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Preface

Several results concerning the solving of monotone inclusion problems by split-
ting methods obtained by the author in the last years are presented in this the-
sis. For convex optimization problems, the optimality conditions characterizing the
set of solutions can be written in many cases in the form of monotone inclusion
problems, justifying the study of problems where the sum of maximally monotone
operators is involved. The present thesis aims to outline the most important contri-
butions of the author to theoretical results and some of their algorithmic realizations
in convex (nondifferentiable) optimization and monotone operator theory.

The first part of the thesis addresses the rate of convergence of a primal-
dual splitting method for solving highly structured monotone inclusion problems.
Primal-dual algorithms of proximal-type are numerical schemes that solve efficiently
primal-dual pairs of monotone inclusions and convex optimization problems consist-
ing of sums, linear compositions, parallel sums, and infimal convolutions by making
use of the resolvents of the monotone operators involved. They are fully decompos-
able in the sense that each operator is evaluated in the algorithm separately.

Proximal-point type algorithms with inertial and memory effects are also ad-
dressed. The incorporation of inertial terms in splitting algorithms is motivated by
the discretization of a differential system of second-order in time, called heavy-ball
method. We focus our attention on the inertial versions of the forward-backward-
forward and Douglas-Rachford splitting methods. Furthermore, we investigate an
inertial proximal-type splitting method for nonconvex optimization problems.

We consider penalty-type splitting algorithms for variational inequalities written
as monotone inclusion problems. We investigate a forward-backward and a Tseng’s
type numerical scheme, the latter allowing us to formulate penalty-type splitting
algorithms for even more complicated monotone inclusion problems involving fi-
nite sums and compositions with linear operators. In particular, we are able to
solve convex optimization problems with intricate objective functions over the set
of minima of a convex and differentiable function.

In the last part of the thesis we approach the solving of monotone inclusion
problems via first and second order dynamical systems of implicit-type. These are
ordinary differential equations formulated by making use of the resolvents of the
monotone operators involved. The existence of the trajectories is guaranteed in the
framework of the Cauchy-Lipschitz-Picard Theorem, while the (weak) asymptoti-
cal convergence of the orbits to a solution is based on Lyapunov analysis. In the
asymptotic analysis performed we report also several results concerning the rate of
convergence of the trajectories and, in some cases, of the objective functions along
the orbits, when considering convex optimization problems.
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Chapter 1

Introduction

The aim of this work is to present a number of contributions in the context of solv-
ing monotone inclusion problems in Hilbert spaces by means of algorithmic schemes
of proximal-splitting-type, a setting which allows the numerical treatment of highly
structured nondifferentiable convex optimization problems with intricate objective
function. Due to its numerous applications in signal and image processing, port-
folio optimization, cluster analysis, location theory, average consensus on colored
networks, image classification via support vector machines (and this enumeration
of fields can be continued), this topic is in the last couple of years of huge interest
for the applied mathematics community.

Finding the set of zeros of monotone operators is motivated by the fact that
optimality conditions for convex optimization problems which fulfill a regularity
condition can be expressed as monotone inclusion problems. Furthermore, the in-
vestigations performed in this more general setting of (maximally) monotone op-
erators bring new insights when considering the problem of solving complicated
nondifferentiable convex optimization problems involving finite sums, compositions
with linear operators or infimal convolutions. Moreover, due to its applications in
the theory of nonlinear partial differential equations, variational inequalities and
optimization theory, the study of monotone inclusions continuous to attract many
mathematicians.

Let us briefly recall the fundamental proximal-splitting algorithms from the
literature in their simpler form, namely the proximal-point algorithm, the forward-
backward splitting, the forward-backward-forward scheme and the Douglas-Rachford
splitting, respectively. One of the first algorithms of this type has been proposed
and analysed by Rockafellar [122] in connection with the problem

find € H such that 0 € Az, (1. 1)

where H is a real Hilbert space and A : H = H is a maximally monotone operator.
The so-called proximal-point algorithm generates iteratively a sequence as follows:
chose g € H and for n > 0 set

Tog1 = Jpa(zy), (1. 2)

where n > 0 and J4 : H — H, defined by J4 = (Idy +A)~!, is the resolvent of
A. The properties of the latter rely on a seminal result due to Minty in Hilbert
spaces, saying that the sum of the identity and a maximally monotone operator
is surjective. Let us underline that, when considering numerical schemes of this
type, the usual terminology is that we perform a backward step, meaning that the
set-valued operator is evaluated via its resolvent. The asymptotic analysis of the
above algorithm reveals that the sequence generated by (1. 2) weakly converges to
a solution of (1. 1), provided the set of solutions of the latter is nonempty.

7



8 CHAPTER 1. INTRODUCTION

Assume now that one is interested in solving the problem
find « € H such that 0 € Az + Buz, (1. 3)

where A, B : H = H are maximally monotone operators. Since in general there
exists no closed formula for the resolvent of the sum of two operators in terms of
their resolvents, the above algorithm (1. 2) is from implementation point of view
not suitable for solving (1. 3). The so-called splitting algorithms overcome this
drawback, where the word “splitting” is used in order to stress out that in the
iterative schemes the operators involved are evaluated separately.

For the beginning assume that B : H — H is a (single-valued) S-cocoercive
operator, for 8 > 0. The forward-backward algorithm has the following form (see
for example [26]): chose zg € H and for n > 0 set

Tn4+1 = JnA(xn - nan)a (1 4)

where n € (0,20). In this case the sequence generated by (1. 4) converges weakly
to a solution of (1. 3), as soon as the set of solutions of the latter is nonempty. The
terminology forward-backward is justified by the fact that the set-valued mapping
is evaluated through a backward step and the single-valued one via a forward step.

Let us suppose now that the cocoercivity of B is relaxed to monotonicity and
Lipschitz-continuity. Under these premises, Tseng’s numerical scheme [128,129],
also called forward-backward-forward algorithm, solves the problem (1. 3) according
to (see also [26,62]): chose xg € H and for n > 0 set

Pn = J/\nA(-Tn - )\ann) (]. 5)

where for all n > 0, A\, € [e,(1 —¢)/f] with e € (0,1/(8 + 1)), S being the Lips-
chitz parameter of B. If we assume that the set of solutions to (1. 3) is nonempty,
both sequences generated by (1. 5)-(1. 6) converge to a solution of the monotone
inclusion problem. Despite the fact that the forward-backward-forward algorithm
requires an additional sequence to be computed, it turned out that this numeri-
cal scheme opens the gate towards the development of the so-called primal-dual
algorithms that are able to solve highly structured monotone inclusion problems
(see [62]).

Finally, in case in (1. 3) both of the operators A and B are set-valued, the
Douglas-Rachford algorithm (see [26,83,97]) solves (1. 3) by the numerical scheme:
chose zg € H and for n > 0 set

Yn = JnB(In)a (1~ 7
Zn = nA(Qyn - xn)a (1' 8)
Tp4+1 = Tn + 2n — Yn, (1 9

where n > 0 is arbitrary chosen. If the set of solutions to (1. 3) is nonempty,
then the sequences (yn)nen and (z,)nen converge weakly to the same solution of
(1. 3). We refer also to [84] for further investigations on the Douglas-Rachford
algorithm, where it has been pointed out that this numerical scheme can be viewed
as a proximal-point algorithm (1. 2) for a particular maximal monotone operator.

In the following we will present a short historical overview of those further de-
velopments of the proximal methods which are relevant to this thesis, namely, of the
primal-dual proximal splitting methods, the inertial-type algorithms, the penalty-
type numerical schemes and the dynamical systems of implicit-type associated to
monotone inclusion problems.



We come now to more involved monotone inclusion problems. Whenever one
of the operators in (1. 3) is replaced by the composition of a maximally mono-
tone operator with a linear and continuous mapping, one faces major difficulties
in applying the aforementioned splitting methods, since the resolvent of such a
composition cannot be expressed in a closed form (excepting some very restrictive
cases). The modern techniques called primal-dual methods overcome this difficulty,
see [59,62,76,130]. First results concerning proximal-type splitting algorithms for
solving convex optimization problems where compositions with linear and continu-
ous operators are involved have been reported by Combettes and Ways [78], Esser,
Zhang and Chan [86] and Chambolle and Pock [69].

Further investigations in the framework of monotone inclusion problems have
been performed by Bricefio-Arias and Combettes [62]. They treated monotone inclu-
sion problems involving sums of compositions with linear and continuous operators
by rewriting the original monotone inclusion problem as the sum of a maximally
monotone operator and a linear and skew one in an appropriate product space,
which has been solved through the aforementioned Tseng’s algorithm (1. 5)-(1. 6).
We refer the reader to [62] and [76] for this forward-backward-forward primal-dual
splitting algorithm. Moreover, by taking advantage again of the product space ap-
proach, this time in a suitable renormed space, Vi succeeded in [130] to give a
primal-dual splitting algorithm of forward-backward type. Finally, by using some
techniques from [130], Bot, and Hendrich presented in [59] a primal-dual algorithm
of Douglas-Rachford type.

Let us underline some highlights of the primal-dual splitting algorithms. These
are methods which solve concomitantly a primal inclusion problem

find & € H such that 0 € Az + Y Ly ((BiOD;)(Liz)) + Cx (1. 10)
=1

together with the dual inclusion in the sense of Attouch-Théra [21]:

m *
find v1 € Gy,..., U € G, such that Jz € H : { v ze:l(:BlzélDUz)%Lj?;),—’_zC:L,m,
(1. 11)
where H and G;, i = 1,...,m are real Hilbert spaces, A : H = H, C : H — H,
B; : G; = G; are maximally monotone operators and L; : H — G, are nonzero linear
continuous operators, ¢t = 1,...,m.

The primal-dual splitting algorithms are fully decomposable, in the sense that
each operator is evaluated separately in the iterative scheme. The splitting schemes
can be used for solving highly structured nondifferentiable convex optimization
problems of the from

inf {f(m) +) (g:00) (Liz) + h(:c)} (1. 12)

eH
¥ i—1

and their Fenchel-type dual problems

sup { (f*0On*) ( ZL*UZ> Z g7 (v) + 12 ( vl))} (1. 13)

v, €G;,1=1,..,m

expressed by means of the Fenchel conjugates of the functions involved.
Considering compositions with linear and continuous operators is motivated by
the fact that in image processing the discrete first order total variational functional
used in the reconstruction of images can be represented as such a composition.
The use of infimal convolutions is justified by the fact that the second order total
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variational functional can be expressed in this way, see [29,57]. Moreover, infimal
convolutions appear naturally also when solving generalized location problems like
the Heron problem, which aims to find a point in a closed convex set which minimizes
the sum of distances to given convex closed sets.

Let us come now to the class of so-called inertial proximal methods. The idea
behind these iterative schemes relies on the use of an implicit discretization of a
differential system of second-order in time, called heavy ball method. One of the
main features of the inertial proximal algorithm is that the next iterate is defined
by making use of the last two iterates. This advantage of taking into account
the ”prehistory“ of the process could accelerate the convergence of the iterates, as
observed for example by Polyak [118] in case of minimizing differentiable functions.
Let us mention here also the fast gradient method of Nesterov [105] and the so-called
FISTA (see [28]), which are iterative schemes involving some inertial terms which
are able to accelerate the convergence for the objective function values.

As emphasized by Ochs, Chen, Brox and Pock in [110, Section 5.1] and Bertsekas
in [30, Exercise 1.3.9] one of the aspects which makes algorithms with inertial/mem-
ory effects useful is the fact that they are able to detect local optimal solutions of
(nonconvex) minimization problems which cannot be found by their non-inertial
variants.

Inertial-type algorithms have been considered for the first time in the context of
monotone inclusion problems by Alvarez and Attouch in [3,5]. The iterative scheme
proposed in [5] (in its simplified version) reads as: chose xg, 21 € H and for n > 1
set

Tny1 = Jpa(z, + a(z, —xp-1)). (1. 14)

Under appropriate conditions imposed on the step size n > 0 and on the parameter
a > 0 controlling the inertial term, the generated sequence of iterates converges
weakly to a solution of (1. 1).

Especially noticeable is that these ideas have been also used in the context of
the problem (1. 3) in case B is a (single-valued) cocoercive operator, giving rise to
the so-called inertial forward-backward algorithm considered by Moudafi and Oliny
in [104]: chose xg,z; € H and for n > 1 set

Tpy1 = Jpa(zy, —nBry, + (T, — Tn-1)). (1. 15)

One can notice a considerable interest in the class of inertial type algorithms,
see also the works of Alvarez [4], Cabot and Frankel [67], Maingé [99], [100], Pesquet
and Pustelnik [116]. We mention here also the works of Chen, Chan, Ma and Yang
[70,71] and Ghadimi, Feyzmahdavian and Johansson [89], where further convergence
rates for several inertial type algorithms have been reported.

