 and λ, σ, δ > 0 and the sequence (λn)n≥1 be such that

δ >
α2(1 + α) + ασ

1− α2
and 0 < λ ≤ λn ≤ 2

δ − α
[
α(1 + α) + αδ + σ

]
δ
[
1 + α(1 + α) + αδ + σ

] ∀n ≥ 1.

For all n ≥ 1 set

p1,n = proxτf
(
xn + αn(xn − xn−1)− τ

2

∑m
i=1 L

∗
i (vi,n + αn(vi,n − vi,n−1)) + τz

)
w1,n = 2p1,n − xn − αn(xn − xn−1)
For i = 1,...,m⌊
p2,i,n = proxσig∗i

(
vi,n + αn(vi,n − vi,n−1) + σi

2 Liw1,n − σiri
)

w2,i,n = 2p2,i,n − vi,n − αn(vi,n − vi,n−1)
z1,n = w1,n − τ

2

∑m
i=1 L

∗
iw2,i,n

xn+1 = xn + αn(xn − xn−1) + λn(z1,n − p1,n)
For i = 1,...,m⌊
z2,i,n = proxσil∗i

(
w2,i,n + σi

2 Li(2z1,n − w1,n)
)

vi,n+1 = vi,n + αn(vi,n − vi,n−1) + λn(z2,i,n − p2,i,n).

(3. 60)

Theorem 3.7 In Problem 3.4, suppose that

z ∈ ran

(
∂f +

m∑
i=1

L∗i (∂gi�∂li)(Li · −ri)
)
, (3. 61)

and consider the sequences generated by Algorithm 3.2. Then there exists an element
(x, v1,..., vm) ∈ H × G1 ...× Gm such that the following statements are true:
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(i) By setting

p1 = proxτf

(
x− τ

2

m∑
i=1

L∗i vi + τz

)
,

p2,i = proxσig∗i

(
vi +

σi
2
Li(2p1 − x)− σiri

)
, i = 1,...,m,

the element (p1, p2,1,..., p2,m) ∈ H× G1 ×...× Gm is a primal-dual solution to
Problem 3.4, hence p1 is an optimal solution to (P ) and (p2,1,..., p2,m) is an
optimal solution to (D);

(ii)
∑
n∈N ‖xn+1 − xn‖2 < +∞, and

∑
n∈N ‖vi,n+1 − vi,n‖2 < +∞, i = 1,...,m;

(iii) (xn, v1,n,..., vm,n)n∈N converges weakly to (x, v1,..., vm);

(iv) (p1,n − z1,n, p2,1,n − z2,1,n,..., p2,m,n − z2,m,n)→ 0 as n→ +∞;

(v) (p1,n, p2,1,n,..., p2,m,n)n≥1 converges weakly to (p1, p2,1,..., p2,m);

(vi) (z1,n, z2,1,n,..., z2,m,n)n≥1 converges weakly to (p1, p2,1,..., p2,m);

(vii) if f and g∗i , i = 1,...,m, are uniformly convex, then (p1,n, p2,1,n,..., p2,m,n)n≥1

and (z1,n, z2,1,n,..., z2,m,n)n≥1 converge strongly to the unique primal-dual so-
lution
(p1, p2,1,..., p2,m) to Problem 3.4.

Remark 3.8 Considering the setting of Problem 3.4, the hypothesis (3. 61) in the
above theorem is fulfilled if the primal problem (3. 55) has an optimal solution, the
regularity condition (2. 42) holds and

0 ∈ sqri(dom g∗i − dom l∗i ) for i = 1, ...,m.

According to [26, Proposition 15.7], the latter guarantees that Γ(Gi), i = 1, ...,m.

3.2.4 Numerical experiments

Clustering

We consider again a numerical experiment in cluster analysis, where one can observe
a better performance of the inertial Douglas-Rachford algorithm in comparison with
the noninertial one. We briefly recall some notations used in clustering and we refer
to Chapter 2 for other details concerning this application. In cluster analysis one
aims for grouping a set of points such that points in the same group are more
similar to each other than to points in other groups. Let ui ∈ Rn, i = 1, . . . ,m,
be given points. For each point ui we are looking for determining the associated
cluster center xi ∈ Rn, i = 1, . . . ,m. By taking into account [73, 96], clustering can
be formulated as the convex optimization problem

inf
xi∈Rn, i=1,...,m

1

2

m∑
i=1

‖xi − ui‖2 + γ
∑
i<j

ωij‖xi − xj‖p

 , (3. 62)

where γ ∈ R+ is a tuning parameter, p ∈ {1, 2} and ωij ∈ R+ represent weights on
the terms ‖xi − xj‖p, for i, j ∈ {1, . . . ,m}, i < j. Since the objective function is
strongly convex, there exists a unique solution to (2. 47).

Let k be the number of nonzero weights ωij . Then, one can introduce a linear
operator A : Rmn → Rkn, such that problem (2. 47) can be equivalently written as

inf
x∈Rmn

{h(x) + g(Ax)} , (3. 63)
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p = 2, γ = 5.2 p = 1, γ = 4

ε = 10−4 ε = 10−8 ε = 10−4 ε = 10−8

Algorithm 3.2 0.65s (175) 1.36s (371) 0.63s (176) 1.27s (374)
DR [59] 0.78s (216) 1.68s (460) 0.78s (218) 1.68s (464)
FB [130] 2.48s (1353) 5.72s (3090) 2.01s (1092) 4.05s (2226)
FB Acc [53] 2.04s (1102) 4.11s (2205) 1.74s (950) 3.84s (2005)
FBF [76] 7.67s (2123) 17.58s (4879) 6.33s (1781) 13.22s (3716)
FBF Acc [58] 5.05s (1384) 10.27s (2801) 4.83s (1334) 9.98s (2765)
PD [69] 1.48s (780) 3.26s (1708) 1.44s (772) 3.18s (1722)
PD Acc [69] 1.28s (671) 3.14s (1649) 1.23s (665) 3.12s (1641)
Nesterov [107] 7.85s (3811) 42.69s (21805) 7.46s (3936) > 190s (> 105)
FISTA [28] 7.55s (4055) 51.01s (27356) 6.55s (3550) 47.81s (26069)

Table 3.1: Performance evaluation for the clustering problem. The entries refer to the
CPU times in seconds and the number of iterations, respectively, needed in order to attain
a root mean squared error for the iterates below the tolerance ε. The tuning parameter
γ is chosen in order to guarantee a correct separation of the input data into the two half
moons.

the function h being 1-strongly convex and differentiable with 1-Lipschitz continuous
gradient. Also, by taking p ∈ {1, 2}, the proximal points with respect to g∗ are
known to be available via explicit formulae.

For our numerical tests we consider the standard data set consisting of two
interlocking half moons in R2, each of them being composed of 100 points (see
Figure 3.1). The stopping criterion asks the root-mean-square error (RMSE) to be
less than or equal to a given bound ε which is either ε = 10−4 or ε = 10−8. As
tuning parameters we use γ = 4 for p = 1 and γ = 5.2 for p = 2 since both choices
lead to a correct separation of the input data into the two half moons.

Given Table 3.1, it shows that Algorithm 3.2 performs better than the noninertial
Douglas–Rachford (DR) method proposed in [59, Algorithm 2.1]. One can also see
that the inertial Douglas–Rachford algorithm is faster than other popular primal-
dual solvers, among them the forward-backward-forward (FBF) method from [76],
and the forward-backward (FB) method from [130], where in both methods the
function h is processed via a forward step. The accelerated versions of the latter
and of the primal-dual (PD) method from [69] converge in less time than their
regular variants, but are still slower than Algorithm 3.1. Notice that the methods
called Nesterov and FISTA are accelerated proximal gradient algorithms which are
applied to the Fenchel dual problem to (3. 63).

The generalized Heron problem

In the sequel we investigate the generalized Heron problem which has been recently
investigated in [102, 103] and where for its solving subgradient-type methods have
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Figure 3.1: Clustering two interlocking half
moons. The colors (resp. the shapes) show
the correct affiliations.
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(a) Problem with optimizer
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Figure 3.2: Generalized Heron problem with cubes and ball constraint set on the left-hand
side, performance evaluation for the RMSE on the right-hand side.

been proposed.
While the classical Heron problem concerns the finding of a point u on a given

straight line in the plane such that the sum of its distances to two given points is
minimal, the problem that we address here aims to find a point in a closed convex
set Ω ⊆ Rn which minimizes the sum of the distances to given convex closed sets
Ωi ⊆ Rn, i = 1, . . . ,m.

The distance function from a point x ∈ Rn to a nonempty set Ω ⊆ Rn is defined
as

d(x; Ω) = (‖ · ‖�δΩ)(x) = inf
z∈Ω
‖x− z‖.

Thus the generalized Heron problem reads

inf
x∈Ω

m∑
i=1

d(x; Ωi), (3. 64)

where the sets Ω ⊆ Rn and Ωi ⊆ Rn, i = 1, . . . ,m, are assumed to be nonempty,
closed and convex. We observe that (3. 64) perfectly fits into the framework con-
sidered in Problem 3.4 when setting

f = δΩ, and gi = ‖ · ‖, li = δΩi for all i = 1, . . . ,m. (3. 65)

However, note that (3. 64) cannot be solved via the primal-dual methods in [76]
and [130], which require for each i = 1,...,m, that either gi or li is strongly convex,
unless one substantially increases the number of primal and dual variables. Notice
that

g∗i : Rn → R, g∗i (p) = sup
x∈Rn

{〈p, x〉 − ‖x‖} = δB(0,1)(p), i = 1, . . . ,m,

where B(0, 1) denotes the closed unit ball, thus the proximal points of f , g∗i and l∗i ,
i = 1, . . . ,m, can be calculated via projections, in case of the latter via Moreau’s
decomposition formula (1. 33).

In the following we solve a number of random problems where the closed convex
set Ω ⊆ Rn will always be the unit ball centered at (1,..., 1)T . The sets Ωi ⊆
Rn, i = 1,...,m, are boxes in right position (i. e., the edges are parallel to the
axes) with side length 1. The box centers are created via independent identically
distributed Gaussian entries from N (0, n2) where the random seed in Matlab is set
to 0. After determining a solution, the stopping criterion asks the root-mean-square
error (RMSE) to be less than or equal to a given bound ε.
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Algorithm 3.2 Douglas–Rachford, [59] Subgradient, [102,103]

ε = 10−5 ε = 10−10 ε = 10−5 ε = 10−10 ε = 10−5 ε = 10−10

n = 2, m = 5 0.01s (33) 0.03s (72) 0.01s (30) 0.03s (63) – –
n = 2, m = 10 0.01s (21) 0.03s (59) 0.01s (21) 0.02s (43) 0.01s (8) 0.03s (120)
n = 2, m = 20 0.06s (295) 0.11s (522) 0.11s (329) 0.19s (583) 0.05s (204) 16.78s (69016)
n = 2, m = 50 0.18s (517) 0.45s (1308) 0.22s (579) 0.55s (1460) 0.04s (152) 4.82s (19401)

n = 3, m = 5 0.01s (16) 0.01s (37) 0.01s (16) 0.01s (33) 0.02s (70) 2.17s (8081)
n = 3, m = 10 0.01s (37) 0.03s (91) 0.01s (41) 0.03s (101) 0.01s (11) 0.03s (199)
n = 3, m = 20 0.01s (22) 0.03s (52) 0.01s (25) 0.03s (59) 0.01s (6) 0.01s (32)
n = 3, m = 50 0.01s (19) 0.02s (44) 0.01s (21) 0.02s (51) 0.01s (10) 0.01s (17)

Table 3.2: Performance evaluation for the Heron problem. The entries refer to the CPU
times in seconds and the number of iterations, respectively, needed in order to attain a
root-mean-square error lower than the tolerance ε.

Table 3.2 shows a comparison between Algorithm 3.2, the Douglas–Rachford
type method from [59, Algorithm 3.1], and the subgradient approach described
in [102, 103] when applied to different instances of the generalized Heron problem.
One such particular case is displayed in Figure 3.2 when n = 3 and m = 5, while the
evolution of the RMSE values is given there in more detail. Empty cells in Table 3.2
indicate that it took more than 60 seconds to pass the stopping criterion. Based on
the provided data, one can say that both Algorithm 3.2 and the noninertial Douglas–
Rachford type method are performing well in this example and that differences in
the computational performance are almost negligible. However, one very interesting
observation arises when the dimension of the space is set to n = 3, as the subgradient
approach then becomes better and surpasses both primal-dual methods.

3.3 Splitting algorithms for nonconvex optimiza-
tion problems

The extension of proximal-type algorithms and of the corresponding convergence
analysis to the nonconvex setting is a challenging ongoing research topic. By
assuming that the functions in the objective share some analytic features and
by making consequently use of a generalization to the nonsmooth setting of the
Kurdyka- Lojasiewicz property initially introduced for smooth functions, the proxi-
mal point algorithm for minimizing a proper and lower semicontinuous function and
the forward-backward scheme for minimizing the sum of a nonsmooth lower semi-
continuous function with a smooth one have proved to possess good convergence
properties also in the nonconvex case, see Attouch and Bolte [9], Attouch, Bolte,
Redont and Soubeyran [10], Attouch, Bolte and Svaiter [11], Bolte, Sabach and
Teboulle [35], Chouzenoux, Pesquet and Repetti [74], Frankel, Farrigos and Pey-
pouquet [88] (wee mention here also the work of Noll [108] concerning descent meth-
ods). The particular class of functions fulfilling the Kurdyka- Lojasiewicz property
includes semi-algebraic functions, real subanalytic functions, semi-convex functions,
uniformly convex functions, etc. (see also [34,94,98]).

The interest of having convergence properties in the nonconvex setting is mo-
tivated among others by applications in connection to sparse nonnegative matrix
factorization, hard constrained feasibility, compressive sensing, etc. In what regards
the latter, they give rise to the solving of optimization problems where the sparsity
measure is used as regularization functional. Due to the fact that this functional is
semi-algebraic, algorithms for solving nonsmooth optimization problems involving
KL functions represent a serious option in this sense (see [11, Example 5.4]).

Throughout this section, we consider on Rm (where m ≥ 1) the Euclidean scalar



3.3 Nonconvex optimization problems 81

product and the induced norm denoted by 〈·, ·〉 and ‖ · ‖, respectively. Notice that
all the finite-dimensional spaces considered below are endowed with the topology
induced by the Euclidean norm.

For the following generalized subdifferential notions and their basic properties we
refer to [101, 123]. Let f : Rm → (−∞,+∞] be a proper and lower semicontinuous
function. If x ∈ dom f , we consider the Fréchet (viscosity) subdifferential of f at x
as being the set

∂̂f(x) =

{
v ∈ Rm : lim inf

y→x

f(y)− f(x)− 〈v, y − x〉
‖y − x‖

≥ 0

}
.

For x /∈ dom f we set ∂̂f(x) := ∅. The limiting (Mordukhovich) subdifferential is
defined at x ∈ dom f by

∂f(x) = {v ∈ Rm : ∃xn → x, f(xn)→ f(x) and ∃vn ∈ ∂̂f(xn), vn → v as n→ +∞},

while for x /∈ dom f , one takes ∂f(x) := ∅.
Notice that in case f is convex, these notions coincide with the convex subdiffer-

ential, which means that ∂̂f(x) = ∂f(x) = {v ∈ Rm : f(y) ≥ f(x) + 〈v, y − x〉 ∀y ∈
Rm} for all x ∈ dom f .

It holds ∂̂f(x) ⊆ ∂f(x) for each x ∈ Rm. We will use the following closedness
criteria concerning the graph of the limiting subdifferential: if (xn)n∈N and (vn)n∈N
are sequences in Rm such that vn ∈ ∂f(xn) for all n ∈ N, (xn, vn) → (x, v) and
f(xn)→ f(x) as n→ +∞, then v ∈ ∂f(x).

The Fermat rule reads in this nonsmooth setting as: if x ∈ Rm is a local min-
imizer of f , then 0 ∈ ∂f(x). Notice that in case f is continuously differentiable
around x ∈ Rm we have ∂f(x) = {∇f(x)}. Let us denote by

crit(f) = {x ∈ Rm : 0 ∈ ∂f(x)}

the set of (limiting)-critical points of f . We mention also the following subdifferen-
tial rule: if f : Rm → (−∞,+∞] is proper and lower semicontinuous and h : Rm →
R is a continuously differentiable function, then ∂(f + h)(x) = ∂f(x) +∇h(x) for
all x ∈ Rm.

We turn now our attention to the class of functions satisfying the Kurdyka-
 Lojasiewicz property. This class of functions will play a crucial role when proving
the convergence of the proposed inertial algorithm. For η ∈ (0,+∞], we denote by
Θη the class of concave and continuous functions ϕ : [0, η) → [0,+∞) such that
ϕ(0) = 0, ϕ is continuously differentiable on (0, η), continuous at 0 and ϕ′(s) > 0
for all s ∈ (0, η). In the following definition (see [10, 35]) we use also the distance
function to a set, defined for A ⊆ Rm as dist(x,A) = infy∈A ‖x− y‖ for all x ∈ Rm.

Definition 3.1 (Kurdyka- Lojasiewicz property) Let f : Rm → (−∞,+∞] be a
proper and lower semicontinuous function. We say that f satisfies the Kurdyka-
 Lojasiewicz (KL) property at x ∈ dom ∂f = {x ∈ Rm : ∂f(x) 6= ∅} if there exists
η ∈ (0,+∞], a neighborhood U of x and a function ϕ ∈ Θη such that for all x in
the intersection

U ∩ {x ∈ Rm : f(x) < f(x) < f(x) + η}

the following inequality holds

ϕ′(f(x)− f(x)) dist(0, ∂f(x)) ≥ 1.

If f satisfies the KL property at each point in dom ∂f , then f is called a KL function.
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The origins of this notion go back to the pioneering work of  Lojasiewicz [98],
where it is proved that for a real-analytic function f : Rm → R and a critical point
x ∈ Rm (that is ∇f(x) = 0), there exists θ ∈ [1/2, 1) such that the function |f −
f(x)|θ‖∇f‖−1 is bounded around x. This corresponds to the situation when ϕ(s) =
Cs1−θ, where C > 0. The result of  Lojasiewicz allows the interpretation of the KL
property as a re-parametrization of the function values in order to avoid flatness
around the critical points. Kurdyka [94] extended this property to differentiable
functions definable in an o-minimal structure. Further extensions to the nonsmooth
setting can be found in [10,32–34].

One of the remarkable properties of the KL functions is their ubiquity in ap-
plications (see [35]). To the class of KL functions belong semi-algebraic, real sub-
analytic, semiconvex, uniformly convex and convex functions satisfying a growth
condition. We refer the reader to [9–11, 32–35] and the references therein for more
details regarding all the classes mentioned above and illustrating examples.

An important role in our convergence analysis will be played by the following
uniformized KL property given in [35, Lemma 6].

Lemma 3.4 Let Ω ⊆ Rm be a compact set and let f : Rm → (−∞,+∞] be a proper
and lower semicontinuous function. Assume that f is constant on Ω and f satisfies
the KL property at each point of Ω. Then there exist ε, η > 0 and ϕ ∈ Θη such that
for all x ∈ Ω and for all x in the intersection

{x ∈ Rm : dist(x,Ω) < ε} ∩ {x ∈ Rm : f(x) < f(x) < f(x) + η} (3. 66)

the following inequality holds

ϕ′(f(x)− f(x)) dist(0, ∂f(x)) ≥ 1. (3. 67)

Finally, let us present a convergence result (see for example [47]) which will be
used in the convergence analysis below.

Lemma 3.5 Let (an)n∈N and (bn)n∈N be nonnegative real sequences, such that∑
n∈N bn < +∞ and an+1 ≤ a · an + b · an−1 + bn for all n ≥ 1, where a ∈ R,

b ≥ 0 and a+ b < 1. Then
∑
n∈N an < +∞.

3.3.1 An inertial forward-backward algorithm in the noncon-
vex setting

In this section we present an inertial forward-backward algorithm for solving a fully
nonconvex optimization problem and study its convergence properties. The problem
under investigation has the following formulation.

Problem 3.5 Let f : Rm → (−∞,+∞] be a proper, lower semicontinuous func-
tion which is bounded from below and let g : Rm → R be a Fréchet differentiable
function with L∇g-Lipschitz continuous gradient, where L∇g ≥ 0. We deal with the
optimization problem

(P ) inf
x∈Rm

[f(x) + g(x)]. (3. 68)

In the iterative scheme we propose below, we use also the function F : Rm → R,
assumed to be σ−strongly convex, Fréchet differentiable and such that ∇F is L∇F -
Lipschitz continuous, where σ, L∇F > 0. The Bregman distance to F , denoted by
DF : Rm × Rm → R, is defined as

DF (x, y) = F (x)− F (y)− 〈∇F (y), x− y〉 ∀(x, y) ∈ Rm × Rm.
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Notice that the properties of the function F ensure the following inequalities

σ

2
‖x− y‖2 ≤ DF (x, y) ≤ L∇F

2
‖x− y‖2 ∀x, y ∈ Rm. (3. 69)

We propose the following iterative scheme for solving (3. 68).

Algorithm 3.3 Chose x0, x1 ∈ Rm, α, α > 0, β ≥ 0 and sequences (αn)n≥1, (βn)n≥1

fulfilling

0 < α ≤ αn ≤ α ∀n ≥ 1

and

0 ≤ βn ≤ β ∀n ≥ 1.

For all n ≥ 1, we consider the iterative scheme

xn+1 ∈ argmin
u∈Rm

{DF (u, xn) + αn〈u,∇g(xn)〉+ βn〈u, xn−1 − xn〉+ αnf(u)} .

(3. 70)

Due to the subdifferential sum formula mentioned in the previous section, one
can see that any sequence generated by this algorithm satisfies the relation

xn+1 ∈ (∇F + αn∂f)−1(∇F (xn)− αn∇g(xn) + βn(xn − xn−1)) ∀n ≥ 1. (3. 71)

Further, since f is proper, lower semicontinuous and bounded from below and
DF is coercive in its first argument (that is lim‖x‖→+∞DF (x, y) = +∞ for all
y ∈ Rm), the iterative scheme is well-defined, meaning that the existence of xn is
guaranteed for each n ≥ 2, since the objective function in the minimization problem
to be solved at each iteration is coercive.

Remark 3.9 The assumption that f should be bounded from below is imposed in
order to ensure that in each iteration one can chose at least one xn (that is the
argmin in (3. 70) is nonempty). One can replace this requirement by asking that
the objective function in the minimization problem considered in (3. 70) is coercive
and the theory presented below still remains valid. This observation is useful when
dealing with optimization problems as the ones considered in Subsection 3.3.2.

Before proceeding with the convergence analysis, we discuss the relation of our
scheme to other algorithms from the literature. Let us take first F (x) = 1

2‖x‖
2

for all x ∈ Rm. In this case DF (x, y) = 1
2‖x − y‖

2 for all (x, y) ∈ Rm × Rm and
σ = L∇F = 1. The iterative scheme becomes

(∀n ≥ 1) xn+1 ∈ argmin
u∈Rm

{
‖u− (xn − αn∇g(xn) + βn(xn − xn−1))‖2

2αn
+ f(u)

}
.

(3. 72)
A similar inertial type algorithm has been analyzed in [110], however in the restric-
tive case when f is convex. If we take in addition β = 0, which enforces βn = 0 for
all n ≥ 1, then (3. 72) becomes

(∀n ≥ 1) xn+1 ∈ argmin
u∈Rm

{
‖u− (xn − αn∇g(xn))‖2

2αn
+ f(u)

}
, (3. 73)

the convergence of which has been investigated in [35] in the full nonconvex setting.
Notice that forward-backward algorithms with variable metrics for KL functions
have been proposed in [74,88].
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On the other hand, if we take g(x) = 0 for all x ∈ Rm, the iterative scheme in
(3. 72) becomes

(∀n ≥ 1) xn+1 ∈ argmin
u∈Rm

{
‖u− (xn + βn(xn − xn−1))‖2

2αn
+ f(u)

}
, (3. 74)

which is a proximal point algorithm with inertial/memory effects formulated in the
nonconvex setting designed for finding the critical points of f . The iterative scheme
without the inertial term, that is when β = 0 and, so, βn = 0 for all n ≥ 1, has
been considered in the context of KL functions in [9].

Let us mention that in the full convex setting, which means that f and g are
convex functions, in which case for all n ≥ 2, xn is uniquely determined and can be
expressed via the proximal operator of f , (3. 72) can be derived from the iterative
scheme proposed in [104], (3. 73) is the classical forward-backward algorithm (see
for example [26] or [75]) and (3. 74) has been analyzed in [5] in the more general
context of monotone inclusion problems.

Let us start now with the investigation of the convergence of the proposed algorithm.

Lemma 3.6 In the setting of Problem 3.5, let (xn)n∈N be a sequence generated by
Algorithm 3.3. Then one has

(f + g)(xn+1) +M1‖xn − xn+1‖2 ≤ (f + g)(xn) +M2‖xn−1 − xn‖2 ∀n ≥ 1,

where

M1 =
σ − αL∇g

2α
− β

2α
and M2 =

β

2α
. (3. 75)

Moreover, for 0 < α ≤ α and β > 0 satisfying

σ > αL∇g + 2β
α

α
, (3. 76)

one has M1 > M2.

Proof. Let be n ≥ 1 fixed. Due to (3. 70) we have

DF (xn+1, xn) + αn 〈xn+1,∇g(xn)〉+ βn 〈xn+1, xn−1 − xn〉+ αnf(xn+1)

≤ DF (xn, xn) + αn 〈xn,∇g(xn)〉+ βn 〈xn, xn−1 − xn〉+ αnf(xn)

or, equivalently,

DF (xn+1, xn) + 〈xn+1 − xn, αn∇g(xn)− βn(xn − xn−1)〉+ αnf(xn+1)

≤ αnf(xn). (3. 77)

On the other hand, by Lemma 1.4 we have

〈∇g(xn), xn+1 − xn〉 ≥ g(xn+1)− g(xn)− L∇g
2
‖xn − xn+1‖2.

At the same time

〈xn+1 − xn, xn−1 − xn〉 ≥ −
(

1

2
‖xn − xn+1‖2 +

1

2
‖xn−1 − xn‖2

)
,

and from (3. 69) we get

σ

2
‖xn+1 − xn‖2 ≤ DF (xn+1, xn).
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Hence, (3.77) leads to

(f + g)(xn+1) +
σ − L∇gαn − βn

2αn
‖xn+1 − xn‖2

≤ (f + g)(xn) +
βn

2αn
‖xn−1 − xn‖2. (3. 78)

Obviously M1 =
σ−L∇gα

2α − β
2α ≤

σ−L∇gαn−βn
2αn

and M2 = β
2α ≥

βn
2αn

thus,

(f + g)(xn+1) +M1‖xn − xn+1‖2 ≤ (f + g)(xn) +M2‖xn−1 − xn‖2

and the first part of the lemma is proved.
Let 0 < α ≤ α and β > 0 be such that σ > αL∇g + 2β αα . One can immediately

see that the latter is equivalent to M1 > M2 and the proof is complete. �

Remark 3.10 If α and β are positive numbers such that σ > αL∇g + 2β, then

α <
ασ

αL∇g + 2β
.

By choosing

α ≤ α < ασ

αL∇g + 2β
,

relation (3. 76) is satisfied.
On the other hand, if α and β are positive numbers such that σ > αL∇g + 2β,

then
2βα

σ − αL∇g
< α.

By choosing
2βα

σ − αL∇g
< α ≤ α,

relation (3. 76) is again satisfied.

Proposition 3.1 In the setting of Problem 3.5, chose α, α, β satisfying (3. 76)
and M1,M2 satisfying (3. 75). Assume that f + g is bounded from below. Then the
following statements hold:

(a)
∑
n≥1 ‖xn − xn−1‖2 < +∞;

(b) the sequence ((f + g)(xn) +M2‖xn−1 − xn‖2)n≥1 is monotonically decreasing
and convergent;

(c) the sequence ((f + g)(xn))n∈N is convergent.

Proof. For every n ≥ 1, set an = (f + g)(xn) + M2‖xn−1 − xn‖2 and bn =
(M1 −M2)‖xn − xn+1‖2. Then obviously from Lemma 3.6 one has for every n ≥ 1

an+1 +bn = (f+g)(xn+1)+M1‖xn−xn+1‖2 ≤ (f+g)(xn)+M2‖xn−1−xn‖2 = an.

The conclusion follows now from Lemma 1.2. �

Lemma 3.7 In the setting of Problem 3.5, consider the sequences generated by
Algorithm 3.3. For every n ≥ 1 we have

yn+1 ∈ ∂(f + g)(xn+1), (3. 79)
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where

yn+1 =
∇F (xn)−∇F (xn+1)

αn
+∇g(xn+1)−∇g(xn) +

βn
αn

(xn − xn−1).

Moreover,

‖yn+1‖ ≤
L∇F + αnL∇g

αn
‖xn − xn+1‖+

βn
αn
‖xn − xn−1‖ ∀n ≥ 1. (3. 80)

Proof. We fix n ≥ 1. From (3. 71) we have that

∇F (xn)−∇F (xn+1)

αn
−∇g(xn) +

βn
αn

(xn − xn−1) ∈ ∂f(xn+1),

or, equivalently,
yn+1 −∇g(xn+1) ∈ ∂f(xn+1),

which shows that yn+1 ∈ ∂(f + g)(xn+1).
The inequality (3. 80) follows now from the definition of yn+1 and the triangle

inequality. �

Lemma 3.8 In the setting of Problem 3.5, chose α, α, β satisfying (3. 76) and
M1,M2 satisfying (3. 75). Assume that f + g is coercive, i.e.

lim
‖x‖→+∞

(f + g)(x) = +∞.

Then any sequence (xn)n∈N generated by Algorithm 3.3 has a subsequence convergent
to a critical point of f +g. Actually every cluster point of (xn)n∈N is a critical point
of f + g.

Proof. Since f + g is a proper, lower semicontinuous and coercive function, it
follows that infx∈Rm [f(x) + g(x)] is finite and the infimum is attained. Hence f + g
is bounded from below.

Let (xn)n∈N be a sequence generated by Algorithm 3.3. According to Proposition
3.1(b), we have

(f + g)(xn) ≤ (f + g)(xn) +M2‖xn − xn−1‖2

≤ (f + g)(x1) +M2‖x1 − x0‖2 ∀n ≥ 1.

Since the function f + g is coercive, its lower level sets are bounded, thus the
sequence (xn)n∈N is bounded.

Let x be a cluster point of (xn)n∈N. Then there exists a subsequence (xnk)k∈N
such that xnk → x as k → +∞. We show that (f + g)(xnk) → (f + g)(x) as
k → +∞ and that x is a critical point of f + g, that is 0 ∈ ∂(f + g)(x).

We show first that f(xnk)→ f(x) as k → +∞. Since f is lower semicontinuous
one has

lim inf
k→+∞

f(xnk) ≥ f(x).

On the other hand, from (3. 70) we have for every n ≥ 1

DF (xn+1, xn) + αn 〈xn+1,∇g(xn)〉+ βn 〈xn+1, xn−1 − xn〉+ αnf(xn+1)

≤ DF (x, xn) + αn 〈x,∇g(xn)〉+ βn 〈x, xn−1 − xn〉+ αnf(x),

which leads to

1

αnk−1
(DF (xnk , xnk−1)−DF (x, xnk−1)) +

1

αnk−1
(〈xnk − x, αnk−1∇g(xnk−1)− βnk−1(xnk−1 − xnk−2)〉) +

f(xnk) ≤ f(x) ∀k ≥ 2.
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The latter combined with Proposition 3.1(a) and (3. 69) shows that

lim sup
k→+∞

f(xnk) ≤ f(x),

hence limk→+∞ f(xnk) = f(x). Since g is continuous, obviously g(xnk) → g(x) as
k → +∞, thus (f + g)(xnk)→ (f + g)(x) as k → +∞.

Further, by using the notations from Lemma 3.7, we have ynk ∈ ∂(f + g)(xnk)
for every k ≥ 2. By Proposition 3.1(a) and Lemma 3.7 we get ynk → 0 as k → +∞.