We turn now our attention to penalty-type proximal splitting methods. These are
designed to solve variational inequalities expressed as monotone inclusion problems
of the form

find z € H such that 0 € Ax + Ny (z), (1. 16)

where A : H = H is a maximally monotone operator, M = argmin ¥ is the set
of global minima of the convex function ¥ : H — R, which is supposed to be
differentiable with Lipschitz continuous gradient fulfilling min ¥ = 0, and Ny, :
‘H = H is the normal cone of the set M C H (see the works of Attouch, Czarnecki
and Peypouquet [15,16], Noun and Peypouquet [109,115]. Specifically, one can find
in the literature forward-backward-type algorithms for solving (4. 3) (see [15, 16,
109,115]), which perform in each iteration a proximal step with respect to A and
a gradient step with respect to the penalization function ¥: chose x1 € H and for
n > 1 set

Tn+1l = J)\,LA(ajn - )\nﬁnv\y(mn))a (1 17)
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with (Ap)n>1 and (8,)n>1 sequences of positive real numbers. Ergodic convergence
results are usually obtained assuming the fulfillment of a conditions expressed by
means of the conjugate function of ¥, which is the discretized counterpart of a
condition introduced by Attouch and Czarnecki in [14] in the context of continuous-
time nonautonomous differential inclusions.

It is worth mentioning that when A is the convex subdifferential of a proper,
convex and lower semicontinuous function ® : H — RU{+o0}, the above algorithm
provides an iterative scheme for solving convex optimization problems which can
be formulated as

min{®(z) : z € argmin ¥}. (1. 18)
TEH

Finally, let us return to (1. 3) and say a few words about continuous implicit-
type dynamical systems associated with this problem, which are ordinary differential
equations formulated via resolvents of maximal monotone operators. In [31], Bolte
studied the convergence of the trajectories of the following dynamical system

@(t) + x(t) = projo (z(t) — nVe(x(t)))
{ 2(0) = 70, ¢ (1. 19)

where ¢ : H — R is a convex C' function defined on a real Hilbert space H, C is
a nonempty, closed and convex subset of H, ¢ € H, n > 0 and proj, denotes the
projection operator on the set C. In this context it is shown that the trajectory of
(1. 19) converges weakly to a minimizer of the optimization problem

inf 1. 20

Inf ¢(z), ( )
provided the latter is solvable. We refer also to the work of Antipin [7] for further
statements and results concerning (1. 19).

The following generalization of the dynamical system (1. 19) has been recently
considered by Abbas and Attouch in [1, Section 5.2]:

#(1) + 2(t) = prox,g (¢(1) — nB(x(1)))
{ 2(0) = 20 ® (1. 21)

where ® : H — R U {+oc} is a proper, convex and lower semicontinuous function
defined on a real Hilbert space H, B : H — H is an n-cocoercive operator, zg € H,
n >0 and prox,q : H — H,

pr0%,0(e) = avgmin { (0 + 5y~ o} (1. 22)
yEH n
denotes the proximal point operator of n®.

According to [1], in case zer(0® + B) # (), the weak asymptotical convergence
of the orbit = of (1. 21) to an element in zer(d® + B) # () is ensured by choosing
the step-size 1 in a suitable domain bounded by the parameter of cocoercivity
of the operator B (notice that 0® denotes the convex subdifferential of ® and
prox,q = Jyow)-

For the minimization of the smooth and convex function g : H — R over the
nonempty, convex and closed set C' C H, a continuous in time second order gradient-
projection approach has been considered in [7,8], having as starting point the dy-
namical system

Z(t) + v (t) + z(t) = proja(x(t) — nVg(x(t)))
{ z(0) Z’ZLQ,JE(O) = vy, Pl e (1. 23)

with constant damping parameter v > 0 and constant step size n > 0. The system
(1. 23) becomes in case C' = H the "heavy ball method”, sometimes called also
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“heavy ball method with friction”. This nonlinear oscillator with damping is in
case H = R? a simplified version of the differential system describing the motion
of a heavy ball that rolls over the graph of g and that keep rolling under its own
inertia until friction stop it at a critical point of g (see [17]).

The investigation of dynamical systems is motivated also by the fact that con-
sidering time discretization of these systems can lead to new discrete-type iterative
schemes for solving monotone inclusion problems, a fact which has been underlined
in the aforementioned papers. As an illustration, notice that the time discretization
of (1. 21) leads to (1. 4) in case A is the (convex) subdifferential of ®. For more
on the relations between the continuous and discrete dynamics we refer the reader
to [117].

Let us also mention that dynamical systems of implicit type have been considered
in the literature also by Attouch and Svaiter in [20], Attouch, Abbas and Svaiter
in [2] and Attouch, Alvarez and Svaiter in [18].

1.1 A description of the contents

In the following we give a description of the contents of this work, underlying
its most important results. In Section 1.2 of the introduction we include several
preliminary notions and results in order to make the manuscript as self-contained
as possible.

Chapter 2. This chapter is dedicated to the investigation of the rate of con-
vergence of a primal-dual splitting algorithm of forward-backward type introduced
in [130] and designed to solve highly structured monotone inclusion problems as the
ones described in (1. 10)-(1. 11).

In Section 2.1 we focus our attention on complexity results for the iterates gener-
ated by this algorithm. By incorporating variable step sizes, we succeed to accelerate
the aforementioned algorithm and present two main results. For the first modified
algorithm, by assuming that some of the operators involved are strongly monotone,
we achieve for the sequence of primal iterates an order of convergence of O(%)
Further, under more involved strong monotonicity assumptions, we propose a sec-
ond modified algorithm (this time with constant step sizes), which guarantees linear
convergence for the sequence of both primal and dual iterates. We show how to par-
ticularize the general results in the context of nondifferentiable convex optimization
problems (1. 12)-(1. 13), where some of the functions occurring in the objective are
strongly convex. In the last part of Section 2.1 we present numerical experiments
in image denoising and pattern recognition in cluster analysis and emphasize also
the practical advantages of the modified iterative schemes over the initial one pro-
vided in [130]. Numerical comparisons to other state-of-the-art methods for convex
nondifferentiable optimization problems are also made.

In Section 2.2 we investigate the rate of convergence of the sequence of objective
function values of the algorithm given in [130] for the optimization problems (1. 12)-
(1. 13). For the primal-dual splitting algorithms, mainly convergence statements
for the sequence of iterates are available in the literature. However, especially from
the point of view of solving real-life problems, the investigation of the convergence
of the sequence of objective function values is of equal importance. We are able to
prove a convergence rate of order O(%) for the so-called primal-dual gap function
attached to the pair of primal-dual problems. We illustrate this theoretical part by
numerical experiments in image processing.

Chapter 3. In this chapter we carry out some investigations on inertial-type
proximal-splitting algorithms.

In Section 3.1 we introduce and investigate the convergence properties of an
inertial version of the Tseng’s algorithm. We present first an inertial forward-



1.1 A DESCRIPTION OF THE CONTENTS 13

backward-forward splitting algorithm for solving the monotone inclusion problem
(1. 3) in case B is a (single-valued) monotone and Lipschitz continuous operator.
The proposed scheme represents an extension of Tseng’s forward-backward-forward-
type method (see [62,128,129]) and for the study of its convergence properties we
use some generalizations of the Fejér monotonicity techniques provided in [5]. Sub-
sequently, we make use of the product space approach in order to obtain an inertial
primal-dual splitting algorithm designed for solving monotone inclusion problems
involving mixtures of linearly composed and parallel-sum type monotone operators,
as considered in (1. 10)-(1. 11). We also show how the proposed iterative schemes
can be used in order to solve primal-dual pairs of convex optimization problems of
type (1. 12)-(1. 13).

In Section 3.2 we propose an inertial Douglas-Rachford proximal splitting algo-
rithm. In order to prove its convergence we formulate first an inertial version of
the Krasnosel’skii-Mann algorithm for approximating the set of fixed points of a
nonexpansive operator and investigate its convergence properties. The convergence
of the inertial Douglas-Rachford scheme for monotone inclusions of type (1. 3) is
then derived by applying the inertial version of the Krasnosel’skii-Mann algorithm
to the composition of the reflected resolvents of the maximally monotone operators
involved. Furthermore, we make use of these results when formulating an iner-
tial Douglas-Rachford primal-dual algorithm designed to solve monotone inclusion
problems involving linearly composed and parallel-sum type operators. We con-
sider also the special case of primal-dual pairs of convex optimization problems and
illustrate the theoretical results via some numerical experiments in clustering and
location theory.

It is the aim of Section 3.3 to introduce and study the convergence properties of
an inertial forward-backward proximal-type algorithm for the minimization of the
sum of a nonsmooth and lower semicontinuous function and a smooth one in the full
nonconvex setting. This scheme is characterized by the fact that, for the backward
step we use a generalization of the proximal operator, not only by considering it
to be, as it is natural in the nonconvex setting, a set-valued mapping, but also by
replacing in its standard formulation the squared-norm by the Bregman distance of a
strongly convex and differentiable function with Lipschitz continuous gradient. The
techniques for proving the convergence of the numerical scheme use the same three
main ingredients, as other proximal-type algorithms for nonconvex optimization
problems given in the literature do. More precisely, we show a sufficient decrease
property for the iterates, the existence of a subgradient lower bound for the iterates
gap and, finally, we use the analytic features of the objective function in order
to obtain convergence (see [11,35]). The limiting (Mordukhovich) subdifferential
and its properties play an important role in the analysis. The main result of this
section shows that, provided an appropriate regularization of the objective satisfies
the Kurdyka-Lojasiewicz property, the convergence of the inertial forward-backward
algorithm is guaranteed. As a particular instance, we also treat the case when the
objective function is semi-algebraic and present the convergence properties of the
algorithm. In the last part of this section we consider two numerical experiments.
The first one has an academic character and shows the ability of algorithms with
inertial/memory effects to detect optimal solutions which are not found by their
non-inertial versions (similar allegations can be found also in [110, Section 5.1]
and [30, Example 1.3.9]). The second one concerns the restoration of a noisy blurred
image by using a nonconvex misfit functional with nonconvex regularization.

Chapter 4. The aim of this chapter is to generalize the existing penalty-type
splitting algorithms to the solving of more involved monotone inclusion problems.

In Section 4.1 we deal with problems of the form

find x € H such that 0 € Az + Dz + N (), (1. 24)
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where A : H = H is a maximally monotone operator, D : H — H is a (single-
valued) cocoercive operator and M C H is the (nonempty) set of zeros of another
cocoercive operator B : H — H. We propose a forward-backward penalty algorithm
for solving (1. 24) and prove weak ergodic convergence for the generated sequence
of iterates under a condition which involves the Fitzpatrick function associated to
the operator B. Moreover, we prove strong convergence for the sequence of iterates
whenever A is strongly monotone.

The investigations made are completed in Section 4.2 with the treatment of the
monotone inclusion problem (1. 24), this time by relaxing the cocoercivity of D
and B to monotonicity and Lipschitz continuity. We formulate in this more general
setting a forward-backward-forward penalty type algorithm for solving (1. 24) and
study its convergence properties. This study allows via some primal-dual techniques
to deal with monotone inclusion problems having more complicated structures, for
instance, involving mixtures of linearly composed maximally monotone operators
and parallel-sum operators, like the one described in (1. 10)-(1. 11), but with an
additional normal cone operator to the set of zeros of a single-valued mapping which
is evaluated in the algorithm through a penalty term:

0€ Az + > Li(B;,OD;)(Lix) + Cz + Ny (). (1. 25)
=1

In the last part of the chapter we present these results in the context of solving
convex minimization problems with intricate objective functions and consider a
numerical example in image inpainting.

Chapter 5. We approach the solving of monotone inclusion problems of type
(1. 3) in case B is single-valued by considering first and second order implicit-type
dynamical systems.

We begin in Section 5.1 with the asymptotic analysis of a dynamical system
associated with the fixed points set of a nonexpansive operator. While the existence
of the trajectories of the ordinary differential equations is achieved in the framework
of the Cauchy-Lipschitz-Picard Theorem, the (weak) convergence of the orbits to
a fixed point of the operator is based on Lyapunov analysis combined with the
continuous version of the Opial Lemma. We study also the convergence rates of
the fixed point residual of the orbits of the dynamical system, for which we obtain
a rate of convergence of order o(1/+/t). Further, we propose also a generalization
of the forward-backward continuous version of the dynamical system (1. 21) by
considering instead of the convex subdifferential a maximally monotone operator
A. This gives rise to the dynamical system

{ E(t) = A(t) [JnA (m(t) - nB(ﬂf(t))) - ff(t)} (1. 26)
z(0) = xo,

which we associate with the inclusion problem (1. 3). In the last part of this section
we show that the trajectory of (1. 26) strongly converges with exponential rate to
the unique solution of (1. 3), provided the sum A + B is strongly monotone.

In Section 5.2 we investigate second order dynamical systems associated to
monotone inclusion problems. We start with ordinary differential equations associ-
ated to the set of zeros of a cocoercive operator. We distinguish between anisotropic
damping parameters induced by an elliptic operator as in [3] and time depended
damping parameters. Further, we approach the problem (1. 3) by the dynamical
system

{ H0) + 900 + A1) [2(0) = Jua (a0) =B G(®)) | =0 (1. 27)
2(0) = ug, &(0) = vo.
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We specialize these investigations to the minimization of the sum of a nonsmooth
convex function with a smooth convex function one, fact which allows us to re-
cover and improve results given in [7,8] in the context of studying the dynamical
system (1. 23). When considering the unconstrained minimization of a smooth con-
vex function we prove a rate of O(1/t) for the convergence of the function value
along the ergodic trajectory to its minimum value. The last part of this section
is dedicated to convergence rates for strongly monotone inclusions. By weakening
the assumptions on B to monotonicity and Lipschitz continuity, however, provided
that A + B is strongly monotone, the trajectories of (1. 27) converge strongly to
the unique zero of A + B with an exponential rate. Exponential convergence rates
have been obtained also by Antipin in [7] for the dynamical systems (1. 19) and
(1. 23), by imposing for the smooth function g supplementary strong convexity as-
sumptions. We derive from here convergence rates for the trajectories generated by
dynamical systems associated to the minimization of the sum of a proper, convex
and lower semicontinuous function with a smooth convex one provided the objective
function fulfills a strong convexity assumption. In the particular case of minimizing
a smooth and strongly convex function, we prove that its values converge along the
trajectory to its minimum value with exponential rate, too.

1.2 Preliminary notions and results

This section is dedicated to the presentation of several notations and results which
are used throughout the manuscript. Some (technical) results or notions which are
specific only to some sections are presented where needed. We refer the reader
to [26,37,38,85,124,131] for standard notations in monotone operator theory and
convex analysis.

Let H be a real Hilbert space with inner product (-,-) and associated norm ||-|| =
v/ {-,+). The symbols — and — denote weak and strong convergence, respectively.
The following identity will be used several times (see for example [26, Corollary
2.14]):

laz -+ (1- )yl +a(l —a) |z - yl2 = alle]®+ (1 a)llgl|? Vo € R ¥(z,y) € H x .
(1. 28)
When G is another Hilbert space and K : H — G a linear continuous operator, then
the norm of K is defined as || K|| = sup{||Kz| : © € H, ||z|| < 1}, while K* : G — H,
defined by (K*y,z) = (y, Kz) for all (x,y) € H x G, denotes the adjoint operator
of K.
For S C ‘H a convex set, we denote by

sqriS :={x € S : UasoA(S — z) is a closed linear subspace of H}

its strong quasi-relative interior. Notice that we always have int S C sqri S (in gen-
eral this inclusion may be strict). If H is finite-dimensional, then sqri S coincides
with riS, the relative interior of S, which is the interior of S with respect to its
affine hull. The notion of strong quasi-relative interior belongs to the class of gener-
alized interiority notions and play an important role in the formulation of regularity
conditions which are used in the theory of convex optimization problems in order
to guarantee strong duality, namely the situation when the optimal objective values
of the primal optimization problem and its dual one coincide and the dual has an
optimal solution. We refer to [26,37,38,40,85,124,131] for other interiority notions
and their impact in the duality theory.

An efficient tool for proving weak convergence of a sequence in Hilbert spaces
(without a priori knowledge of the limit) is the celebrated Opial Lemma, which we
recall in the following.
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Lemma 1.1 (Opial) Let C be a nonempty set of H and (z,)nen be a sequence in
H such that the following two conditions hold:

(a) for every x € C, limy, 100 ||y, — || exists;

(b) every weak sequential cluster point of (xn)nen is in C;

Then (Tn)nen converges weakly to a point in C.

In order to prove the first part of the Opial Lemma, one usually tries to show
that the sequence (||, — x||)nen, where x € C, fulfills a Fejér-type inequality. In
this sense the following result is very useful.

Lemma 1.2 Let (an)nen, (bn)nen and (en)nen be real sequences. Assume that
(@n)nen is bounded from below, (by)nen is nonnegative, (ep)nen € €1 and api1 —
an + b, < e, for alln € N. Then (an)nen is convergent and (by)nen € £1.

Let us recall now some facts about monotone operators. For an arbitrary set-
valued operator A : H = H we denote by

o orA={(z,u) € H X H:u€c Az} its graph
e domA = {z € H: Ax # 0} its domain
e ran A = U,y Ax its range

o A7l H = H its inverse operator, defined by (u,z) € gr A~! if and only if
(x,u) €grA

e zer A= {x € H:0¢€ Ax} the set of zeros of the operator A.

We say that A is monotone if
<£E —Yyu-— ’U> >0 V(x,u), (yvv) € grA

A monotone operator A is said to be mazimally monotone, if there exists no proper
monotone extension of the graph of A on H x H. Let us mention that in case A is
maximally monotone, zer A is a convex and closed set [26, Proposition 23.39]. We
refer to [26, Section 23.4] for conditions ensuring that zer A is nonempty. If A is
maximally monotone, then one has the following characterization for the set of its
Zeros:

z € zer A if and only if (u — z,w) > 0 for all (u,w) € gr A. (1. 29)
The resolvent of A, Ja : H = H, is defined by
Ja = (Idy +4)71,
and the reflected resolvent of A is
Ra:H2H,Ra =24 —1dy,
where Idy : H — H,Idy(x) = z for all x € H, is the identity operator on H.
Moreover, if A is maximally monotone, then J4 : H — H is single-valued and

maximally monotone (asee [26, Proposition 23.7 and Corollary 23.10]). For an
arbitrary v > 0 we have (see [26, Proposition 23.2])

p € Jyax if and only if (p,y ' (z —p)) €grA
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and (see [26, Proposition 23.18])
Jya+vdy-14-1 09y Idy = Idy . (1. 30)

The resolvent operator will play an important role in the formulation of the
algorithms and dynamical systems considered in connection with determining the
set of zeros of (sums) of monotone operators.

Further, let us mention some classes of operators that are used in the following.
We say that A is demiregular at x € dom A, if for every sequence (Z, Uy )nen € gr A
and every u € Ax such that z,, — x and u, — u, we have x,, — x. We refer the
reader to [12, Proposition 2.4] and [62, Lemma 2.4] for conditions ensuring this
property. The operator A is said to be uniformly monotone at x € dom A, if there
exists an increasing function ¢4 : [0, +00) — [0, +00] that vanishes only at 0, and

(x —y,u—v) > da (|l —yll) Yu € Az and V(y,v) € gr A.

If this inequality holds for all (z,u), (y,v) € gr A, we say that A is uniformly mono-
tone. Let us mention that, if A is uniformly monotone at z € dom A, then it is
demiregular at x.

Prominent representatives of the class of uniformly monotone operators are the
strongly monotone operators. Let v > 0 be arbitrary. We say that A is y-strongly
monotone if

(r —y,u—v) > 7|z —y|* V(z,u), (y,v) € gr A. (1. 31)

Notice that if A is maximally monotone and strongly monotone, then zer A is a
singleton, thus nonempty (see [26, Corollary 23.37]). A single-valued operator A :
H — H is said to be y-cocoercive, if

(v =y Az — Ay) > 7| Az — Ay|* V(z,y) € H x H.

Moreover, A is vy-Lipschitz continuous, if || Az—Ay|| < v||lx—yl]| for all (z,y) € HxH.
A single-valued linear operator A : H — H is said to be skew, if (x, Ax) = 0 for all
reH.

We consider also the class of nonexpansive operators. An operator T : D — H,
where D C H is nonempty, is said to be nonexpansive, if | Tz — Ty|| < ||z — y|| for
all xz,y € D. We use the notation

FixT={zreD:Txz =z}

for the set of fized points of T'. Let us mention that the resolvent and the reflected
resolvent of a maximally monotone operator are both nonexpansive (see [26, Corol-
lary 23.10]).

The following result, which is a consequence of the demiclosedness principle
(see [26, Theorem 4.17]), will be useful in the proof of the convergence of the inertial
version of the Krasnosel’skii-Mann algorithm in Chapter 3. It will be used also in
Chapter 5 in the context of studying dynamical systems associated with the fixed
point set of a nonexpansive operator.

Lemma 1.3 (see [26, Corollary 4.18]) Let D C H be nonempty closed and convez,
T : D — H be nonexpansive and let (xy)nen be a sequence in D and x € H such
that x, — x and Tx, —x, — 0 as n — +oco. Then x € FixT.

We recall also the following subclass of the nonexpansive operators. Let o €
(0,1) be fixed. We say that R : H — H is a-averaged, if there exists a nonexpansive
operator T : H — H such that R = (1 — a)Id+aT. For o = } we obtain as
an important representative of this class the firmly nonerpansive operators. For

properties and other insides concerning these families of operators we refer to [26].
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Finally, the parallel sum of two operators A, B : H = H is defined by AOB :
H=H
AOB=(A"'+B Y1

In the last part of this section we recall some elements of convex analysis. For a
function f: H — R, where R := RU {£o0} is the extended real line, we denote by

domf={zeH: f(zr) <+oo}

its effective domain and say that f is proper if dom f # () and f(z) # —oo for all
x € H. Concerning calculus rules where +co are involved we make the following
conventions (see [131]): (4+00) 4+ (—o0) = 400, 0(+00) = +00 and 0(—o0) = 0. We
denote by I'(H) the family of proper, convex and lower semi-continuous extended
real-valued functions defined on H. Let f*: H — R,

J*(w) = sup{(u,2) — f(2)} Vu € A,

TEH

denote the conjugate function of f. We also denote by min f := inf,cy f(x) and
by argmin f := {z € H : f(x) = min f}.

The (convex) subdifferential of f is a set-valued operator 0f : H = H defined
by

3f(z){ {veH: f(y)> fla)+ (v,y—z) Yy € H}, if f(z) €R,

0, otherwise.

Let us mention that if f is proper, convex, and Fréchet differentiable at Z, then
of (@) = {Vf(@)} (cf. [131, Corollary 2.4.10 and Theorem 2.4.4(i)]). The Fermat
rule in the nondifferentiable case underlines the usefulness of the subdifferential: if
f is proper, then for T € dom f we have the relation

T € argmin f < 0 € 9f(T).

Notice that if f € I'(#), then Jf is a maximally monotone operator (cf. [120])
and it holds (9f)~' = 9f*. For f,g : H — R two proper functions, we consider
their infimal convolution, which is the function fOg : H — R, defined by

(fHg)(z) = yiggl{f(y) +g(z—y)} Vo e H.

In case f,g € T'(H) and a regularity condition is fulfilled, according to [26, Propo-
sition 24.27] we have 0 f000g = 9(fOg), and this justifies the notation used for the
parallel sum of two operators as described above.

Let S C H be a nonempty set. The indicator function of S, §g : H — R, is the
function which takes the value 0 on S and +oo otherwise. The subdifferential of the
indicator function is the normal cone of S, that is Ng(z) = {u € H : {(u,y — z) <
0Vy e S}, ifx €S and Ng(z) =0 for z ¢ S. Notice that for x € S, u € Ng(z)
if and only if og(u) = (x,u), where og is the support function of S, defined by
os(u) = sup,ecs(y, u).

When f € I'(H) and v > 0, for every x € H we denote by prox,¢(x) the
prozimal point of parameter v of f at x, which is the unique optimal solution of the
optimization problem

1
it {10+ 5l = ol . 52)

Notice that we have the following formula for the resolvent of the subdifferential
operator:
Jyor = (Idy +70f) "' = prox, s,
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thus prox,; : H — H is a single-valued operator fulfilling the extended Moreau’s
decomposition formula

PIOX., § +7 PrOX(y /) oy dy = Idy . (1. 33)

Let us also recall that a proper function f : H — R is said to be uniformly
convetz, if there exists an increasing function ¢ : [0, +00) — [0, +0c] which vanishes
only at 0 and such that

flta+(A=t)y)+t(1=)p([lz—yll) < tf(2)+(1-1)f(y) Yo,y € dom f and Vi € (0,1).

In case this inequality holds for ¢ = (v/2)(+)?, where v > 0, then f is said to be
~v-strongly conver. Let us mention that this property implies y-strong monotonicity
of Of (see [26, Example 22.3]) (more general, if f is uniformly convex, then 0f
is uniformly monotone, see [26, Example 22.3]). Furthermore, the proper function
f:H — Ris y-strongly convex, if and only if f — 21 - |I* is a convex function. We
mention also the following interesting connection between the strong convexity of
a function and the differentiability properties of its conjugate: if f € I'(H), then
f is v-strongly convex if and only if f* is Fréchet differentiable with »~!-Lipschitz
continuous gradient (see [26, Theorem 18.15], [131, Corollary 3.5.11, Remark 3.5.3]).