Concluding, we have:

ynk ∈ ∂(f + g)(xnk) ∀k ≥ 2,

(xnk , ynk)→ (x, 0), as k → +∞,

(f + g)(xnk)→ (f + g)(x), as k → +∞.

Hence 0 ∈ ∂(f + g)(x), that is, x is a critical point of f + g. �

Lemma 3.9 In the setting of Problem 3.5, chose α, α, β satisfying (3. 76) and
M1,M2 satisfying (3. 75). Assume that f + g is coercive and consider the function

H : Rm×Rm → (−∞,+∞], H(x, y) = (f +g)(x)+M2‖x−y‖2 ∀(x, y) ∈ Rm×Rm.

Let (xn)n∈N be a sequence generated by Algorithm 3.3. Then there exist M,N > 0
such that the following statements hold:

(H1) H(xn+1, xn) +M‖xn+1 − xn‖2 ≤ H(xn, xn−1) for all n ≥ 1;

(H2) for all n ≥ 1, there exists wn+1 ∈ ∂H(xn+1, xn) such that

‖wn+1‖ ≤ N(‖xn+1 − xn‖+ ‖xn − xn−1‖);

(H3) if (xnk)k∈N is a subsequence such that xnk → x as k → +∞, then we have
H(xnk , xnk−1) → H(x, x) as k → +∞ (there exists at least one subsequence
with this property).

Proof For (H1) just take M = M1 −M2 and the conclusion follows from Lemma
3.6.

Let us prove (H2). For every n ≥ 1 we define

wn+1 = (yn+1 + 2M2(xn+1 − xn), 2M2(xn − xn+1)),

where (yn)n≥2 is the sequence introduced in Lemma 3.7. The fact that wn+1 ∈
∂H(xn+1, xn) follows from Lemma 3.7 and the relation

∂H(x, y) =
(
∂(f+h)(x)+2M2(x−y)

)
×{2M2(y−x)} ∀(x, y) ∈ Rm×Rm. (3. 81)

Further, one has (see also Lemma 3.7)

‖wn+1‖ ≤ ‖yn+1 + 2M2(xn+1 − xn)‖+ ‖2M2(xn − xn+1)‖

≤
(
L∇F
αn

+ L∇g + 4M2

)
‖xn+1 − xn‖+

βn
αn
‖xn − xn−1‖.

Since 0 < α ≤ αn ≤ α and 0 ≤ βn ≤ β for all n ≥ 1, one can chose

N = sup
n≥1

{
L∇F
αn

+ L∇g + 4M2,
βn
αn

}
< +∞
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and the conclusion follows.
For (H3), consider (xnk)k∈N a subsequence such that xnk → x as k → +∞.

We have shown in the proof of Lemma 3.8 that (f + g)(xnk) → (f + g)(x) as
k → +∞. From Proposition 3.1(a) and the definition of H we easily derive that
H(xnk , xnk−1) → H(x, x) = (f + g)(x) as k → +∞. The existence of such a se-
quence follows from Lemma 3.8. �

In the following we denote by ω((xn)n∈N) the set of cluster points of the sequence
(xn)n∈N.

Lemma 3.10 In the setting of Problem 3.5, chose α, α, β satisfying (3. 76) and
M1,M2 satisfying (3. 75). Assume that f + g is coercive and consider the function

H : Rm×Rm → (−∞,+∞], H(x, y) = (f +g)(x)+M2‖x−y‖2 ∀(x, y) ∈ Rm×Rm.

Let (xn)n∈N be a sequence generated by Algorithm 3.3. Then the following state-
ments are true:

(a) ω((xn, xn−1)n≥1) ⊆ crit(H) = {(x, x) ∈ Rm × Rm : x ∈ crit(f + g)};

(b) limn→∞ dist((xn, xn−1), ω((xn, xn−1))n≥1) = 0;

(c) ω((xn, xn−1)n≥1) is nonempty, compact and connected;

(d) H is finite and constant on ω((xn, xn−1)n≥1).

Proof. (a) According to Lemma 3.8 and Proposition 3.1(a) we have

ω((xn, xn−1)n≥1) ⊆ {(x, x) ∈ Rm × Rm : x ∈ crit(f + g)}.

The equality
crit(H) = {(x, x) ∈ Rm × Rm : x ∈ crit(f + g)}

follows from (3. 81).
(b) and (c) can be shown as in [35, Lemma 5], by also taking into consideration

[35, Remark 5], where it is noticed that the properties (b) and (c) are generic for
sequences satisfying xn+1 − xn → 0 as n→ +∞.

(d) According to Proposition 3.1, the sequence ((f + g)(xn))n∈N is convergent,
i.e.

lim
n→+∞

(f + g)(xn) = l ∈ R.

Take an arbitrary (x, x) ∈ ω((xn, xn−1)n≥1), where x ∈ crit(f + g) (we took state-
ment (a) into consideration). From Lemma 3.9(H3) it follows that there exists a
subsequence (xnk)k∈N such that xnk → x as k → +∞ and H(xnk , xnk−1)→ H(x, x)
as k → +∞. Moreover, from Proposition 3.1 one has

H(x, x) = lim
k→+∞

H(xnk , xnk−1) = lim
k→+∞

(f + g)(xnk) +M2‖xnk − xnk−1‖2 = l

and the conclusion follows. �

We give now the main result concerning the convergence of the whole sequence
(xn)n∈N.

Theorem 3.8 In the setting of Problem 3.5, chose α, α, β satisfying (3. 76) and
M1,M2 satisfying (3. 75). Assume that f + g is coercive and that

H : Rm×Rm → (−∞,+∞], H(x, y) = (f + g)(x) +M2‖x− y‖2 ∀(x, y) ∈ Rm×Rm

is a KL function. Let (xn)n∈N be a sequence generated by Algorithm 3.3. Then the
following statements are true:
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(a)
∑
n∈N ‖xn+1 − xn‖ < +∞;

(b) there exists x ∈ crit(f + g) such that limn→+∞ xn = x.

Proof. (a) Let (xn)n∈N be a sequence generated by Algorithm 3.3. According
to Lemma 3.10 we can consider an element x ∈ crit(f + g) such that (x, x) ∈
ω((xn, xn−1)n≥1). In analogy to the proof of Lemma 3.9 (by taking into account
also the decrease property (H1)) one can easily show that

lim
n→+∞

H(xn, xn−1) = H(x, x).

We separately treat the following two cases.
I. There exists n ∈ N such that H(xn, xn−1) = H(x, x). The decrease property

(H1) in Lemma 3.9 implies H(xn, xn−1) = H(x, x) for every n ≥ n. By using
again property (H1) in Lemma 3.9, one can show inductively that the sequence
(xn, xn−1)n≥n is constant. From here the conclusion follows automatically.

II. For all n ≥ 1 we have H(xn, xn−1) > H(x, x). Take Ω := ω((xn, xn−1)n≥1).
In virtue of Lemma 3.10(c) and (d) and Lemma 3.4, the KL property of H leads

to the existence of positive numbers ε and η and a concave function ϕ ∈ Θη such
that for all

(x, y) ∈{(u, v) ∈ Rm × Rm : dist((u, v),Ω) < ε}
∩ {(u, v) ∈ Rm × Rm : H(x, x) < H(u, v) < H(x, x) + η} (3. 82)

one has
ϕ′(H(x, y)−H(x, x)) dist((0, 0), ∂H(x, y)) ≥ 1. (3. 83)

Let n1 ∈ N such that H(xn, xn−1) < H(x, x) + η for all n ≥ n1. According to
Lemma 3.10(b), there exists n2 ∈ N such that dist((xn, xn−1),Ω) < ε for all n ≥ n2.

Hence the sequence (xn, xn−1)n≥n where n = max{n1, n2}, belongs to the in-
tersection (3. 82). So we have (see (3. 83))

ϕ′(H(xn, xn−1)−H(x, x)) dist((0, 0), ∂H(xn, xn−1)) ≥ 1 ∀n ≥ n.

Since ϕ is concave, it holds

ϕ(H(xn, xn−1)−H(x, x))− ϕ(H(xn+1, xn)−H(x, x)) ≥
ϕ′(H(xn, xn−1)−H(x, x)) · (H(xn, xn−1)−H(xn+1, xn)) ≥

H(xn, xn−1)−H(xn+1, xn)

dist((0, 0), ∂H(xn, xn−1))
∀n ≥ n.

Let M,N > 0 be the real numbers furnished by Lemma 3.9. According to
Lemma 3.9(H2) there exists wn ∈ ∂H(xn, xn−1) such that

‖wn‖ ≤ N(‖xn − xn−1‖+ ‖xn−1 − xn−2‖) ∀n ≥ 2.

Then obviously dist((0, 0), ∂H(xn, xn−1)) ≤ ‖wn‖, hence

ϕ(H(xn, xn−1)−H(x, x))− ϕ(H(xn+1, xn)−H(x, x)) ≥
H(xn, xn−1)−H(xn+1, xn)

‖wn‖
≥

H(xn, xn−1)−H(xn+1, xn)

N(‖xn − xn−1‖+ ‖xn−1 − xn−2‖)
∀n ≥ n.

On the other hand, from Lemma 3.9(H1) we obtain that

H(xn, xn−1)−H(xn+1, xn) ≥M‖xn+1 − xn‖2 ∀n ≥ 1.
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Hence, one has

ϕ(H(xn, xn−1)−H(x, x))− ϕ(H(xn+1, xn)−H(x, x)) ≥
M‖xn+1 − xn‖2

N(‖xn − xn−1‖+ ‖xn−1 − xn−2‖)
∀n ≥ n.

For all n ≥ 1, let us denote

N

M
(ϕ(H(xn, xn−1)−H(x, x))− ϕ(H(xn+1, xn)−H(x, x))) = εn

and
‖xn − xn−1‖ = an.

Then the last inequality becomes

εn ≥
a2
n+1

an + an−1
∀n ≥ n. (3. 84)

Obviously, since ϕ ≥ 0, for S ≥ 1 we have

S∑
n=1

εn =
N

M
(ϕ(H(x1, x0)−H(x, x))− ϕ(H(xS+1, xS)−H(x, x)))

≤ N

M
(ϕ(H(x1, x0)−H(x, x))),

hence
∑
n≥1 εn < +∞.

On the other hand, from (3. 84) we derive

an+1 =
√
εn(an + an−1) ≤ 1

4
(an + an−1) + εn ∀n ≥ n.

Hence, according to Lemma 3.5,
∑
n≥1 an < +∞, that is

∑
n∈N ‖xn−xn+1‖ < +∞.

(b) It follows from (a) that (xn)n∈N is a Cauchy sequence, hence it is convergent.
Applying Lemma 3.8, there exists x ∈ crit(f + g) such that limn→+∞ xn = x. �

Remark 3.11 A similar conclusion to the one of Theorem 3.8 can be obtained
by applying [11, Theorem 2.9] in Rm × Rm endowed with the Euclidean product
topology for the function

H̃ : Rm × Rm → R, H̃(x, y) = (f + g)(x) +
1

2
(M1 +M2)‖x− y‖2.

Indeed, a direct consequence of Lemma 3.6 is the following inequality which holds
for all n ≥ 1

H̃(xn+1, xn) +
1

2
(M1 −M2)(‖xn+1 − xn‖2 + ‖xn − xn−1‖2) ≤ H̃(xn, xn−1).

This shows that H1 in [11] is fulfilled. The assumptions H2 and H3 in the above-
mentioned article are direct consequences of (H2) and, respectively, (H3) in Lemma

3.9. Under these considerations, provided that H̃ is a KL function, one obtains
via [11, Theorem 2.9] the same conclusion as in Theorem 3.8.

However, the hypothesis that H is a KL function, as assumed in Theorem 3.8,
is in our opinion in this context the most natural one, at least in what concerns the
way in which it approaches the non-inertial case. Indeed, if β is equal to zero, then
M2 is equal to zero, too, and the conclusion of Theorem 3.8 follows by only assuming
that f + g is a KL function. On the other hand, in order to apply [11, Theorem
2.9], one would ask that (x, y) 7→ (f + g)(x) + 1

2M1‖x− y‖2 is a KL function, which
is in general a stronger assumption.
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Since the class of semi-algebraic functions is closed under addition (see for ex-
ample [35]) and (x, y) 7→ c‖x − y‖2 is semi-algebraic for c > 0, we obtain also the
following direct consequence.

Corollary 3.1 In the setting of Problem 3.5, chose α, α, β satisfying (3. 76) and
M1,M2 satisfying (3. 75). Assume that f + g is coercive and semi-algebraic. Let
(xn)n∈N be a sequence generated by Algorithm 3.3. Then the following statements
are true:

(a)
∑
n∈N ‖xn+1 − xn‖ < +∞;

(b) there exists x ∈ crit(f + g) such that limn→+∞ xn = x.

Remark 3.12 As one can notice by taking a closer look at the proof of Lemma 3.8,
the conclusion of this statement as the ones of Lemma 3.9, Lemma 3.10, Theorem
3.8 and Corollary 3.1 remain true, if instead of imposing that f + g is coercive, we
assume that f + g is bounded from below and the sequence (xn)n∈N generated by
Algorithm 3.3 is bounded. This observation is useful when dealing with optimization
problems as the ones considered in Subsection 3.3.2.

3.3.2 Numerical experiments

This subsection is dedicated to the presentation of two numerical experiments which
illustrate the applicability of the algorithm proposed in this work. In both numerical
experiments we considered F = 1

2‖ · ‖
2 and set σ = 1.

Detecting minimizers of nonconvex optimization problems

As emphasized in [110, Section 5.1] and [30, Exercise 1.3.9] one of the aspects which
makes algorithms with inertial/memory effects useful is given by the fact that they
are able to detect optimal solutions of minimization problems which cannot be found
by their non-inertial variants. In this subsection we show that this phenomenon
arises even when solving problems of type (3. 85), where the nonsmooth function f
is nonconvex. A similar situation has been addressed in [110], however, by assuming
that f is convex. Consider the optimization problem

inf
(x1,x2)∈R2

|x1| − |x2|+ x2
1 − log(1 + x2

1) + x2
2. (3. 85)

The function
f : R2 → R, f(x1, x2) = |x1| − |x2|,

is nonconvex and continuous, the function

g : R2 → R, g(x1, x2) = x2
1 − log(1 + x2

1) + x2
2,

is continuously differentiable with Lipschitz continuous gradient with Lipschitz con-
stant L∇g = 9/4 and one can easily prove that f + g is coercive. Furthermore,
combining [10, the remarks after Definition 4.1], [33, Remark 5(iii)] and [35, Section
5: Example 4 and Theorem 3], one can easily conclude that H in Theorem 3.8 is a
KL function. By considering the first order optimality conditions

−∇g(x1, x2) ∈ ∂f(x1, x2) = ∂(| · |)(x1)× ∂(−| · |)(x2)
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and by noticing that for all x ∈ R we have

∂(| · |)(x) =

 1, if x > 0
−1, if x < 0
[-1,1], if x = 0

and

∂(−| · |)(x) =

 −1, if x > 0,
1, if x < 0,
{−1, 1}, if x = 0,

(for the latter, see for example [101]), one can easily determine the two critical
points (0, 1/2) and (0,−1/2) of (3. 85), which are actually both optimal solutions
of this minimization problem. In Figure 3.4 the level sets and the graph of the
objective function in (3. 85) are represented.

For γ > 0 and x = (x1, x2) ∈ R2 we have (see Remark 3.9)

proxγf (x) = argmin
u∈R2

{
‖u− x‖2

2γ
+ f(u)

}
= proxγ|·|(x1)× proxγ(−|·|)(x2),

where in the first component one has the well-known shrinkage operator

proxγ|·|(x1) = x1 − sgn(x1) ·min{|x1|, γ},

while for the proximal operator in the second component the following formula can
be proven

proxγ(−|·|)(x2) =

 x2 + γ, if x2 > 0
x2 − γ, if x2 < 0
{−γ, γ}, if x2 = 0.

We implemented Algorithm 3.3 by choosing βn = β = 0 for all n ≥ 1 (which
corresponds to the non-inertial version), βn = β = 0.199 for all n ≥ 1 and βn =
β = 0.299 for all n ≥ 1, respectively, and by setting αn = (0.99999− 2βn)/L∇g for
all n ≥ 1. As starting points we considered the corners of the box generated by the
points (±8,±8). Figure 3.3 shows that independently of the four starting points we
have the following phenomenon: the non-inertial version recovers only one of the
two optimal solutions, situation which persists even when changing the value of αn;
on the other hand, the inertial version is capable to find both optimal solutions,
namely, one for β = 0.199 and the other one for β = 0.299.
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(a) x0 = (−8,−8), β = 0
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(b) x0 = (−8,−8), β = 1.99

−8 −6 −4 −2 0 2 4 6 8

−8

−6

−4

−2

0

2

4

6

8

(c) x0 = (−8,−8), β = 2.99
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(d) x0 = (−8, 8), β = 0
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(e) x0 = (−8, 8), β = 1.99
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(f) x0 = (−8, 8), β = 2.99
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(g) x0 = (8,−8), β = 0
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(h) x0 = (8,−8), β = 1.99
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(i) x0 = (8,−8), β = 2.99
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(j) x0 = (8, 8), β = 0
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(k) x0 = (8, 8), β = 1.99
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(l) x0 = (8, 8), β = 2.99
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Figure 3.3: Algorithm 3.3 after 100 iterations and with starting points
(−8,−8), (−8, 8), (8,−8) and (8, 8), respectively: the first column shows the iterates of
the non-inertial version (βn = β = 0 for all n ≥ 1), the second column the ones of the
inertial version with βn = β = 1.99 for all n ≥ 1 and the third column the ones of the
inertial version with βn = β = 2.99 for all n ≥ 1.

Restoration of noisy blurred images

The following numerical experiment concerns the restoration of a noisy blurred
image by using a nonconvex misfit functional with nonconvex regularization. For
a given matrix A ∈ Rm×m describing a blur operator and a given vector b ∈ Rm
representing the blurred and noisy image, the task is to estimate the unknown
original image x ∈ Rm fulfilling

Ax = b.
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(a) Contour plot
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(b) Graph
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Figure 3.4: Contour plot and graph of the objective function in (3. 85). The two global
optimal solutions (0, 0.5) and (0,−0.5) are marked on the first image.

To this end we solve the following regularized nonconvex minimization problem

inf
x∈Rm

{
M∑
k=1

N∑
l=1

ϕ
(
(Ax− b)kl

)
+ λ‖Wx‖0

}
, (3. 86)

where ϕ : R→ R,

ϕ(t) = log(1 + t2),

is derived form the Student’s t distribution, λ > 0 is a regularization parameter,
W : Rm → Rm is a discrete Haar wavelet transform with four levels and

‖y‖0 =

m∑
i=1

|yi|0

(| · |0 = | sgn(·)|) furnishes the number of nonzero entries of a given vector y =
(y1, ..., ym) ∈ Rm. In this context, x ∈ Rm represents the vectorized image X ∈
RM×N , where m = M ·N and xi,j denotes the normalized value of the pixel located
in the i-th row and the j-th column, for i = 1, . . . ,M and j = 1, . . . , N . Again, by
combining [10, the remarks after Definition 4.1], [33, Remark 5(iii)] and [35, Section
5: Example 3, Example 4 and Theorem 3], one can conclude that H in Theorem
3.8 is a KL function.

It is immediate that (3. 86) can be written in the form (3. 68), by defining

f(x) = λ‖Wx‖0

and

g(x) =

M∑
k=1

N∑
l=1

ϕ
(
(Ax− b)kl

)
for all x ∈ Rm. By using that WW ∗ = W ∗W = Im, one can prove the following
formula concerning the proximal operator of f

proxγf (x) = W ∗ proxλγ‖·‖0(Wx) ∀x ∈ Rm ∀γ > 0,

where for all u = (u1, ..., um) we have (see [11, Example 5.4(a)])

proxλγ‖·‖0(u) = (proxλγ|·|0(u1), ...,proxλγ|·|0(um))
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and for all t ∈ R

proxλγ|·|0(t) =

 t, if |t| >
√

2λγ,
{0, t}, if |t| =

√
2λγ,

0, otherwise.

For the experiments we used the 256×256 boat test image which we first blurred by
using a Gaussian blur operator of size 9×9 and standard deviation 4 and to which we
afterward added a zero-mean white Gaussian noise with standard deviation 10−6.
In the first row of Figure 3.5 the original boat test image and the blurred and noisy
one are represented, while in the second row one has the reconstructed images by
means of the non-inertial (for βn = β = 0 for all n ≥ 1) and inertial versions (for
βn = β = 10−7 for all n ≥ 1) of Algorithm 1, respectively. We took as regularization
parameter λ = 10−5 and set αn = (0.999999− 2βn)/L∇g for all n ≥ 1, whereby the
Lipschitz constant of the gradient of the smooth misfit function is L∇g = 2.

original image blurred & noisy image

noninertial reconstruction inertial reconstruction

Figure 3.5: The first row shows the original 256 × 256 boat test image and the blurred
and noisy one and the second row the reconstructed images after 300 iterations.

We compared the quality of the recovered images for βn = β for all n ≥ 1
and different values of β by making use of the improvement in signal-to-noise ratio
(ISNR), which is defined as

ISNR(n) = 10 log10

(
‖x− b‖2

‖x− xn‖2

)
,

where x, b and xn denote the original, observed and estimated image at iteration
n, respectively.
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β 0.4 0.2 0.01 0.0001 10−7 0

ISNR(300) 2.081946 3.101028 3.492989 3.499428 3.511135 3.511134

Table 3.3: The ISNR values after 300 iterations for different choices of β.

In Table 3.3 we list the values of the ISNR-function after 300 iterations, whereby
the case β = 0 corresponds to the non-inertial version of the algorithm. One can
notice that for β taking very small values, the inertial version is competitive with
the non-inertial one.



Chapter 4

Penalty-type splitting
algorithms for monotone
inclusion problems

It is the aim of this chapter to present and investigate penalty-type methods for
monotone inclusion problems. In Section 4.1 we pay attention on forward-backward-
type penalty methods, while in Section 4.2 we consider Tseng’s type penalty schemes
for monotone inclusion problems, including highly structured inclusions involving
composition with linear and continuous operators and parallel-sums.

We need some additional notions and technical results which are recalled in the
following.

The Fitzpatrick function associated to a monotone operator A : H⇒ H, defined
as

ϕA : H×H → R, ϕA(x, u) = sup
(y,v)∈grA

{〈x, v〉+ 〈y, u〉 − 〈y, v〉},

is a convex and lower semicontinuous function and it will play an important role
throughout this chapter. Let us note that a similar object has been considered also
by Krylov in 1982, see [93]. The terminology used in the literature is Fitzpatrick
function, due to [87], where some fundamental properties have been investigated in
connection with monotone operators. Let us underline that this notion opened the
gate towards the employment of convex analysis specific tools when investigating
the maximality of monotone operators (see [26,27,36–39,64,124] and the references
therein). In case A is maximally monotone, ϕA is proper and it fulfills

ϕA(x, u) ≥ 〈x, u〉 ∀(x, u) ∈ H ×H,

with equality if and only if (x, u) ∈ grA. Notice that if f : H → R, is a proper,
convex and lower semi-continuous function, then the following inequality is true
(see [27])

ϕ∂f (x, u) ≤ f(x) + f∗(u) ∀(x, u) ∈ H ×H. (4. 1)

We refer the reader to [27], for formulae of the corresponding Fitzpatrick functions
computed for particular classes of monotone operators.

The following ergodic version of the Opial Lemma will be used several times in
this chapter. Let (xn)n≥1 be a sequence in H and (λk)k≥1 a sequence of positive
numbers such that

∑
k≥1 λk = +∞. Let (zn)n≥1 be the sequence of weighted

averages defined as (see [16])

zn =
1

τn

n∑
k=1

λkxk, where τn =

n∑
k=1

λk ∀n ≥ 1. (4. 2)

97
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Lemma 4.1 (Opial-Passty, see [112,113] and [15, Lemma 2.1]) Let C be a nonempty
subset of H and assume that the limes limn→∞ ‖xn − x‖ exists for every x ∈ C. If
every weak sequential cluster point of (xn)n≥1 (respectively (zn)n≥1) lies in C, then
(xn)n≥1 (respectively (zn)n≥1) converges weakly to an element in C as n→ +∞.

4.1 A forward-backward penalty scheme

In this section we propose and investigate the convergence properties of a forward-
backward penalty type scheme for solving inclusion problems governed by monotone
operators. The problem we deal with at the beginning of this section has the
following formulation.

Problem 4.1 Let H be a real Hilbert space, A,B : H ⇒ H maximally monotone
operators, D : H → H an η-cocoercive operator with η > 0 and suppose that M =
zerB 6= ∅. The monotone inclusion problem to solve is

find x ∈ H such that 0 ∈ Ax+Dx+NM (x).

The following iterative scheme for solving Problem 4.1 is inspired by [16].

Algorithm 4.1
Initialization: Choose x1 ∈ H

For n ≥ 1: Choose wn ∈ Bxn
Set xn+1 = JλnA(xn − λnDxn − λnβnwn),

where (λn)n≥1 and (βn)n≥1 are sequences of positive real numbers. Notice that
Algorithm 4.1 is well-defined, if domB = H, which will be the case in the next
section, when B is assumed to be cocoercive. For the convergence statement the
following hypotheses are needed

(Hfitz)


(i) A+NM is maximally monotone and zer(A+D +NM ) 6= ∅;
(ii) For every p ∈ ranNM :∑

n≥1 λnβn

[
sup
u∈M

ϕB

(
u, p

βn

)
− σM

(
p
βn

)]
< +∞;

(iii) (λn)n≥1 ∈ `2 \ `1.

Remark 4.1 Since A is maximally monotone and M is a nonempty convex and
closed set, A + NM is maximally monotone if a so-called regularity condition is
fulfilled. This is the cae if one of the Rockafellar conditions M ∩ int domA 6= ∅ or
domA∩ intM 6= ∅, is fulfilled (see [121]). We refer the reader to [26,36–39,124,131]
for further conditions which guarantee the maximality of the sum of maximally
monotone operators. Further, we refer to [26, Subsection 23.4] for conditions eun-
suring that the set of zeros of a maximally monotone operator is nonempty.

Further, as D is maximally monotone (see [26, Example 20.28]) and domD = H,
the hypothesis (i) above guarantees that A+D+NM is maximally monotone, too
(see [26, Corollary 24.4]). Moreover, for each p ∈ ranNM we have

sup
u∈M

ϕB

(
u,

p

βn

)
− σM

(
p

βn

)
≥ 0 ∀n ≥ 1.

Indeed, if p ∈ ranNM , then there exists u ∈M such that p ∈ NM (u). This implies
that

sup
u∈M

ϕB

(
u,

p

βn

)
− σM

(
p

βn

)
≥
〈
u,

p

βn

〉
− σM

(
p

βn

)
= 0 ∀n ≥ 1.
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Remark 4.2 Let us underline that the hypothesis (ii) is a generalization of the
condition considered in [16] (we refer to (Hopt

fitz) and Remark 4.7 in Section 4.2.3 for
conditions guaranteeing (ii)). Indeed, if Dx = 0 for all x ∈ H and B = ∂Ψ, where
Ψ : H → R is a proper, convex and lower semicontinuous function with min Ψ = 0,
then the monotone inclusion in Problem 4.1 becomes

find x ∈ H such that 0 ∈ Ax+NM (x), (4. 3)

since in this case M = argmin Ψ. This problem has been investigated in [16] under
the condition

(H)


(i) A+NM is maximally monotone and zer(A+NM ) 6= ∅;

For every p ∈ ranNM :∑
n≥1 λnβn

[
Ψ∗
(
p
βn

)
− σC

(
p
βn

)]
< +∞;

(iii) (λn)n∈N ∈ `2 \ `1.

Moreover, as Ψ(x) = 0 for all x ∈ M , by (4. 1) it follows that condition (ii) in
(H) implies condition (ii) in (Hfitz), hence the hypothesis formulated by means
of the Fitzpatrick function extends the one given [16] to the more general setting
considered in Problem 4.1. It remains an open question to find examples of proper,
convex and lower semicontinuous functions Ψ : H → R with min Ψ = 0 for which
(ii) in (H) is not fulfilled, while for B = ∂Ψ condition (ii) in (Hfitz) holds.

4.1.1 The general case

In this subsection we will prove an abstract convergence result for Algorithm 4.1,
which will be subsequently refined in the case when B is a cocoercive operator.
Some techniques from [16] are adapted to the more general setting we consider
here.

Lemma 4.2 Let (xn)n≥1 and (wn)n≥1 be the sequences generated by Algorithm 4.1
and take (u,w) ∈ gr(A + D + NM ) such that w = v + p + Du, where v ∈ Au and
p ∈ NM (u). Then the following inequality holds for all n ≥ 1

‖xn+1 − u‖2 − ‖xn − u‖2 + λn(2η − 3λn)‖Dxn −Du‖2

≤ 2λnβn

[
sup
u∈M

ϕB

(
u,

p

βn

)
− σM

(
p

βn

)]
+ 3λ2

nβ
2
n‖wn‖2 + 3λ2

n‖Du+ v‖2 + 2λn〈u− xn, w〉. (4. 4)

Proof. From the definition of the resolvent of A we have

xn − xn+1

λn
− βnwn −Dxn ∈ Axn+1

and since v ∈ Au, the monotonicity of A guarantees

〈xn+1 − u, xn − xn+1 − λn(βnwn +Dxn + v)〉 ≥ 0 ∀n ≥ 1, (4. 5)

thus

〈u− xn+1, xn − xn+1〉 ≤ λn〈u− xn+1, βnwn +Dxn + v〉 ∀n ≥ 1.

Further, since

〈u− xn+1, xn − xn+1〉 =
1

2
‖xn+1 − u‖2 −

1

2
‖xn − u‖2 +

1

2
‖xn+1 − xn‖2,



100 CHAPTER 4. Penalty schemes

we get for any n ≥ 1

‖xn+1 − u‖2 − ‖xn − u‖2

≤ 2λn〈u− xn+1, βnwn +Dxn + v〉 − ‖xn+1 − xn‖2

= 2λn〈u− xn, βnwn +Dxn + v〉+ 2λn〈xn − xn+1, βnwn +Dxn + v〉
− ‖xn+1 − xn‖2

≤ 2λn〈u− xn, βnwn +Dxn + v〉+ λ2
n‖βnwn +Dxn + v‖2

≤ 2λn〈u− xn, βnwn +Dxn + v〉+ 3λ2
nβ

2
n‖wn‖2 + 3λ2

n‖Du+ v‖2

+ 3λ2
n‖Dxn −Du‖2.

Next we evaluate the first term on the right hand-side of the last of the above
inequalities. By using the cocoercivity of D and the definition of the Fitzpatrick

function and that wn ∈ Bxn and σM

(
p
βn

)
= 〈u, p

βn
〉 for every n ≥ 1, we obtain

2λn〈u− xn, βnwn +Dxn + v〉
= 2λn〈u− xn, βnwn +Dxn + w − p−Du〉
= 2λn〈u− xn, Dxn −Du〉+ 2λn〈u− xn, βnwn − p〉+ 2λn〈u− xn, w〉

= 2λn〈u− xn, Dxn −Du〉+ 2λnβn

(
〈u,wn〉+

〈
xn,

p

βn

〉
− 〈xn, wn〉 −

〈
u,

p

βn

〉)
+ 2λn〈u− xn, w〉

≤ − 2ηλn‖Dxn −Du‖2

+ 2λnβn

[
sup
u∈M

ϕB

(
u,

p

βn

)
− σM

(
p

βn

)]
+ 2λn〈u− xn, w〉.

This provides the desired conclusion. �

Theorem 4.1 Let (xn)n≥1 and (wn)n≥1 be the sequences generated by Algorithm
4.1 and (zn)n≥1 the sequence defined in (4. 2). If (Hfitz) is fulfilled and the con-
dition (λnβn‖wn‖)n≥1 ∈ `2 holds, then (zn)n≥1 converges weakly to an element in
zer(A+D +NM ) as n→ +∞.