Let us mention that for f = dg, where S C H is a nonempty convex and closed
set, it holds

Jyns = Ins = Joss = (Idy +Ng) ™' = proxs, = projg, (1. 34)

where projg : H — S denotes the projection operator on S (see [26, Example 23.3
and Example 23.4]).

Finally, the descent lemma which we recall below will be used several times as
a technical tool in order to derive useful inequalities in the convergence analysis of
the algorithms and dynamical systems proposed in the manuscript.

Lemma 1.4 (see [106, Lemma 1.2.53]) Let g : H — R be Fréchet differentiable with
L-Lipschitz continuous gradient. Then

L
9(y) < 9(x) + (Vg(@),y —2) + Sy - z||? Vz,y € H.
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Chapter 2

Complexity results for a
primal-dual splitting
algorithm of
forward-backward type

The main goal of this chapter is to present several convergence rates related to
a primal-dual splitting algorithm of forward-backward-type associated with highly
structured monotone inclusion problems. While in Section 2.1 we focus our atten-
tion on complexity results concerning the iterates in case of strongly monotone inclu-
sion problems, in Section 2.2 we consider the case of convex optimization problems
with intricate objective functions and give a rate of convergence for the objective
function values.

We are concerned with the study of the convergence rate of a primal-dual split-
ting algorithm introduced in [130]. The following problem represents the starting
point of our investigations.

Problem 2.1 Let H be a real Hilbert space, z € H, A : H = H a mazximally
monotone operator and C' : H — H an n-cocoercive operator for n > 0. Let m be a
strictly positive integer and, for every i € {1,...,m}, let G; be a real Hilbert space,
r; € G, let B; : G; = G; be a maximally monotone operator, let D; : G; = G;
be a maximally monotone and v;-strongly monotone operator for v; > 0 and let
L; : H — G; be a nonzero linear continuous operator. The problem is to solve the
primal inclusion

find T € H such that z € Az + Y _ Ly ((B;OD:)(LT — 13)) + CZ, (2. 1)
i=1
together with the dual inclusion
z—Y Liv;, € Az + Cx
v; € (BZDD,L)(LZJZ - ’I“i), 1=1,....m.
(2. 2)

find vy € G1,..., Uy, € Gy, such that Iz € H : {

We say that (Z,71,..., U ) € HX Gy X...X Gy, is a primal-dual solution to Problem
2.1, if

2= L0 € AT+ CT and v; € (B,OD;)(LT — r;), i = 1,...,m. (2. 3)

i=1

21
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If 7 € H is a solution to (2. 1), then there exists (T1,...,Tpm) € G1 X ... X G
such that (T, 71,..., Tp,) is & primal-dual solution to Problem 2.1 and, if (v1,...,T,,) €
G1 X...XG,, is a solution to (2. 2), then there exists T € H such that (Z,71,..., Ty ) is &
primal-dual solution to Problem 2.1. Moreover, if (Z,T1,...,Uym) € HX Gy X ... X Gy, 18
a primal-dual solution to Problem 2.1, then T is a solution to (2. 1) and (v1,...,Tpm) €
G1 X ... X G, 1s a solution to (2. 2).

By employing the classical forward-backward algorithm (see for example [75,
129]) in a renormed product space, Vi proposed in [130] an iterative scheme for
solving a slightly modified version of Problem 2.1 formulated in the presence of some
given weights w; € (0,1], ¢ = 1,...,m, with >", w; = 1 for the terms occurring
in the second summand of the primal inclusion problem. The following result is
an adaption of [130, Theorem 3.1] to Problem 2.1 in the error-free case and when
An = 1 for all n > 0. Let us mention that under a different approach which relies
on Fejér monotonicity techniques, the convergence of an equivalent form of the
algorithm presented in the theorem below has been investigated in [52] for monotone
inclusions of less involved structures as the ones considered in (2. 5)-(2. 6), where
one additionally assumes that Cx = 0 for all x € H.

Theorem 2.1 (see [130]) In Problem 2.1 suppose that
z € ran <A + ZL;‘((BiDDi)(Li c—1y)) + C’) . (2. 4)
i=1

Let 7 and o0;, i = 1,...,m, be strictly positive numbers such that

1

2-min{r Y, o7, 00t - min{n, vy, v} [ 1 -

m
TZUiHLiHQ > 1.
=1

Let (20,v1,05--, Um,0) € HX G1 X...X Gy, and for all n > 0 set:

Tng1 = Jralzn — 7( X0 Livig + Cy — 2)]
Yn = 2xn+1 — T
Vin4+1 = JO",;B;1 [Ui,n + Jl(Lzyn - Di_lvi,n - ri)]a 1= 17"'7m'

Then there exists a primal-dual solution (T,T1,...,Tpm) to Problem 2.1 such that the
following statements are true:

(a) z, =T and (Vin,, Vm.n) = (T1,ee; Um) @S M —> 400;
(b) if C is uniformly monotone, then x, — T, as n — 400;

(c) if D;l is uniformly monotone for some i € {1,..,m}, then v;, — T; as
n — +00.

Remark 2.1 Notice that the work in [130] is closely related to [69] and [79], where
primal-dual splitting methods for nonsmooth convex optimization problems are pro-
posed. More exactly, the convergence property of [69, Algorithm 1] proved in [69,
Theorem 1] follow as special instance of the main result in [130]. On the other hand,
Condat proposes in [79] an algorithm which can be seen as an extension of the one
in [69] to optimization problems in the objective of which convex differentiable
functions occur, as well.

Remark 2.2 We would like to stress the fact that the relation (2. 4) is equivalent
to the existence of primal-dual solutions to Problem 2.1 above.
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2.1 On the convergence rate improvement of a
primal-dual splitting algorithm for solving
monotone inclusion problems

In this section we propose under appropriate strong monotonicity assumptions two
modified versions of the algorithm in Theorem 2.1. The first one ensures an order
of convergence of (’)(%) for the sequences of primal iterates, while the second one,
under more involved strong monotonicity conditions, guarantees linear convergence
for the sequences of primal and dual iterates.

2.1.1 The case A+ C is strongly monotone

For the beginning, we show that, in case A + C is strongly monotone, one can
guarantee an order of convergence of (’)(%) for the sequence (z,,)n>0. To this end,
we update in each iteration the parameters 7 and o;, ¢ = 1,..., m, and use a modified
formula for the sequence (y,)n>0. Let us notice that incorporating variable step sizes
can also increase the dynamic of the sequences involved, with possible numerical
performances, as underlined also in [132] and [69].

Due to technical reasons, we apply this method in case D;” 1is equal to zero for
i = 1,...,m, that is D;(0) = G; and D;(z) = () for z # 0. Let us notice that, by
using the approach proposed in [58, Remark 3.2], one can extend the statement of
Theorem 2.2 below, which is the main result of this subsection, to the primal-dual
pair of monotone inclusions as stated in Problem 2.1.

More precisely, the problem we consider throughout this subsection is as follows.

Problem 2.2 Let H be a real Hilbert space, z € H, A : H = H a mazximally
monotone operator and C' : H — H a monotone and n-Lipschitz continuous operator
form > 0. Let m be a strictly positive integer and, for every i € {1,...,m}, let G;
be a real Hilbert space, r; € G;, let B; : G; = G; be a maximally monotone operator
and let L; : H — G; be a nonzero linear continuous operator. The problem is to
solve the primal inclusion

find T € H such that z € AT + Z LY (B;(L;z —r;)) + C7, (2. 5)
i=1
together with the dual inclusion

z—y i L, € Az + Cx
v; € Bi(Lil‘ — 7‘1'), 1=1,...,m.
(2. 6)

find vy € Gq,...,Up, € Gy, such that Iz € H : {

As for Problem 2.1, we say that (Z,71,...,Umm) € HX G1 X ... X G, is a primal-dual
solution to Problem 2.2, if

m
z— ZL;*@ € AT+ CZ and v; € Bi(L;T —ry), i = 1,....m. (2. 7)
=1

Remark 2.3 One can notice that, in comparison to Problem 2.1, we relax in Prob-
lem 2.2 the assumptions made on the operator C. It is obvious that, if C is a
n-cocoercive operator for n > 0, then C' is monotone and 1/n-Lipschitz continuous.
Although in case C is the gradient of a convex and differentiable function, due to the
celebrated Baillon-Haddad Theorem (see, for instance, [26, Corollary 8.16]), the two
classes of operators coincide, the second one is in general larger. Indeed, nonzero
linear, skew and Lipschitz continuous operators are not cocoercive. For example,



24 CHAPTER 2. Complexity results for a primal-dual splitting algorithm

when H and G are real Hilbert spaces and L : H — G is nonzero linear continuous,
then (z,v) — (L*v,—Lx) is an operator having all these properties. This operator
appears in a natural way when employing primal-dual approaches in the context of
monotone inclusion problems as done in [62] (see also [52,58,76,130]).

Under the assumption that A 4+ C' is y-strongly monotone for v > 0 we propose
the following modification of the iterative scheme in Theorem 2.1.

Algorithm 2.1
Initialization: Choose (Zg, V1,0, ., Um,0) €HXG1X...xX G, and
70 >0, 050 >0,i=1,.,m, such that 79 < 27/n, A >n+1,
70 e il Lill® < /1 + 10(2y — nm0) /A
0o == 1/\/1+70(2y—n70) /A
For n >0 set: xp41= J(TH/A)A[Z‘H — (Tn/)\)(Z?il Liv;, + Cxp — z)]
Yn = Tp41 + en(xn-i-l — T
Vintl = Jo'i,nB;1 [1}1’7” + Ui,n(Liyn — 7‘1')}, t=1,....m
Tn+1 = enTru 9n+1 = 1/\/1 + Tn+1(2'7 - nTnJrl)/)V
Oint+l = Ui,n/9n+17 1= 1,...,m

Remark 2.4 Notice that in contrast to the algorithm in Theorem 2.1, we allow here
variable step sizes 7,, and 0y, 1 = 1,...,m, which are updated in each iteration.
Moreover, for every n > 0, the iterate y, is defined by means of the sequence 6,,.
Dynamic step sizes have been first proposed in [132] and then used in [69] in order to
accelerate the convergence of iterative methods when solving convex optimization
problems.

Remark 2.5 The assumption 79 Y o, 0i.0l|Lil|?> < /1+ 70(2y — n7)/A in Algo-
rithm 2.1 is equivalent to 7 >~ 00/ L;||* < 1, being fulfilled if 79 > 0 is chosen
such that

70 < YA+ VPN + Zmlffz,o\\LiIIQ)QH?//\
i )2 +n/A '

We present now the following complexity result of the algorithm described above.

Theorem 2.2 Suppose that A + C is y-strongly monotone for v > 0 and let
(T, 01y, Um) be a primal-dual solution to Problem 2.2. Then the sequences gen-
erated by Algorithm 2.1 fulfill for alln >0

AM|Znt1 — ‘ Z Hvzn U1H2
772L+1 =1 T104,0

< >\||331 - x|\2 Z IIUz 0~ vzHQ 1 — o]l

- T104,0 Tg

i=1

2 m
+% Z(Li(ﬂﬁ — 9),Vi0 — Vi)
i=1

Moreover, lim nr, = %, hence one obtains for (x,)n>0 an order of convergence
' >

Proof. The idea of the proof relies on showing that the following Fejér-type in-
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equality is true for all n > 0

A mo s g2
THJ"’I’L+2 - 5”2 —+ Z || t,n+1 z|| + H n+2 . 7’L+1H
Tn+2 i—1 T104,0 Tn+1
2 m
- Z<LZ($n+2 - anrl)» —Vin41 + @i> (2 8)
Tnt1 520
m 9 ,
Vi — Uj T —x
S 2 ||l’n+1 *f”z —+ Z || %,n ’L” + || n+1 _ n”
Tn+1 =1 7'10'1"0 Tn
2 m
- Z(Li(ﬂfn-i-l - .Tn), —Vin + Ei>-
Tn =

To this end we use first that, in the light of the definition of the resolvents, it
holds for all n >0

A

Tn+1

(:l?n+1 7l’n+2)7 <Z L:(Ui,n+1 + C:]L’n+1 - Z> +C£17n+2 € (A+C)I17n+2 (2 9)

i=1

Since A + C is y-strongly monotone, (2. 7) and (2. 9) yield for all n > 0

12 _ A
'YHxn+2 - .%‘H < Tnt2 — T, ($n+1 — Tpy2)
Tn+1
m m
+ <$n+2 —-T,— <Z Lfvi7n+1 + an+1 - Z) 4+ Czpyo — (Z — ZL:’UZ> >
1=1 =1
A

- T <$n+2 - 57 Tn41 — xn+2> + <xn+2 - f7 an+2 - an+1>
n+1

+) {Li(Tny2 = F),Ti — vips1) - (2. 10)
=1

Further, we have

_ x —z||? x — T2 x —x 2
O % 1 . LRt CYCY AR

and, since C' is n-Lipschitz continuous,

<='17n+2 —Z,C0rpq2 — C’xn+1> < Hxn+2 - f” : chn—&-Z - Czn-&-l”

NTn+1 2 n 2
< — + - .
=" Znt2 — | 2T lTns2 — Tngall

Hence, it follows from (2. 10)—(2. 11) and the last inequality that for all n > 0
it holds

A
( +2~ymn+1) |2 — 7
Tn+1

| Tny2 — xn+1||2

A A —
< gy — 7|2 - 21
Tn+1 Tn+1

m

+2 Z<Lz‘($n+2 =), Vi — Vi,nt1)-

i=1
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Taking into account that A > 1+ 1, we obtain for all n > 0 that

A _ 1
lns1 — 7% — 02 = T ]|

n+1 n+1

+2 Z<Li($n+2 — E);ﬂi - Ui,n+1>- (2 12)
i=1

(725 +29 =71 lwnse =77 <

Tn+1

On the other hand, for every ¢ = 1,...,m and every n > 0, from

1 _
r(vi,n - Ui,n-‘rl) + Liyn —1; € Bi 1Ui,n+17 (2' 13)
i,mn

the monotonicity of B; ' and (2. 7), we obtain

1
< (Vin = Vint1) + Liyn — 1 — (LT — 74), Vin+1 — Uz'>

0 <
Oin
1 _ _ _
= —Win = Vint1,Vin+1 — Vi) T {Li(Yn — T), Viny1 — Vi)
i,n
1 1 1

05, nt1 — Ts)|?

R0

= gyl Tl — 5

+<Ll(yn - E)? Vin+1 — 6i>7

Vi — Vi |I® — )

hence

. — 7.2 2 Ly 2
||v17"+1 UZH < ||v17" ’1)1” 7””7«7" vz,n+1|| +2<Li(yn*f)7vi,n+1*5i>- (2 14)

Oin Oin Oin

3

Summing up the inequalities in (2. 12) and (2. 14) we obtain for all n > 0

A " oiis — T2
_ int+1 — Uj
( mnml) nso — )2+ 3 Menr = 0ill”
Tn+1 Oin

i=1 ’

A T |vin — T2
< A -7+ Y om0
Tn+1 i—1 Ui,n

_ [#n+2 — Tnsal® _ Zm: Vi = Vi1 l®
Tn+1 i—1 Oin

+2 Z<Li($n+2 = Yn)s —Vint1 + Vi) (2. 15)
i=1

Further, since ¥, = Tp11+0n(Tnt1 —xy), for every ¢ = 1,...,m and every n > 0,
it holds

(Li(Tn+2 = Yn)s —Vint1 + Vi)
=(L; ($n+2 — Zpy1 — O (g1 — xn)), —Uj 1 + Ti)
= (Li(Tnt2 — Tnt1), —Vint1 + i) — On(Li(Tng1 — Tn), —Vin + Vi)
0, (Li(Tpt1 — Tn), —Vim + Vint1)
<ALi(Tnt2 — Tnt1), —Vin+1 + i) — O (Li(Xng1 — Tn), —Vin + Ui)
Ol Li|[*oi,n
2

Hvi,n - Ui,n+1H2
20’1' n '

)

lZns1 — an2 +
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By combining the last inequality with (2. 15), we obtain for all n > 0

A o = ving = Tl2 . g2 — Toga 2
+ 2 — NTp41 ||33n+2 —QJH + E =+
Tn+1

i=1 Oin Tn+1
—22 J,‘n+2 — a)‘n+1) —Vji n+1 +5i> (2. 16)
[[vi,n — 5| -
—|* + Z o (Z Li||2m-,n> A [———|

i=1 Tin i=1

m
-2 Z 07L<Li(xn+1 - SCn), —Vin + @i>~

=1

After dividing (2. 16) by 7,,4+1 and noticing that for all n > 0

A 27y A
2 =5
Th+1 Tn+1 Th+2
Tn+10in = TnOin—1 = ... = T1040

and

Oy N LillPoin) 02 71 iy |1 Lil20im

Totl T2
~ ey | LilPoio
<1
— T2’

n

it follows that the Fejér-type inequality (2. 8) is true.
Let N € N, N > 2. Summing up the inequality in (2. 8) from n =0 to N — 1,
it yields

ot —apt o 3o LB el
7'N_~_1 T104.0 %
||131 _ 117H2 + Z Hvl 0 vl” ||$1 — £ZJ0||2 (2 17)
10,0 i '
1
—|—22 ( .Z‘N+1 — .TN) —Vi N +iz’> — ?<L1(371 — xo), —V;,0 +Uz>) .
0

Further, for every i = 1,..., m we use the inequality

2
—(Li(zn41 — 2N), —vi,N +05)
™N

S oullLil? :
< : T — X 2 ||V, —v
= To gylleve w2y o el

and obtain from (2. 17) that

2 2

)\HJCNH —z|? +Z lviv = ill* _ Al —iUHQ Z [vio — Wil n |21 — 2o|?
TN+1 T105,0 - i T105,0 70

i=1

o j=1 JOH ]” 2
Z i(z1 — o), vi0 — +Z—|| vi,N = 0il%,
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which rapidly yields the inequality in the statement of the theorem.
We close the proof by showing that 1irJIrl n7, = A/7. Notice that for all n > 0
n—-+oo

Tn
Tnt1 = T
\/1 + f(27 - nTn)

Since 0 < 79 < 2v/n, it follows by induction that 0 < 7,41 < 7, < 70 < 279/7
for all n > 1, hence the sequence (7,,)n>0 converges. In the light of (2. 18) one

. . . o . Tn 1 .
easily obtains that ngr}rloo 7, = 0 and, further, that ngr}rloo = 1. As (m Jn>0 is a

strictly increasing and unbounded sequence, by applying the Stolz-Cesaro Theorem,
it yields

. (2. 18)

. . n . n+1l-n . TnTn+1
lim nm = lim = lim ———— = lim ———
n— 400 n—+oo — n—+oo — — — n—+o0o T, — Tn+1
Tn Tn+1 Tn
— lim TnTn+1(7'n + 7'n+1) — lim 7'n7'n+1(7'n + Tn+1)
n—+oo T — 7—7%+1 n—+o0 772L+1 2 (27 — 1)
Tn
Tn + Tnt1 . Tl +1 A

= lim T lim o =
n—-+oco Tn-H(T — XT”) n—too 1 — A7, o

O

Remark 2.6 Let us mention that, if A 4+ C is ~-strongly monotone with v > 0,
then the operator A + >, L¥(B;(L; - —r;)) + C is strongly monotone, as well,
thus the monotone inclusion problem (2. 5) has at most one solution. Hence, if
(T,T1,..., Uy ) is a primal-dual solution to Problem 2.2, then T is the unique solution
to (2. 5). Notice that the problem (2. 6) may have more than one solution.

2.1.2 The case A+ C and B;' + D; ', i = 1,...,m, are strongly
monotone

In this subsection we propose a further modified version of the algorithm in Theorem
2.1. The main result of this section is that if A+ C and Bi_1 + Di_l7 i=1,...,m,
are strongly monotone, then one achieves linear convergence rate for the sequences
(n)n>0 and (vin)n>0, ¢ = 1,...,m. The algorithm aims to solve the primal-dual
pair of monotone inclusions stated in Problem 2.1 under relaxed assumptions for
the operators C and D;l, i =1,...,m. A same comment as in Remark 2.9 can be
made also in this context.

Problem 2.3 Let H be a real Hilbert space, z € H, A : H = H a mazximally
monotone operator and C' : H — H a monotone and n-Lipschitz continuous operator
forn > 0. Let m be a strictly positive integer and, for everyi € {1,....,m}, let G; be
a real Hilbert space, r; € G;, let B; : G; = G; be a maximally monotone operator, let
D; : G; = G; be a monotone operator such that Di_1 is v;-Lipschitz continuous for
v; > 0 and let L; : H — G; be a nonzero linear continuous operator. The problem
is to solve the primal inclusion

find T € H such that z € Az + Y L; ((BiOD;)(LiT — 13)) + C7, (2. 19)

i=1
together with the dual inclusion
z—y i Liv; € Az + Cx

v; € (B,DD,L)(LZJ? — T'i), 1=1,....m.
(2. 20)

find vy € G1,.e, Uy, € Gy, Such that 3z € H : {
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Under the assumption that A 4+ C'is y-strongly monotone for v > 0 and B;” 1y
Di_1 is §;-strongly monotone with §; > 0, ¢ = 1,....m, we propose the following
modification of the iterative scheme in Theorem 2.1.

Algorithm 2.2
Initialization: Choose i > 0 such that

< min {02 02,83 V3 s 82 V2, T (e TEAIP/80)

T = :[1“/(27)7 g; = .U’/(25’L)) 1= 13 -y MM,

0 €[2/(2+ p),1] and (20, V1,05, Um,0) € HX G1 X...X Gp,.
For n >0 set: xp+1 =Jra [zn — T(Z:-il Liviy + Cxy — z)]

Yn = Tp41 + 9($n+1 - 3777,)

Vintl = JUiB_—l [Ui,n + Ui(Liyn - Di_lvi,n — 7“1‘)}, t=1,....,m.

Remark 2.7 Different to Algorithm 2.1, the step sizes are now constant in each
iteration, as it is also the case in Theorem 2.1. The major difference to the iterative
scheme in Theorem 2.1 is given by the role played by the constant p, not only in the
definition of the step sizes, but also in the way the sequence (y,)n>0 is constructed
(through the choice of 6). Notice that the situation when 6 = 1 provides the same
definition of the latter as in the algorithm stated in Theorem 2.1.

Theorem 2.3 Suppose that A+ C' is ~y-strongly monotone for v > 0, Bi_1 + Di_1
is 0;-strongly monotone for 6; > 0, i = 1,...,m, and let (T,v1,...,Usm) be a primal-
dual solution to Problem 2.8 (that is (2. 3) holds). Then the sequences generated
by Algorithm 2.2 fulfill for alln >0

m
antr —Z* + (1 =w) > Giflvin — ) <
i=1

m
W (Yler =712 + 3 dillvio - Tl
=1
m

+%w||x1 —ao)? + w3 (Li(@r — w0), vio m),

i=1

_ 2(140)
wher60<w—m<1

Proof. For all n > 0 we have

1 m
;(.’lﬁn+1 — .’13n+2) — (Z szi’nJ’»l + C.’lﬁn+1 — Z) + Cl’nJrQ € (A + C)$n+2, (2. 21)

i=1

thus, since A + C' is y-strongly monotone, (2. 20) yields

2 _1
'Y||xn+2 - ‘T” < Tnt2 — T, ;(xn+1 - xn+2)

+ <.’L‘n+2 - T, — (Z L:;Ui’nJr] + C.’L‘n+1 — Z) + C$n+2 - <Z — Z L;f‘vi> >

i=1 i=1

1
= (Tnt2 = T, Tl — Tny2) + (Tni2 — T, Copgz — Cpqn)
+> (Li(Tng2 — F),Ti — Vi) - (2. 22)
i=1

Further, by using (2. 11) and

2
_ Y _
(2nr2 =, Catnra = Capyr) < Llnss — 7| + %\|xn+2 — znll?,
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(which is a consequence of the Lipschitz property of the operator C), we get from
(2. 22) that for alln >0

1
(3 +3) honsa -3l <

1 B 1 2 - L
—Nznsr —F2 = (= = ) enrs = 2nsa P+ > (Li(@nia — B),Bi — vinga)-
2T 2r 2y

=1

After multiplying this inequality with x4 and taking into account that

1% 1 v ( u) 1 7 7 Y

alp — 4+l ) =~(14E d — L) =Lyt

2r 7’“(2T+2> T\ttg) e “(27 ) T Tty
we obtain for any n > 0

1 _ _
V(14 D) lonea =712 < Allznss =72 = Flwntz — @osall
13 (Li(Tng2 = ), Ui — Vi) (2. 23)
On the other hand, for every ¢ = 1,...,m and every n > 0, from
1 _ _ _ _
— (Vi = Vims1) + Livin — Dy i — 75 + Dy 0ing1 € (B 4+ Dy ving, (2. 24)

2

the 0;-strong monotonicity of B, Ty D; Land (2. 20), we obtain

1
0illving1 — 7|2 < <0(Ui,n — Ui nt1), Vint1 — U¢>
K2

+ (Liyn — 1 — D; Win + Dy i1 — (LiT — 14), Vi1 — 7;). (2. 25)

Further, for every i = 1,...,m and every n > 0, we have

1 _ 1 _
*(Uzn — Vin+1,Vi;n+1 — Ui> = T”vl’ﬂ - 'Ui||2

- o QU'H’Ui,n_Ui,nJrle
K3 3 1

— —|lvi g1 —Tl?