Proof. As limn→+∞ λn = 0, there exists n0 ∈ N such that 2η − 3λn ≥ 0 for all
n ≥ n0. Thus, for (u,w) ∈ gr(A + D + NM ), such that w = v + p + Du, where
v ∈ Au and p ∈ NM (u), by (4. 4) it holds for all n ≥ n0

‖xn+1 − u‖2 − ‖xn − u‖2 ≤ 2λnβn

[
sup
u∈M

ϕB

(
u,

p

βn

)
− σM

(
p

βn

)]
+ 3λ2

nβ
2
n‖wn‖2 + 3λ2

n‖Du+ v‖2 + 2λn〈u− xn, w〉.
(4. 6)

By Lemma 4.1, it is sufficient to prove that the following two statements hold:

(a) for every u ∈ zer(A+D +NM ) the sequence (‖xn − u‖)n≥1 is convergent;

(b) every weak sequential cluster point of (zn)n≥1 lies in zer(A+D +NM ).

(a) For every u ∈ zer(A + D + NM ) one can take w = 0 in (4. 6) and the
conclusion follows from Lemma 1.2.

(b) Let z be a weak sequential cluster point of (zn)n≥1. As we already noticed
that A+D+NM is maximally monotone, in order to show that z ∈ zer(A+D+NM )
we will use the characterization given in (1. 29). Take (u,w) ∈ gr(A + D + NM )
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such that w = v + p + Du, where v ∈ Au and p ∈ NM (u). Let be N ∈ N with
N ≥ n0 + 2. Summing up for n = n0 + 1, ..., N the inequalities in (4. 6), we get

‖xN+1−u‖2−‖xn0+1−u‖2 ≤ L+2

〈
N∑
n=1

λnu−
N∑
n=1

λnxn −
n0∑
n=1

λnu+

n0∑
n=1

λnxn, w

〉
,

where

L = 2
∑

n≥n0+1

λnβn

[
sup
u∈M

ϕB

(
u,

p

βn

)
− σM

(
p

βn

)]
+ 3

∑
n≥n0+1

λ2
nβ

2
n‖wn‖2 + 3

∑
n≥n0+1

λ2
n‖Du+ v‖2 ∈ R.

Discarding the nonnegative term ‖xN+1−u‖2 and dividing by 2τN = 2
∑N
k=1 λk

we obtain

−‖xn0+1 − u‖2

2τN
≤ L̃

2τN
+ 〈u− zN , w〉,

where L̃ := L + 2〈−
∑n0

n=1 λnu +
∑n0

n=1 λnxn, w〉 ∈ R. By passing to the limit as
N → +∞ and using that limN→+∞ τN = +∞, we get

lim inf
N→+∞

〈u− zN , w〉 ≥ 0.

Since z is a weak sequential cluster point of (zn)n≥1, we obtain that 〈u− z, w〉 ≥ 0.
Finally, as this inequality holds for arbitrary (u,w) ∈ gr(A+D+NM ), the desired
conclusion follows. �

In the following we show that strong monotonicity of the operator A ensures
strong convergence of the sequence (xn)n≥1.

Theorem 4.2 Let (xn)n≥1 and (wn)n≥1 be the sequences generated by Algorithm
4.1. If (Hfitz) is fulfilled, (λnβn‖wn‖)n≥1 ∈ `2 and the operator A is γ-strongly
monotone with γ > 0, then (xn)n≥1 converges strongly to the unique element in
zer(A+D +NM ) as n→ +∞.

Proof. Let be u ∈ zer(A+D +NM ) and w = 0 = v + p+Du, where v ∈ Au and
p ∈ NM (u). Since A is γ-strongly monotone, inequality (4. 5) becomes

〈xn+1 − u, xn − xn+1 − λn(βnwn +Dxn + v)〉 ≥ λnγ‖xn+1 − u‖2 ∀n ≥ 1. (4. 7)

Following the lines of the proof of Lemma 4.2 for w = 0 we obtain for all n ≥ 1

2γλn‖xn+1 − u‖2 + ‖xn+1 − u‖2 − ‖xn − u‖2 + λn(2η − 3λn)‖Dxn −Du‖2

≤ 2λnβn

[
sup
u∈M

ϕB

(
u,

p

βn

)
− σM

(
p

βn

)]
+ 3λ2

nβ
2
n‖wn‖2 + 3λ2

n‖Du+ v‖2.

Thus, as limn→+∞ λn = 0, there exists n0 ∈ N such that for all n ≥ n0

2γλn‖xn+1 − u‖2 + ‖xn+1 − u‖2 − ‖xn − u‖2

≤ 2λnβn

[
sup
u∈M

ϕB

(
u,

p

βn

)
− σM

(
p

βn

)]
+ 3λ2

nβ
2
n‖wn‖2 + 3λ2

n‖Du+ v‖2
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and, so,

2γ
∑
n≥n0

λn‖xn+1 − u‖2 ≤ ‖xn0
− u‖2

+ 2
∑
n≥n0

λnβn

[
sup
u∈M

ϕB

(
u,

p

βn

)
− σM

(
p

βn

)]
+ 3

∑
n≥n0

λ2
nβ

2
n‖wn‖2 + 3‖Du+ v‖2

∑
n≥n0

λ2
n

< +∞.

Since
∑
n≥1 λn = +∞ and (‖xn − u‖)n≥1 is convergent (see the proof of Theorem

4.1 (a)), it follows limn→+∞ ‖xn − u‖ = 0. �

4.1.2 The case B is cocoercive

In this subsection we deal with the situation when B is a (single-valued) cocoercive
operator. Our aim is to show that in this setting the assumption (λnβn‖wn‖)n≥1 ∈
`2 in Theorem 4.1 and Theorem 4.2 can be replaced by a milder condition involving
only the sequences (λn)n≥1 and (βn)n≥1. The problem under consideration has the
following formulation.

Problem 4.2 Let H be a real Hilbert space, A : H ⇒ H a maximally monotone
operator, D : H → H an η-cocoercive operator with η > 0, B : H → H a µ-
cocoercive operator with µ > 0 and suppose that M = zerB 6= ∅. The monotone
inclusion problem to solve is

find x ∈ H such that 0 ∈ Ax+Dx+NM (x).

Algorithm 4.1 has in this particular setting the following formulation.

Algorithm 4.2
Initialization: Choose x1 ∈ H

For n ≥ 1 set: xn+1 = JλnA(xn − λnDxn − λnβnBxn).

Remark 4.3 (a) If Dx = 0 for every x ∈ H and B = ∇Ψ, where Ψ : H → R is a
convex and differentiable function with µ−1-Lipschitz continuous gradient for
µ > 0 fulfilling min Ψ = 0, then we rediscover the setting considered in [16,
Section 3], while Algorithm 4.2 becomes the iterative method investigated in
that paper.

(b) In case Bx = 0 for all x ∈ H Algorithm 4.2 turns out to be classical forward-
backward scheme (see [26,75,130]), since under these premises M = H, hence
NM (x) = {0} for all x ∈ H.

Before stating the convergence result for Algorithm 4.2 some technical results
are in order.

Lemma 4.3 Let be u ∈ M ∩ domA and v ∈ Au. Then for every ε ≥ 0 and all
n ≥ 1 we have

‖xn+1 − u‖2 − ‖xn − u‖2 +
ε

1 + ε
‖xn+1 − xn‖2 +

2ε

1 + ε
λnβn〈xn − u,Bxn〉

≤ λnβn
(

(1 + ε)λnβn −
2µ

1 + ε

)
‖Bxn‖2 + 2λn〈u− xn+1, Dxn + v〉. (4. 8)
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Proof. As in the proof of Lemma 4.2 we obtain for all n ≥ 1 that

‖xn+1 − u‖2 − ‖xn − u‖2 + ‖xn+1 − xn‖2

≤ 2λn〈u− xn+1, βnBxn +Dxn + v〉
= 2λnβn〈u− xn, Bxn〉+ 2λnβn〈xn − xn+1, Bxn〉

+ 2λn〈u− xn+1, Dxn + v〉.

Since B is µ-cocoercive and Bu = 0 we have that

〈u− xn, Bxn〉 ≤ −µ‖Bxn‖2 ∀n ≥ 1,

hence for all n ≥ 1 and ε ≥ 0 it holds

2λnβn〈u− xn, Bxn〉 ≤ −
2µ

1 + ε
λnβn‖Bxn‖2 +

2ε

1 + ε
λnβn〈u− xn, Bxn〉.

Inequality (4. 8) follows by taking into consideration also that for all n ≥ 1 and
ε ≥ 0 we have

2λnβn〈xn − xn+1, Bxn〉 ≤
1

1 + ε
‖xn+1 − xn‖2 + (1 + ε)λ2

nβ
2
n‖Bxn‖2.

�

Lemma 4.4 Assume that lim supn→+∞ λnβn < 2µ and let be u ∈M ∩ domA and
v ∈ Au. Then there exist a, b > 0 and n0 ∈ N such that for all n ≥ n0 it holds

‖xn+1 − u‖2 − ‖xn − u‖2 + a
(
‖xn+1 − xn‖2 + λnβn〈xn − u,Bxn〉+ λnβn‖Bxn‖2

)
≤
(
bλ2
n − 2ηλn

)
‖Dxn −Du‖2 + 2λn〈u− xn, v +Du〉+ bλ2

n‖Du+ v‖2. (4. 9)

Proof. We start by noticing that, by making use of the cocoercivity of D, for every
ε > 0 and all n ≥ 1 it holds

2λn〈u− xn+1, Dxn + v〉
= 2λn〈xn − xn+1, Dxn + v〉+ 2λn〈u− xn, Dxn + v〉

≤ ε

2(1 + ε)
‖xn+1 − xn‖2 +

2(1 + ε)

ε
λ2
n‖Dxn + v‖2 + 2λn〈u− xn, Dxn + v〉

≤ ε

2(1 + ε)
‖xn+1 − xn‖2 +

4(1 + ε)

ε
λ2
n‖Dxn −Du‖2 +

4(1 + ε)

ε
λ2
n‖Du+ v‖2

+ 2λn〈u− xn, Dxn −Du〉+ 2λn〈u− xn, v +Du〉

≤ ε

2(1 + ε)
‖xn+1 − xn‖2 +

4(1 + ε)

ε
λ2
n‖Dxn −Du‖2 +

4(1 + ε)

ε
λ2
n‖Du+ v‖2

− 2λnη‖Dxn −Du‖2 + 2λn〈u− xn, v +Du〉.

In combination with (4. 8) it yields for every ε > 0 and every n ≥ 1

‖xn+1 − u‖2 − ‖xn − u‖2 +
ε

2(1 + ε)
‖xn+1 − xn‖2 +

2ε

1 + ε
λnβn〈xn − u,Bxn〉

+
ε

1 + ε
λnβn‖Bxn‖2

≤ λnβn

(
(1 + ε)λnβn −

2µ

1 + ε
+

ε

1 + ε

)
‖Bxn‖2

+

(
4(1 + ε)

ε
λ2
n − 2ηλn

)
‖Dxn −Du‖2

+ 2λn〈u− xn, v +Du〉+
4(1 + ε)

ε
λ2
n‖Du+ v‖2.
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Since lim supn→+∞ λnβn < 2µ, there exists α > 0 and n0 ∈ N such that λnβn <
α < 2µ for all n ≥ n0. Hence, for all n ≥ n0 and every ε > 0 it holds

λnβn

(
(1 + ε)λnβn −

2µ

1 + ε
+

ε

1 + ε

)
< α

(
(1 + ε)α− 2µ

1 + ε
+

ε

1 + ε

)
and one can take ε0 > 0 small enough such that (1 + ε0)α− 2µ

1+ε0
+ ε0

1+ε0
< 0. The

desired conclusion follows by choosing a = ε0
2(1+ε0) and b = 4(1+ε0)

ε0
. �

Lemma 4.5 Assume that lim supn→+∞ λnβn < 2µ and limn→+∞ λn = 0 and let be
(u,w) ∈ gr(A+D+NM ) such that w = v+ p+Du, where v ∈ Au and p ∈ NM (u).
Then there exist a, b > 0 and n1 ∈ N such that for all n ≥ n1 it holds

‖xn+1 − u‖2 − ‖xn − u‖2 (4. 10)

+ a

(
‖xn+1 − xn‖2 +

λnβn
2
〈xn − u,Bxn〉+ λnβn‖Bxn‖2

)
≤ aλnβn

2

[
sup
u∈M

ϕB

(
u,

4p

aβn

)
− σM

(
4p

aβn

)]
+ 2λn〈u− xn, w〉+ bλ2

n‖Du+ v‖2.

(4. 11)

Proof. According to Lemma 4.4, there exist a, b > 0 and n0 ∈ N such that for all
n ≥ n0 inequality (4. 9) holds. Since limn→∞ λn = 0, there exists n1 ∈ N, n1 ≥ n0

such that bλ2
n − 2ηλn ≤ 0 for all n ≥ n1, hence,

‖xn+1 − u‖2 − ‖xn − u‖2

+ a
(
‖xn+1 − xn‖2 + λnβn〈xn − u,Bxn〉+ λnβn‖Bxn‖2

)
≤ 2λn〈u− xn, v +Du〉+ bλ2

n‖Du+ v‖2 ∀n ≥ n1.

The conclusion follows by combining this inequality with the subsequent estimation
that holds for all n ≥ 1:

2λn〈u− xn, v +Du〉+
aλnβn

2
〈u− xn, Bxn〉

= 2λn〈u− xn,−p〉+
aλnβn

2
〈u− xn, Bxn〉+ 2λn〈u− xn, w〉

=
aλnβn

2

(
〈u,Bxn〉+

〈
xn,

4p

aβn

〉
− 〈xn, Bxn〉 −

〈
u,

4p

aβn

〉)
+ 2λn〈u− xn, w〉

≤ aλnβn
2

[
sup
u∈M

ϕB

(
u,

4p

aβn

)
− σM

(
4p

aβn

)]
+ 2λn〈u− xn, w〉.

�

Theorem 4.3 Let (xn)n≥1 and (wn)n≥1 be the sequences generated by Algorithm
4.2 and (zn)n≥1 be the sequence defined in (4. 2). If (Hfitz) is fulfilled and the
condition

lim sup
n→+∞

λnβn < 2µ

holds, then the following statements are true:

(i) for every u ∈ zer(A+D+NM ) the sequence (‖xn−u‖)n≥1 is convergent and the
series

∑
n≥1 ‖xn+1−xn‖2,

∑
n≥1 λnβn〈Bxn, xn−u〉 and

∑
n≥1 λnβn‖Bxn‖2

are convergent as well. In particular limn→+∞ ‖xn+1−xn‖ = 0. If, moreover,
lim infn→+∞ λnβn > 0, then limn→+∞〈Bxn, xn − u〉 = limn→+∞ ‖Bxn‖ = 0
and every weak sequential cluster point of (xn)n≥1 lies in M .
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(ii) (zn)n≥1 converges weakly to an element in zer(A+D +NM ) as n→ +∞.

(iii) if, additionally, A is strongly monotone, then (xn)n≥1 converges strongly to
the unique element in zer(A+D +NM ) as n→ +∞.

Proof. For every u ∈ zer(A + D + NM ), according to Lemma 4.5, there exist
a, b > 0 and n1 ∈ N such that for all n ≥ n1 inequality (4. 10) is true for w = 0.
This gives rise via Lemma 1.2 to the statements in (i). As the sequence (λnβn)n≥1

is bounded above, it automatically follows that (λnβn‖Bxn‖)n≥1 ∈ `2. Hence, (ii)
and (iii) follow as consequences of Theorem 4.1 and Theorem 4.2, respectively. �

Remark 4.4 We emphasize the fact that the results obtained in this subsection
by assuming that B is a cocoercive operator enables us to treat the more general
case where M is the set of zeros of an arbitrary maximally monotone operator.

Indeed, we consider in Problem 4.1 that M = zerN 6= ∅, where N : H ⇒ H
is a (possibly set-valued) maximally monotone operator. The idea is to apply the
results in Subsection 2.1.2 to the operator B := JN−1 : H → H, which according
to [26, Proposition 20.22, Corollary 23.10 and Proposition 4.2] is µ-cocoercive with
µ = 1. By noticing that zerJN−1 = zerN , we can address the monotone inclusion
problem to be solved as a problem formulated in the framework of Problem 4.2.
Obviously, in the iterative scheme given in Algorithm 4.2 the operator N will be
evaluated by a backward step.

Further, we will show that one can provide sufficient conditions for (ii) in (Hfitz)
written in terms of the Fitzpatrick function of the operatorN . To this end we use the
following estimation of for Fitzpatrick function of JN−1 , obtained by applying [27,
Proposition 4.2], which is a result that gives an upper bound for the Fitzpatrick
function of the sum of two maximally monotone operators in terms of the Fitzpatrick
functions of the operators involved. Take an arbitrary p ∈ ranNM and u ∈M . We
have for every n ≥ 1

ϕJN−1

(
u,

p

βn

)
= ϕId +N−1

(
p

βn
, u

)
≤ ϕId

(
p

βn
, 0

)
+ ϕN−1

(
p

βn
, u

)
=

1

4

∥∥∥∥ pβn
∥∥∥∥2

+ ϕN

(
u,

p

βn

)
,

where we used the fact that ϕId(x, v) = 1
4 ‖x+ v‖2 for all (x, v) ∈ H ×H.

This means that the condition (ii) in (Hfitz) applied to the reformulation of
Problem 4.1 described above is fulfilled, if we assume that

∑
n≥1

λn
βn

< +∞ and

that for every p ∈ ranNM ,
∑
n≥1 λnβn

[
sup
u∈M

ϕN

(
u, p

βn

)
− σM

(
p
βn

)]
< +∞.

4.2 Tseng’s Type penalty schemes

In this section we deal first with the monotone inclusion problem stated in Problem
4.2 by relaxing the cocoercivity ofB andD to monotonicity and Lipschitz continuity.
The iterative method we propose in this setting is a forward-backward-forward
penalty scheme and relies on a method introduced by Tseng in [129] (see [26,62,76]
for further details and motivations). By making use of primal-dual techniques
we will be able then to employ the proposed approach when solving monotone
inclusion problems involving parallel sums and compositions of maximally monotone
operators with linear continuous ones.
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4.2.1 Relaxing cocoercivity to monotonicity and Lipschitz
continuity

We deal first with the following problem.

Problem 4.3 Let H be a real Hilbert space, A : H ⇒ H a maximally monotone
operator, D : H → H a monotone and η−1-Lipschitz continuous operator with
η > 0, B : H → H a monotone and µ−1-Lipschitz continuous operator with µ > 0
and suppose that M = zerB 6= ∅. The monotone inclusion problem to solve is

find x ∈ H such that 0 ∈ Ax+Dx+NM (x).

The investigated algorithm has the following form.

Algorithm 4.3
Initialization: Choose x1 ∈ H

For n ≥ 1 set: pn = JλnA(xn − λnDxn − λnβnBxn)
xn+1 = λnβn(Bxn −Bpn) + λn(Dxn −Dpn) + pn,

where (λn)n≥1 and (βn)n≥1 are sequences of positive real numbers.

Remark 4.5 If Bx = 0 for every x ∈ H (which corresponds to the situation
NM (x) = {0} for all x ∈ H), then Algorithm 4.3 turns out to be the error-free
forward-backward-forward scheme from [62, Theorem 2.5] (see also [129]).

We start with the following technical statement.

Lemma 4.6 Let (xn)n≥1 and (pn)n≥1 be the sequences generated by Algorithm 4.3
and let be (u,w) ∈ gr(A+D +NM ) such that w = v + p+Du, where v ∈ Au and
p ∈ NM (u). Then the following inequality holds for all n ≥ 1:

‖xn+1 − u‖2 − ‖xn − u‖2 +

(
1−

(
λnβn
µ

+
λn
η

)2
)
‖xn − pn‖2

≤ 2λnβn

[
sup
u∈M

ϕB

(
u,

p

βn

)
− σM

(
p

βn

)]
+ 2λn〈u− pn, w〉. (4. 12)

Proof. From the definition of the resolvent we have

xn − pn
λn

− βnBxn −Dxn ∈ Apn ∀n ≥ 1

and since v ∈ Au, the monotonicity of A guarantees

〈pn − u, xn − pn − λn(βnBxn +Dxn + v)〉 ≥ 0 ∀n ≥ 1,

thus

〈u− pn, xn − pn〉 ≤ 〈u− pn, λnβnBxn + λnDxn + λnv〉 ∀n ≥ 1.

By using the definition of xn+1 given in the algorithm we obtain

〈u−pn, xn − pn〉
≤ 〈u− pn, xn+1 − pn + λnβnBpn + λnDpn + λnv〉
= 〈u− pn, xn+1 − pn〉+ λnβn〈u− pn, Bpn〉

+ λn〈u− pn, Dpn〉+ λn〈u− pn, v〉 ∀n ≥ 1.
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From here it follows for all n ≥ 1

1

2
‖u− pn‖2 −

1

2
‖xn − u‖2 +

1

2
‖xn − pn‖2

≤ 1

2
‖u− pn‖2 −

1

2
‖xn+1 − u‖2 +

1

2
‖xn+1 − pn‖2

+ λnβn〈u− pn, Bpn〉+ λn〈u− pn, Dpn〉+ λn〈u− pn, v〉.

Since v = w− p−Du and due to the fact that D is monotone, we obtain for every
n ≥ 1

‖xn+1 − u‖2 − ‖xn − u‖2

≤ ‖xn+1 − pn‖2 − ‖xn − pn‖2

+ 2λnβn

(
〈u,Bpn〉+

〈
pn,

p

βn

〉
− 〈pn, Bpn〉 −

〈
u,

p

βn

〉)
+ 2λn〈u− pn, Dpn −Du〉+ 2λn〈u− pn, w〉

≤ ‖xn+1 − pn‖2 − ‖xn − pn‖2

+ 2λnβn

[
sup
u∈M

ϕB

(
u,

p

βn

)
− σM

(
p

βn

)]
+ 2λn〈u− pn, w〉.

The conclusion follows, by noticing that the Lipschitz continuity of B and D yields

‖xn+1 − pn‖ ≤
λnβn
µ
‖xn − pn‖+

λn
η
‖xn − pn‖

=

(
λnβn
µ

+
λn
η

)
‖xn − pn‖ ∀n ≥ 1.

�
The convergence of Algorithm 4.3 is stated below.

Theorem 4.4 Let (xn)n≥1 and (pn)n≥1 be the sequences generated by Algorithm
4.3 and (zn)n≥1 the sequence defined in (4. 2). If (Hfitz) is fulfilled and the condi-
tion

lim sup
n→+∞

(
λnβn
µ

+
λn
η

)
< 1

holds, then (zn)n≥1 converges weakly to an element in zer(A+D+NM ) as n→ +∞.

Proof. The proof of the theorem relies on the following three statements:

(a) for every u ∈ zer(A+D +NM ) the sequence (‖xn − u‖)n≥1 is convergent;

(b) every weak cluster point of (z′n)n≥1, where

z′n =
1

τn

n∑
k=1

λkpk and τn =

n∑
k=1

λk ∀n ≥ 1,

lies in zer(A+D +NM );

(c) every weak cluster point of (zn)n≥1 lies in zer(A+D +NM ).

In order to show (a) and (b) one has only to slightly adapt the proof of Theorem
4.1 and this is why we omit to give further details. For (c) it is enough to prove that
limn→+∞ ‖zn − z′n‖ = 0 and the statement of the theorem will be a consequence of
Lemma 4.1.
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Taking u ∈ zer(A + D + NM ) and w = 0 = v + p + Du, where v ∈ Au and
p ∈ NM (u), from (4. 12) we have

‖xn+1 − u‖2 − ‖xn − u‖2 +

(
1−

(
λnβn
µ

+
λn
η

)2
)
‖xn − pn‖2

≤ 2λnβn

[
sup
u∈M

ϕB

(
u,

p

βn

)
− σM

(
p

βn

)]
.

As lim supn→+∞

(
λnβn
µ + λn

η

)
< 1, we obtain by Lemma 1.2 that

∑
n≥1

‖xn − pn‖2 < +∞.

Moreover, for all n ≥ 1 it holds

‖zn − z′n‖2 =
1

τ2
n

∥∥∥∥∥
n∑
k=1

λk(xk − pk)

∥∥∥∥∥
2

≤ 1

τ2
n

(
n∑
k=1

λk‖xk − pk‖

)2

≤ 1

τ2
n

(
n∑
k=1

λ2
k

)(
n∑
k=1

‖xk − pk‖2
)
.

Since (λn)n≥1 ∈ `2\`1, by taking into consideration that τn =
∑n
k=1 λk → +∞ (n→

+∞), we obtain ‖zn − z′n‖ → 0 (n→ +∞). �

As it happens for the forward-backward penalty scheme, strong monotonicity of
the operator A ensures strong convergence of the sequence (xn)n≥1.

Theorem 4.5 Let (xn)n≥1 and (pn)n≥1 be the sequences generated by Algorithm
4.3. If (Hfitz) is fulfilled,

lim sup
n→+∞

(
λnβn
µ

+
λn
η

)
< 1

and the operator A is γ-strongly monotone with γ > 0, then (xn)n≥1 converges
strongly to the unique element in zer(A+D +NM ) as n→ +∞.

Proof. Let be u ∈ zer(A+D +NM ) and w = 0 = v + p+Du, where v ∈ Au and
p ∈ NM (u). Following the lines of the proof of Lemma 4.6 one can easily show that

2γλn‖pn − u‖2 + ‖xn+1 − u‖2 − ‖xn − u‖2 +

(
1−

(
λnβn
µ

+
λn
η

)2
)
‖xn − pn‖2

≤ 2λnβn

[
sup
u∈M

ϕB

(
u,

p

βn

)
− σM

(
p

βn

)]
∀n ≥ 1.

The hypotheses imply the existence of n0 ∈ N such that for every n ≥ n0

2γλn‖pn−u‖2 +‖xn+1−u‖2−‖xn−u‖2 ≤ 2λnβn

[
sup
u∈M

ϕB

(
u,

p

βn

)
− σM

(
p

βn

)]
.

As in the proof of Theorem 4.2, from here it follows that∑
n≥1

λn‖pn − u‖2 < +∞.
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Since (λn)n≥1 is bounded above and
∑
n∈N ‖xn − pn‖2 < +∞ (see the proof of

Theorem 4.4), it yields

∞∑
n=1

λn‖xn − u‖2 ≤ 2

∞∑
n=1

λn‖xn − pn‖2 + 2

∞∑
n=1

λn‖pn − u‖2 < +∞.

As
∑
n≥1 λn = +∞ and (‖xn−u‖)n≥1 is convergent, it follows limn→+∞ ‖xn−u‖ =

0. �

4.2.2 Primal-dual Tseng’s type penalty schemes

In this section we propose a forward-backward-forward-type algorithm for solving
the following monotone inclusion problem involving linearly composed and parallel-
sum type monotone operators and investigate its convergence.

Problem 4.4 Let H be a real Hilbert space, A : H ⇒ H a maximally monotone
operator and C : H → H a monotone and ν-Lipschitz continuous operator for
ν > 0. Let m be a strictly positive integer and for every i ∈ {1, ...,m} let Gi be a
real Hilbert space, Bi : Gi ⇒ Gi a maximally monotone operator, Di : Gi ⇒ Gi a
monotone operator such that D−1

i is νi-Lipschtz continuous for νi > 0 and Li : H →
Gi a nonzero linear continuous operator. Consider also B : H → H a monotone
and µ−1-Lipschitz continuous operator with µ > 0 and suppose that M = zerB 6= ∅.
The monotone inclusion problem to solve is

find x ∈ H such that 0 ∈ Ax+

m∑
i=1

L∗i (Bi�Di)(Lix) + Cx+NM (x). (4. 13)

Let us present our algorithm for solving this problem.

Algorithm 4.4
Initialization: Choose (x1, v1,1, ..., vm,1) ∈ H× G1 × ...× Gm

For n ≥ 1 set: pn = JλnA[xn − λn(Cxn +
∑m
i=1 L

∗
i vi,n)− λnβnBxn]

qi,n = JλnB−1
i

[vi,n + λn(Lixn −D−1
i vi,n)], i = 1, ...,m

xn+1 = λnβn(Bxn −Bpn) + λn(Cxn − Cpn)
+λn

∑m
i=1 L

∗
i (vi,n − qi,n) + pn

vi,n+1 =λnLi(pn − xn) +λn(D−1
i vi,n −D−1

i qi,n)
+qi,n, i = 1, ...,m,

where (λn)n≥1 and (βn)n≥1 are sequences of positive real numbers.

Remark 4.6 In case Bx = 0 for all x ∈ H, Algorithm 4.4 collapses into the
error-free variant of the iterative scheme given in [76, Theorem 3.1] for solving the
monotone inclusion problem

0 ∈ Ax+

m∑
i=1

L∗i (Bi�Di)(Lix) + Cx,

since in this case M = H, hence NM (x) = {0} for all x ∈ H.

For the convergence result we need the following additionally hypotheses (we
refer the reader to the remarks 4.1 and 4.7 for sufficient conditions guaranteeing
(Hpar−sum

fitz )):
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(Hpar−sum
fitz )



(i) A+NM is maximally monotone and
zer
(
A+

∑m
i=1 L

∗
i ◦ (Bi�Di) ◦ Li + C +NM

)
6= ∅;

(ii) For every p ∈ ranNM :∑
n≥1

λnβn

[
sup
u∈M

ϕB

(
u, p

βn

)
− σM

(
p
βn

)]
< +∞;

(iii) (λn)n≥1 ∈ `2 \ `1.

Let us give the main statement of this section. The proof relies on the fact that
Problem 4.4 can be written in the same form as Problem 4.3 in an appropriate
product space.

Theorem 4.6 Consider the sequences generated by Algorithm 4.4 and (zn)n≥1 the
sequence defined in (4. 2). Assume that (Hpar−sum

fitz ) is fulfilled and the condition

lim sup
n→+∞

(
λnβn
µ

+ λnβ

)
< 1

holds, where

β = max{ν, ν1, ..., νm}+

√√√√ m∑
i=1

‖Li‖2.

Then (zn)n≥1 converges weakly to an element in zer
(
A+

∑m
i=1 L

∗
i ◦ (Bi�Di) ◦Li +

C+NM
)

as n→ +∞. If, additionally, A and B−1
i , i = 1, ...,m are strongly mono-

tone, then (xn)n≥1 converges strongly to the unique element in zer
(
A+

∑m
i=1 L

∗
i ◦

(Bi�Di) ◦ Li + C +NM
)

as n→ +∞.

Proof. We start the proof by noticing that x ∈ H is a solution to Problem 4.4 if
and only if there exist v1 ∈ G1, ..., vm ∈ Gm such that{

0 ∈ Ax+
∑m
i=1 L

∗
i vi + Cx+NM (x)

vi ∈ (Bi�Di)(Lix), i = 1, ...,m,
(4. 14)

which is nothing else than{
0 ∈ Ax+

∑m
i=1 L

∗
i vi + Cx+NM (x)

0 ∈ B−1
i vi +D−1

i vi − Lix, i = 1, ...,m.
(4. 15)

In the following we endow the product space H× G1×...×Gm with inner product
and associated norm defined for all (x, v1, ..., vm), (y, w1, ..., wm) ∈ H× G1× ...×Gm
as

〈(x, v1, ..., vm), (y, w1, ..., wm)〉 = 〈x, y〉+

m∑
i=1

〈vi, wi〉

and

‖(x, v1, ..., vm)‖ =

√√√√‖x‖2 +

m∑
i=1

‖vi‖2,

respectively.
We introduce the operators Ã : H× G1 × ...× Gm ⇒ H× G1 × ...× Gm

Ã(x, v1, ..., vm) = Ax×B−1
1 v1 × ....×B−1

m vm,

D̃ : H× G1 × ...× Gm → H× G1 × ...× Gm,

D̃(x, v1, ..., vm) =
( m∑
i=1

L∗i vi + Cx,D−1
1 v1 − L1x, ...,D

−1
m vm − Lmx

)
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and B̃ : H× G1 × ...× Gm → H× G1 × ...× Gm,

B̃(x, v1, ..., vm) = (Bx, 0, ..., 0).

Notice that, since A and Bi, i = 1, ...,m, are maximally monotone, Ã is max-
imally monotone, too (see [26, Props. 20.22, 20.23]). Further, as it was done

in [76, Theorem 3.1], one can show that D̃ is a monotone and β-Lipschitz contin-
uous operator. For the sake of completeness we include here some details of the
proof of these two statements.

Let be (x, v1, ..., vm), (y, w1, ..., wm) ∈ H× G1 × ... × Gm. By using the mono-
tonicity of C and D−1

i , i = 1, ...,m, we have

〈(x, v1, ..., vm)− (y, w1, ..., wm), D̃(x, v1, ..., vm)− D̃(y, w1, ..., wm)〉

= 〈x− y, Cx− Cy〉+

m∑
i=1

〈vi − wi, D−1
i vi −D−1

i wi〉

+

m∑
i=1

(〈x− y, L∗i (vi − wi)〉 − 〈vi − wi, Li(x− y)〉) ≥ 0,

which shows that D̃ is monotone.
The Lipschitz continuity of D̃ follows by noticing that∥∥∥D̃(x, v1, ..., vm)− D̃(y, w1, ..., wm)

∥∥∥
≤
∥∥(Cx− Cy,D−1

1 v1 −D−1
1 w1, ..., D

−1
m vm −D−1

m wm
)∥∥

+

∥∥∥∥∥
(

m∑
i=1

L∗i (vi − wi),−L1(x− y), ...,−Lm(x− y)

)∥∥∥∥∥
≤

√√√√ν2‖x− y‖2 +

m∑
i=1

ν2
i ‖vi − wi‖2

+

√√√√( m∑
i=1

‖Li‖ · ‖vi − wi‖

)2

+

m∑
i=1

‖Li‖2 · ‖x− y‖2

≤ β‖(x, v1, ..., vm)− (y, w1, ..., wm)‖.

Moreover, B̃ is monotone, µ−1-Lipschitz continuous and

zer B̃ = zerB × G1 × ...× Gm = M × G1 × ...× Gm,

hence
N
M̃

(x, v1, ..., vm) = NM (x)× {0} × ...× {0},

where
M̃ = M × G1 × ...× Gm = zer B̃.

Taking into consideration (4. 15), we obtain that x ∈ H is a solution to Problem
4.4 if and only if there exist v1 ∈ G1, ..., vm ∈ Gm such that

(x, v1, ..., vm) ∈ zer(Ã+ D̃ +N
M̃

).

Conversely, when (x, v1, ..., vm) ∈ zer(Ã + D̃ + N
M̃

), then x ∈ zer
(
A +

∑m
i=1 L

∗
i ◦

(Bi�Di) ◦ Li + C +NM
)
. This means that determining the zeros of Ã+ D̃ +N

M̃
will automatically provide a solution to Problem 4.4.
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Using that

JλÃ(x, v1, ..., vm) = (JλA(x), JλB−1
1

(v1), ..., JλB−1
m

(vm))

for every (x, v1, ..., vm) ∈ H× G1 × ... × Gm and every λ > 0 (see [26, Proposition
23.16]), one can easily see that the iterations of Algorithm 4.4 read for all n ≥ 1:

(pn, q1,n, ..., qm,n) = JλnÃ

[
(xn, v1,n, ..., vm,n)− λnD̃(xn, v1,n, ..., vm,n)

−λnβnB̃(xn, v1,n, ..., vm,n)
]

(xn+1, v1,n+1, ..., vm,n+1) = λnβn

[
B̃(xn, v1,n, ..., vm,n)− B̃(pn, q1,n, ..., qm,n)

]
+λn

[
D̃(xn, v1,n, ..., vm,n)− D̃(pn, q1,n, ..., qm,n)

]
+(pn, q1,n, ..., qm,n),

which is nothing else than the iterative scheme of Algorithm 4.3 employed to the
monotone inclusion problem

0 ∈ Ãx+ D̃x+N
M̃

(x).

In order to compute the Fitzpatrick function of B̃, we consider arbitrary elements
(x, v1, ..., vm), (x′, v′1, ..., v

′
m) ∈ H× G1 × ...× Gm. It holds

ϕB̃ ((x, v1, ..., vm), (x′, v′1, ..., v
′
m))

= sup
(y,w1,...,wm)∈
H×G1×...×Gm

{
〈(x, v1, ..., vm), B̃(y, w1, ..., wm)〉

+ 〈(x′, v′1, ..., v′m), (y, w1, ..., wm)〉 − 〈(y, w1, ..., wm), B̃(y, w1, ..., wm)〉
}

= sup
(y,w1,...,wm)∈
H×G1×...×Gm

{
〈x,By〉+ 〈x′, y〉+

m∑
i=1

〈v′i, wi〉 − 〈y,By〉

}
,

thus

ϕB̃
(
(x, v1, ..., vm), (x′, v′1, ..., v

′
m)
)

=

{
ϕB(x, x′), if v′1 = ... = v′m = 0,
+∞, otherwise.

Moreover,

σ
M̃

(x, v1, ..., vm) =

{
σM (x), if v1 = ... = vm = 0,
+∞, otherwise,

hence condition (ii) in (Hpar−sum
fitz ) is nothing else than: for each (p, p1, ..., pm) ∈

ranN
M̃

= ranNM × {0} × ...× {0} one has

∑
n≥1

λnβn

[
sup

(u,v1,...,vm)∈M̃
ϕB̃

(
(u, v1, ..., vm),

(p, p1, ..., pm)

βn

)
− σ

M̃

( (p, p1, ..., pm)

βn

)]
<+∞.

Furthermore, condition (i) in (Hpar−sum
fitz ) ensures that Ã+N

M̃
is maximally mono-

tone and zer(Ã+ D̃+N
M̃

) 6= ∅. Hence, we are in the position of applying Theorem

4.4 in the context of finding the zeros of Ã+D̃+N
M̃

. The statements of the theorem
are an easy consequence of this result. �
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4.2.3 Convex minimization problems

In this subsection we employ the results given for monotone inclusions in the special
instance when minimizing a convex function with an intricate formulation with
respect to the set of minimizers of another convex and differentiable function with
Lipschitz continuous gradient.

Problem 4.5 Let H be a real Hilbert space, f ∈ Γ(H) and h : H → R a convex
and differentiable function with a ν-Lipschitz continuous gradient for ν > 0. Let m
be a strictly positive integer and for every i = 1, ...,m let Gi be a real Hilbert space,
gi, li ∈ Γ(Gi) such that li is ν−1

i -strongly convex for νi > 0 and Li : H → Gi a
nonzero linear continuous operator. Further, let Ψ ∈ Γ(H) be differentiable with a
µ−1-Lipschitz continuous gradient, fulfilling min Ψ = 0. The convex minimization
problem under investigation is

inf
x∈argmin Ψ

{
f(x) +

m∑
i=1

(gi�li)(Lix) + h(x)

}
. (4. 16)

Consider the maximal monotone operators

A = ∂f,B = ∇Ψ, C = ∇h,Bi = ∂gi and Di = ∂li, i = 1, ...,m.

According to [26, Proposition 17.10, Theorem 18.15], D−1
i = ∇l∗i is a monotone and

νi-Lipschitz continuous operator for i = 1, ...,m. Moreover, B is a monotone and
µ−1-Lipschitz continuous operator and

M := argmin Ψ = zerB.

Taking into account the sum rules of the convex subdifferential, every element
of zer

(
∂f +

∑m
i=1 L

∗
i ◦ (∂gi�∂li) ◦Li +∇h+NM

)
is an optimal solution of (4. 16).

The converse is true if an appropriate qualification condition is satisfied. For the
readers convenience, we present some qualification conditions which are suitable in
this context. One of the weakest qualification conditions of interiority-type reads
(see, for instance, [76, Proposition 4.3, Remark 4.4])

(0, ..., 0) ∈ sqri

(
m∏
i=1

(dom gi + dom li)− {(L1x, ..., Lmx) : x ∈ dom f ∩M}

)
.

(4. 17)
The condition (4. 17) is fulfilled if one of the following conditions holds (see for
example [76, Proposition 4.3]):

(i) dom gi + dom li = Gi, i = 1, ...,m;

(ii) H and Gi are finite-dimensional and there exists x ∈ ri dom f ∩ riM such that
Lix ∈ ri dom gi + ri dom li, i = 1, ...,m.

Algorithm 4.4 becomes in this particular case

Algorithm 4.5
Initialization: Choose (x1, v1,1, ..., vm,1) ∈ H× G1 × ...× Gm

For n ≥ 1 set: pn = proxλnf [xn − λn(∇h(xn) +
∑m
i=1 L

∗
i vi,n)− λnβn∇Ψ(xn)]

qi,n = proxλng∗i [vi,n + λn(Lixn −∇l∗i (vi,n))], i = 1, ...,m

xn+1 = λnβn(∇Ψ(xn)−∇Ψ(pn)) + λn(∇h(xn)−∇h(pn))
+λn

∑m
i=1 L

∗
i (vi,n − qi,n) + pn

vi,n+1 =λnLi(pn − xn) +λn(∇l∗i (vi,n)−∇l∗i (qi,n))
+qi,n, i = 1, ...,m
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For the convergence result we need the following hypotheses:

(Hopt
fitz)


(i) ∂f +NM is maximally monotone and

(4. 16) has an optimal solution;

(ii) For every p ∈ ranNM ,
∑
n≥1 λnβn

[
Ψ∗
(
p
βn

)
− σM

(
p
βn

)]
< +∞;

(iii) (λn)n≥1 ∈ `2 \ `1.

Remark 4.7 (a) Let us mention that ∂f +NM is maximally monotone, if

0 ∈ sqri(dom f −M),

a condition which is fulfilled if, for instance,

f is continuous at a point in dom f ∩M

or
intM ∩ dom f 6= ∅.

(b) Since Ψ(x) = 0 for all x ∈ M , by (4. 1) it follows that whenever (ii) in
(Hopt

fitz) holds, condition (ii) in (Hpar−sum
fitz ), formulated for B = ∇Ψ, is also true.

(c) Let us mention that hypothesis (ii) is satisfied, if∑
n≥1

λn
βn

< +∞

and Ψ is bounded below by a multiple of the square of the distance to C (see [15]).
This is for instance the case when

M = zerL,

where L : H → H is a linear continuous operator with closed range and

Ψ : H → R,Ψ(x) = ‖Lx‖2

(see [15, 16]). For further situations for which condition (ii) is fulfilled we refer
to [16, Section 4.1] (see also [24]).

We are able now to formulate the convergence result.

Theorem 4.7 Consider the sequences generated by Algorithm 4.5 and (zn)n≥1 the
sequence defined in (4. 2). If (Hopt

fitz) and (4. 17) are fulfilled and

lim sup
n→+∞

(
λnβn
µ

+ λnβ

)
< 1,

where

β = max{ν, ν1, ..., νm}+

√√√√ m∑
i=1

‖Li‖2,

then (zn)n≥1 converges weakly to an optimal solution to (4. 16) as n → +∞. If,
additionally, f and g∗i , i = 1, ...,m are strongly convex, then (xn)n≥1 converges
strongly to the unique optimal solution of (4. 16) as n→ +∞.

Remark 4.8 (a) According to [26, Proposition 17.10, Theorem 18.15], for a func-
tion g ∈ Γ(H) one has that g is strongly convex if and only if g is differentiable with
Lipschitz continuous gradient.

(b) Notice that in case Ψ(x) = 0 for all x ∈ H, Algorithm 4.5 turns out to be
the error-free variant of the iterative scheme given in [76, Theorem 4.2] for solving
the convex minimization problem

inf
x∈H

{
f(x) +

m∑
i=1

(gi�li)(Lix) + h(x)

}
. (4. 18)
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4.2.4 A numerical experiment in TV-based image inpainting

In this section we illustrate the applicability of Algorithm 4.5 when solving an image
inpainting problem, which aims for recovering lost information. We consider images
of size M ×N as vectors x ∈ Rn for n = M ·N , while each pixel denoted by xi,j ,
1 ≤ i ≤ M , 1 ≤ j ≤ N , ranges in the closed interval from 0 (pure black) to 1
(pure white). We denote by b ∈ Rn the image with missing pixels (in our case set
to black) and by K ∈ Rn×n the diagonal matrix with Ki,i = 0, if the pixel i in the
noisy image b ∈ Rn is missing, and Ki,i = 1, otherwise, i = 1, ..., n (notice that
‖K‖ = 1). The original image will be reconstructed by considering the following
TV-regularized model

inf {TViso(x) : Kx = b, x ∈ [0, 1]
n} . (4. 19)

The objective function TViso : Rn → R is the isotropic total variation and we
refer the reader to the section concerning numerical experiments in Chapter 2 for
its definition. By using also the notations introduced there, and by considering the
function Ψ : Rn → R,

Ψ(x) =
1

2
‖Kx− b‖2,

problem (4. 19) can be reformulated as

inf
x∈argmin Ψ

{f(x) + g1(Lx)} , (4. 20)

where f : Rn → R,
f = δ[0,1]n

and g1 : Y → R,
g1(y1, y2) = ‖(y1, y2)‖×.

Problem (4. 20) is of type (4. 16), when one takes m = 1, L1 = L, l1 = δ{0} and
h = 0. Notice that ∇Ψ(x) = K(Kx − b) = K(x − b) for every x ∈ Rn, thus ∇Ψ
is Lipschitz continuous with Lipschitz constant µ = 1. The iterative scheme in
Algorithm 4.5 becomes for every n ≥ 0 in this case

pn = proxλnf [xn − λnL∗v1,n − λnβnK(xn − b)]
q1,n = proxλng∗1 (v1,n + λnLxn)

xn+1 = λnβnK(xn − pn) + λnL
∗(v1,n − q1,n) + pn

v1,n+1 =λnL(pn − xn) +q1,n.

For the proximal points we have the following formulae:

proxγf (x) = proj[0,1]n(x) ∀γ > 0 and ∀x ∈ Rn

and (see [58])

proxγg∗1 (p, q) = projS (p, q) ∀γ > 0 and ∀(p, q) ∈ Y,

where

S =

(p, q) ∈ Y : max
1≤i≤M
1≤j≤N

√
p2
i,j + q2

i,j ≤ 1


and the projection operator projS : Y → S is defined via

(pi,j , qi,j) 7→
(pi,j , qi,j)

max
{

1,
√
p2
i,j + q2

i,j

} , 1 ≤ i ≤M, 1 ≤ j ≤ N.
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We tested the algorithm on the fruit image and considered as parameters λn =
0.9 · n−0.75 and βn = n0.75 for all n ≥ 1. Figure 4.1 shows the original image,
the image obtained from it after setting 80% randomly chosen pixels to black, the
nonaveraged reconstructed image xn and the averaged reconstructed image zn after
1000 iterations.

original noisy image nonaveraged denoised image averaged denoised image

Figure 4.1: TV image inpainting: the original image, the image with 80% missing
pixels, the nonaveraged reconstructed image xn and the averaged reconstructed
image zn after 1000 iterations.

The comparisons concerning the quality of the reconstructed images were made
by means of the improvement in signal-to-noise ratio (ISNR), which is defined as

ISNR(n) = 10 log10

(
‖x− b‖2

‖x− xn‖2

)
,

where x, b and xn denote the original, the image with missing pixels and the recov-
ered image at iteration n, respectively.

Figure 4.2 shows the evolution of the ISNR values for the averaged and the
nonaveraged reconstructed images. Both figures illustrate the theoretical outcomes
concerning the sequences involved in Theorem 4.7, namely that the averaged se-
quence has better convergence properties than the nonaveraged one.
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Figure 4.2: The ISNR curves for the averaged and nonaveraged reconstructed images



Chapter 5

Implicit-type dynamical
systems associated with
monotone inclusion problems

In this chapter we approach the solving of monotone inclusion problems of the
form (1. 3) by investigating dynamical systems of implicit-type formulated via the
resolvents of the operators involved. In Section 5.1 we consider first-order dynamical
systems and investigate the asymptotic properties of the trajectories, obtaining
also convergence rates and in Section 5.2 we focus our attention on second order
dynamics.

We recall first some technical results and specific tools which will be used in
this framework. We consider the following definition of an absolutely continuous
function, see also [2, 20].

Definition 5.1 (see, for instance, [2,20]) A function x : [0, b]→ H (where b > 0) is
said to be absolutely continuous if one of the following equivalent properties holds:

(i) there exists an integrable function y : [0, b]→ H such that

x(t) = x(0) +

∫ t

0

y(s)ds ∀t ∈ [0, b];

(ii) x is continuous and its distributional derivative is Lebesgue integrable on [0, b];

(iii) for every ε > 0, there exists η > 0 such that for any finite family of intervals
Ik = (ak, bk) ⊆ [0, b] we have the implication(

Ik ∩ Ij = ∅ and
∑
k

|bk − ak| < η

)
=⇒

∑
k

‖x(bk)− x(ak)‖ < ε.

Remark 5.1 (a) It follows from the definition that an absolutely continuous
function is differentiable almost everywhere, its derivative coincides with its
distributional derivative almost everywhere and one can recover the function
from its derivative ẋ = y by the integration formula (i).

(b) If x : [0, b] → H, where b > 0, is absolutely continuous and B : H → H is
L-Lipschitz continuous for L ≥ 0, then the function z = B ◦ x is absolutely
continuous, too. This can be easily seen by using the characterization of
absolute continuity in Definition 5.1(iii). Moreover, z is differentiable almost
everywhere on [0, b] and the inequality ‖ż(t)‖ ≤ L‖ẋ(t)‖ holds for almost every
t ∈ [0, b].

117
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The following two well-known results, which can be interpreted as continuous
versions of the quasi-Fejér monotonicity for sequences, will play an important role in
the asymptotic analysis of the trajectories of several dynamical systems investigated
in this chapter. For their proofs we refer the reader to [2, Lemma 5.1] and [2, Lemma
5.2], respectively.

Lemma 5.1 Suppose that F : [0,+∞) → R is locally absolutely continuous and
bounded from below and that there exists G ∈ L1([0,+∞)) such that for almost
every t ∈ [0,+∞)

d

dt
F (t) ≤ G(t).

Then there exists limt→∞ F (t) ∈ R.

Lemma 5.2 If 1 ≤ p <∞, 1 ≤ r ≤ ∞, F : [0,+∞)→ [0,+∞) is locally absolutely
continuous, F ∈ Lp([0,+∞)), G : [0,+∞) → R, G ∈ Lr([0,+∞)) and for almost
every t ∈ [0,+∞)

d

dt
F (t) ≤ G(t),

then limt→+∞ F (t) = 0.

The next result which we recall here is the continuous version of the Opial
Lemma (see, for example, [2, Lemma 5.3], [1, Lemma 2.10]).

Lemma 5.3 Let S ⊆ H be a nonempty set and x : [0,+∞) → H a given map.
Assume that

(i) for every x∗ ∈ S, limt→+∞ ‖x(t)− x∗‖ exists;
(ii) every weak sequential cluster point of the map x belongs to S.

Then there exists x∞ ∈ S such that x(t) converges weakly to x∞ as t→ +∞.

5.1 First order dynamical systems

This section is dedicated to the asymptotic analysis of the trajectories of first order
dynamical systems associated to monotone inclusion problems.

5.1.1 First order dynamical systems for monotone inclusion
problems

We start with studying a dynamical systems associated to the fixed points set of a
nonexpansive operator. Let T : H → H be a nonexpansive mapping λ : [0,+∞)→
[0, 1] be a Lebesgue measurable function and x0 ∈ H. For the beginning we are
concerned with the following dynamical system:{

ẋ(t) = λ(t)
(
T (x(t))− x(t)

)
x(0) = x0.

(5. 1)

The first issue we investigate is the existence of strong solutions for (5. 1).

Definition 5.2 We say that x : [0,+∞) → H is a strong global solution of (5. 1)
if the following properties are satisfied:

(i) x : [0,+∞)→ H is absolutely continuous on each interval [0, b], 0 < b < +∞;

(ii) ẋ(t) = λ(t)
(
T (x(t))− x(t)

)
for almost every t ∈ [0,+∞);

(iii) x(0) = x0.
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In what follows we verify the existence and uniqueness of strong global solutions
of (5. 1). To this end we use the Cauchy-Lipschitz theorem for absolutely continues
trajectories (see for example [90, Proposition 6.2.1], [125, Theorem 54]).

It is immediate that the system (5. 1) can be written as{
ẋ(t) = f(t, x(t))
x(0) = x0,

(5. 2)

where f : [0,+∞)×H → H is defined by

f(t, x) = λ(t)(Tx− x).

(a) Take arbitrary x, y ∈ H. Relying on the nonexpansiveness of T , for all t ≥ 0
we have

‖f(t, x)− f(t, y)‖ ≤ 2λ(t)‖x− y‖.

Since λ is bounded above, one has 2λ(·) ∈ L1([0, b]) for any 0 < b < +∞;
(b) Take arbitrary x ∈ H and b > 0. One has∫ b

0

‖f(t, x)‖dt = ‖Tx− x‖
∫ b

0

λ(t)dt ≤ b‖Tx− x‖,

hence
∀x ∈ H, ∀b > 0, f(·, x) ∈ L1([0, b],H).

By considering the statements proven in (a) and (b), the existence and unique-
ness of a strong global solution of the dynamic system (5. 1) follows.

Remark 5.2 (i) From the considerations above one can easily notice that the ex-
istence and uniqueness of strong global solutions of (5. 1) can be guaranteed in
the more general setting when T is Lipschitz continuous and λ : [0,+∞) → R is a
Lebesgue measurable function such that λ(·) ∈ L1

loc([0,+∞)).
(ii) Let us mention that if we suppose additionally that λ is continuous, then

the global version of the Picard-Lindelöf Theorem allows us to conclude that, for
x0 ∈ H, there exists a unique trajectory x : [0,+∞) → H which is a C1 function
and which satisfies the relation (ii) in Definition 5.2 for every t ∈ [0,+∞).

In the following we investigate the convergence properties of the trajectories of
the dynamical system (5. 1). We show that under mild conditions imposed on the
function λ, the orbits converge weakly to a fixed point of the nonexpansive operator,
provided the set of such points is nonempty.

Theorem 5.1 Let T : H → H be a nonexpansive mapping such that FixT 6= ∅,
λ : [0,+∞)→ [0, 1] a Lebesgue measurable function and x0 ∈ H. Suppose that one
of the following conditions is fulfilled:∫ +∞

0

λ(t)(1− λ(t))dt = +∞ or inf
t≥0

λ(t) > 0.

Let x : [0,+∞) → H be the unique strong global solution of (5. 1). Then the
following statements are true:

(i) the trajectory x is bounded and
∫ +∞

0
‖ẋ(t)‖2dt < +∞;

(ii) limt→+∞(T (x(t))− x(t)) = 0;

(iii) limt→+∞ ẋ(t) = 0;

(iv) x(t) converges weakly to a point in FixT , as t→ +∞.
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Proof. We rely on Lyapunov analysis combined with the Opial Lemma. We take
an arbitrary x∗ ∈ FixT and give an estimation for d

dt‖x(t)− x∗‖2. By (1. 28), the
fact that x∗ ∈ FixT and the nonexpansiveness of T we obtain for almost every
t ≥ 0:

d

dt
‖x(t)− x∗‖2 =2 〈ẋ(t), x(t)− x∗〉 = ‖ẋ(t) + x(t)− x∗‖2 − ‖x(t)− x∗‖2 − ‖ẋ(t)‖2

=‖λ(t)(T (x(t))− x∗) + (1− λ(t))(x(t))− x∗)‖2

− ‖x(t)− x∗‖2 − ‖ẋ(t)‖2

=λ(t)‖T (x(t))− x∗‖2 + (1− λ(t))‖x(t)− x∗‖2

− λ(t)(1− λ(t))‖T (x(t)− x(t))‖2 − ‖x(t)− x∗‖2 − ‖ẋ(t)‖2

≤− λ(t)(1− λ(t))‖T (x(t)− x(t))‖2 − ‖ẋ(t)‖2.

Hence for almost every t ≥ 0 we have that

d

dt
‖x(t)− x∗‖2 + λ(t)(1− λ(t))‖T (x(t)− x(t))‖2 + ‖ẋ(t)‖2 ≤ 0. (5. 3)

Since λ(t) ∈ [0, 1] for all t ≥ 0, from (5. 3) it follows that t 7→ ‖x(t) − x∗‖ is
decreasing, hence limt→+∞ ‖x(t)−x∗‖ exists. From here we obtain the boundedness
of the trajectory and by integrating (5. 3) we deduce also that∫ +∞

0

‖ẋ(t)‖2dt < +∞

and ∫ +∞

0

λ(t)(1− λ(t))‖T (x(t))− x(t)‖2dt < +∞, (5. 4)

thus (i) holds. Since x∗ ∈ FixT has been chosen arbitrary, the first assumption in
the continuous version of Opial Lemma is fulfilled.

We show in the following that limt→+∞(T (x(t)) − x(t)) exists and it is a real
number. This is immediate if we show that the function t 7→ 1

2‖T (x(t)) − x(t)‖2
is decreasing. According to Remark 5.1(b), the function t 7→ T (x(t)) is almost
everywhere differentiable and ‖ ddtT (x(t))‖ ≤ ‖ẋ(t)‖ holds for almost every t ≥ 0.
Moreover, by the first equation of (5. 1) we have

d

dt

(
1

2
‖T (x(t))− x(t)‖2

)
=

〈
d

dt
T (x(t))− ẋ(t), T (x(t))− x(t)

〉
=− 〈ẋ(t), T (x(t))− x(t)〉+

〈
d

dt
T (x(t)), T (x(t))− x(t)

〉
=− λ(t)‖T (x(t))− x(t)‖2 +

〈
d

dt
T (x(t)), T (x(t))− x(t)

〉
≤− λ(t)‖T (x(t))− x(t)‖2 + ‖ẋ(t)‖ · ‖T (x(t))− x(t)‖ = 0,

hence limt→+∞(T (x(t))− x(t)) exists and is a real number.

(a) Firstly, let us assume that
∫ +∞

0
λ(t)(1 − λ(t))dt = +∞. This immediately

implies by (5. 4) that limt→+∞(T (x(t)) − x(t)) = 0, thus (ii) holds. Taking into
account that λ is bounded, from (5. 1) and (ii) we deduce (iii). For the last property
of the theorem we need to verify the second assumption of the Opial Lemma. Let
x ∈ H be a weak sequential cluster point of x, that is, there exists a sequence
tn → +∞ (as n → ∞) such that (x(tn))n∈N converges weakly to x. Applying
Lemma 1.3 and (ii) we obtain x ∈ FixT and the conclusion follows.

(b) We suppose now that inft≥0 λ(t) > 0. From the first relation of (5. 1) and (i)
we easily deduce that Tx− x ∈ L2([0,∞),H), hence the function t 7→ 1

2‖T (x(t))−
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x(t)‖2 belongs to L1([0,∞)). Since d
dt

(
1
2‖T (x(t))− x(t)‖2

)
≤ 0 for almost every

t ≥ 0, we obtain by applying Lemma 5.2 that limt→∞ ‖T (x(t)) − x(t)‖2 = 0, thus
(ii) holds. The rest of the proof can be done in the lines of case (a) considered
above. �

Remark 5.3 Let us specify that due to the fact that the equality in Definition
5.2(ii) holds almost everywhere, the conclusion in Theorem 5.1(iii) (which has been
obtained as a consequence of Theorem 5.1(ii)) has to be considered in the almost-
limit sense (see also [22, Definition 1, Chapter 6, Section 5]), which means that in
the classical definition of the limit, the required inequality holds almost everywhere.

Remark 5.4 Notice that the function λ1(t) = 1
t+1 , for all t ≥ 0, verifies the

condition
∫ +∞

0
λ1(t)(1 − λ1(t))dt = +∞, while inft≥0 λ1(t) > 0 is not fulfilled.

On the other hand, the function λ2(t) = 1, for all t ≥ 0, verifies the condition
inft≥0 λ2(t) > 0, while

∫∞
0
λ2(t)(1 − λ2(t))dt = ∞ fails. This shows that the two

assumptions on λ under which the conclusions of Theorem (5.1) are valid are inde-
pendent.

Remark 5.5 The explicit discretization of (5. 1) with respect to the time variable
t, with step size hn > 0, yields for an initial point x0 the following iterative scheme:

xn+1 = xn + hnλn(Txn − xn) ∀n ≥ 0.

By taking hn = 1 this becomes

xn+1 = xn + λn(Txn − xn) ∀n ≥ 0, (5. 5)

which is the classical Krasnosel’skĭı–Mann algorithm for finding the set of fixed
points of the nonexpansive operator T (see [26, Theorem 5.14]). The convergence
of (5. 5) is guaranteed under the condition∑

n∈N
λn(1− λn) = +∞.

Notice that in case λn = 1 for all n ∈ N and for an initial point x0 different from
0, the convergence of (5. 5) can fail, as it happens for instance for the operator
T = − Id. In contrast to this, as pointed out in Theorem 5.1, the dynamical
system (5. 1) has a strong global solution and the convergence of the trajectory is
guaranteed also in case λ(t) = 1 for all t ≥ 0.

An immediate consequence of Theorem 5.1 is the following corollary, where we
consider dynamical systems involving averaged operators.

Corollary 5.1 Let α ∈ (0, 1), R : H → H be α-averaged such that FixR 6= ∅,
λ : [0,+∞) → [0, 1/α] a Lebesgue measurable function and x0 ∈ H. Suppose that
one of the following conditions is fulfilled:∫ +∞

0

λ(t)(1− αλ(t))dt = +∞ or inf
t≥0

λ(t) > 0.

Let x : [0,+∞)→ H be the unique strong global solution of the dynamical system{
ẋ(t) = λ(t)

(
R(x(t))− x(t)

)
x(0) = x0.

(5. 6)

Then the following statements are true:
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(i) the trajectory x is bounded and
∫ +∞

0
‖ẋ(t)‖2dt < +∞;

(ii) limt→+∞(R(x(t))− x(t)) = 0;

(iii) limt→+∞ ẋ(t) = 0;

(iv) x(t) converges weakly to a point in FixR, as t→ +∞.

Proof. Since R is α-averaged, there exists a nonexpansive operator T : H → H
such that R = (1− α) Id +αT . The conclusion follows by taking into account that
(5. 6) is equivalent to {

ẋ(t) = αλ(t)
(
T (x(t))− x(t)

)
x(0) = x0

and FixR = FixT . �

In the following we investigate the convergence rate of the trajectories of the
dynamical system (5. 1). This will be done in terms of the fixed point residual
function t 7→ ‖Tx(t)−x(t)‖ and of t 7→ ‖ẋ(t)‖. Notice that convergence rates for the
discrete iteratively generated algorithm (5. 5) have been investigated in [80,82,95].

Theorem 5.2 Let T : H → H be a nonexpansive mapping such that FixT 6= ∅,
λ : [0,+∞)→ [0, 1] a Lebesgue measurable function and x0 ∈ H. Suppose that

0 < inf
t≥0

λ(t) ≤ sup
t≥0

λ(t) < 1.

Let x : [0,+∞)→ H be the unique strong global solution of (5. 1). Then for almost
every t ≥ 0 we have

‖ẋ(t)‖ ≤ ‖T (x(t))− x(t)‖ ≤ d(x0,FixT )√
τt

,

where τ = inft≥0 λ(t)(1− λ(t)) > 0.

Proof. Take an arbitrary x∗ ∈ FixT and t > 0. From (5. 3) we have for almost
every s ≥ 0:

d

ds
‖x(s)− x∗‖2 + λ(s)(1− λ(s))‖T (x(s)− x(s))‖2 ≤ 0. (5. 7)

By integrating we obtain∫ t

0

λ(s)(1− λ(s))‖T (x(s))− x(s)‖2ds ≤ ‖x0 − x∗‖2 − ‖x(t)− x∗‖2 ≤ ‖x0 − x∗‖2.

We have seen in the proof of Theorem 5.1 that t 7→ 1
2‖T (x(t))−x(t)‖2 is decreasing,

thus the last inequality yields

tτ‖T (x(t))− x(t)‖2 ≤ ‖x0 − x∗‖2.