2Ui

and, since D, 1'is a v;-Lipschitz continuous operator,
1 -1 _ 0 o VP )
(Di Vint1 =D " Vin, Ving1 —7;) < 5”%%1 =4l +ﬁ\|vi,n+1 —Ui,n” - (2. 26)
1

Consequently, from (2. 25) and(2. 26) we obtain for every ¢ = 1,...,m and every

n > 0:
1 0; 9
e ) _7.l2 <
(55 + 3 ) Iosmen — il <
1 1 V2
e e e

which, after multiplying it by w (here is the initial choice of p determinant), yields

_ _ d;
i (14 ) Iinss = Bill® < 8l =l = Fllvinss = viall?

+ ,U/<Lz(f — yn)75i — Ui,n+1>- (2 27)
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We denote .
an = || Tngs1 — Z||* + Zéiﬂvi,n —5;||* Vn > 0.
i=1
Summing up the inequalities in (2. 23) and (2. 27), we obtain for all n > 0

m
0
(1 + g) Upt1 < Ay — %Hmn+2 - $n+1|\2 - ; ;HUW - “i7n+1||2

+ 1% Z iEnJrQ ) v; — Ui,n+1>~ (2 28)

Further, since y,, = 41 + 0(xp+1 — ) and w < 6, for every i = 1,...,m and every
n > 0, it holds

(Li(Tn+2 = Yn)s Vi = Vint1) = (Li (Tnt2 — Tns1 — O(Tng1 — Tn)) s Vi — Vint1)
= (Li(Tnt2 — Tnt1), Vi — Vint1) — W(Li(Tnt1 — Tn), Vi — Visn)

FW(Li(Tpt1 — Tn), Ving1 — Vi) + (0 — W) (Li(Tny1 — Tn), Ving1 — Vi)
<ALi(@ng2 — Tng1), Ui — Ving1) — W(Li(Tng1 — T0), 05 — Vip)

Tpi1 — Tp|? v; — v |
+WHL2” (,UW”L'L” n+1 n” +5z|| i,n+1 z,n” )

20; 2UWHLH
|2n41 — Tn|? Vi nt1 — Ui||2>
+(0 —w)||L; (w L; +6;
( MLl { pewl| L] 2, 20| L |

= (Li(Tnt+2 — Tn+1), Ui — Vint1) — W{Li(Tpy1 — Tn), Ui — Vip)

|2 | Znt1 — InHQ 16

|Vint1 — vinl® vint1 — 5l
’ ’ 9_ 577
20, 2 +(0-w)

—|—9,LLUJ||LZ‘| ) 2/1,(,0

Taking into consideration that

29 L; 1 60—
wZ” [ < <2wand1—|—g a—l— ww7

from (2. 28), we obtain for all n > 0

1 Y
—api1 + 5[ Tnte — npa |
w 2

0—w "N 5 _
<an+ %w”mnﬂ — | — - <Gn+1 - Z §Z||'Ui,n+1 - vi||2>

i=1

m

+,UZ (<Li($n+2 — Tnt1), Ui — Vimt1) — W{Li(Tps1 — X)), 05 — Uzn>)
i=1
Asw < 0 and api1 — 3oy % vint1 — Tl|2 > 0, we further get after multiplying
the last inequality with w™"™ the following Fejér-type inequality that holds for all
n>0

w g, 4 %“’_"llfcnw — Ty ||
m
+ pw™" Z<Lz‘($n+2 ~ Tn+1); Vi1 — i)
i=1
—n vy (n—1)
<w ap + —w” ”x"+1 - x"”

2

+ pw~ (=1 Z i(Tng1 — Tn), Vi — Tg)- (2. 29)
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Let N € Ny N > 2. Summing up the inequality in (2. 29) from n =0 to N — 1, it
yields
m

w NaN+2w Nlley — ey )? + po™ N (Li(ay g — an), vin — T3)
1=1

<ag+ o./||:101 — x0|| —l—,uwz i(T1 — ®0), V50 — Ty).
i=1

Using that
- /vL”LiH2 2 0 — 112
(Lilzn+1 = 2n) vin —Ti) 2 = = = [lzns —an|” - EHW,N — Uil
K3
1 =1,...,m,

this further yields

-N ~N+1 12 - L1 2
w an tw ZZ 3, lzn — 2Nl

i=1

m
—w N1 Z Sillvi,n — 752
i=1
m

< ag+ %w”xl —wol® + pw Y (Li(wr — o), vi0 —T). (2. 30)
=1

Taking into account the way p has been chosen, we have

hence, after multiplying (2. 30) with w™%, it yields
m
an —w Z Sillvi,n — 552

<wl (ao + w||ac1 — ;v0|| + /,sz (X1 — 20),vi0 —vi>> .

i=1

The conclusion follows by taking into account the definition of the sequence (ay,)n>0-
O

Remark 2.8 If A + C is ~-strongly monotone for v > 0 and BZ._1 + Di_1 is ;-
strongly monotone for d; > 0, i = 1,...,m, then there exists at most one primal-dual
solution to Problem 2.3. Hence, if (Z,v1,...,T,,) is a primal-dual solution to Problem
2.3, then T is the unique solution to the primal inclusion (2. 19) and (v1,...,Up,) is
the unique solution to the dual inclusion (2. 20).

Remark 2.9 The modified versions Algortihm 2.1 and Algorithm 2.2 can handle
Problem 2.1 under more general hypotheses than the original method given in [130].
Indeed, convergence was shown under more general hypotheses on the operator C'
for the first (see also Remark 2.3) and on the operators D;,i = 1,...,m for the
latter. More than that, we can provide in both cases a rate of convergence for the
sequence of the primal iterates and in case of Algorithm 2.2 one for the sequence of
dual iterates, as well, in particular also strong convergence.
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Remark 2.10 Let us relate now the results above to the ones given in [58], where
accelerated versions of the algorithm from [76] have been proposed. The algorithms
in [58] and the ones proposed in this manuscript are designed to solve the same
type of problems and under the same hypotheses concerning the operators involved
(compare [58, Theorem 3.3] with Theorem 2.2 above and [58, Theorem 3.4] with
Theorem 2.3, respectively). The rates of convergence obtained in [58] and here are
the same.

On the other hand, our schemes differ from the in [58] in some fundamental
aspects. Indeed, we propose here accelerated versions of the algorithm given in [130],
which relies on a forward-backward scheme, while in [58] the accelerated versions
are with respect to a forward-backward-forward scheme. In contrast to the forward-
backward-forward algorithm, which requires additional sequences to be computed,
the forward-backward scheme needs fewer steps, thus presents from theoretical point
of view an important advantage. This applies also for the accelerated versions of
these algorithms. The mentioned advantage is underlined also by the numerical
results presented in the subsection 2.1.4. Moreover, one can notice that in Algorithm
2.1 at every iteration when evaluating the operators B; different step sizes (in form
of the parameters o;,) for ¢ = 1,...,m, have been considered, which is not the
case with the iterative scheme in [58, Theorem 3.3] where for the evaluation of the
same operators the same step size has been used. Individual step sizes possess the
advantage that in this way the operators B;, i = 1, ..., m, can be more involved in the
algorithm and in the improvement of its convergence properties. A similar remark
can be made also for the iterative scheme in [58, Theorem 3.4] and Algorithm 2.2.

2.1.3 Convex optimization problems

The aim of this section is to show that the two algorithms proposed above and
investigated from the point of view of their convergence properties can be employed
when solving a primal-dual pair of convex optimization problems.

In order to investigate the applicability of the Algorithm 2.1, we consider the
following primal-dual pair of convex optimization problems.

Problem 2.4 Let H be a real Hilbert space, z € H, f € T(H) and h: H - R a
convez and differentiable function with a n-Lipschitz continuous gradient for n > 0.
Let m be a strictly positive integer and, for every i € {1,....,m}, let G; be a real
Hilbert space, r; € G;, g; € T'(G;) and let L; : H — G; be a nonzero linear continuous
operator. Consider the convex optimization problem

TEH

inf {f(x) + Zg,-(Li:z: — i) + h(z) — (z, z>} (2. 31)

and its Fenchel-type dual problem
sup {(f*Dh*) (z — ZL;‘m) — (97 (vi) + (vi, n))} . (2.32)
v;€G;,1=1,...m i=1 i=1
Considering maximal monotone operators
A=0f,C =Vhand B; = dg;, i = 1,...,m,

the monotone inclusion problem (2. 5) reads

find € H such that z € 0f(T) + ZL;‘(agi(L@ —r;)) + Vh(Z), (2. 33)

i=1
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while the dual inclusion problem (2. 6) reads

z—Y i Lfv; € 0f(z) + Vh(x)
v; € 8gl(L1x — Ti), t=1,...,m.
(2. 34)
If (Z,V1,...,Umm) € HX G1 X ... X Gy, is a primal-dual solution to (2. 33)-(2. 34),
namely,

find v; € Gy,...,U,, € Gy, such that dz € H : {

z— ZL;‘@ € 0f(Z) + Vh(Z) and ©; € 0g; (LT — 1), ¢ = 1,...,m, (2. 35)

i=1

then T is an optimal solution of the problem (2. 31), (¥1,...,U,,) is an optimal
solution of (2. 32) and the optimal objective values of the two problems coincide.
Notice that (2. 35) is nothing else than the system of optimality conditions for the
primal-dual pair of convex optimization problems (2. 31)-(2. 32).

In case a regularity condition is fulfilled, these optimality conditions are also
necessary. More precisely, if the primal problem (2. 31) has an optimal solution
T and a suitable regularity condition is fulfilled, then there exists (Uy,..., Uy, ), an
optimal solution to (2. 32), such that (Z,v1,...,0,,) satisfies the optimality condi-
tions (2. 35). For the readers convenience, let us present some regularity conditions
which are suitable in this context. One of the weakest qualification conditions of
interiority-type reads (see, for instance, [76, Proposition 4.3, Remark 4.4])

(r1yeeesTm) € sqri (ﬁ domg; — {(L1z,..., L) : ¢ € domf}) . (2. 36)

i=1

The condition (2. 36) is fulfilled if one of the following statements holds (see [76,
Proposition 4.3]):

(i) domg; = G;, i =1,...,m;

(ii) H and G, are finite-dimensional and there exists « € ridom f such that L;z —
r; €ridomg;, i = 1,...,m.

Another useful and easily verifiable qualification condition guaranteeing that the
optimality conditions (2. 35) hold has the following formulation:

(iii) there exists ' € dom f N(/~, L; ' (r; + dom g;) such that g; is continuous at
Lix’ — 7, i=1,...,m (see [38, Remark 2.5] and [52]).

For other qualification conditions for (2. 31)-(2. 32) we refer the reader to con-
sult [26,37,38,40,131].

The following two statements are particular instances of Algorithm 2.1 and The-
orem 2.2, respectively.

Algorithm 2.3
Initialization: Choose (Zg,v1,0,-., Um,0) € HXG1 X...XG,, and

70> 0, 0,0 >0, i=1,..,m, such that 79 < 27y/n, A >n+1,
70 iy ool Lill® < V14 710(2y —nm0) /A
0y = 1/\/1+’ro(2’y—n7'0)//\

For n >0 set: Zni1 = ProX(, ,y); [@n = (10 /A) (X0 Livig + Vh(z,) — 2)]
Yn = Tn+1 + en(anrl - xn)
Vi1 = PI0Xg, ox[Vin + 04 n(Liyn — 1)), i =1,..,m
Tn+1 = 9717—77,; 0n+1 = 1/\/1 + Tn+1<2’7 - 777_n+1)/)\
Tint1 = Oin/Ons1, i =1,...,m.
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Theorem 2.4 Suppose that f + h is y-strongly conver for some v > 0 and let
(T, U1y Um) € HX G1 X ... X Gy be a primal-dual solution to Problem 2.4. Then
the sequences generated by Algorithm 2.8 fulfill for any n > 0 the inequality

A m 2
||x7l+1 ‘ 1-7 ZUzOHL ||2 Z H'Uzn ’UIH
n+1 T104,0

< )\||SU1 - mH2 Z [[vi,o — vzHQ o1 — $0||2
- T104,0 3

To

i=1
2 « _
Jr; Z(Li($1 — o), vi,0 — Vi)-
01

Moreover, lim nr, = %, hence one obtains for (x,)n>0 an order of convergence

n——+oo
of O().

Remark 2.11 Due to the strong convexity of the objective function, the optimiza-
tion problem (2. 31) in the above theorem has a unique optimal solution (see for
example [26, Corollary 11.16]).

Remark 2.12 In case h(x) = 0 for all x € H, one has to choose in Algorithm 2.3
as initial points 79 > 0,0;0 >0, ¢ =1, ..,m, with

m
70 Zgi,OHLiHQ <1+ 27’0’)///\
i=1
and A > 1 and to update the sequence (6,,)n>0 via

0, =1//1+4 21,7/

for all n > 0, in order to obtain a suitable iterative scheme for solving the pair
of primal-dual optimization problems (2. 31)-(2. 32) with the same convergence
behavior as of Algorithm 2.3. In this situation, when chosing A=1, m=1,2=0
and r; = 0, one obtains an algorithm which is equivalent to the one presented by
Chambolle and Pock in [69, Algorithm 2].