Since this inequality holds for an arbitrary x∗ ∈ FixT , we get for all t ≥ 0 :√
tτ‖T (x(t))− x(t)‖ ≤ d(x0,FixT ).

By taking also into account (5. 1), the conclusion follows. �

Next we show that the convergence rates of the fixed point residual function t 7→
‖Tx(t)− x(t)‖ and of t 7→ ‖ẋ(t)‖ can be improved to o

(
1√
t

)
.
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Theorem 5.3 Let T : H → H be a nonexpansive mapping such that FixT 6= ∅,
λ : [0,+∞)→ [0, 1] a Lebesgue measurable function and x0 ∈ H. Suppose that

0 < inf
t≥0

λ(t) ≤ sup
t≥0

λ(t) < 1.

Let x : [0,+∞)→ H be the unique strong global solution of (5. 1). Then for almost
every t ≥ 0 we have

t‖ẋ(t)‖2 ≤ t‖T (x(t))− x(t)‖2 ≤ 2

τ

∫ t

t/2

λ(s)(1− λ(s))‖T (x(s))− x(s)‖2ds,

where τ = inft≥0 λ(t)(1 − λ(t)) > 0 and limt→+∞
∫ t
t/2

λ(s)(1 − λ(s))‖T (x(s)) −
x(s)‖2ds = 0.

Proof. Define the function f : [0,+∞)→ [0,+∞),

f(t) =

∫ t

0

λ(s)(1− λ(s))‖T (x(s))− x(s)‖2ds.

According to (5. 4) we have that limt→+∞ f(t) ∈ R.
Since t 7→ 1

2‖T (x(t)) − x(t)‖2 is decreasing (see the proof of Theorem 5.1), we
have for all t ≥ 0 :

‖T (x(t))− x(t)‖2
∫ t

t/2

λ(s)(1− λ(s))ds ≤
∫ t

t/2

λ(s)(1− λ(s))‖T (x(s))− x(s)‖2ds

=f(t)− f(t/2).

Taking into account the definition of τ , we easily derive

τ

2
t‖T (x(t))− x(t)‖2 ≤

∫ t

t/2

λ(s)(1− λ(s))‖T (x(s))− x(s)‖2ds,

and the conclusion follows by using again (5. 1). �

The remaining of the section is dedicated to the formulation and investigation
of a continuous version of the forward-backward algorithm.

We need the following technical result regarding the averaged parameter of the
composition of two averaged operators. We refer also to [26, Proposition 4.32] for
other results of this type.

Proposition 5.1 (see [111, Theorem 3(b)] and [77, Proposition 2.4]) Let Ti : H →
H be αi-averaged, where αi ∈ (0, 1), i = 1, 2. Then the composition T1 ◦ T2 is α-
averaged, where

α =
α1 + α2 − 2α1α2

1− α1α2
∈ (0, 1).

Theorem 5.4 Let A : H ⇒ H be a maximally monotone operator, β > 0 and
B : H → H be β-cocoercive such that zer(A + B) 6= ∅. Let η ∈ (0, 2β) and set
δ = (4β − η)/(2β). Let λ : [0,+∞)→ [0, δ] be a Lebesgue measurable function and
x0 ∈ H. Suppose that one of the following conditions is fulfilled:∫ +∞

0

λ(t)(δ − λ(t))dt = +∞ or inf
t≥0

λ(t) > 0.

Let x : [0,+∞)→ H be the unique strong global solution of{
ẋ(t) = λ(t)

[
JηA

(
x(t)− ηB(x(t))

)
− x(t)

]
x(0) = x0.

(5. 8)

Then the following statements are true:
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(i) the trajectory x is bounded and
∫ +∞

0
‖ẋ(t)‖2dt < +∞;

(ii) limt→+∞

[
JηA

(
x(t)− ηB(x(t))

)
− x(t)

]
= 0;

(iii) limt→+∞ ẋ(t) = 0;

(iv) x(t) converges weakly to a point in zer(A+B), as t→ +∞.

Suppose that inft≥0 λ(t) > 0. Then the following hold:

(v) if y ∈ zer(A+B), then limt→+∞B(x(t)) = By and B is constant on zer(A+
B);

(vi) if A or B is uniformly monotone, then x(t) converges strongly to the unique
point in zer(A+B), as t→ +∞.

Proof. It is immediate that the dynamical system (5. 8) can be written in the form{
ẋ(t) = λ(t)

(
T (x(t))− x(t)

)
x(0) = x0,

(5. 9)

where T = JηA ◦ (Id−ηB). According to [26, Corollary 23.8 and Remark 4.24(iii)],
JηA is 1/2-cocoercive. Moreover, by [26, Proposition 4.33], Id−ηB is η/(2β)-
averaged. Combining this with Proposition 5.1, we derive that T is 1/δ-averaged.
The statements (i)-(iv) follow now from Corollary 5.1 by noticing that FixT =
zer(A+B), see [26, Proposition 25.1(iv)].

We suppose in the following that inft≥0 λ(t) > 0.
(v) The fact that B is constant on zer(A+B) follows from the cocoercivity of B

and the monotonicity of A. A proof of this statement when A is the subdifferential
of a proper, convex and lower semicontinuous function is given in [1, Lema 2.7].

We use the following inequality:

‖Tx− Ty‖2 ≤ ‖x− y‖2 − η(2β − η)‖Bx−By‖2 ∀(x, y) ∈ H ×H, (5. 10)

which follows from the nonexpansiveness property of the resolvent and the cocoer-
civity of B:

‖Tx− Ty‖2 ≤ ‖x− y − η(Bx−By)‖2

= ‖x− y‖2 − 2η 〈x− y,Bx−By〉+ η2‖Bx−By‖2

≤ ‖x− y‖2 − η(2β − η)‖Bx−By‖2.

Take an arbitrary x∗ ∈ zer(A + B) = FixT . From the first part of the proof of
Theorem 5.1 and (5. 10) we get for almost every t ≥ 0

d

dt
‖x(t)− x∗‖2 + λ(t)(1− λ(t))‖T (x(t)− x(t))‖2 + ‖ẋ(t)‖2

= λ(t)‖T (x(t))− x∗‖2 − λ(t)‖x(t)− x∗‖2

≤ −η(2β − η)λ(t)‖B(x(t))−Bx∗‖2.

Taking into account that inft≥0 λ(t) > 0 and 0 < η < 2β, by integrating the
above inequality we obtain∫ +∞

0

‖B(x(t))−Bx∗‖2dt < +∞.

Since B is 1/β-Lipschitz continuous (this follows from the β-cocoercivity of B by
applying the Cauchy-Schwarz inequality) and ‖ẋ(·)‖ ∈ L2([0,+∞)), from Remark
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5.1(b) we derive that t 7→ d
dtB(x(t)) ∈ L2([0,∞),H). From the Cauchy-Schwarz

inequality we obtain for all t ≥ 0

d

dt

(
‖B(x(t))−Bx∗‖2

)
= 2

〈
d

dt
B(x(t)), B(x(t))−Bx∗

〉
≤
∥∥∥∥ ddtB(x(t))

∥∥∥∥2

+ ‖B(x(t))−Bx∗‖2.

Combining these considerations with Lemma 5.2, we conclude that B(x(t)) con-
verges strongly to Bx∗, as t→ +∞.

(vi) Suppose that A is uniformly monotone and let x∗ be the unique point in
zer(A + B). According to (5. 8) and the definition of the resolvent, we have for
almost every t ≥ 0

−B(x(t))− 1

ηλ(t)
ẋ(t) ∈ A

(
1

λ(t)
ẋ(t) + x(t)

)
. (5. 11)

From −Bx∗ ∈ Ax∗ we get for almost every t ≥ 0 the inequality

φA

(∥∥∥∥ 1

λ(t)
ẋ(t) + x(t)− x∗

∥∥∥∥)
≤
〈

1

λ(t)
ẋ(t) + x(t)− x∗,−B(x(t))− 1

ηλ(t)
ẋ(t) +Bx∗

〉
,

where φA : [0,+∞)→ [0,+∞] is increasing and vanishes only at 0.
The monotonicity of B implies

φA

(∥∥∥∥ 1

λ(t)
ẋ(t) + x(t)− x∗

∥∥∥∥)
≤ − 1

ηλ2(t)
‖ẋ(t)‖2 +

1

λ(t)
〈ẋ(t),−B(x(t)) +Bx∗〉

+ 〈x(t)− x∗,−B(x(t)) +Bx∗〉 − 1

ηλ(t)
〈ẋ(t), x(t)− x∗〉

≤ − 1

ηλ2(t)
‖ẋ(t)‖2 +

1

λ(t)
〈ẋ(t),−B(x(t)) +Bx∗〉 − 1

ηλ(t)
〈ẋ(t), x(t)− x∗〉 .

The last inequality implies, by taking into consideration (iii), (iv) and (v), that

lim
t→+∞

φA

(∥∥∥∥ 1

λ(t)
ẋ(t) + x(t)− x∗

∥∥∥∥) = 0.

The properties of the function φA allow to conclude that 1
λ(t) ẋ(t)+x(t)−x∗ converges

strongly to 0, as t→ +∞, hence from (iii) we obtain the conclusion.
Finally, suppose that B is uniformly monotone, with corresponding function

φB : [0,+∞)→ [0,+∞], which is increasing and vanishes only at 0. The conclusion
follows by taking in the inequality

〈x(t)− x∗, B(x(t))−Bx∗〉 ≥ φB(‖x(t)− x∗‖)

the limit as t→ +∞ and by using (i) and (v). �

Remark 5.6 We would like to emphasize the fact that the statements in Theorem
5.4 remain valid also for η := 2β. Indeed, in this case the cocoercivity of B implies
that Id−ηB is nonexpansive, hence the operator T = JηA ◦ (Id−ηB) used in the
proof is nonexpansive, too, and so the statements in (i)-(iv) follow from Theorem
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5.1. Furthermore, for the proof of the statements (v) and (vi), the key observation
was that B(x(·))−Bx∗ ∈ L2([0,∞),H), where x∗ ∈ zer(A+B). Let us prove that
this is true also in this case. Indeed, from (5. 11), the relation −Bx∗ ∈ Ax∗ and
the monotonicity of A we have for almost every t ≥ 0 the inequality

0 ≤
〈

1

λ(t)
ẋ(t) + x(t)− x∗,−B(x(t))− 1

ηλ(t)
ẋ(t) +Bx∗

〉
.

The cocoercivity of B implies

0 ≤ − 1

ηλ2(t)
‖ẋ(t)‖2 +

1

λ(t)
〈ẋ(t),−B(x(t)) +Bx∗〉

+ 〈x(t)− x∗,−B(x(t)) +Bx∗〉 − 1

ηλ(t)
〈ẋ(t), x(t)− x∗〉

≤ 1

λ(t)
〈ẋ(t),−B(x(t)) +Bx∗〉 − β‖B(x(t))−Bx∗‖2 − 1

ηλ(t)
〈ẋ(t), x(t)− x∗〉

≤ 1

2βλ2(t)
‖ẋ(t)‖2 +

β

2
‖B(x(t))−Bx∗‖2

− β‖B(x(t))−Bx∗‖2 − 1

ηλ(t)

d

dt

[
1

2
‖x(t)− x∗‖2

]
.

We derive that for almost every t ≥ 0 the following inequality holds:

βλ(t)

2
‖B(x(t))−Bx∗‖2 +

1

η

d

dt

[
1

2
‖x(t)− x∗‖2

]
≤ 1

2βλ(t)
‖ẋ(t)‖2,

which in combination with (i), the assumption inft≥0 λ(t) > 0 and λ bounded above
delivers the desired conclusion.

Remark 5.7 Let us mention that in case A = ∂Φ, where Φ : H → R ∪ {+∞} is a
proper, convex and lower semicontinuous function defined on a real Hilbert space
H, and for λ(t) = 1 for all t ≥ 0, the dynamical system (5. 8) becomes{

ẋ(t) + x(t) = proxηΦ

(
x(t)− ηB(x(t))

)
x(0) = x0,

(5. 12)

which has been studied in [1]. Notice that the weak convergence of the trajectories
of (5. 12) is obtained in [1, Theorem 5.2] for a constant step-size η ∈ (0, 4β).

Remark 5.8 The explicit discretization of (5. 8) with respect to the time variable
t, with step size hn > 0 and initial point x0, yields the following iterative scheme:

xn+1 − xn
hn

= λn

[
JηA

(
xn − ηBxn

)
− xn

]
∀n ≥ 0.

For hn = 1 this becomes

xn+1 = xn + λn

[
JηA

(
xn − ηBxn

)
− xn

]
∀n ≥ 0, (5. 13)

which is the classical forward-backward algorithm for finding the set of zeros of
A+B. Let us mention that the convergence of (5. 13) is guaranteed in [26, Theorem
25.8] under the condition ∑

n∈N
λn(δ′ − λn) = +∞,

where

δ′ = min

{
1,
β

η

}
+

1

2
. (5. 14)
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This is due to the fact that in the proof of [26, Theorem 25.8] one applies [26,
Proposition 4.32] in order to show that JηA◦(Id−ηB) is 1/δ′-averaged. However, as
done in the proof above, one can apply [111, Theorem 3(b)] (see also [77, Proposition
2.4]) in order get a better parameter for the averaged operator JηA ◦ (Id−ηB),
namely 1/δ = (2β)/(4β − η). Notice that under the hypothesis 0 < η ≤ 2β one can
prove the following relation between the parameters mentioned above:

δ′ = min

{
1,
β

η

}
+

1

2
≤ (4β − η)/(2β) = δ. (5. 15)

Remark 5.9 As seen also in Section 3.2, the Douglas-Rachford algorithm for find-
ing the set of zeros of the sum of two maximally monotone operators follows from
the discrete version of the Krasnosel’skĭı–Mann numerical scheme, see also [26].
Following the approach presented above, one can formulate a dynamical system
of Douglas-Rachford-type, the existence and weak convergence of the trajectories
being a consequence of the main results presented here. The same can be done for
other iterative schemes which have their origins in the discrete Krasnosel’skĭı–Mann
algorithm, like are the generalized forward-backward splitting algorithm in [119] and
the forward-Douglas-Rachford splitting algorithm in [61].

Time rescaling arguments

The aim of this subsection is to show that, by using time rescaling arguments as
in [14], some of the asymptotic properties of the dynamical system (5. 1) can be
derived from the one of an autonomous dynamical system governed by a cocoercive
operator. Let us recall the following classical result, which can be deduced for
example from [1, Theorem 4.1] by taking Φ = 0 as well as from Theorem 5.4 by
choosing Ax = 0 for all x ∈ H and λ(t) = 1 for all t ≥ 0.

Theorem 5.5 Let B : H → H be a cocoercive operator such that zerB 6= ∅ and
w0 ∈ H. Let w : [0,+∞)→ H be the unique strong global solution of the dynamical
system {

ẇ(t) +B(w(t)) = 0
w(0) = w0.

(5. 16)

Then the following statements are true:

(a) the trajectory w is bounded and
∫ +∞

0
‖ẇ(t)‖2dt < +∞;

(b) w(t) converges weakly to a point in zerB, as t→ +∞;

(c) B(w(·)) converges strongly to 0, as t→ +∞.

Let us consider again the dynamical system (5. 1), written in the form{
ẋ(t) + λ(t)(Id−T )(x(t)) = 0
x(0) = x0.

(5. 17)

We recall that T is nonexpansive such that FixT 6= ∅ and λ : [0,∞) → [0, 1] is
Lebesgue measurable. By using a time rescaling argument as in [14, Lemma 4.1],
we can prove a connection between the dynamical system (5. 17) and the system{

ẇ(t) + (Id−T )(w(t)) = 0
w(0) = x0.

(5. 18)

In the following we suppose that∫ +∞

0

λ(t)dt = +∞. (5. 19)
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Notice that the considerations which we make in the following remain valid also
when one requires for the function λ an arbitrary positive upper bound. However,
we choose as upper bound 1 in order to remain in the setting presented in the
previous section.

Suppose that we have a solution w of (5. 18). By defining the function T1 :

[0,∞) → [0,∞), T1(t) =
∫ t

0
λ(s)ds, one can easily see that w ◦ T1 is a solution of

(5. 17).
Conversely, if x is a solution of (5. 17), then x◦T2 is a solution of (5. 18), where

T2 : [0,+∞) → [0,+∞) is defined implicitly as
∫ T2(t)

0
λ(s)ds = t (this is possible

due to the properties of the the function λ).
In the arguments we used that

T ′1(t) = λ(t) ∀t ≥ 0 (5. 20)

and
T ′2(t)λ(T2(t)) = 1 ∀t ≥ 0. (5. 21)

Further, since B := Id−T is 1/2-cocoercive (this follows from the nonexpansive-
ness of T ), for the dynamical system (5. 18) one can apply the convergence results
presented in Theorem 5.5. We would also like to notice that the existence of a
strong global solution of (5. 1) follows from the corresponding result for (5. 18),
while for the uniqueness property we have to make use of the considerations at the
beginning of Section 5.1.1.

In the following we deduce the convergence statements of Theorem 5.1 from the
one of Theorem 5.5 by using the time rescaling arguments presented above.

Let x be the unique strong global solution of (5. 1). Due to the uniqueness of
the solutions of (5. 1) and (5. 18), we have x = w◦T1, where w is the unique strong
global solution of (5. 18).

(i) From Theorem 5.5(a) we know that w is bounded, hence x is bounded, too.
We have ∫ +∞

0

‖ẋ(s)‖2ds = lim
t→∞

∫ t

0

‖w′(T1(s))‖2(λ(s))2ds

≤ lim
t→∞

∫ t

0

‖w′(T1(s))‖2λ(s)ds

= lim
t→∞

∫ T1(t)

0

‖w′(u)‖2du

< +∞,

where we used Theorem 5.5(a) and the change of variables T1(s) = u.

(ii) The statement follows from Theorem 5.5(c).

(iii) Is a direct consequence of the boundedness of λ, (ii) and the way the dynamic
is defined.

(iv) From Theorem 5.5(b) it follows that x(t) = w(T1(t)) converges weakly to a
point in zerB = FixT as t→ +∞.

Remark 5.10 In the light of the above considerations it follows that the conclusion
of Theorem 5.1 remains valid also when assuming that

∫ +∞
0

λ(t)dt = +∞, which is

a weaker condition than asking that
∫ +∞

0
λ(t)(1−λ(t))dt = +∞ or inft≥0 λ(t) > 0.

A similar statement applies to Theorem 5.4, too. Notice also that the assumption
that λ takes values in [0, 1], being strictly bounded away from the endpoints of this
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interval, was essential, in combination to the considerations made in the proof of
Theorem 5.1, for deriving convergence rates for the trajectories of (5. 1). Finally,

let us mention that, as pointed out in Remark 5.5, the assumption
∫ +∞

0
λ(t)(1 −

λ(t))dt = +∞ has a natural counterpart in the discrete case which guarantees
convergence for the sequence of generated iterates, while this is not the case for the
other two conditions on λ considered above.

5.1.2 Converges rates for strongly monotone inclusions

In this subsection we investigate the convergence rates of the trajectories of the
continuous dynamical systems considered above in the strongly monotone case and
strongly convex case, respectively, the later concerning convex optimization prob-
lems. In both cases, we obtain exponential convergence rates for the orbits.

The following result can bee seen as the continuous counterpart of [26, Proposi-
tion 25.9], where it is shown that the sequence iteratively generated by the forward-
backward algorithm linearly converges to the unique solution of

find x∗ ∈ H such that 0 ∈ Ax∗ +Bx∗, (5. 22)

provided that one of the two involved operators is strongly monotone.

Theorem 5.6 Let A : H ⇒ H be a maximally monotone operator, B : H → H
a monotone and 1

β -Lipschitz continuous operator for β > 0 such that A + B is

ρ-strongly monotone for ρ > 0 and x∗ be the unique point in zer(A + B). Let
λ : [0,+∞)→ [0,+∞) be a Lebesgue measurable function such that there exist real
numbers λ and λ fulfilling

0 < λ ≤ inf
t≥0

λ(t) ≤ sup
t≥0

λ(t) ≤ λ.

Chose α > 0 and η > 0 such that

α < 2ρβ2λ and
1

β
+

λ

2α
≤ ρ+

1

η
.

If x0 ∈ H and x : [0,+∞)→ H is the unique strong global solution of the dynamical
system (5. 8), then for every t ∈ [0,+∞) one has

‖x(t)− x∗‖2 ≤ ‖x0 − x∗‖2 exp(−Ct),

where C :=
2ρλ− α

β2

2ρ+ 1
η

> 0.

Proof. Notice that B is a maximally monotone operator (see [26, Corollary 20.25])
and, since B has full domain, A+B is maximally monotone, too (see [26, Corollary
24.4]). Therefore, due to the strong monotonicity of A+B, zer(A+B) is a singleton
(see [26, Corollary 23.37]).

A direct consequence of (5. 8) and of the definition of the resolvent is the inclu-
sion

− 1

ηλ(t)
ẋ(t)−B(x(t)) +B

(
1

λ(t)
ẋ(t) + x(t)

)
∈ (A+B)

(
1

λ(t)
ẋ(t) + x(t)

)
,

which holds for almost every t ∈ [0,+∞). Combining it with 0 ∈ (A+ B)(x∗) and
the strong monotonicity of A+B, it yields for almost every t ∈ [0,+∞)

ρ

∥∥∥∥ 1

λ(t)
ẋ(t) + x(t)− x∗

∥∥∥∥2

≤〈
1

λ(t)
ẋ(t) + x(t)− x∗,− 1

ηλ(t)
ẋ(t)−B(x(t)) +B

(
1

λ(t)
ẋ(t) + x(t)

)〉
.
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By using the notation h(t) = 1
2‖x(t)−x∗‖2 for t ∈ [0,+∞), the Cauchy-Schwartz

inequality, the Lipschitz property of B and the fact that ḣ(t) = 〈x(t)−x∗, ẋ(t)〉, we
deduce that for almost every t ∈ [0,+∞)

ρ

∥∥∥∥ 1

λ(t)
ẋ(t) + x(t)− x∗

∥∥∥∥2

≤− 1

ηλ2(t)
‖ẋ(t)‖2 +

1

λ(t)

〈
ẋ(t), B

(
1

λ(t)
ẋ(t) + x(t)

)
−B(x(t))

〉
− 1

ηλ(t)
ḣ(t) +

〈
x(t)− x∗, B

(
1

λ(t)
ẋ(t) + x(t)

)
−B(x(t))

〉
≤− 1

ηλ2(t)
‖ẋ(t)‖2 +

1

βλ2(t)
‖ẋ(t)‖2 − 1

ηλ(t)
ḣ(t)

+
1

βλ(t)
‖x(t)− x∗‖‖ẋ(t)‖

≤ − 1

ηλ2(t)
‖ẋ(t)‖2 +

1

βλ2(t)
‖ẋ(t)‖2 − 1

ηλ(t)
ḣ(t)

+
α

β2λ(t)
h(t) +

1

2αλ(t)
‖ẋ(t)‖2.

As

ρ

∥∥∥∥ 1

λ(t)
ẋ(t) + x(t)− x∗

∥∥∥∥2

=
ρ

λ2(t)
‖ẋ(t)‖2 +

2ρ

λ(t)
ḣ(t) + 2ρh(t),

we obtain for almost every t ∈ [0,+∞) the inequality(
2ρ

λ(t)
+

1

ηλ(t)

)
ḣ(t) +

(
2ρ− α

β2λ(t)

)
h(t)+(

ρ

λ2(t)
+

1

ηλ2(t)
− 1

βλ2(t)
− 1

2αλ(t)

)
‖ẋ(t)‖2 ≤ 0.

However, the way in which the involved parameters were chosen imply for almost
every t ∈ [0,+∞) that(

2ρ

λ(t)
+

1

ηλ(t)

)
ḣ(t) +

(
2ρ− α

β2λ(t)

)
h(t) ≤ 0 (5. 23)

or, equivalently,

ḣ(t) +
2ρλ(t)− α

β2

2ρ+ 1
η

h(t) ≤ 0.

This further implies

ḣ(t) + Ch(t) ≤ 0

for almost every t ∈ [0,+∞). By multiplying this inequality with exp(Ct) and
integrating from 0 to T , where T ≥ 0, one easily obtains the conclusion. �

Remark 5.11

(a) By time rescaling arguments one could consider λ(t) = 1 for every t ≥ 0 and,
consequently, investigate the asymptotic properties of the system{

ẋ(t) +M(x(t)) = 0
x(0) = x0,

(5. 24)
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where M : H → H is defined by M = Id−JηA ◦ (Id−ηB). In the hypotheses of
Theorem 5.6 the operator M satisfies the following inequality for all x ∈ H:(

2ρ+
1

η

)
〈Mx, x− x∗〉 ≥

(
ρ− α

2β2

)
‖x− x∗‖2 +

(
ρ+

1

η
− 1

β
− 1

2α

)
‖Mx‖2.

(5. 25)
This follows by using the same arguments as used in the proof of Theorem 5.6,
namely the definition of the resolvent operator, the inclusion 0 ∈ (A + B)(x∗)
and the strong monotonicity of A + B. Coming back to the system (5. 24), the
exponential convergence rate for the trajectory is further obtained by applying the
Gronwall Lemma in the inequality(

2ρ+
1

η

)
〈ẋ(t), x(t)− x∗〉+

(
ρ− α

2β2

)
‖x(t)− x∗‖2 ≤ 0,

which is nothing else than relation (5. 23) in the proof of Theorem 5.6.
(b) Notice that by chosing the involved parameters as in Theorem 5.6, relation

(5. 25) yields the inequality(
2ρ+

1

η

)
〈Mx, x− x∗〉 ≥

(
ρ− α

2β2

)
‖x− x∗‖2 ∀x ∈ H,

where Mx∗ = 0. Thus the operator M satisfies a strong monotone property in the
sense of Pazy (see relation (11.2) in Theorem 11.2 in [114]). However, the hypotheses
of Theorem 5.6 do not imply in general the strong monotonicity of the operator M
in the sense of (1. 31), thus the result presented in Theorem 5.6 does not fall into the
framework of the classical result concerning exponential convergence rates for the
semigroup generated by a strongly monotone operator as presented in [60, Theorem
3.9].

Further, we discuss some situations when the operator M is strongly monotone
in the classical sense (see (1. 31)). We start with two trivial cases. The first one
is Ax = 0 for all x ∈ H and B is strongly monotone. The second one is Bx = 0
for all x ∈ H and A is strongly monotone, in which case JηA is a contraction
(see [26, Proposition 23.11]), hence M = Id−JηA is strongly monotone. Other
situations follow in the framework of [26, Proposition 25.9]: i) if A is strongly
monotone, B is β-cocoercive and η < 2β; ii) if B is θ-strongly monotone and β−1-
Lipschitz continuous, θβ ≤ 1 and η < 2θβ2.

We come now to the convex optimization problem

min
x∈H

f(x) + g(x), (5. 26)

where f : H → R ∪ {+∞} is a proper, convex and lower semicontinuous function
and g : H → R is a convex and (Fréchet) differentiable function with Lipschitz
continuous gradient. Notice that, since

argmin(f + g) = zer(∂(f + g)) = zer(∂f +∇g),

one can approach this set by means of the trajectories of the dynamical system
(5. 8) written for A = ∂f and B = ∇g. This being said, the dynamical system
(5. 8) becomes {

ẋ(t) = λ(t)
[
proxηf

(
x(t)− η∇g(x(t))

)
− x(t)

]
x(0) = x0.

(5. 27)

The following result is a direct consequence of Theorem 5.6. Let us also notice that
in case f + g is ρ-strongly convex for ρ > 0, the operator ∂(f + g) = ∂f +∇g is a
ρ-strongly monotone operator (see [26, Example 22.3(iv)].)
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Theorem 5.7 Let f : H → R ∪ {+∞} be a proper, convex and lower semicontin-
uous function, g : H → R be a convex and (Fréchet) differentiable function with
1
β -Lipschitz continuous gradient for β > 0 such that f + g is ρ-strongly convex for

ρ > 0 and x∗ be the unique minimizer of f+g over H. Let λ : [0,+∞)→ [0,+∞) be
a Lebesgue measurable function such that there exist real numbers λ and λ fulfilling

0 < λ ≤ inf
t≥0

λ(t) ≤ sup
t≥0

λ(t) ≤ λ.

Chose α > 0 and η > 0 such that

α < 2ρβ2λ and
1

β
+

λ

2α
≤ ρ+

1

η
.

If x0 ∈ H and x : [0,+∞)→ H is the unique strong global solution of the dynamical
system (5. 27), then for every t ∈ [0.+∞) one has

‖x(t)− x∗‖2 ≤ ‖x0 − x∗‖2 exp(−Ct),

where C :=
2ρλ− α

β2

2ρ+ 1
η

> 0.

In the last part of this section we approach the convex minimization problem

min
x∈H

g(x), (5. 28)

via the first order dynamical system{
ẋ(t) + λ(t)∇g(x(t)) = 0
x(0) = x0.

(5. 29)

The following result quantifies the rate of convergence of g to its minimum value
along the trajectories generated by (5. 29).

Theorem 5.8 Let g : H → R be a ρ-strongly convex and (Fréchet) differentiable
function with 1

β -Lipschitz continuous gradient for ρ > 0 and β > 0 and x∗ be the

unique minimizer of g over H. Let λ : [0,+∞)→ [0,+∞) be a Lebesgue measurable
function such that λ(·) ∈ L1

loc[0,+∞) and there exists a real number λ ∈ R fulfilling

0 < λ ≤ inf
t≥0

λ(t).

Chose α > 0 such that
α ≤ 2λβρ2.

If x0 ∈ H and x : [0,+∞)→ H is the unique strong global solution of the dynamical
system (5. 29), then for every t ∈ [0,+∞) one has

0 ≤ ρ

2
‖x(t)− x∗‖2

≤ g(x(t))− g(x∗)

≤ (g(x0)− g(x∗)) exp(−αt)

≤ 1

2β
‖x0 − x∗‖2 exp(−αt).

Proof. The second inequality is a consequence of the strong convexity of the
function g. Further, by noticing that ∇g(x∗) = 0, from Lemma 1.4 we obtain

g(x(t))− g(x∗) ≤ 1

2β
‖x(t)− x∗‖2. (5. 30)
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From here, the last inequality in the conclusion follows automatically.
Using the strong convexity of g we have for every t ∈ [0,+∞) that

ρ‖x(t)− x∗‖2 ≤ 〈x(t)− x∗,∇g(x(t))〉 ≤ ‖x(t)− x∗‖‖∇g(x(t))‖,

thus

ρ‖x(t)− x∗‖ ≤ ‖∇g(x(t))‖. (5. 31)

Finally, from the first equation in (5. 29), (5. 30), (5. 31) and using the way in
which α was chosen, we obtain for almost every t ∈ [0,+∞)

d

dt

(
g(x(t))− g(x∗)

)
+ α

(
g(x(t))− g(x∗)

)
= 〈ẋ(t),∇g(x(t))〉+ α(g(x(t))− g(x∗))

≤− λ(t)‖∇g(x(t))‖2 +
α

2β
‖x(t)− x∗‖2

≤
(
−λ(t) +

α

2βρ2

)
‖∇g(x(t))‖2

≤ 0.

By multiplying this inequality with exp(αt) and integrating from 0 to T , where
T ≥ 0, one easily obtains also the third inequality. �

5.2 Second order dynamical systems

In this section we investigate the asymptotic behavior of the trajectories of second
order dynamical systems associated to monotone inclusion problems.

5.2.1 Second order dynamical systems for monotone inclu-
sion problems

Let us start with the study of existence and uniqueness of strong global solutions
of a second order dynamical system governed by Lipschitz continuous operators.

Let Γ : H → H be an LΓ-Lipschitz continuous operator, with LΓ ≥ 0, B : H →
H be LB-Lipschitz continuous, with LB ≥ 0, λ : [0,+∞) → [0,+∞) a Lebesgue
measurable function, u0, v0 ∈ H and consider the dynamical system{

ẍ(t) + Γ(ẋ(t)) + λ(t)B(x(t)) = 0
x(0) = u0, ẋ(0) = v0.

(5. 32)

Definition 5.3 We say that x : [0,+∞)→ H is a strong global solution of (5. 32)
if the following properties are satisfied:

(i) x, ẋ : [0,+∞) → H are locally absolutely continuous, in other words, abso-
lutely continuous on each interval [0, b] for 0 < b < +∞;

(ii) ẍ(t) + Γ(ẋ(t)) + λ(t)B(x(t)) = 0 for almost every t ∈ [0,+∞);

(iii) x(0) = u0 and ẋ(0) = v0.

For proving the existence and uniqueness of strong global solutions of (5. 32)
we use the Cauchy-Lipschitz-Picard Theorem for absolutely continues trajectories
(see for example [90, Proposition 6.2.1], [125, Theorem 54]). The key observation
here is that one ca rewrite (5. 32) as a certain first order dynamical system in a
product space (see also [6]).
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Theorem 5.9 Let Γ : H → H be an LΓ-Lipschitz continuous operator, B : H → H
a LB-Lipschitz continuous operator and λ : [0,+∞) → [0,+∞) a Lebesgue mea-
surable function such that λ ∈ L1

loc([0,+∞)) (that is λ ∈ L1([0, b]) for every
0 < b < +∞). Then for each u0, v0 ∈ H there exists a unique strong global so-
lution of the dynamical system (5. 32).

Proof. The system (5. 32) can be equivalently written as a first order dynamical
system in the phase space H×H{

Ẏ (t) = F (t, Y (t))
Y (0) = (u0, v0),

(5. 33)

with
Y : [0,+∞)→ H×H, Y (t) = (x(t), ẋ(t))

and
F : [0,+∞)×H×H → H×H, F (t, u, v) = (v,−Γv − λ(t)Bu).

We endow H×H with scalar product

〈(u, v), (u, v)〉H×H = 〈u, u〉+ 〈v, v〉

and corresponding norm

‖(u, v)‖H×H =
√
‖u‖2 + ‖v‖2.

(a) For arbitrary u, u, v, v ∈ H, by using the Lipschitz continuity of the involved
operators, we obtain for all t ≥ 0:

‖F (t, u, v)− F (t, u, v)‖H×H =
√
‖v − v‖2 + ‖Γv − Γv + λ(t)(Bu−Bu)‖2

≤
√

(1 + 2L2
Γ)‖v − v‖2 + 2L2

Bλ
2(t)‖u− u‖2

≤
√

1 + 2L2
Γ + 2L2

Bλ
2(t)‖(u, u)− (v, v)‖H×H

≤ (1 +
√

2LΓ +
√

2LBλ(t))‖(u, u)− (v, v)‖H×H.

As λ ∈ L1
loc([0,+∞)), the Lipschitz constant of F (t, ·, ·) is local integrable.

(b) Next we show that

∀u, v ∈ H, ∀b > 0, F (·, u, v) ∈ L1([0, b],H×H). (5. 34)

For arbitrary u, v ∈ H and b > 0 it holds∫ b

0

‖F (t, u, v)‖H×Hdt =

∫ b

0

√
‖v‖2 + ‖Γv + λ(t)Bu‖2dt

≤
∫ b

0

√
‖v‖2 + 2‖Γv‖2 + 2λ2(t)‖Bu‖2dt

≤
∫ b

0

(√
‖v‖2 + 2‖Γv‖2 +

√
2λ(t)‖Bu‖

)
dt

and from here (5. 34) follows, by using the assumptions made on λ.
In the light of the statements (a) and (b), the existence and uniqueness of a

strong global solution for (5. 33) are consequences of the Cauchy-Lipschitz-Picard
Theorem for first order dynamical systems (see, for example, [90, Proposition 6.2.1],
[125, Theorem 54]). From here, due to the equivalence of (5. 32) and (5. 33), the
conclusion follows. �



5.2 Second order dynamical systems 135

In the following we address the convergence properties of the trajectories gener-
ated by the dynamical system (5. 32) by assuming that B : H → H is a β-cocoercive
operator for β > 0.

In order to prove the convergence of the trajectories of (5. 32), we make the
following assumptions on the operator Γ and the relaxation function λ, respectively:

(A1) Γ : H → H is a bounded self-adjoint linear operator, assumed to be elliptic,
that is, there exists γ > 0 such that 〈Γu, u〉 ≥ γ‖u‖2 for all u ∈ H;

(A2) λ : [0,+∞)→ (0,+∞) is locally absolutely continuous and there exists θ > 0
such that for almost every t ∈ [0,+∞) we have

λ̇(t) ≥ 0 and λ(t) ≤ βγ2

1 + θ
. (5. 35)

Due to Definition 5.1 and Remark 5.1(a) λ̇(t) exists for almost every t ≥ 0 and λ̇ is
Lebesgue integrable on each interval [0, b] for 0 < b < +∞. If λ̇(t) ≥ 0 for almost
every t ≥ 0, then λ is monotonically increasing, thus, as λ is assumed to take only
positive values, (A2) yields the existence of a lower bound λ such that for almost
every t ∈ [0,+∞) one has

0 < λ ≤ λ(t) ≤ βγ2

1 + θ
. (5. 36)

We would also like to point out that under the conditions considered in (A2)
the global version of the Picard-Lindelöf Theorem allows us to conclude that, for
u0, v0 ∈ H, there exists a unique trajectory x : [0,+∞)→ H which is a C2 function
and which satisfies the relation (ii) in Definition 5.3 for every t ∈ [0,+∞). The
considerations we make in the following take into account this fact.

Theorem 5.10 Let B : H → H be a β-cocoercive operator for β > 0 such that
zerB 6= ∅, Γ : H → H be an operator fulfilling (A1), λ : [0,+∞) → (0,+∞) be a
function fulfilling (A2) and u0, v0 ∈ H. Let x : [0,+∞) → H be the unique strong
global solution of (5. 32). Then the following statements are true:

(i) the trajectory x is bounded and ẋ, ẍ, Bx ∈ L2([0,+∞);H);

(ii) limt→+∞ ẋ(t) = limt→+∞ ẍ(t) = limt→+∞B(x(t)) = 0;

(iii) x(t) converges weakly to an element in zerB as t→ +∞.

Proof. Notice that the existence and uniqueness of the trajectory x follows from
Theorem 5.9, since B is 1/β-Lipschitz continuous, Γ is ‖Γ‖-Lipschitz continuous
and (A2) ensures λ(·) ∈ L1

loc([0,+∞)).
(i) Take an arbitrary x∗ ∈ zerB and consider for every t ∈ [0,+∞) the function

h(t) =
1

2
‖x(t)− x∗‖2.

We have
ḣ(t) = 〈x(t)− x∗, ẋ(t)〉

and
ḧ(t) = ‖ẋ(t)‖2 + 〈x(t)− x∗, ẍ(t)〉 ,

for all t ∈ [0,+∞). Taking into account (5. 32), we get for all t ∈ [0,+∞)

ḧ(t) + γḣ(t) + λ(t) 〈x(t)− x∗, B(x(t))〉+ 〈x(t)− x∗,Γ(ẋ(t))− γẋ(t)〉 = ‖ẋ(t)‖2.
(5. 37)
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Now we introduce the function p : [0,+∞)→ R,

p(t) =
1

2
〈(Γ− γ Id) (x(t)− x∗), x(t)− x∗〉 . (5. 38)

Due to (A1), as 〈(Γ− γ Id)u, u〉 ≥ 0 for all u ∈ H, it holds

p(t) ≥ 0 for all t ≥ 0. (5. 39)

Moreover,

ṗ(t) = 〈(Γ− γ Id) (ẋ(t)), x(t)− x∗〉 ,

which combined with (5. 37), the cocoercivity of B and the fact that Bx∗ = 0 yields
for all t ∈ [0,+∞)

ḧ(t) + γḣ(t) + βλ(t)‖B(x(t))‖2 + ṗ(t) ≤ ‖ẋ(t)‖2.

Taking into account (5. 32) one obtains for all t ∈ [0,+∞)

ḧ(t) + γḣ(t) +
β

λ(t)
‖ẍ(t) + Γ(ẋ(t))‖2 + ṗ(t) ≤ ‖ẋ(t)‖2,

hence

ḧ(t) + γḣ(t) +
β

λ(t)
‖ẍ(t)‖2 +

2β

λ(t)
〈ẍ(t),Γ(ẋ(t))〉+ β

λ(t)
‖Γ(ẋ(t))‖2 + ṗ(t) ≤ ‖ẋ(t)‖2.

(5. 40)
According to (A1) we have

γ‖u‖ ≤ ‖Γu‖ for all u ∈ H, (5. 41)

which combined with (5. 40) yields for all t ∈ [0,+∞)

ḧ(t)+γḣ(t)+ṗ(t)+
β

λ(t)

d

dt

(
〈ẋ(t),Γ(ẋ(t))〉

)
+

(
βγ2

λ(t)
− 1

)
||ẋ(t)||2+

β

λ(t)
||ẍ(t)||2 ≤ 0.

By taking into account that for almost every t ∈ [0,+∞)

1

λ(t)

d

dt

(
〈ẋ(t),Γ(ẋ(t))〉

)
=

d

dt

(
1

λ(t)
〈ẋ(t),Γ(ẋ(t))〉

)
+

λ̇(t)

λ2(t)
〈ẋ(t),Γ(ẋ(t))〉

≥ d

dt

(
1

λ(t)
〈ẋ(t),Γ(ẋ(t))〉

)
+ γ

λ̇(t)

λ2(t)
‖ẋ(t)‖2, (5. 42)

we obtain for all t ∈ [0,+∞)

ḧ(t) + γḣ(t) + ṗ(t)+

β
d

dt

(
1

λ(t)
〈ẋ(t),Γ(ẋ(t))〉

)
+

(
βγ2

λ(t)
+ βγ

λ̇(t)

λ2(t)
− 1

)
||ẋ(t)||2 +

β

λ(t)
||ẍ(t)||2 ≤ 0.

(5. 43)

By using now assumption (A2) we obtain that the following inequality holds for
almost every t ∈ [0,+∞)

ḧ(t) + γḣ(t) + ṗ(t) + β
d

dt

(
1

λ(t)
〈ẋ(t),Γ(ẋ(t))〉

)
+ θ||ẋ(t)||2 +

1 + θ

γ2
||ẍ(t)||2 ≤ 0.

(5. 44)
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This implies that the function t 7→ ḣ(t) + γh(t) + p(t) + β
λ(t) 〈ẋ(t),Γ(ẋ(t))〉, which

is locally absolutely continuous, is monotonically decreasing. Hence there exists a
real number M such that for all t ∈ [0,+∞)

ḣ(t) + γh(t) + p(t) +
β

λ(t)
〈ẋ(t),Γ(ẋ(t))〉 ≤M, (5. 45)

which yields, together with (5. 39) and (A2), that for all t ∈ [0,+∞)

ḣ(t) + γh(t) ≤M.

By multiplying this inequality with eγt and then integrating from 0 to T , where
T > 0, one easily obtains

h(T ) ≤ h(0)e−γT +
M

γ
(1− e−γT ),

thus
h is bounded (5. 46)

and, consequently,
the trajectory x is bounded. (5. 47)

On the other hand, from (5. 45), by taking into account (5. 39), (A1) and (A2),
it follows that for all t ∈ [0,+∞)

ḣ(t) +
1 + θ

γ
‖ẋ(t)‖2 ≤M,

hence

〈x(t)− x∗, ẋ(t)〉+
1 + θ

γ
‖ẋ(t)‖2 ≤M.

This inequality, in combination with (5. 47), yields

ẋ is bounded, (5. 48)

which further implies that
ḣ is bounded. (5. 49)

Integrating the inequality (5. 44) we obtain that there exists a real number
N ∈ R such that for all t ∈ [0,+∞)

ḣ(t)+γh(t)+p(t)+
β

λ(t)
〈ẋ(t),Γ(ẋ(t))〉+θ

∫ t

0

||ẋ(s)||2ds+
1 + θ

γ2

∫ t

0

||ẍ(s)||2ds ≤ N.

From here, via (5. 49), (5. 39) and (A1), we conclude that ẋ(·), ẍ(·) ∈ L2([0,+∞);H).
Finally, from (5. 32), (A1) and (A2) we deduce Bx ∈ L2([0,+∞);H) and the proof
of (i) is complete.

(ii) For all t ∈ [0,+∞) it holds

d

dt

(
1

2
‖ẋ(t)‖2

)
= 〈ẋ(t), ẍ(t)〉 ≤ 1

2
‖ẋ(t)‖2 +

1

2
‖ẍ(t)‖2

and Lemma 5.2 together with (i) lead to limt→+∞ ẋ(t) = 0.
Further, by taking into consideration Remark 5.1(b), for all t ∈ [0,+∞) we have

d

dt

(
1

2
‖B(x(t))‖2

)
=

〈
B(x(t)),

d

dt
(Bx(t))

〉
≤ 1

2
‖B(x(t))‖2 +

1

2β2
‖ẋ(t)‖2.
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By using again Lemma 5.2 and (i) we get limt→+∞B(x(t)) = 0, while the fact that
limt→+∞ ẍ(t) = 0 follows from (5. 32), (A1) and (A2).

(iii) As seen in the proof of part (i), the function t 7→ ḣ(t) + γh(t) + p(t) +
β
λ(t) 〈ẋ(t),Γ(ẋ(t))〉 is monotonically decreasing, thus from (i), (ii), (5. 39), (A1) and

(A2) we deduce that limt→+∞(γh(t) + p(t)) exists and it is a real number.
In the following we consider the scalar product defined by 〈〈x, y〉〉 = 1

γ 〈Γx, y〉
and the corresponding induced norm |||x|||2 = 1

γ 〈Γx, x〉. Taking into account the

definition of p, we have that limt→+∞
1
2 |||x(t)−x∗|||2 exists and it is a real number.

Let x be a weak sequential cluster point of x, that is, there exists a sequence
tn → +∞ (as n → +∞) such that (x(tn))n∈N converges weakly to x. Since B is
a maximally monotone operator (see for instance [26, Example 20.28]), its graph is
sequentially closed with respect to the weak-strong topology of the product space
H×H. By using also that limn→+∞B(x(tn)) = 0, we conclude that Bx = 0, hence
x ∈ zerB.

The conclusion follows by applying the Opial Lemma 1.1 in the Hilbert space
(H, (〈〈·, ·〉〉)), by noticing that a sequence (xn)n≥0 converges weakly to x ∈ H in
(H, (〈〈·, ·〉〉)) if and only if (xn)n≥0 converges weakly to x in (H, (〈·, ·〉)). �

A standard instance of a cocoercive operator defined on a real Hilbert spaces is
the one that can be represented as B = Id−T , where T : H → H is a nonexpansive
operator. As it easily follows from the nonexpansiveness of T , B is in this case
1/2-cocoercive. For this particular choice of the operator B, the dynamical system
(5. 32) becomes {

ẍ(t) + Γ(ẋ(t)) + λ(t)
(
x(t)− T (x(t))

)
= 0

x(0) = u0, ẋ(0) = v0,
(5. 50)

while assumption (A2) reads

(A3) λ : [0,+∞)→ (0,+∞) is locally absolutely continuous and there exists θ > 0
such that for almost every t ∈ [0,+∞) we have

λ̇(t) ≥ 0 and λ(t) ≤ γ2

2(1 + θ)
. (5. 51)

Theorem 5.10 gives rise to the following result.

Corollary 5.2 Let T : H → H be a nonexpansive operator such that FixT = {u ∈
H : Tu = u} 6= ∅, Γ : H → H be an operator fulfilling (A1), λ : [0,+∞)→ (0,+∞)
be a function fulfilling (A3) and u0, v0 ∈ H. Let x : [0,+∞) → H be the unique
strong global solution of (5. 50). Then the following statements are true:

(i) the trajectory x is bounded and ẋ, ẍ, (Id−T )x ∈ L2([0,+∞);H);

(ii) limt→+∞ ẋ(t) = limt→+∞ ẍ(t) = limt→+∞(Id−T )(x(t)) = 0;

(iii) x(t) converges weakly to a point in FixT as t→ +∞.

Remark 5.12 In the particular case when Γ = γ Id for γ > 0 and λ(t) = 1 for all
t ∈ [0,+∞) the dynamical system (5. 50) becomes{

ẍ(t) + γẋ(t) + x(t)− T (x(t)) = 0
x(0) = u0, ẋ(0) = v0.

(5. 52)

The convergence of the trajectories generated by (5. 52) has been studied in [8,
Theorem 3.2] under the condition γ2 > 2. In this case (A3) is obviously fulfilled for
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an arbitrary 0 < θ ≤ (γ2− 2)/2. However, different to [8], we allow in Corollary 5.2
an anisotropic damping through the use of the elliptic operator Γ and also a variable
relaxation function λ depending on time (in [3] the anisotropic damping has been
considered as well in the context of minimizing of a smooth convex function via
second order dynamical systems).

We close the section by addressing an immediate consequence of the above corol-
lary applied to second order dynamical systems governed by averaged operators.

We consider the dynamical system{
ẍ(t) + Γ(ẋ(t)) + λ(t)

(
x(t)−R(x(t))

)
= 0

x(0) = u0, ẋ(0) = v0
(5. 53)

and formulate the assumption

(A4) λ : [0,+∞)→ (0,+∞) is locally absolutely continuous and there exists θ > 0
such that for almost every t ∈ [0,+∞) we have

λ̇(t) ≥ 0 and λ(t) ≤ γ2

2α(1 + θ)
. (5. 54)

Corollary 5.3 Let R : H → H be an α-averaged operator for α ∈ (0, 1) such that
FixR 6= ∅, Γ : H → H be an operator fulfilling (A1), λ : [0,+∞) → (0,+∞) be a
function fulfilling (A4) and u0, v0 ∈ H. Let x : [0,+∞) → H be the unique strong
global solution of (5. 53). Then the following statements are true:

(i) the trajectory x is bounded and ẋ, ẍ, (Id−R)x ∈ L2([0,+∞);H);

(ii) limt→+∞ ẋ(t) = limt→+∞ ẍ(t) = limt→+∞(Id−R)(x(t)) = 0;

(iii) x(t) converges weakly to a point in FixR as t→ +∞.

Proof. Since R is α-averaged, there exists a nonexpansive operator T : H → H
such that R = (1− α) Id +αT . The conclusion is a direct consequence of Corollary
5.2, by taking into account that (5. 53) is equivalent to{

ẍ(t) + Γ(ẋ(t)) + αλ(t)
(
x(t)− T (x(t))

)
= 0

x(0) = u0, ẋ(0) = v0,

and FixR = FixT . �

5.2.2 Second order dynamical systems of forward-backward
type

In this section we address the monotone inclusion problem

find x∗ ∈ H such that 0 ∈ A(x∗) +B(x∗),

where A : H ⇒ H is a maximally monotone operator and B : H → H is a β-
cocoercive operator for β > 0 via a second order forward-backward dynamical sys-
tem with anisotropic damping and variable relaxation parameter.

For η > 0 we consider the dynamical system{
ẍ(t) + Γ(ẋ(t)) + λ(t)

[
x(t)− JηA

(
x(t)− ηB(x(t))

)]
= 0

x(0) = u0, ẋ(0) = v0.
(5. 55)

We formulate the following assumption, where δ := (4β − η)/(2β):
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(A5) λ : [0,+∞)→ (0,+∞) is locally absolutely continuous and there exists θ > 0
such that for almost every t ∈ [0,+∞) we have

λ̇(t) ≥ 0 and λ(t) ≤ δγ2

2(1 + θ)
. (5. 56)

Theorem 5.11 Let A : H⇒ H be a maximally monotone operator and B : H → H
be β-cocoercive operator for β > 0 such that zer(A + B) 6= ∅. Let η ∈ (0, 2β) and
set δ := (4β− η)/(2β). Let Γ : H → H be an operator fulfilling (A1), λ : [0,+∞)→
(0,+∞) be a function fulfilling (A5), u0, v0 ∈ H and x : [0,+∞)→ H be the unique
strong global solution of (5. 55). Then the following statements are true:

(i) the trajectory x is bounded and ẋ, ẍ,
(

Id−JηA ◦(Id−ηB)
)
x ∈ L2([0,+∞);H);

(ii) limt→+∞ ẋ(t) = limt→+∞ ẍ(t) = limt→+∞
(

Id−JηA ◦ (Id−ηB)
)
(x(t)) = 0;

(iii) x(t) converges weakly to a point in zer(A+B) as t→ +∞;

(iv) if x∗ ∈ zer(A+B), then B(x(·))−Bx∗ ∈ L2([0,+∞);H), limt→+∞B(x(t)) =
Bx∗ and B is constant on zer(A+B);

(v) if A or B is uniformly monotone, then x(t) converges strongly to the unique
point in zer(A+B) as t→ +∞.

Proof. (i)-(iii) It is immediate that the dynamical system (5. 55) can be written
in the form {

ẍ(t) + Γ(ẋ(t)) + λ(t)
(
x(t)−R(x(t))

)
= 0

x(0) = u0, ẋ(0) = v0,
(5. 57)

where R = JηA ◦ (Id−ηB). According to [26, Corollary 23.8 and Remark 4.24(iii)],
JηA is 1/2-cocoercive. Moreover, by [26, Proposition 4.33], Id−ηB is η/(2β)-
averaged. Combining this with Proposition 5.1, we derive that R is 1/δ-averaged.
The statements (i)-(iii) follow now from Corollary 5.3 by noticing that FixR =
zer(A+B) (see [26, Proposition 25.1(iv)]).

(iv) The fact that B is constant on zer(A+B) follows from the cocoercivity of B
and the monotonicity of A. A proof of this statement when A is the subdifferential
of a proper, convex and lower semicontinuous function is given for instance in [1,
Lemma 2.7].

Take an arbitrary x∗ ∈ zer(A+B). From the definition of the resolvent we have
for every t ∈ [0,+∞)

−B(x(t))− 1

ηλ(t)
ẍ(t)− 1

ηλ(t)
Γ(ẋ(t)) ∈ A

(
1

λ(t)
ẍ(t) +

1

λ(t)
Γ(ẋ(t)) + x(t)

)
,

(5. 58)
which combined with −Bx∗ ∈ Ax∗ and the monotonicity of A leads to

0 ≤
〈

1

λ(t)
ẍ(t) +

1

λ(t)
Γ(ẋ(t)) + x(t)− x∗,−B(x(t)) +Bx∗ − 1

ηλ(t)
ẍ(t)− 1

ηλ(t)
Γ(ẋ(t))

〉
.

(5. 59)
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After using the cocoercivity of B we obtain for every t ∈ [0,+∞)

β‖B(x(t))−Bx∗‖2≤
〈

1

λ(t)
ẍ(t)+

1

λ(t)
Γ(ẋ(t)),−B(x(t)) +Bx∗

〉
− 1

ηλ2(t)
‖ẍ(t) + Γ(ẋ(t))‖2

+

〈
x(t)− x∗,− 1

ηλ(t)
ẍ(t)− 1

ηλ(t)
Γ(ẋ(t))

〉
≤ 1

2β

∥∥∥∥ 1

λ(t)
ẍ(t) +

1

λ(t)
Γ(ẋ(t))

∥∥∥∥2

+
β

2
‖B(x(t))−Bx∗‖2

+

〈
x(t)− x∗,− 1

ηλ(t)
ẍ(t)− 1

ηλ(t)
Γ(ẋ(t))

〉
.

For evaluating the last term of the above inequality we use the functions h :
[0,+∞)→ R,

h(t) =
1

2
‖x(t)− x∗‖2

and p : [0,+∞)→ R,

p(t) =
1

2
〈(Γ− γ Id) (x(t)− x∗), x(t)− x∗〉 ,

already used in the proof of Theorem 5.10. For every t ∈ [0,+∞) we have

〈x(t)− x∗, ẍ(t)〉 = ḧ(t)− ‖ẋ(t)‖2

and

ṗ(t) = 〈x(t)− x∗,Γ(ẋ(t))〉 − γ 〈x(t)− x∗, ẋ(t)〉 = 〈x(t)− x∗,Γ(ẋ(t))〉 − γḣ(t),

hence〈
x(t)− x∗,− 1

ηλ(t)
ẍ(t)− 1

ηλ(t)
Γ(ẋ(t))

〉
= − 1

ηλ(t)

(
ḧ(t) + γḣ(t) + ṗ(t)− ‖ẋ(t)‖2

)
.

(5. 60)
Consequently, for every t ∈ [0,+∞) it holds

β

2
‖B(x(t))−Bx∗‖2 ≤ 1

2β

∥∥∥∥ 1

λ(t)
ẍ(t) +

1

λ(t)
Γ(ẋ(t))

∥∥∥∥2

− 1

ηλ(t)

(
ḧ(t) + γḣ(t) + ṗ(t)− ‖ẋ(t)‖2

)
. (5. 61)

By taking into account (A5) we obtain a lower bound λ such that for every t ∈
[0,+∞) one has

0 < λ ≤ λ(t) ≤ δγ2

2(1 + θ)
.

By multiplying (5. 61) with λ(t) we obtain for every t ∈ [0,+∞) that

βλ

2
‖B(x(t))−Bx∗‖2+

1

η

(
ḧ(t) + γḣ(t) + ṗ(t)

)
≤ 1

2βλ
‖ẍ(t) + Γ(ẋ(t))‖2+

1

η
‖ẋ(t)‖2.

After integration we obtain that for every T ∈ [0,+∞)

βλ

2

∫ T

0

‖B(x(t))−Bx∗‖2dt+
1

η

(
ḣ(T )− ḣ(0) + γh(T )− γh(0) + p(T )− p(0)

)
≤
∫ T

0

(
1

2βλ
‖ẍ(t) + Γ(ẋ(t))‖2 +

1

η
‖ẋ(t)‖2

)
dt.
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By using that ẋ, ẍ ∈ L2([0,+∞);H), h(T ) ≥ 0, p(T ) ≥ 0 for every T ∈ [0,+∞) and
limT→+∞ ḣ(T ) = 0, it follows that B(x(·))−Bx∗ ∈ L2([0,+∞);H).

Further, by taking into consideration Remark 5.1(b), we have

d

dt

(
1

2
‖B(x(t))−Bx∗‖2

)
=

〈
B(x(t))−Bx∗, d

dt
(Bx(t))

〉
≤ 1

2
‖B(x(t))−Bx∗‖2 +

1

2β2
‖ẋ(t)‖2

and from here, in light of Lemma 5.2, it follows that limt→+∞B(x(t)) = Bx∗.
(v) Let x∗ be the unique element of zer(A+B). For the beginning we suppose

that A is uniformly monotone with corresponding function φA : [0,+∞)→ [0,+∞],
which is increasing and vanishes only at 0.

By similar arguments as in the proof of statement (iv), for every t ∈ [0,+∞) we
have

φA

(∥∥∥∥ 1

λ(t)
ẍ(t) +

1

λ(t)
Γ(ẋ(t)) + x(t)− x∗

∥∥∥∥) ≤〈
1

λ(t)
ẍ(t) +

1

λ(t)
Γ(ẋ(t)) + x(t)− x∗,−B(x(t)) +Bx∗ − 1

ηλ(t)
ẍ(t)− 1

ηλ(t)
Γ(ẋ(t))

〉
,

which combined with the inequality

〈x(t)− x∗, B(x(t))−Bx∗〉 ≥ 0

yields

φA

(∥∥∥∥ 1

λ(t)
ẍ(t) +

1

λ(t)
Γ(ẋ(t)) + x(t)− x∗

∥∥∥∥)
≤
〈

1

λ(t)
ẍ(t) +

1

λ(t)
Γ(ẋ(t)),−B(x(t)) +Bx∗

〉
− 1

ηλ2(t)
‖ẍ(t) + Γ(ẋ(t))‖2

+

〈
x(t)− x∗,− 1

ηλ(t)
ẍ(t)− 1

ηλ(t)
Γ(ẋ(t))

〉
≤
〈

1

λ(t)
ẍ(t) +

1

λ(t)
Γ(ẋ(t)),−B(x(t)) +Bx∗

〉
+

〈
x(t)− x∗,− 1

ηλ(t)
ẍ(t)− 1

ηλ(t)
Γ(ẋ(t))

〉
.

As λ is bounded by positive constants, by using (i)-(iv) it follows that the right-hand
side of the last inequality converges to 0 as t→ +∞. Hence

lim
t→+∞

φA

(∥∥∥∥ 1

λ(t)
ẍ(t) +

1

λ(t)
Γ(ẋ(t)) + x(t)− x∗

∥∥∥∥) = 0

and the properties of the function φA allow to conclude that 1
λ(t) ẍ(t)+ 1

λ(t)Γ(ẋ(t))+

x(t)− x∗ converges strongly to 0 as t→ +∞. By using again the boundedness of λ
and (ii) we obtain that x(t) converges strongly to x∗ as t→ +∞.

Finally, suppose that B is uniformly monotone with corresponding function
φB : [0,+∞)→ [0,+∞], which is increasing and vanishes only at 0. The conclusion
follows by letting t in the inequality

〈x(t)− x∗, B(x(t))−Bx∗〉 ≥ φB(‖x(t)− x∗‖) ∀t ∈ [0,+∞)

converge to +∞ and by using that x is bounded and limt→+∞(B(x(t)−Bx∗) = 0.
�
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Remark 5.13 We would like to emphasize the fact that the statements in Theorem
5.11 remain valid also for η := 2β. Indeed, in this case the cocoercivity of B implies
that Id−ηB is nonexpansive, hence the operator R = JηA ◦ (Id−ηB) used in the
proof is nonexpansive, too, and so the statements in (i)-(iii) follow from Corollary
5.2. Furthermore, the proof of the statements (iv) and (v) can be repeated also for
η = 2β.

In the remaining of this section we turn our attention to optimization problems
of the form

min
x∈H

f(x) + g(x),

where f : H → R ∪ {+∞} is a proper, convex and lower semicontinuous function
and g : H → R is a convex and (Fréchet) differentiable function with 1/β-Lipschitz
continuous gradient for β > 0.

In the following statement we approach the minimizers of f + g via the second
order dynamical system{

ẍ(t) + Γ(ẋ(t)) + λ(t)
[
x(t)− proxηf

(
x(t)− η∇g(x(t))

)]
= 0

x(0) = u0, ẋ(0) = v0.
(5. 62)

Corollary 5.4 Let f : H → R ∪ {+∞} by a proper, convex and lower semicontin-
uous function and g : H → R be a convex and (Fréchet) differentiable function with
1/β-Lipschitz continuous gradient for β > 0 such that argminx∈H{f(x)+g(x)} 6= ∅.
Let η ∈ (0, 2β] and set δ := (4β − η)/(2β). Let Γ : H → H be an operator fulfill-
ing (A1), λ : [0,+∞) → (0,+∞) be a function fulfilling (A5), u0, v0 ∈ H and
x : [0,+∞)→ H be the unique strong global solution of (5. 62). Then the following
statements are true:

(i) x(·) is bounded and ẋ, ẍ,
(

Id−proxηf ◦(Id−η∇g)
)
x ∈ L2([0,+∞);H);

(ii) limt→+∞ ẋ(t) = limt→+∞ ẍ(t) = limt→+∞
(

Id− proxηf ◦(Id−η∇g)
)
(x(t)) =

0;

(iii) x(t) converges weakly to a minimizer of f + g as t→ +∞;

(iv) if x∗ is a minimizer of f + g, then ∇g(x(·)) − ∇g(x∗) ∈ L2([0,+∞);H),
limt→+∞ ∇g(x(t)) = ∇g(x∗) and ∇g is constant on argminx∈H{f(x)+g(x)};

(v) if f or g is uniformly convex, then x(t) converges strongly to the unique min-
imizer of f + g as t→ +∞.