We turn now our attention to the Algorithm 2.2 and consider to this end the
following primal-dual pair of convex optimization problems.

Problem 2.5 Let H be a real Hilbert space, z € H, f € T(H) and h: H — R a
convez and differentiable function with a n-Lipschitz continuous gradient for n > 0.
Let m be a strictly positive integer and for every i € {1,..,m} let G; be a real
Hilbert space, r; € G;, gi,1; € T'(G;) such thatl; is V[l-stmngly convez forv; > 0 and
L; : H — G; a nonzero linear continuous operator. Consider the convex optimization
problem

inf {f(x) + ) (g:00L)(Liz — ) + h(x) — (a, z>} (2. 37)

zEH .
=1
and its Fenchel-type dual problem

sup { ( *Dh* (Z_ZL*UZ> Z gz 1}2 —|—l 'Uz) <U¢,7’1‘>)}.

v;€G;,1=1,...,m
(2. 38)
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Considering the maximal monotone operators
A=90f,C=Vh,B; =0g; and D; =0l;, i =1,....m,

according to [26, Proposition 17.10, Theorem 18.15], D;l = VI} is a monotone and
v;-Lipschitz continuous operator for 4 = 1,...,m. The monotone inclusion problem
(2. 19) reads

m

find 7 € # such that z € 0f(z) + Y _ L} ((09:00L)(LiT — r:)) + Vh(T), (2. 39)
=1

while the dual inclusion problem (2. 20) reads

z— Y Liv; € 0f(z) + Vh(x)
v; € (0g;00L;)(Lix — 1r4), i = 1,...,m.
(2. 40)
If (Z,01,., Um) € HX G1 X ... X Gy, is a primal-dual solution to (2. 39)-(2. 40),
namely,

find 71 € G1,...,Uy, € Gy, such that 3z € H : {

z— Z Lf@i € 8f(f) + Vh(f) and 7; € (8g1D8l1)(Lﬁ — Ti), 1=1,...,m, (2 41)

i=1

then T is an optimal solution of the problem (2. 37), (v1,...,T,,) is an optimal
solution of (2. 38) and the optimal objective values of the two problems coincide.
Notice that (2. 41) is nothing else than the system of optimality conditions for the
primal-dual pair of convex optimization problems (2. 37)-(2. 38).

The assumptions made on [; guarantees that g;0l; € T'(G;) (see [26, Corollary
11.16, Proposition 12.14]) and, since dom(g;00l;) = domg; + doml;, ¢ = 1,...,m,
one can consider the following qualification condition of interiority-type in order to
guarantee (2. 41)

i=1

(r1yeee, Pin) € sqri (H(domgi +doml;) — {(L1z,..., Lipx) : € dom f}) . (2. 42)

Arguing as above, the condition (2. 42) is fulfilled if one of the following state-
ments holds (see [76, Proposition 4.3])

(i) domg; + doml; = G;, i = 1,...,m;

(ii) H and G; are finite-dimensional and there exists « € ridom f such that L;z —
r; € ridomg; + ridoml;, ¢ = 1,...,m.

The following two statements are particular instances of Algorithm 2.2 and The-
orem 2.3, respectively.

Algorithm 2.4
Initialization: Choose p > 0 such that

< min {2 o2, 3 e 82, V2, AT (ST TLPT)

T = /'(‘/(27)7 0; = /’('/(261); i=1,..,m,

0 e [2/(2 + u), 1] and ($0,U17Q,...,U7,L70) EHXGy X .. X Gy
For n >0 set: Z,41 = Prox, s [a:n — T( Yot Livi g + Vh(z,) — z)]

Yn = Tn+1 + G(xn—‘ﬂ - xn)

Vint+1 = ProXy, o= [Vin + 0i(Liyn — VI (vin) —1i)], i = 1,...,m.
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Theorem 2.5 Suppose that f + h is y-strongly convex for v > 0, g + 1} is ;-
strongly convex for §; >0, i =1,...,m, and let (T,T1,...,Tm) € HX G1 X ... X Gy, be
a primal-dual solution to Problem 2.5. Then the sequences generated by Algorithm

2.4 fulfill for allmn >0

m
Wangr = Z° + (1 —w) Y Sillvin —Ti* <
=1

m
W (vllar =22+ dillvso - il

=1

owler = woll? + po Y (Lilwr — 20), vi0 7)),

i=1

_ 2(140)
whereO<w—Tu<1.

Remark 2.13 Due to the strong convexity assumptions, the optimization problems
(2. 37) and (2. 38) in the above theorem possess unique optimal solutions (see for
example [26, Corollary 11.16]).

2.1.4 Numerical experiments

We illustrate the applicability of the theoretical results in the context of two numer-
ical experiments in image processing and pattern recognition in cluster analysis.

Image processing

We compare the numerical performances of Algorithm 2.3 with the ones of other
iterative schemes recently introduced in the literature for image denoising. To this
end, we treat the nonsmooth regularized convex optimization problem

inf {1 |z —b])* + aTV(m)} , (2. 43)
zeRk | 2

where TV : R¥* — R denotes a discrete total variation functional, a > 0 is a
regularization parameter and b € R¥ is the observed noisy image. Notice that we
consider images of size k = M x N as vectors € R¥, where each pixel denoted by
%, 1 <i<M,1<j<N,ranges in the closed interval from 0 (pure black) to 1
(pure white).

Two popular choices for the discrete total variation functional are the isotropic
total variation TVig, : RF — R,

M-1N-1

TVio(z) = > Y \/($i+1,j —2ij)? + (@ije1 — Tig)?
i=1 j=1
M—1 N-1
+ Z |Ziv1, N — x|+ Z |zarj+1 — Tar],
i=1 j=1

and the anisotropic total variation TViniso : R* — R,

M—-1N-1
TVaniso(2) = D D vty = Tigl + |2ige1 — @iy
i=1 j=1
—1 N-1

+ 3 lmany —zinl+ D e — gl
i=1 j=1
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(a) Noisy image, o = 0.06 (b) Noisy image, o = 0.12 Figure 2.1: The noisy
s images in (a) and (b)
were  obtained  after
adding white Gaussian
noise  with  standard
deviation o = 0.06
and ¢ = 0.12, respec-
tively, to the original
256 x 256 lichtenstein
test image. The outputs
of Algorithm 2.3 after
(3 ¢ 100  iterations  when
(c) Denoised image, o = 0.035 (d) Denoised image, o = 0.07 solving (2. 43)  with
isotropic total variation
are shown in (c) and (d),
respectively.

where in both cases reflexive (Neumann) boundary conditions are assumed. Obvi-
ously, in both situations the qualification condition stated in Theorem 2.4 is fulfilled.

Denote Y = R¥ x R* and define the linear operator L : RF — Y, z;; —
(lei,ja LQLU@j), where

- Tit1,5 — Ti 4, ifi< M o Tij+1 — Tij, ifj <N
L1.’Ez,j - { 0, ifi=M and LQ&?z,g = 0, ifj=N

The operator L represents a discretization of the gradient in horizontal and vertical
direction. One can easily check that ||L||? < 8 while for the expression of its adjoint
L* : Y — RF we refer the reader to [68].

- —10-5 isotropic TV anisotropic TV

o =0.06 o=0.12 o =0.06 o=0.12
FB 10.55s (548) 25.78s (1335)  7.83s (517)  12.36s (829)
Algorithm 2.3 3.12s (177)  4.82s (275)  2.66s (202)  3.87s (290)
FBF 19.71s (698)  48.84s (1676) 15.30s (651) 24.60s (1040)
FBF Acc 3.51s (134)  5.94s (208)  3.51s (146)  4.82s (202)
AMA 19.34s (969) 45.94s (2313) 13.58s (901) 22.14s (1448)
AMA Acc 3.38s (132)  5.31s (205)  3.42s (154)  4.80s (230)
Nesterov (dual)  4.48s (146) 6.94s (230)  3.61s (172) 5.42s (249)
FISTA (dual)  3.26s (148)  5.02s (229)  3.14s (173)  4.52s (256)

Table 2.1: Performance evaluation for the images in Figure 2.1. The entries refer,
respectively, to the CPU times in seconds and the number of iterations in order to
attain a root-mean-square error for the primal iterates below the tolerance level of
e=1075.
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For (y, z), (p,q) € ), we introduce the inner product
M N
((y,2), (p,q)) = Z Z Yi,jPi,j T 2i,54,5
i=1 j=1

and define ||(y, 2)||x = S, Zjvzl y;; + 27 ;. One can check that |- ||« is a norm
on Y and that for every x € R™ it holds

TViso(w) = || L[ x. (2. 44)
The conjugate function (|| - [[x)* : Y — R of || - || x is for every (p,q) € Y given by

o0 il <1
(- 11)* (P q) = { +00, otherwise ’

|G 0llxe = sup ((,0), (4,2)) = max \/2; + ;.

<1
ly.2)llx < 1SiM

where

Therefore, when considering the isotropic total variation, the problem (2. 43)
can be formulated as

inf {h(z)+g(Lx)}, (2. 45)
zERF
where h : RF — R,
1
he) = 3o — bl

is 1-strongly convex with 1-Lipschitz continuous gradient, and g : ) — R is defined
as

9(u,v) = al|(u, v)]|x.
One can show (see [58]) that ¢g*(p, q) = ds(p, q) for every (p,q) € YV, where

S (pq) €Y : max \/pi;+q;; <a

1<GEN
Moreover, by taking (p,q) € Y and o > 0, we have
ProX,y- (p, ¢) = projg (p, q) ,
the projection operator projg : Y — S being defined via
(Pigs Qing)

(Pijs i) — - =
max{a,,/pm +qi,j}

On the other hand, when considering the anisotropic total variation, the problem
(2. 43) can be formulated as

1<i<M, 1<j<N.

inf {h(x) +§(Le)}, (2. 46)

where the function A is taken as above and g : Y — R is defined as

9(u,v) = af (u, v)]1-
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For every (p,q) € Y we have §*(p,q) = 6[7a’a]k><[7oé7a]k(p, q) and therefore

ProXgg: (P, 4) = PrOj|_q o)t x[—a,a)* (P, @)-

We consider the lichtenstein test image of size 256 times 256 and obtain the
corrupted images shown in Figure 2.1 by adding white Gaussian noise with standard
deviation ¢ = 0.06 and o = 0.12, respectively. We then solve (2. 43) by making
use of Algorithm 2.3 and by taking into account both instances of the discrete
total variation functional. For the picture with noise level o = 0.06, we choose the
regularization parameter o = 0.035, while, in the case when o = 0.12, we opted
for & = 0.07. As initial choices for the parameters occuring in Algorithm 2.3, we
let v =035, n=1,A=n+1, 1= 0.62%, and og = W. The reconstructed
images after 100 iterations for isotropic total variation are shown in Figure 2.1.

We compare Algorithm 2.3 from the point of view of the CPU time in seconds
which is required in order to attain a root-mean-square error (RMSE) below the tol-
erance ¢ = 10~° with respect to the primal iterates. Therefore, Table 2.1 shows the
achieved results where the comparison is made with the foward-backward method
(FB) by Vu in [130], the foward-backward-forward method (FBF) due to Combettes
and Pesquet in [76] and its acceleration (FBF Acc) proposed in [58], the alternating
minimization algorithm (AMA) from [128] and its Nesterov type (cf. [105]) acceler-
ation (AMA Acc), as well as the FISTA (cf. [28]) and Nesterov method (cf. [107]),
both operating on the dual problem.

As supported by Table 2.1, Algorithm 2.3 competes well against all these meth-
ods and provides an accelerated behavior when compared with the forward-backward
method by Vi in Theorem 2.1. In both of these algorithms, we made use of their
ability to process the continuously differentiable function z + [z — b||? via a
forward evaluation of its gradient.

Clustering

In cluster analysis one aims for grouping a set of points such that points within
the same group are more similar to each other (usually measured via distance func-
tions) than to points in other groups. Clustering can be formulated as a convex
optimization problem (see, for instance, [73,92,96]). In this example, we consider
the minimization problem

: 1 &
in 52”%‘ —wil® + Y wislas — il o (2. 47)
=1

z, ER™,i=1,...,m —
1<J

where v € Ry is a tuning parameter, p € {1,2} and w;; € R represent weights
on the terms ||z; — x|, for ¢, j = 1,...,m, i < j. For each given point u; € R",
i =1,...,m, the variable x; € R™ represents the associated cluster center. Since
the objective function is strongly convex, there exists a unique solution to (2. 47).

The tuning parameter v € R plays a central role within the clustering problem.
Taking v = 0, each cluster center x; will coincide with the associated point u;. As -~y
increases, the cluster centers will start to coalesce, where two points u;, u; are said
to belong to the same cluster when x; = x;. One finally obtains a single cluster
containing all points when v becomes sufficiently large.