Proof. The statements are direct consequences of the corresponding ones from
Theorem 5.11 (see also Remark 5.13), by choosing A := ∂f and B := ∇g, by taking
into account that

zer(∂f +∇g) = argmin
x∈H

{f(x) + g(x)}

and by making use of the Baillon-Haddad Theorem, which says that ∇g is 1/β-
Lipschitz continuous if and only if ∇g is β-cocoercive (see [26, Corollary 18.16]).
For statement (v) we also use the fact that if f is uniformly convex with modulus
φ, then ∂f is uniformly monotone with modulus 2φ (see [26, Example 22.3(iii)]). �

Remark 5.14 Consider again the setting in Remark 5.12, namely, when Γ = γ Id
for γ > 0 and λ(t) = 1 for every t ∈ [0,+∞). Furthermore, for C a nonempty,
convex, closed subset of H, let f = δC be the indicator function of C, which is
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defined as being equal to 0 for x ∈ C and to +∞, else. The dynamical system
(5. 62) attached in this setting to the minimization of g over C becomes{

ẍ(t) + γẋ(t) + x(t)− PC
(
x(t)− η∇g(x(t))

)
= 0

x(0) = u0, ẋ(0) = v0,
(5. 63)

where PC denotes the projection onto the set C.

The convergence of the trajectories of (5. 63) has been studied in [8, Theorem
3.1] under the conditions γ2 > 2 and 0 < η ≤ 2β. In this case assumption (A5)
trivially holds by choosing θ such that 0 < θ ≤ (γ2 − 2)/2 ≤ (δγ2 − 2)/2. Thus, in
order to verify (A5) in case λ(t) = 1 for every t ∈ [0,+∞) one needs to equivalently
assume that γ2 > 2/δ. Since δ ≥ 1, this provides a slight improvement over [8,
Theorem 3.1] in what concerns the choice of γ. We refer the reader also to [7] for
an analysis of the convergence rates of trajectories of the dynamical system (5. 63)
when g is endowed with supplementary properties.

For the two main convergence statements provided in this section it was essential
to choose the step size η in the interval (0, 2β] (see Theorem 5.11, Remark 5.13 and
Corollary 5.4). This, because of the fact that in this way we were able to guarantee
for the generated trajectories the existence of the limit limt→+∞ ‖x(t)−x∗‖2, where
x∗ denotes a solution of the problem under investigation. It is interesting to observe
that, when dealing with convex optimization problems, one can go also beyond this
classical restriction concerning the choice of the step size (a similar phenomenon has
been reported also in [1, Section 5.2]). This is pointed out in the following result,
which is valid under the assumption

(A6) λ : [0,+∞)→ (0,+∞) is locally absolutely continuous and there exist a, θ, θ′ >
0 such that for almost every t ∈ [0,+∞) we have

λ̇(t) ≥ 0 and
1

β

(
θ′ +

a

2
‖Γ− γ Id ‖

)
≤ λ(t) ≤ γ2

ηθ + η
β + η

2a‖Γ− γ Id ‖+ 1
,

(5. 64)

and for the proof of which we use instead of ‖x(·)−x∗‖2 a modified energy functional.

Corollary 5.5 Let f : H → R ∪ {+∞} by a proper, convex and lower semicontin-
uous function and g : H → R be a convex and (Fréchet) differentiable function with
1/β-Lipschitz continuous gradient for β > 0 such that argminx∈H{f(x)+g(x)} 6= ∅.
Let be η > 0, Γ : H → H be an operator fulfilling (A1), λ : [0,+∞)→ (0,+∞) be a
function fulfilling (A6), u0, v0 ∈ H and x : [0,+∞)→ H be the unique strong global
solution of (5. 62). Then the following statements are true:

(i) x(·) is bounded and ẋ, ẍ,
(

Id−proxηf ◦(Id−η∇g)
)
x ∈ L2([0,+∞);H);

(ii) limt→+∞ ẋ(t) = limt→+∞ ẍ(t) = limt→+∞
(

Id− proxηf ◦(Id−η∇g)
)
(x(t)) =

0;

(iii) x(t) converges weakly to a minimizer of f + g as t→ +∞;

(iv) if x∗ is a minimizer of f + g, then ∇g(x(·)) − ∇g(x∗) ∈ L2([0,+∞);H),
limt→+∞ ∇g(x(t)) = ∇g(x∗) and ∇g is constant on argminx∈H{f(x)+g(x)};

(v) if f or g is uniformly convex, then x(t) converges strongly to the unique min-
imizer of f + g as t→ +∞.
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Proof. Consider an arbitrary element x∗ ∈ argminx∈H{f(x) + g(x)} = zer(∂f +
∇g). Similarly to the proof of Theorem 5.11(iv), we derive for every t ∈ [0,+∞)
(see the first inequality after (5. 59))

β‖∇g(x(t))−∇g(x∗)‖2

≤ 1

λ(t)

(
〈ẍ(t),−∇g(x(t)) +∇g(x∗)〉+ 〈Γ(ẋ(t)),−∇g(x(t)) +∇g(x∗)〉

)
− 1

ηλ2(t)
‖ẍ(t) + Γ(ẋ(t))‖2 +

〈
x(t)− x∗,− 1

ηλ(t)
ẍ(t)− 1

ηλ(t)
Γ(ẋ(t))

〉
.

(5. 65)

In what follows we evaluate the right-hand side of the above inequality and
introduce to this end the function

q : [0,+∞)→ R, q(t) = g(x(t))− g(x∗)− 〈∇g(x∗), x(t)− x∗〉 .

Due to the convexity of g one has

q(t) ≥ 0 ∀t ≥ 0.

Further, for every t ∈ [0,+∞)

q̇(t) = 〈ẋ(t),∇g(x(t))−∇g(x∗)〉 ,

thus

〈Γ(ẋ(t)),−∇g(x(t)) +∇g(x∗)〉
= −γq̇(t) + 〈(Γ− γ Id) (ẋ(t)),−∇g(x(t)) +∇g(x∗)〉

≤ −γq̇(t) +
1

2a
‖Γ− γ Id ‖‖ẋ(t)‖2 +

a

2
‖Γ− γ Id ‖‖∇g(x(t))−∇g(x∗)‖2. (5. 66)

On the other hand, for every t ∈ [0,+∞)

q̈(t) = 〈ẍ(t),∇g(x(t))−∇g(x∗)〉+

〈
ẋ(t),

d

dt
∇g(x(t))

〉
,

hence

〈ẍ(t),−∇g(x(t)) +∇g(x∗)〉 ≤ −q̈(t) +
1

β
‖ẋ(t)‖2. (5. 67)

Further, we have for every t ∈ [0,+∞) (see also (5. 42) and (5. 41))

1

λ(t)
‖ẍ(t) + Γ(ẋ(t))‖2 =

1

λ(t)
‖ẍ(t)‖2 +

1

λ(t)

d

dt

(
〈ẋ(t),Γ(ẋ(t))〉

)
+

1

λ(t)
‖Γ(ẋ(t))‖2

≥ 1

λ(t)
‖ẍ(t)‖2 +

d

dt

(
1

λ(t)
〈ẋ(t),Γ(ẋ(t))〉

)
+ γ

λ̇(t)

λ2(t)
‖ẋ(t)‖2 +

γ2

λ(t)
‖ẋ(t)‖2. (5. 68)

Finally, by multiplying (5. 65) with λ(t) and by using (5. 66), (5. 67), (5. 68) and
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(5. 60) we obtain after rearranging the terms for every t ∈ [0,+∞) that(
βλ(t)− a

2
‖Γ− γ Id ‖

)
‖∇g(x(t))−∇g(x∗)‖2

+
d2

dt2

(
1

η
h+ q

)
+ γ

d

dt

(
1

η
h+ q

)
+

1

η
ṗ(t) +

1

η

d

dt

(
1

λ(t)
〈ẋ(t),Γ(ẋ(t))〉

)
+

(
γ2

ηλ(t)
+

γλ̇(t)

ηλ2(t)
− 1

β
− 1

η
− 1

2a
‖Γ− γ Id ‖

)
‖ẋ(t)‖2

+
1

ηλ(t)
‖ẍ(t)‖2

≤ 0.

and, further, via (A6)

θ′‖∇g(x(t))−∇g(x∗)‖2 +
d2

dt2

(
1

η
h+ q

)
+ γ

d

dt

(
1

η
h+ q

)
+

1

η
ṗ(t)

+
1

η

d

dt

(
1

λ(t)
〈ẋ(t),Γ(ẋ(t))〉

)
+ θ‖ẋ(t)‖2 +

1

ηλ(t)
‖ẍ(t)‖2

≤ 0. (5. 69)

This implies that the function

t 7→ d

dt

(
1

η
h+ q

)
(t) + γ

(
1

η
h+ q

)
(t) +

1

η
p(t) +

1

η

(
1

λ(t)
〈ẋ(t),Γ(ẋ(t))〉

)
(5. 70)

is monotonically decreasing. Arguing as in the proof of Theorem 5.10, by taking
into account that λ has positive upper and lower bounds, it follows that

1

η
h+ q, h, q, x, ẋ, ḣ, q̇ are bounded,

ẋ, ẍ and
(

Id−proxηf ◦(Id−η∇g)
)
x ∈ L2([0,+∞);H) and limt→+∞ ẋ(t) = 0. Since

d
dt

(
Id− proxηf ◦(Id−η∇g)

)
x ∈ L2([0,+∞);H) (see Remark 5.1(b)), we derive

from Lemma 5.2 that limt→+∞
(

Id− proxηf ◦(Id−η∇g)
)
(x(t)) = 0. As ẍ(t) =

−Γ(ẋ(t)) − λ(t)
(

Id−proxηf ◦(Id−η∇g)
)
(x(t)) for every t ∈ [0,+∞), we obtain

that limt→+∞ ẍ(t) = 0. From (5. 69) it also follows that ∇g(x(·)) − ∇g(x∗) ∈
L2([0,+∞);H) and, by applying again Lemma 5.2, it yields limt→+∞∇g(x(t)) =
∇g(x∗). In this way the statements (i), (ii) and (iv) are shown.

(iii) Since the function in (5. 70) is monotonically decreasing, from (i), (ii) and

(iv) it follows that the limit limt→+∞

(
γ
(

1
ηh+ q

)
(t) + 1

ηp(t)
)

exists and it is a

real number.
Consider again the renorming of the space already used in the proof of Theorem

5.10(iii). As x∗ has been chosen as an arbitrary minimizer of f + g and taking
into account the definition of p and the new norm, we conclude that for all x∗ ∈
argminx∈H{f(x) + g(x)} the limit limt→+∞E(t, x∗) ∈ R, exists, where

E(t, x∗) =
1

2η
|||x(t)− x∗|||2 + g(x(t))− g(x∗)− 〈∇g(x∗), x(t)− x∗〉 .

In what follows we use a similar technique as in [31] (see, also, [1, Section 5.2]).
Since x(·) is bounded, it has at least one weak sequential cluster point.
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We prove first that each weak sequential cluster point of x(·) is a minimizer
of f + g. Let x∗ ∈ argminx∈H{f(x) + g(x)} and tn → +∞ (as n → +∞) be
such that (x(tn))n∈N converges weakly to x. Since (x(tn),∇g(x(tn))) ∈ gr(∇g),
limn→+∞∇g(x(tn)) = ∇g(x∗) and gr(∇g) is sequentially closed in the weak-strong
topology, we obtain ∇g(x) = ∇g(x∗).

From (5. 58) written for t = tn, A = ∂f and B = ∇g, by letting n converge to
+∞ and by using that gr(∂f) is sequentially closed in the weak-strong topology, we
obtain −∇g(x∗) ∈ ∂f(x). This, combined with ∇g(x) = ∇g(x∗) delivers −∇g(x) ∈
∂f(x), hence x ∈ zer(∂f +∇g) = argminx∈H{f(x) + g(x)}.

Next we show that x(·) has at most one weak sequential cluster point, which
will actually guarantee that it has exactly one weak sequential cluster point. This
will imply the weak convergence of the trajectory to a minimizer of f + g.

Let x∗1, x
∗
2 be two weak sequential cluster points of x(·). This means that there

exist tn → +∞ (as n → +∞) and t′n → +∞ (as n → +∞) such that (x(tn))n∈N
converges weakly to x∗1 (as n → +∞) and (x(t′n))n∈N converges weakly to x∗2 (as
n→ +∞). Since x∗1, x

∗
2 ∈ argminx∈H{f(x) + g(x)}, we have limt→+∞E(t, x∗1) ∈ R

and limt→+∞E(t, x∗2) ∈ R, hence ∃ limt→+∞(E(t, x∗1)− E(t, x∗2)) ∈ R. We obtain

∃ lim
t→+∞

(
1

η
〈〈x(t), x∗2 − x∗1〉〉+ 〈∇g(x∗2)−∇g(x∗1), x(t)〉

)
∈ R,

which, when expressed by means of the sequences (tn)n∈N and (t′n)n∈N, leads to
1
η 〈〈x

∗
1, x
∗
2−x∗1〉〉+〈∇g(x∗2)−∇g(x∗1), x∗1〉 = 1

η 〈〈x
∗
2, x
∗
2−x∗1〉〉+〈∇g(x∗2)−∇g(x∗1), x∗2〉 .

This is the same with

1

η
|||x∗1 − x∗2|||2 + 〈∇g(x∗2)−∇g(x∗1), x∗2 − x∗1〉 = 0

and by the monotonicity of ∇g we conclude that x∗1 = x∗2.
(v) The proof of this statement follows in analogy to the one of the corresponding

statement of Theorem 5.11(v) written for A = ∂f and B = ∇g. �

Remark 5.15 When Γ = γ Id for γ > 0, in order to verify the left-hand side of
the second statement in assumption (A6) one can take θ′ := β inft≥0 λ(t). Thus,
(5. 64) amounts in this case to the existence of θ > 0 such that

λ(t) ≤ γ2

ηθ + η
β + 1

.

When one takes λ(t) = 1 for every t ∈ [0,+∞), this is verified if and only if
γ2 > η

β + 1. In other words, (A6) allows in this particular setting a more relaxed
choice for the parameters γ, η and β, beyond the standard assumptions 0 < η ≤ 2β
and γ2 > 2 considered in [8].

In the following we provide a rate for the convergence of a convex and (Fréchet)
differentiable function with Lipschitz continuous gradient g : H → R along the
ergodic trajectory generated by{

ẍ(t) + Γ(ẋ(t)) + λ(t)∇g(x(t)) = 0
x(0) = u0, ẋ(0) = v0

(5. 71)

to the minimum value of g. To this end we make the following assumption

(A7) λ : [0,+∞)→ (0,+∞) is locally absolutely continuous and there exists ζ > 0
such that for almost every t ∈ [0,+∞) we have

0 < ζ ≤ γλ(t)− λ̇(t). (5. 72)
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Let us mention that the following result is in the spirit of a convergence rate state-
ment given for the objective function values on a sequence iteratively generated by
an inertial-type algorithm recently obtained in [89, Theorem 1].

Theorem 5.12 Let g : H → R be a convex and (Fréchet) differentiable function
with 1/β-Lipschitz continuous gradient for β > 0 such that argminx∈H g(x) 6= ∅.
Let Γ : H → H be an operator fulfilling (A1), λ : [0,+∞) → (0,+∞) a function
fulfilling (A7), u0, v0 ∈ H and x : [0,+∞)→ H be the unique strong global solution
of (5. 71).

Then for every minimizer x∗ of g and every T > 0 it holds

0 ≤ g

(
1

T

∫ T

0

x(t)dt

)
− g(x∗)

≤ 1

2ζT

[
‖v0 + γ(u0 − x∗)‖2 +

(
γ‖Γ− γ Id ‖+

λ(0)

β

)
‖u0 − x∗‖2

]
.

Proof. The existence and uniqueness of the trajectory of (5. 71) follow from The-
orem 5.9. Let be x∗ ∈ argminx∈H g(x), T > 0 and consider again the function
p : [0,+∞)→ R,

p(t) =
1

2
〈(Γ− γ Id) (x(t)− x∗), x(t)− x∗〉

which we defined in (5. 38). By using (5. 71), the formula for the derivative of
p, the positive semidefinitness of Γ − γ Id, the convexity of g and (A7) we get for
almost every t ∈ [0,+∞)

d

dt

(
1

2
‖ẋ(t) + γ(x(t)− x∗)‖2 + γp(t) + λ(t)g(x(t))

)
= 〈ẍ(t) + γẋ(t), ẋ(t) + γ(x(t)− x∗)〉+ γ 〈(Γ− γ Id)(ẋ(t)), x(t)− x∗〉

+ λ̇(t)g(x(t)) + λ(t) 〈ẋ(t),∇g(x(t))〉
= 〈−(Γ− γ Id)(ẋ(t))− λ(t)∇g(x(t)), ẋ(t) + γ(x(t)− x∗)〉

+ 〈(Γ− γ Id)(ẋ(t)), γ(x(t)− x∗)〉+ λ̇(t)g(x(t)) + λ(t) 〈ẋ(t),∇g(x(t))〉
≤ − γλ(t) 〈∇g(x(t)), x(t)− x∗〉+ λ̇(t)g(x(t))

≤(λ̇(t)− γλ(t))(g(x(t))− g(x∗)) + λ̇(t)g(x∗)

≤− ζ(g(x(t))− g(x∗)) + λ̇(t)g(x∗).

We obtain after integration

1

2
‖ẋ(T ) + γ(x(T )− x∗)‖2 + γp(T ) + λ(T )g(x(T ))

−
(

1

2
‖ẋ(0) + γ(x(0)− x∗)‖2 + γp(0) + λ(0)g(x(0))

)
+ ζ

∫ T

0

(g(x(t))− g(x∗))dt

≤ (λ(T )− λ(0))g(x∗).

Be neglecting the nonnegative terms on the left-hand side of this inequality and by
using that g(x(T )) ≥ g(x∗), it yields

ζ

∫ T

0

(g(x(t))− g(x∗))dt ≤ 1

2
‖v0 + γ(u0 − x∗)‖2 + γp(0) + λ(0)(g(u0)− g(x∗)).
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The conclusion follows by using

p(0) =
1

2
〈(Γ− γ Id)(u0 − x∗), u0 − x∗〉

≤ 1

2
‖Γ− γ Id ‖‖u0 − x∗‖2,

and

g(u0)− g(x∗) ≤ 1

2β
‖u0 − x∗‖2,

which is a consequence of the descent lemma (see Lemma 1.4 and notice that
∇g(x∗) = 0), and the inequality

g

(
1

T

∫ T

0

x(t)dt

)
− g(x∗) ≤ 1

T

∫ T

0

(g(x(t))− g(x∗))dt,

which holds since g is convex. �

Remark 5.16 Under assumption (A7) on the relaxation function λ, we obtain
in the above theorem (only) the convergence of the function g along the ergodic
trajectory to a global minimum value. If one is interested also in the (weak) con-
vergence of the trajectory to a minimizer of g, this follows via Theorem 5.10 when
λ is assumed to fulfill (A2) (notice that if x converges weakly to a minimizer of g,
then from the Cesaro-Stolz Theorem one also obtains the weak convergence of the

ergodic trajectory T 7→ 1
T

∫ T
0
x(t)dt to the same minimizer).

Take a ≥ 0, b > 1/(βγ2) and 0 ≤ ρ ≤ γ. Then

λ(t) =
1

ae−ρt + b

is an example of a relaxation function which verifies assumption (A2) (with 0 < θ ≤
bβγ2 − 1) and assumption (A7) (with 0 < ζ ≤ γb/(a+ b)2).

5.2.3 Variable damping parameters

In this section we carry out a similar analysis as in the previous subsection, how-
ever, for second order dynamical systems having as damping coefficient a function
depending on time. We refer the reader to [13,65,66,126] for other works where sec-
ond order differential equations with time dependent damping have been considered
and investigated in connection with optimization problems.

As starting point for our investigations we consider the dynamical system{
ẍ(t) + γ(t)ẋ(t) + λ(t)B(x(t)) = 0
x(0) = u0, ẋ(0) = v0,

(5. 73)

where B : H → H is a cocoercive operator, λ, γ : [0,+∞) → [0,+∞) are Lebesgue
measurable functions and u0, v0 ∈ H.

The existence and uniqueness of strong global solutions of (5. 73) can be shown
by using the same techniques as in the proof of Theorem 5.9, provided that λ(·), γ(·) ∈
L1

loc([0,+∞)). For the convergence of the trajectories we need the following assump-
tion

(A2’) λ, γ : [0,+∞) → (0,+∞) are locally absolutely continuous and there exists
θ > 0 such that for almost every t ∈ [0,+∞) we have

γ̇(t) ≤ 0 ≤ λ̇(t) and
γ2(t)

λ(t)
≥ 1 + θ

β
. (5. 74)
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According to Definition 5.1 and Remark 5.1(a), λ̇(t), γ̇(t) exist for almost almost
every t ∈ [0,+∞) and λ̇, γ̇ are Lebesgue integrable on each interval [0, b] for 0 <
b < +∞. This combined with γ̇(t) ≤ 0 ≤ λ̇(t), yields the existence of a positive
lower bound for λ and for a positive upper bound for γ. Using further the second
assumption in (5. 74) provides also a positive upper bound for λ and a positive
lower bound for γ. The couple of functions

λ(t) =
1

ae−ρt + b
and γ(t) = a′e−ρ

′t + b′,

where a, a′, ρ, ρ′ ≥ 0 and b, b′ > 0 fulfill the inequality b′2b > 1/β, verify the
conditions in assumption (A2’).

We state now the convergence result.

Theorem 5.13 Let B : H → H be a β-cocoercive operator for β > 0 such that
zerB 6= ∅, λ, γ : [0,+∞) → (0,+∞) be functions fulfilling (A2’) and u0, v0 ∈ H.
Let x : [0,+∞) → H be the unique strong global solution of (5. 73). Then the
following statements are true:

(i) the trajectory x is bounded and ẋ, ẍ, Bx ∈ L2([0,+∞);H);

(ii) limt→+∞ ẋ(t) = limt→+∞ ẍ(t) = limt→+∞B(x(t)) = 0;

(iii) x(t) converges weakly to an element in zerB as t→ +∞.

Proof. With the notations in the proof of Theorem 5.10 and by appealing to similar
arguments one obtains for every t ∈ [0,+∞)

ḧ(t) + γ(t)ḣ(t) +
β

λ(t)
‖ẍ(t) + γ(t)ẋ(t)‖2 ≤ ‖ẋ(t)‖2

or, equivalently,

ḧ(t) + γ(t)ḣ(t) +
βγ(t)

λ(t)

d

dt

(
‖ẋ(t)‖2

)
+

(
βγ2(t)

λ(t)
− 1

)
||ẋ(t)||2 +

β

λ(t)
||ẍ(t)||2 ≤ 0.

Combining this inequality with

γ(t)

λ(t)

d

dt

(
‖ẋ(t)‖2

)
=

d

dt

(
γ(t)

λ(t)
‖ẋ(t)‖2

)
− γ̇(t)λ(t)− γ(t)λ̇(t)

λ2(t)
‖ẋ(t)‖2

and

γ(t)ḣ(t) =
d

dt
(γh)(t)− γ̇(t)h(t) ≥ d

dt
(γh)(t), (5. 75)

it yields for every t ∈ [0,+∞)

ḧ(t) +
d

dt
(γh)(t) + β

d

dt

(
γ(t)

λ(t)
‖ẋ(t)‖2

)
+

(
βγ2(t)

λ(t)
+ β
−γ̇(t)λ(t) + γ(t)λ̇(t)

λ2(t)
− 1

)
||ẋ(t)||2 +

β

λ(t)
||ẍ(t)||2

≤ 0.

Now, assumption (A2’) delivers for almost every t ∈ [0,+∞) the inequality

ḧ(t) +
d

dt
(γh)(t) + β

d

dt

(
γ(t)

λ(t)
‖ẋ(t)‖2

)
+ θ||ẋ(t)||2 +

β

λ(t)
||ẍ(t)||2 ≤ 0.
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This implies that the function t 7→ ḣ(t) + γ(t)h(t) + β γ(t)
λ(t)‖ẋ(t)‖2 is monotonically

decreasing and from here one obtains the conclusion following the lines of the proof
of Theorem 5.10, by taking also into account that ∃ limt→+∞ γ(t) ∈ (0,+∞). �

When T : H → H is a nonexpansive operator one obtains for the dynamical
system {

ẍ(t) + γ(t)ẋ(t) + λ(t)
(
x(t)− T (x(t))

)
= 0

x(0) = u0, ẋ(0) = v0
(5. 76)

and by making the assumption

(A3’) λ, γ : [0,+∞) → (0,+∞) are locally absolutely continuous and there exists
θ > 0 such that for almost every t ∈ [0,+∞) we have

γ̇(t) ≤ 0 ≤ λ̇(t) and
γ2(t)

λ(t)
≥ 2(1 + θ) (5. 77)

the following result which can been seen as a counterpart to Corollary 5.2.

Corollary 5.6 Let T : H → H be a nonexpansive operator such that FixT 6= ∅,
λ, γ : [0,+∞) → (0,+∞) be functions fulfilling (A3’) and u0, v0 ∈ H. Let x :
[0,+∞) → H be the unique strong global solution of (5. 76). Then the following
statements are true:

(i) the trajectory x is bounded and ẋ, ẍ, (Id−T )x ∈ L2([0,+∞);H);

(ii) limt→+∞ ẋ(t) = limt→+∞ ẍ(t) = limt→+∞(Id−T )(x(t)) = 0;

(iii) x(t) converges weakly to a point in FixT as t→ +∞.

When R : H → H is an α-averaged operator for α ∈ (0, 1) one obtains for the
dynamical system {

ẍ(t) + γ(t)ẋ(t) + λ(t)
(
x(t)−R(x(t))

)
= 0

x(0) = u0, ẋ(0) = v0,
(5. 78)

and by making the assumption

(A4’) λ, γ : [0,+∞) → (0,+∞) are locally absolutely continuous and there exists
θ > 0 such that for almost every t ∈ [0,+∞) we have

γ̇(t) ≤ 0 ≤ λ̇(t) and
γ2(t)

λ(t)
≥ 2α(1 + θ) (5. 79)

the following result which can been seen as a counterpart to Corollary 5.3.

Corollary 5.7 Let R : H → H be an α-averaged operator for α ∈ (0, 1) such that
FixR 6= ∅, λ, γ : [0,+∞) → (0,+∞) be functions fulfilling (A4’) and u0, v0 ∈ H.
Let x : [0,+∞) → H be the unique strong global solution of (5. 78). Then the
following statements are true:

(i) the trajectory x is bounded and ẋ, ẍ, (Id−R)x ∈ L2([0,+∞);H);

(ii) limt→+∞ ẋ(t) = limt→+∞ ẍ(t) = limt→+∞(Id−R)(x(t)) = 0;

(iii) x(t) converges weakly to a point in FixR as t→ +∞.
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We come now to the monotone inclusion problem

find 0 ∈ A(x) +B(x),

where A : H ⇒ H is a maximally monotone operator and B : H → H is a β-
cocoercive operator for β > 0 and assign to it the second order dynamical system{

ẍ(t) + γ(t)ẋ(t) + λ(t)
[
x(t)− JηA

(
x(t)− ηB(x(t))

)]
= 0

x(0) = u0, ẋ(0) = v0.
(5. 80)

and make the assumption

(A5’) λ, γ : [0,+∞) → (0,+∞) are locally absolutely continuous and there exists
θ > 0 such that for almost every t ∈ [0,+∞) we have

γ̇(t) ≤ 0 ≤ λ̇(t) and
γ2(t)

λ(t)
≥ 2(1 + θ)

δ
. (5. 81)

Theorem 5.14 Let A : H⇒ H be a maximally monotone operator and B : H → H
be β-cocoercive operator for β > 0 such that zer(A + B) 6= ∅. Let η ∈ (0, 2β) and
set δ := (4β − η)/(2β). Let λ, γ : [0,+∞) → (0,+∞) be functions fulfilling (A5’),
u0, v0 ∈ H and x : [0,+∞) → H be the unique strong global solution of (5. 80).
Then the following statements are true:

(i) the trajectory x is bounded and ẋ, ẍ,
(

Id−JηA ◦(Id−ηB)
)
x ∈ L2([0,+∞);H);

(ii) limt→+∞ ẋ(t) = limt→+∞ ẍ(t) = limt→+∞
(

Id−JηA ◦ (Id−ηB)
)
(x(t)) = 0;

(iii) x(t) converges weakly to a point in zer(A+B) as t→ +∞;

(iv) if x∗ ∈ zer(A+B), then B(x(·))−Bx∗ ∈ L2([0,+∞);H), limt→+∞B(x(t)) =
Bx∗ and B is constant on zer(A+B);

(v) if A or B is uniformly monotone, then x(t) converges strongly to the unique
point in zer(A+B) as t→ +∞.

Proof. The statements (i)-(iii) follow by using the same arguments as in the proof
of Theorem 5.11.

(iv) We use again the notations in the proof of Theorem 5.10. Let be an arbitrary
x∗ ∈ zer(A+B). From the definition of the resolvent we have for every t ∈ [0,+∞)

−B(x(t))− 1

ηλ(t)
ẍ(t)− γ(t)

ηλ(t)
ẋ(t) ∈ A

(
1

λ(t)
ẍ(t) +

γ(t)

λ(t)
ẋ(t) + x(t)

)
, (5. 82)

which combined with −Bx∗ ∈ Ax∗ and the monotonicity of A leads to

0 ≤
〈

1

λ(t)
ẍ(t) +

γ(t)

λ(t)
ẋ(t) + x(t)− x∗,−B(x(t)) +Bx∗ − 1

ηλ(t)
ẍ(t)− γ(t)

ηλ(t)
ẋ(t)

〉
.

(5. 83)
The cocoercivity of B yields for every t ∈ [0,+∞)

β‖B(x(t))−Bx∗‖2 ≤
〈

1

λ(t)
ẍ(t) +

γ(t)

λ(t)
ẋ(t),−B(x(t)) +Bx∗

〉
− 1

ηλ2(t)
‖ẍ(t) + γ(t)ẋ(t)‖2

+

〈
x(t)− x∗,− 1

ηλ(t)
ẍ(t)− γ(t)

ηλ(t)
ẋ(t)

〉
≤ 1

2β

∥∥∥∥ 1

λ(t)
ẍ(t) +

γ(t)

λ(t)
ẋ(t)

∥∥∥∥2

+
β

2
‖B(x(t))−Bx∗‖2

+

〈
x(t)− x∗,− 1

ηλ(t)
ẍ(t)− γ(t)

ηλ(t)
ẋ(t)

〉
.
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From〈
x(t)− x∗,− 1

ηλ(t)
ẍ(t)− γ(t)

ηλ(t)
ẋ(t)

〉
= − 1

ηλ(t)

(
ḧ(t) + γ(t)ḣ(t)− ‖ẋ(t)‖2

)
(5. 84)

we obtain for every t ∈ [0,+∞)

βλ(t)

2
‖B(x(t))−Bx∗‖2+

1

η

(
ḧ(t) + γ(t)ḣ(t)

)
≤ 1

2βλ(t)
‖ẍ(t) + γ(t)(ẋ(t))‖2+

1

η
‖ẋ(t)‖2.

The conclusion follows in analogy to the proof of (iv) in Theorem 5.11 by using also
(5. 75).

(v) Let x∗ be the unique element of zer(A+B). When A is uniformly monotone
with corresponding function φA : [0,+∞) → [0,+∞], which is increasing and van-
ishes only at 0, similarly to the proof of statement (v) in Theorem 5.11 the following
inequality can be derived for every t ∈ [0,+∞)

φA

(∥∥∥∥ 1

λ(t)
ẍ(t) +

γ(t)

λ(t)
ẋ(t) + x(t)− x∗

∥∥∥∥) ≤〈
1

λ(t)
ẍ(t) +

γ(t)

λ(t)
ẋ(t),−B(x(t)) +Bx∗

〉
+

〈
x(t)− x∗,− 1

ηλ(t)
ẍ(t)− γ(t)

ηλ(t)
ẋ(t)

〉
.

This yields limt→+∞ φA

(∥∥∥ 1
λ(t) ẍ(t) + γ(t)

λ(t) ẋ(t) + x(t)− x∗
∥∥∥) = 0 and from here the

conclusion is immediate.
The case when B is uniformly monotone is to be addressed in analogy to corre-

sponding part of the proof of Theorem 5.11 (v). �

Remark 5.17 In the light of the arguments provided in Remark 5.13, one can see
that the statements in Theorem 5.14 remain valid also for η = 2β.

When particularizing this setting to the solving of the optimization problem

min
x∈H

f(x) + g(x),

where f : H → R ∪ {+∞} is a proper, convex and lower semicontinuous function
and g : H → R is a convex and (Fréchet) differentiable function with 1/β-Lipschitz
continuous gradient for β > 0, via the second order dynamical system{

ẍ(t) + γ(t)ẋ(t) + λ(t)
[
x(t)− proxηf

(
x(t)− η∇g(x(t))

)]
= 0

x(0) = u0, ẋ(0) = v0,
(5. 85)

Corollary 5.14 gives rise to the following result.

Corollary 5.8 Let f : H → R ∪ {+∞} by a proper, convex and lower semicontin-
uous function and g : H → R be a convex and (Fréchet) differentiable function with
1/β-Lipschitz continuous gradient for β > 0 such that argminx∈H{f(x)+g(x)} 6= ∅.
Let η ∈ (0, 2β] and set δ := (4β − η)/(2β). Let λ, γ : [0,+∞) → (0,+∞) be func-
tions fulfilling (A5’), u0, v0 ∈ H and x : [0,+∞) → H be the unique strong global
solution of (5. 85). Then the following statements are true:

(i) x(·) is bounded and ẋ, ẍ,
(

Id−proxηf ◦(Id−η∇g)
)
x ∈ L2([0,+∞);H);

(ii) limt→+∞ ẋ(t) = limt→+∞ ẍ(t) = limt→+∞
(

Id− proxηf ◦(Id−η∇g)
)
(x(t)) =

0;

(iii) x(t) converges weakly to a minimizer of f + g as t→ +∞;
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(iv) if x∗ is a minimizer of f + g, then ∇g(x(·)) − ∇g(x∗) ∈ L2([0,+∞);H),
limt→+∞ ∇g(x(t)) = ∇g(x∗) and ∇g is constant on argminx∈H{f(x)+g(x)};

(v) if f or g is uniformly convex, then x(t) converges strongly to the unique min-
imizer of f + g as t→ +∞.

As it was also the case in the previous section, we can weaken the choice of the
step size in Corollary 5.8 through the following assumption

(A6’) λ, γ : [0,+∞) → (0,+∞) are locally absolutely continuous and there exists
θ > 0 such that for almost every t ∈ [0,+∞) we have

γ̇(t) ≤ 0 ≤ λ̇(t) and
γ2(t)

λ(t)
≥ ηθ +

η

β
+ 1. (5. 86)

Corollary 5.9 Let f : H → R ∪ {+∞} by a proper, convex and lower semicontin-
uous function and g : H → R be a convex and (Fréchet) differentiable function with
1/β-Lipschitz continuous gradient for β > 0 such that argminx∈H{f(x)+g(x)} 6= ∅.
Let be η > 0, λ, γ : [0,+∞)→ (0,+∞) be functions fulfilling (A6’), u0, v0 ∈ H and
x : [0,+∞)→ H be the unique strong global solution of (5. 85). Then the following
statements are true:

(i) x(·) is bounded and ẋ, ẍ,
(

Id−proxηf ◦(Id−η∇g)
)
x ∈ L2([0,+∞);H);

(ii) limt→+∞ ẋ(t) = limt→+∞ ẍ(t) = limt→+∞
(

Id− proxηf ◦(Id−η∇g)
)
(x(t)) =

0;

(iii) x(t) converges weakly to a minimizer of f + g as t→ +∞;

(iv) if x∗ is a minimizer of f + g, then ∇g(x(·)) − ∇g(x∗) ∈ L2([0,+∞);H),
limt→+∞ ∇g(x(t)) = ∇g(x∗) and ∇g is constant on argminx∈H{f(x)+g(x)};

(v) if f or g is uniformly convex, then x(t) converges strongly to the unique min-
imizer of f + g as t→ +∞.

Proof. The proof follows in the lines of the one given for Corollary 5.5 and relies
on the following key inequality, which holds for every t ∈ [0,+∞),

βλ(t)‖∇g(x(t))−∇g(x∗)‖2 +
d2

dt2

(
1

η
h+ q

)
+
d

dt

(
γ(t)

(
1

η
h+ q

))
+

(
γ2(t)

ηλ(t)
+
−γ̇(t)λ(t) + γ(t)λ̇(t)

ηλ2(t)
− 1

β
− 1

η

)
‖ẋ(t)‖2

+
1

η

d

dt

(
γ(t)

λ(t)
‖ẋ(t)‖2

)
+

1

ηλ(t)
‖ẍ(t)‖2

≤ 0,

where x∗ denotes a minimizer of f + g. This relation gives rise via (A6’) to

βλ(t)‖∇g(x(t))−∇g(x∗)‖2 +
d

dt2

(
1

η
h+ q

)
+
d

dt

(
γ(t)

(
1

η
h+ q

))
+

1

η

d

dt

(
γ(t)

λ(t)
‖ẋ(t)‖2

)
+ θ‖ẋ(t)‖2 +

1

ηλ(t)
‖ẍ(t)‖2

≤ 0,

which can be seen as the counterpart to relation (5. 69). �
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Finally, we address the convergence rate of a convex and (Fréchet) differentiable
function with Lipschitz continuous gradient g : H → R along the ergodic trajectory
generated by {

ẍ(t) + γ(t)ẋ(t) + λ(t)∇g(x(t)) = 0
x(0) = u0, ẋ(0) = v0

(5. 87)

to its global minimum value, when making the following assumption

(A7’) λ : [0,+∞) → (0,+∞) is locally absolutely continuous, γ : [0,+∞) →
(0,+∞) is twice differentiable and there exists ζ > 0 such that for almost
every t ∈ [0,+∞) we have

0 < ζ ≤ γ(t)λ(t)− λ̇(t), γ̇(t) ≤ 0 and 2γ̇(t)γ(t)− γ̈(t) ≤ 0. (5. 88)

Theorem 5.15 Let g : H → R be a convex and (Fréchet) differentiable function
with 1/β-Lipschitz continuous gradient for β > 0 such that argminx∈H g(x) 6= ∅. Let
λ, γ : [0,+∞)→ (0,+∞) be functions fulfilling (A7’) u0, v0 ∈ H and x : [0,+∞)→
H be the unique strong global solution of (5. 87).

Then for every minimizer x∗ of g and every T > 0 it holds

0 ≤ g

(
1

T

∫ T

0

x(t)dt

)
− g(x∗)

≤ 1

2ζT

[
‖v0 + γ(0)(u0 − x∗)‖2 +

(
λ(0)

β
− γ̇(0)

)
‖u0 − x∗‖2

]
.

Proof. Let x∗ ∈ argminx∈H g(x) and T > 0. By using (5. 87), the convexity of g
and (A7’) we get for almost every t ∈ [0,+∞)

d

dt

(
1

2
‖ẋ(t) + γ(t)(x(t)− x∗)‖2 + λ(t)g(x(t))− γ̇(t)

2
‖x(t)− x∗‖2

)
= 〈ẍ(t) + γ̇(t)(x(t)− x∗) + γ(t)ẋ(t), ẋ(t) + γ(t)(x(t)− x∗)〉

− γ̈(t)

2
‖x(t)− x∗‖2 − γ̇(t) 〈ẋ(t), x(t)− x∗〉+ λ̇(t)g(x(t)) + λ(t) 〈ẋ(t),∇g(x(t))〉

= −γ(t)λ(t) 〈∇g(x(t)), x(t)− x∗〉+ λ̇(t)g(x(t)) +

(
γ̇(t)γ(t)− γ̈(t)

2

)
‖x(t)− x∗‖2

≤ −γ(t)λ(t) 〈∇g(x(t)), x(t)− x∗〉+ λ̇(t)g(x(t))

≤ (λ̇(t)− γ(t)λ(t))(g(x(t))− g(x∗)) + λ̇(t)g(x∗)

≤ −ζ(g(x(t))− g(x∗)) + λ̇(t)g(x∗).

We obtain after integration

1

2
‖ẋ(T ) + γ(T )(x(T )− x∗)‖2 + λ(T )g(x(T ))− γ̇(T )

2
‖x(T )− x∗‖2

− 1

2
‖ẋ(0) + γ(0)(x(0)− x∗)‖2 − λ(0)g(x(0)) +

γ̇(0)

2
‖x(0)− x∗‖2

+ ζ

∫ T

0

(g(x(t))− g(x∗))dt

≤ (λ(T )− λ(0))g(x∗).

The conclusion follows from here as in the proof of Theorem 5.12. �

Remark 5.18 A similar comment as in Remark 5.16 can be made also in this
context. For a, a′, ρ, ρ′ ≥ 0 and b, b′ > 0 fulfilling the inequalities b′

2
b > 1/β and

0 ≤ ρ ≤ b′ one can prove that the functions

λ(t) =
1

ae−ρt + b
and γ(t) = a′e−ρ

′t + b′,



156 CHAPTER 5. Dynamical systems

verify assumption (A2’) in Theorem 5.13 (with 0 < θ ≤ b′2bβ − 1) and assump-
tion (A7’) in Theorem 5.15 (with 0 < ζ ≤ bb′/(a + b)2). Hence, for this choice of
the relaxation and damping function, one has convergence of the objective func-
tion g along the ergodic trajectory to its global minimum value as well as (weak)
convergence of the trajectory to a minimizer of g.

5.2.4 Converges rates for strongly monotone inclusions

The starting point of the investigations we go through in this subsection is again the
monotone inclusion problem (5. 22), however, this time approached via the second
order dynamical system (5. 80).

The following result will be useful when deriving the convergence rates.

Lemma 5.4 Let h, γ, b1, b2, b3, u : [0,+∞)→ R be given functions such that h, γ, b2, u
are locally absolutely continuous and ḣ is locally absolutely continuous, too. Assume
that

h(t), b2(t), u(t) ≥ 0 ∀t ∈ [0,+∞)

and that there exists γ > 1 such that

γ(t) ≥ γ > 1 ∀t ∈ [0,+∞).

Further, assume that for almost every t ∈ [0,+∞) one has

γ(t) + γ̇(t) ≤ b1(t) + 1, (5. 89)

b2(t) + ḃ2(t) ≤ b3(t) (5. 90)

and
ḧ(t) + γ(t)ḣ(t) + b1(t)h(t) + b2(t)u̇(t) + b3(t)u(t) ≤ 0. (5. 91)

Then there exists M > 0 such that the following statements hold:

(i) if 1 < γ < 2, then for almost every t ∈ [0,+∞)

0 ≤ h(t) ≤
(
h(0) +

M

2− γ

)
exp(−(γ − 1)t);

(ii) if 2 < γ, then for almost every t ∈ [0,+∞)

0 ≤ h(t) ≤ h(0) exp(−(γ − 1)t) +
M

γ − 2
exp(−t)

≤
(
h(0) +

M

γ − 2

)
exp(−t);

(iii) if γ = 2, then for almost every t ∈ [0,+∞)

0 ≤ h(t) ≤ (h(0) +Mt) exp(−t).

Proof. We multiply the inequality (5. 91) with exp(t) and use the identities

exp(t)ḧ(t) =
d

dt

(
exp(t)ḣ(t)

)
− exp(t)ḣ(t)

exp(t)u̇(t) =
d

dt
(exp(t)u(t))− exp(t)u(t)

exp(t)ḣ(t) =
d

dt

(
exp(t)h(t)

)
− exp(t)h(t)
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in order to derive for almost every t ∈ [0,+∞) the inequality

d

dt

(
exp(t)ḣ(t)

)
+ (γ(t)− 1)

d

dt

(
exp(t)h(t)

)
+ exp(t)h(t)(b1(t) + 1− γ(t))

+ b2(t)
d

dt

(
exp(t)u(t)

)
+ (b3(t)− b2(t)) exp(t)u(t)

≤ 0.

By using also

(γ(t)− 1)
d

dt

(
exp(t)h(t)

)
=

d

dt

(
(γ(t)− 1) exp(t)h(t)

)
− γ̇(t) exp(t)h(t)

b2(t)
d

dt

(
exp(t)u(t)

)
=

d

dt

(
b2(t) exp(t)u(t)

)
− ḃ2(t) exp(t)u(t)

we obtain for almost every t ∈ [0,+∞)

d

dt

(
exp(t)ḣ(t)

)
+
d

dt

(
(γ(t)− 1) exp(t)h(t)

)
+
d

dt

(
b2(t) exp(t)u(t)

)
+(

b1(t) + 1− γ(t)− γ̇(t)
)

exp(t)h(t) +
(
b3(t)− b2(t)− ḃ2(t)

)
exp(t)u(t)

≤ 0.

The hypotheses regarding the parameters involved imply that the function

t→ exp(t)ḣ(t) + (γ(t)− 1) exp(t)h(t) + b2(t) exp(t)u(t)

is monotonically decreasing, hence there exists M > 0 such that

exp(t)ḣ(t) + (γ(t)− 1) exp(t)h(t) + b2(t) exp(t)u(t) ≤M.

Since u(t), b2(t) ≥ 0 we get

ḣ(t) + (γ(t)− 1)h(t) ≤M exp(−t),

hence
ḣ(t) + (γ − 1)h(t) ≤M exp(−t)

for every t ∈ [0,+∞). This implies that

d

dt

(
exp((γ − 1)t)h(t)

)
≤M exp((γ − 2)t),

for every t ∈ [0,+∞), from which the conclusion follows easily by integration. �

We come now to the first main result of this section.

Theorem 5.16 Let A : H ⇒ H be a maximally monotone operator, B : H → H
a monotone and 1

β -Lipschitz continuous operator for β > 0 such that A + B is

ρ-strongly monotone for ρ > 0 and x∗ be the unique point in zer(A + B). Chose

α, δ ∈ (0, 1) and η > 0 such that δβρ < 1 and 1
η =

(
1
β + 1

4ρβ2α

)
1
δ − ρ > 0.

Let λ : [0,+∞) → [0,+∞) be a locally absolutely continuous function fulfilling
for every t ∈ [0,+∞)

θ(t) := λ(t)
δ

1− δ

ρ+
(

1
β + 1

4ρβ2α

)
1
δ

1
β + 1

4ρβ2α

≤ λ(t)
2ρ(1− α)

ρ+
(

1
β + 1

4ρβ2α

)
1
δ

+ λ2(t)

 2ρ(1− α)

ρ+
(

1
β + 1

4ρβ2α

)
1
δ

2
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and such that there exists a real number λ with the property that

0 < λ ≤ inf
t≥0

λ(t)

and

2 < θ := λ
δ

1− δ

ρ+
(

1
β + 1

4ρβ2α

)
1
δ

1
β + 1

4ρβ2α

.

Further, let γ : [0,+∞) → [0,+∞) be a locally absolutely continuous function
fulfilling

1 +
√

1 + 4θ(t)

2
≤ γ(t) ≤ 1+λ(t)

2ρ(1− α)

ρ+
(

1
β + 1

4ρβ2α

)
1
δ

for every t ∈ [0,+∞) (5. 92)

and

γ̇(t) ≤ 0 and
d

dt

(
γ(t)

λ(t)

)
≤ 0 for almost every t ∈ [0,+∞). (5. 93)

Let u0, v0 ∈ H and x : [0,+∞) → H be the unique strong global solution of the
dynamical system (5. 80).

Then γ(t) ≥ γ := 1+
√

1+4θ
2 > 2 for every t ∈ [0,+∞) and there exists M > 0

such that for every t ∈ [0,+∞)

0 ≤ ‖x(t)− x∗‖2 ≤ ‖u0 − x∗‖2 exp(−(γ − 1)t) +
M

γ − 2
exp(−t)

≤
(
‖u0 − x∗‖2 +

M

γ − 2

)
exp(−t).

Proof. From the definition of the resolvent we have for almost every t ∈ [0,+∞)

B

(
1

λ(t)
ẍ(t) +

γ(t)

λ(t)
ẋ(t) + x(t)

)
−B(x(t))− 1

ηλ(t)
ẍ(t)− γ(t)

ηλ(t)
ẋ(t)

∈ (A+B)

(
1

λ(t)
ẍ(t) +

γ(t)

λ(t)
ẋ(t) + x(t)

)
. (5. 94)

We combine this with 0 ∈ (A+B)x∗, the strong monotonicity of A+B, the Lipschitz
continuity of B and, by also using the Cauchy-Schwartz inequality, we get for almost
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every t ∈ [0,+∞)

ρ

λ2(t)
‖ẍ(t) + γ(t)ẋ(t)‖2 +

2ρ

λ(t)
〈x(t)− x∗, ẍ(t) + γ(t)ẋ(t)〉+ ρ‖x(t)− x∗‖2

= ρ

∥∥∥∥ 1

λ(t)
ẍ(t) +

γ(t)

λ(t)
ẋ(t) + x(t)− x∗

∥∥∥∥2

≤
〈

1

λ(t)
ẍ(t) +

γ(t)

λ(t)
ẋ(t) + x(t)− x∗, B

(
1

λ(t)
ẍ(t) +

γ(t)

λ(t)
ẋ(t) + x(t)

)
−B(x(t))

〉
−
〈

1

λ(t)
ẍ(t) +

γ(t)

λ(t)
ẋ(t) + x(t)− x∗, 1

ηλ(t)
ẍ(t) +

γ(t)

ηλ(t)
ẋ(t)

〉
=

1

λ(t)

〈
ẍ(t) + γ(t)ẋ(t), B

(
1

λ(t)
ẍ(t) +

γ(t)

λ(t)
ẋ(t) + x(t)

)
−B(x(t))

〉
+

〈
x(t)− x∗, B

(
1

λ(t)
ẍ(t) +

γ(t)

λ(t)
ẋ(t) + x(t)

)
−B(x(t))

〉
− 1

ηλ2(t)
‖ẍ(t) + γ(t)ẋ(t)‖2 − 1

ηλ(t)
〈x(t)− x∗, ẍ(t) + γ(t)ẋ(t)〉

≤ 1

βλ2(t)
‖ẍ(t) + γ(t)ẋ(t)‖2 − 1

ηλ2(t)
‖ẍ(t) + γ(t)ẋ(t)‖2

+
1

4ρβ2αλ2(t)
‖ẍ(t) + γ(t)ẋ(t)‖2 + ρα‖x(t)− x∗‖2

− 1

ηλ(t)
〈x(t)− x∗, ẍ(t) + γ(t)ẋ(t)〉 .

Using again the notation h(t) = 1
2‖x(t)−x∗‖2, we have for almost every t ∈ [0,+∞)

‖ẍ(t) + γ(t)ẋ(t)‖2 = ‖ẍ(t)‖2 + γ2(t)‖ẋ(t)‖2 + γ(t)
d

dt
(‖ẋ(t)‖2) (5. 95)

and
〈x(t)− x∗, ẍ(t) + γ(t)ẋ(t)〉 = ḧ(t) + γ(t)ḣ(t)− ‖ẋ(t)‖2.

Therefore, we obtain for almost every t ∈ [0,+∞)(
ρ

λ2(t)
+

1

ηλ2(t)
− 1

βλ2(t)
− 1

4ρβ2αλ2(t)

)
‖ẍ(t)‖2

+

[
γ2(t)

(
ρ

λ2(t)
+

1

ηλ2(t)
− 1

βλ2(t)
− 1

4ρβ2αλ2(t)

)
− 2ρ

λ(t)
− 1

ηλ(t)

]
‖ẋ(t)‖2

+ γ(t)

(
ρ

λ2(t)
+

1

ηλ2(t)
− 1

βλ2(t)
− 1

4ρβ2αλ2(t)

)
d

dt

(
‖ẋ(t)‖2

)
+

(
2ρ

λ(t)
+

1

ηλ(t)

)
ḧ(t) + γ(t)

(
2ρ

λ(t)
+

1

ηλ(t)

)
ḣ(t) + 2ρ(1− α)h(t)

≤ 0.

The hypotheses imply that

ρ

λ2(t)
+

1

ηλ2(t)
− 1

βλ2(t)
− 1

4ρβ2αλ2(t)
=

1

λ2(t)

(
ρ+

1

η
− 1

β
− 1

4ρβ2α

)
> 0,

hence the first term in the left hand side of the above inequality can be neglected
and we obtain for almost every t ∈ [0,+∞) that

ḧ(t) + γ(t)ḣ(t) + b1(t)h(t) + b2(t)
d

dt
(‖ẋ(t)‖2) + b3(t)‖ẋ(t)‖2 ≤ 0, (5. 96)
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where

b1(t) := λ(t)
2ρ(1− α)

2ρ+ 1
η

> 0,

b2(t) := γ(t)

ρ
λ2(t) + 1

ηλ2(t) −
1

βλ2(t) −
1

4ρβ2αλ2(t)

2ρ
λ(t) + 1

ηλ(t)

=
γ(t)

λ(t)

ρ+ 1
η −

1
β −

1
4ρβ2α

2ρ+ 1
η

> 0

and

b3(t) :=
γ2(t)

(
ρ

λ2(t) + 1
ηλ2(t) −

1
βλ2(t) −

1
4ρβ2αλ2(t)

)
− 2ρ

λ(t) −
1

ηλ(t)

2ρ
λ(t) + 1

ηλ(t)

.

This shows that (5. 91) in Lemma 5.4 for u := ‖ẋ(·)‖2 is fulfilled. In order to apply
Lemma 5.4, we have only to prove that (5. 89) and (5. 90) are satisfied, as every
other assumption in this statement is obviously guaranteed.

A simple calculation shows that

b3(t) ≥ b2(t)⇐⇒ γ2(t)− γ(t) ≥
2ρ
λ(t) + 1

ηλ(t)
ρ

λ2(t) + 1
ηλ2(t) −

1
βλ2(t) −

1
4ρβ2αλ2(t)

= θ(t),

(5. 97)
which is true according to (5. 92), thus b3(t) ≥ b2(t) for every t ∈ [0,+∞). On the
other hand (see (5. 93)),

ḃ2(t) ≤ 0

for almost every t ∈ [0,+∞), from which (5. 90) follows.
Further, again by using (5. 92), observe that

1 + b1(t) = 1 + λ(t)
2ρ(1− α)

ρ+
(

1
β + 1

4ρβ2α

)
1
δ

≥ γ(t)

for every t ∈ [0,+∞), which, combined with

γ̇(t) ≤ 0

for almost every t ∈ [0,+∞), shows that (5. 89) is also fulfilled.
The conclusion follows from Lemma 5.4(ii), by noticing that γ > 2, as θ > 2. �

Remark 5.19 One can notice that when γ̇(t) ≤ 0 for almost every t ∈ [0,+∞),
the second assumption in (5. 93) is fulfilled provided that λ̇(t) ≥ 0 for almost every
t ∈ [0,+∞).

Further, we would like to point out that one can obviously chose λ(t) = λ and
γ(t) = γ for every t ∈ [0,+∞), where

2 < θ := λ
δ

1− δ

ρ+
(

1
β + 1

4ρβ2α

)
1
δ

1
β + 1

4ρβ2α

≤ λ
2ρ(1− α)

ρ+
(

1
β + 1

4ρβ2α

)
1
δ

+ λ2

 2ρ(1− α)

ρ+
(

1
β + 1

4ρβ2α

)
1
δ

2

and
1 +
√

1 + 4θ

2
≤ γ ≤ 1 + λ

2ρ(1− α)

ρ+
(

1
β + 1

4ρβ2α

)
1
δ

.
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When considering the convex optimization problem (5. 26), the second order
dynamical system (5. 80) written for A = ∂f and B = ∇g becomes{

ẍ(t) + γ(t)ẋ(t) + λ(t)
[
x(t)− proxηf

(
x(t)− η∇g(x(t))

)]
= 0

x(0) = u0, ẋ(0) = v0.
(5. 98)

Theorem 5.16 gives rise to the following result.

Theorem 5.17 Let f : H → R ∪ {+∞} be a proper, convex and lower semicon-
tinuous function, g : H → R be a convex and (Fréchet) differentiable function with
1
β -Lipschitz continuous gradient for β > 0 such that f + g is ρ-strongly convex for

ρ > 0 and x∗ be the unique minimizer of f + g over H. Chose α, δ ∈ (0, 1) and

η > 0 such that δβρ < 1 and 1
η =

(
1
β + 1

4ρβ2α

)
1
δ − ρ > 0.

Let λ : [0,+∞) → [0,+∞) be a locally absolutely continuous function fulfilling
for every t ∈ [0,+∞)

θ(t) := λ(t)
δ

1− δ

ρ+
(

1
β + 1

4ρβ2α

)
1
δ

1
β + 1

4ρβ2α

≤ λ(t)
2ρ(1− α)

ρ+
(

1
β + 1

4ρβ2α

)
1
δ

+ λ2(t)

 2ρ(1− α)

ρ+
(

1
β + 1

4ρβ2α

)
1
δ

2

and such that there exists a real number λ with the property that

0 < λ ≤ inf
t≥0

λ(t)

and

2 < θ := λ
δ

1− δ

ρ+
(

1
β + 1

4ρβ2α

)
1
δ

1
β + 1

4ρβ2α

.

Further, let γ : [0,+∞) → [0,+∞) be a locally absolutely continuous function
fulfilling (5. 92) and (5. 93), u0, v0 ∈ H and x : [0,+∞)→ H be the unique strong
global solution of the dynamical system (5. 98).

Then γ(t) ≥ γ := 1+
√

1+4θ
2 > 2 for every t ∈ [0,+∞) and there exists M > 0

such that for every t ∈ [0,+∞)

0 ≤ ‖x(t)− x∗‖2 ≤ ‖u0 − x∗‖2 exp(−(γ − 1)t) +
M

γ − 2
exp(−t)

≤
(
‖u0 − x∗‖2 +

M

γ − 2

)
exp(−t).

Finally, we approach the convex minimization problem (5. 28) via the second
order dynamical system{

ẍ(t) + γ(t)ẋ(t) + λ(t)∇g(x(t)) = 0
x(0) = u0, ẋ(0) = v0

(5. 99)

and provide an exponential rate of convergence of g to its minimum value along
the generated trajectories. The following result can be seen as the continuous
counterpart of [89, Theorem 4], where recently a linear rate of convergence for the
values of g on a sequence iteratively generated by an inertial-type algorithm has
been obtained.
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Theorem 5.18 Let g : H → R be a ρ-strongly convex and (Fréchet) differentiable
function with 1

β -Lipschitz continuous gradient for ρ > 0 and β > 0 and x∗ be the
unique minimizer of g over H.

Let α : [0,+∞) → R be a Lebesgue measurable function such that there exists
α > 1 with

inf
t≥0

α(t) ≥ max

{
α,

2

β2ρ2
− 1

}
(5. 100)

and λ : [0,+∞) → [0,+∞) be a locally absolutely continuous function fulfilling for
every t ∈ [0,+∞)

α(t)

βρ2
≤ λ(t) ≤ β

2

(
α(t) + α2(t)

)
. (5. 101)

Further, let γ : [0,+∞) → [0,+∞) be a locally absolutely continuous function ful-
filling

1 +
√

1 + 8λ(t)
β

2
≤ γ(t) ≤ 1 + α(t) for every t ∈ [0,+∞) (5. 102)

and (5. 93).
Let u0, v0 ∈ H and x : [0,+∞) → H be the unique strong global solution of the

dynamical system (5. 99).

Then γ(t) ≥ γ :=
1+

√
1+8 α

β2ρ2

2 > 2 and there exists M > 0 such that for every
t ∈ [0,+∞)

0 ≤ ρ

2
‖x(t)− x∗‖2 ≤ g(x(t))− g(x∗)

≤ (g(u0)− g(x∗)) exp(−(γ − 1)t) +
M

γ − 2
exp(−t)

≤
(
g(u0)− g(x∗) +

M

γ − 2

)
exp(−t)

≤
(

1

2β
‖u0 − x∗‖2 +

M

γ − 2

)
exp(−t).

Proof. One has for almost every t ∈ [0,+∞)

d

dt
g(x(t)) = 〈ẋ(t),∇g(x(t))〉

and (see Remark 5.1(b))

d2

dt2
g(x(t)) = 〈ẍ(t),∇g(x(t))〉+

〈
ẋ(t),

d

dt
∇g(x(t))

〉
≤ 〈ẍ(t),∇g(x(t))〉+

1

β
‖ẋ(t)‖2.

Further, by using (5. 30), (5. 31) and the first equation in (5. 99), we derive for
almost every t ∈ [0,+∞)

d2

dt2
(
g(x(t))− g(x∗)

)
+ γ(t)

d

dt

(
g(x(t))− g(x∗)

)
+ α(t)

(
g(x(t))− g(x∗)

)
≤ −λ(t)‖∇g(x(t))‖2 +

α(t)

2βρ2
‖∇g(x(t))‖2 +

1

β
‖ẋ(t)‖2

= − 1

2λ(t)
‖ẍ(t) + γ(t)ẋ(t)‖2 − λ(t)

2
‖∇g(x(t))‖2

+
α(t)

2βρ2
‖∇g(x(t))‖2 +

1

β
‖ẋ(t)‖2.
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Taking into account (5. 95) we obtain for almost every t ∈ [0,+∞)

d2

dt2
(
g(x(t))− g(x∗)

)
+ γ(t)

d

dt

(
g(x(t))− g(x∗)

)
+ α(t)

(
g(x(t))− g(x∗)

)
+

γ(t)

2λ(t)

d

dt
(‖ẋ(t)‖2) +

(
γ2(t)

2λ(t)
− 1

β

)
‖ẋ(t)‖2

+
1

2λ(t)
‖ẍ(t)‖2 +

(
λ(t)

2
− α(t)

2βρ2

)
‖∇g(x(t))‖2

≤ 0.

According to the choice of the parameters involved, we have

λ(t)

2
− α(t)

2βρ2
≥ 0,

thus, for almost every t ∈ [0,+∞),

d2

dt2
(
g(x(t))− g(x∗)

)
+ γ(t)

d

dt

(
g(x(t))− g(x∗)

)
+ α(t)

(
g(x(t))− g(x∗)

)
+

γ(t)

2λ(t)

d

dt
(‖ẋ(t)‖2) +

(
γ2(t)

2λ(t)
− 1

β

)
‖ẋ(t)‖2

≤ 0.

This shows that (5. 91) in Lemma 5.4 for u := ‖ẋ(·)‖2,

b1(t) := α(t),

b2(t) :=
γ(t)

2λ(t)

and

b3(t) :=
γ2(t)

2λ(t)
− 1

β

is fulfilled. By combining (5. 102) and the first condition in (5. 93) one obtains
(5. 89), while, by combining (5. 102) and the second condition in (5. 93) one obtains
(5. 90).

Furthermore, by taking into account the Lipschitz property of ∇g and the strong
convexity of g, it yields

ρβ ≤ 1.

From (5. 101), (5. 100) and α > 1 we obtain

λ(t)

β
≥ α 1

β2ρ2
> 1 for every t ∈ [0,+∞),

which combined with (5. 102) leads to γ > 2.
The conclusion follows from Lemma 5.4(ii), the strong convexity of g and (5. 30).

�

Remark 5.20 In Theorem 5.18 one can obviously chose α(t) = α, where α =
2

β2ρ2 − 1, if βρ < 1, or α = 1 + ε, with ε > 0, otherwise, λ(t) = λ and γ(t) = γ for

every t ∈ [0,+∞), where
α

βρ2
≤ λ ≤ β

2

(
α+ α2

)
and

1 +
√

1 + 8λβ

2
≤ γ ≤ 1 + α.
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[23] J.B. Baillon, H. Brézis, Une remarque sur le comportement asymptotique des
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[47] R.I. Boţ, E.R. Csetnek, An inertial Tseng’s type proximal algorithm for nons-
mooth and nonconvex optimization problems, Journal of Optimization Theory
and Applications, DOI 10.1007/s10957-015-0730-z
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[58] R.I. Boţ, C. Hendrich, Convergence analysis for a primal-dual monotone +
skew splitting algorithm with applications to total variation minimization,
Journal of Mathematical Imaging and Vision 49(3), 551–568, 2014
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Linköpings Universitet, Report no.: LiTH-ISY-R-2992, 2011

[97] P.L. Lions, B. Mercier, Splitting algorithms for the sum of two nonlinear op-
erators, SIAM Journal on Numerical Analysis 16(6), 964–979, 1979
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