Moreover, the choice of the weights is important as well, since cluster centers
may coalesce immediately as -y passes certain critical values. In terms of our weight
selection, we use a K-nearest neighbors strategy, as proposed in [73]. Therefore,
whenever ¢, j = 1,....,m, i < j, we set the weight to w;; = ij(- exp(—o||lz; — z;||3),
where

K , if j is among i’s K-nearest neighbors or vice versa,
g 0, otherwise.
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" J, . Figure 2.2: Clustering two interlocking
. iv'?; MALAAM half moons. The colors (resp. the shapes)
wer v':'gv show the correct affiliations.
“' .:. v;;v’ s
vaw .o..~ Vva v ) .:.
@
v &H° (X ]
gt ¥
°C o § o0
L] ‘ ®
p=27=52 p=1~vy=4
e=10"* e=10"8 e=10"1 e=10"8
FB 2.48s (1353)  5.72s (3090)  2.01s (1092)  4.05s (2226)
Algorithm 2.3 2.04s (1102) 4.11s (2205) 1.74s (950) 3.84s (2005)
FBF 7.67s (2123)  17.58s (4879)  6.33s (1781)  13.22s (3716)
FBF Acc 5.05s (1384)  10.27s (2801)  4.83s (1334)  9.98s (2765)

(
AMA 13.53s (7209)  31.09s (16630)  11.31s (6185)  23.85s (13056)
AMA Acc 3.10s (1639)  15.91s (8163)  2.51s (1392)  12.95s (7148)
Nesterov (dual)  7.85s (3811) 42.69s (21805)  7.46s (3936) > 190s (> 109)
FISTA (dual)  7.55s (4055)  51.01s (27356)  6.55s (3550)  47.81s (26069)

Table 2.2: Performance evaluation for the clustering problem. The entries refer
to the CPU times in seconds and the number of iterations, respectively, needed in
order to attain a root mean squared error for the iterates below the tolerance e.

We consider the values K = 10 and ¢ = 0.5, which are the best ones reported in [73]
on a similar dataset.

Let k be the number of nonzero weights w;;. Then, one can introduce a linear
operator A : R™" — R*¥" such that problem (2. 47) can be equivalently written as

inf {h(x)+ g(Az)}, (2. 48)

Z'GR"L"

the function h being 1-strongly convex and differentiable with 1-Lipschitz continuous
gradient. Also, by taking p € {1,2}, the proximal points with respect to g* admit
explicit representations.

For our numerical tests we consider the standard dataset consisting of two in-
terlocking half moons in R?, each of them being composed of 100 points (see Figure
2.2). The stopping criterion asks the root-mean-square error (RMSE) to be less
than or equal to a given bound & which is either ¢ = 107* or £ = 1078, As tuning
parameters we use v = 4 for p =1 and v = 5.2 for p = 2 since both choices lead to
a correct separation of the input data into the two half moons.

By taking into consideration the results given in Table 2.2, it shows that Al-
gorithm 2.3 performs slightly better than the forward-backward (FB) method pro-
posed in [130]. One can also see that the acceleration of the forward-backward-
forward (FBF) has a positive effect on both CPU times and required iterations
compared with the regular method. The alternating minimization algorithm (AMA,
cf. [128]) converges slow in this example. Its Nesterov-type acceleration (cf. [105]),
however, performs better. The two accelerated first-order methods FISTA (cf. [28])
and the one relying in Nesterov’s scheme (cf. [107]), which are both employed on
the dual problem, perform surprisingly bad in this case.
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2.2 On the convergence rate of a forward-backward
type primal-dual splitting algorithm for con-
vex optimization problems

The aim of this section is to investigate the convergence property of the sequence of
objective function values of the primal-dual splitting algorithm stated in Theorem
2.1 in the context of convex optimization problems and their Fenchel-type dual.
By making use of the so-called restricted primal-dual gap function attached to the
problem, we are able to prove a convergence rate of order O(1/n). The results are
formulated in the spirit of the ones given in [69] in a more particular setting.

The starting point of our investigation is the following problem.

Problem 2.6 Let H be a real Hilbert space, z € H, f € T(H) and h : H — R
a convex and differentiable function with a n~'-Lipschitz continuous gradient for
n > 0. Let m be a strictly positive integer and for i = 1,...,m, let G; be a real
Hilbert space, r; € G;, gi,1; € T(G;) such that l; is v;-strongly convex for v; > 0 and
L; : H — G; a nonzero linear continuous operator. Consider the convex optimization
problem

xléqu{ { ) + Zl ¢:00) (Lix — ;) + h(z) — (=, z}} (2. 49)

and its Fenchel-type dual problem

sup { (£0On%) (z— E L} w) E (g7 (v3) + 15 (v) + (vi,rl))}.
v;€G;,i=1,..,m — P
(2. 50)

The following result is an adaption of [130, Theorem 3.1] to Problem 2.6 to the
error-free case and when A\, = 1 for all n > 0.

Theorem 2.6 (see [130]) In Problem 2.6 suppose that
z € ran <8f + ZL;‘((agi[lali)(Li c—r)) + Vh) . (2. 51)
i=1

Let 7 and g;, 1 = 1,...,m, be strictly positive numbers such that

2-min{r Y, o7 ..., 0t} - min{n, v, v} [ 1—

7Y oillLif? | > 1. (2. 52)

i=1
Let (20, 01,05, Um,0) € HX G1 X...x Gy, and for alln > 0 set:
Tng1 = ProxX, s [2n — 7( Y1ty Livin + Vh(zn) — 2)]

Yn = 2Tp41 — Tn
Vi1 = PrOX,, o= Wi + 0i(Liyn — VI (i) — 1)), 0 =1,...,m.

Then the following statements are true:

(a) there exist T € H, an optimal solution to (2. 49), and (U1,...,0m) € G1 X...X
Gm, an optimal solution to (2. 50), such that the optimal objective values of
the two problems coincide, the optimality conditions

z— Z Lf@i S 6,}0(5) + Vh(f) and v; € (6gzDo”'lz)(L@ — 7“1'), 1=1,....m

(2. 53)
are fulfilled and x,, = T and (V1,nseery VUmyn) = (V1,0, Tm) GS N — +00;
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(b) if h is strongly convez, then x, — T as n — +00;
(c) if ¥ is strongly convex for some i € {1,...,m}, then v; , — T; as n — +oo.

Before we proceed, some comments are in order.

Remark 2.14 Let us notice that the relation (2. 51) in the above theorem is ful-
filled if the primal problem (2. 49) has an optimal solution and the regularity con-
dition (2. 42) holds. Further, let us discuss some conditions ensuring the existence
of a primal optimal solution. Suppose that the primal problem (2. 49) is feasible,
which means that its optimal objective value is not identical +occ. The existence of
optimal solutions for (2. 49) is guaranteed if, for instance, f+h+ (-, —z) is coercive
(that is lim ;| »oo (f + A+ (-, —2))(2) = 4+00) and for all i = 1,...,m, g; is bounded
from below. Indeed, under these circumstances, the objective function of (2. 49)
is coercive (use also [26, Corollary 11.16 and Proposition 12.14] to show that for
all i = 1,...,m, g;0l; is bounded from below and ¢;[I; € T'(G;)) and the statement
follows via [26, Corollary 11.15]. On the other hand, if f + h is strongly convex,
then the objective function of (2. 49) is strongly convex, too, thus (2. 49) has a
unique optimal solution (see [26, Corollary 11.16]).

Remark 2.15 In case z = 0, h =0, r; = 0 and ; = dyy for all i = 1,...,m, the
optimization problems (2. 49) and (2. 50) become

rEH .
=1

inf {f(x) +) (o oLi)(x)} (2. 54)

and, respectively,

sup {—f* (—ZL;*@Z) —Zgl*(vl)} (2. 55)
i=1 i=1

v;€Gi,i1=1,..,m

It is mentioned in [130, Remark 3.3] that the convergence results in Theorem 2.6
hold if one replaces (2. 52) by the condition

Ty il Li]* < 1. (2. 56)
i=1

The convergence (of an equivalent form) of the algorithm obtained in this setting
has been investigated also in [52]. Moreover, the case m = 1 has been addressed
in [69)].

2.2.1 Convergence rate for the objective function values

In the setting of Problem 2.6 we introduce for By C H and By C G X... X G, giveg
nonempty sets the restricted primal-dual gap function G, p,: HxG1 x... x G, = R
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defined by

gBl,Bz (m U1, ~-~7Um) =

" 7%)632{2 — v vl) + ) + SRS AL 9)}

i=1 i=1

B ensi o Sl

=1 =1

S ) SRR LT s>>]

{2 (60 + 1200 + ()
+mlg£1{i Lix' v;) + f(2) + h(z') — <z’,z>}}.

Remark 2.16 If we consider the primal-dual pair of convex optimization problems
from Remark 2.15 in case m = 1, then the restricted primal-dual gap function
defined above becomes

gB17B2 (‘T7 Ul) =

sup {(Lx — vy + f(x) + h(x) — (z,2) — (g*(v') + l*(v’)>}

v'E€Bs

— inf {(Lm’ —r,v1) + f(2') + h(x') — (2/,2) — (g*(vl) + h*(v1)> } ,

z'eB;

for By C H and By C Gy, which has been considered in [69)].
Remark 2.17 The restricted primal-dual gap function defined above has been used
in [58] in order investigate the convergence rate for the sequence of objective function
values for the primal-dual splitting algorithm of forward-backward-forward type
proposed in [76].

Finally, notice that if (Z,71,...,0p) € H X G1 X...X Gy, satisfies the optimality
conditions (2. 53), then Gp, B, (T, V1, ..., Um) > 0 (see also [58,69)]).

We are now able to state the main result of this section.
Theorem 2.7 In Problem 2.6 suppose that
z € ran <3f + ZL’{((agiDali)(Li c—1y)) + Vh) . (2. 57)
i=1

Let 7 and o;, i = 1,...,m, be strictly positive numbers such that

min{r " o7t 00t min{n, vy, v} (1 -

Y ol L2 | > 1. (2. 58)
i=1

Let (20,v1,05-+,Um,0) € HX G1 X...X Gy and for all n > 0 set:

Tpy1 = ProX, ¢ [xn — 7'( Z:ll Liv; 4+ Vh(zy,) — z)]
Yn = 2Tpq1 — T
Vi1 = ProXg, g« [Vi + 0i(Liyn — VI (vin) —13)], i =1,...,m.

Then the following statements are true:
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(a) there exist T € H, an optimal solution to (2. 49), and (U1,...,0m) € G1 X...X
Gm, an optimal solution to (2. 50), such that the optimal objective values of
the two problems coincide, the optimality conditions

2= Li0; € 0f(T) + VAET) and v; € (9g;00L)(LiT —1y), i =1,...,m
i=1
(2. 59)
are fulfilled and z,, =7 and (Vi n,..., VUmn) = (U1,...,Tm) as N — +00;

(b) if By € H and By C GiX... X Gy, are nonempty bounded sets, then for

N _ 1 N N _ 1 N N , N N
TV = F D1 Tl and v = > .4 Vin we have (7,01, .., v,) —

(T,71,...,Tpm) as N — +o0 and for all N > 2

C(By,B
gB1,Bz($N7U{V7 ) 717\{) < Ma
N
where
1 Tznl Jl||LZ||2
C(By,Bs) = {7 - 2} i=1 )2
(B1, Bs) sup o llen =] ¢ + 5 |21 — mol|® +

sup {Z ||v10 vil? +Z i(@1 — 20), vio —

(v1,...,9m )EB2

(c) if gi is Lipschitz continuous on G; for every i = 1,...,m, then for all N > 2
we have

0 < (f(évN) + Z(gﬂl )Lz —ri) + ha™) — (¥, Z>>

- (f(l’) + Z(gle NLiT — 1) + h(T) — (T, Z>)

C(By, Bs)

T (2. 60)

where By is any bounded and weak sequentially closed set containing the se-
quence (p)nen (which is the case if for instance By is bounded, convex and
closed with respect to the strong topology of H and contains the sequence
(Zn)nen) and Bg is any bounded set containing dom g7 x ... x dom g}, ;

(d) if dom g;+doml; = G; for everyi = 1,...,m and one of the following conditions
1s fulfilled:

(d1) H is finite-dimensional;
(d2) G; is finite-dimensional for everyi=1,...,m;
(d3) h is strongly convex;

then the inequality (2. 60) holds for all N > 2, where By is taken as in (c)
and Bs is any bounded set containing IIT* | Un>o 0(g;00;) (Lix™ —1;).

Proof. (a) The statement is a direct consequence of Theorem 2.6, since condition
(2. 58) implies (2. 52).
(b) The fact that (z™, v, ..., v]Y) = (Z,71, ..., Um) as N — +oo0 follows from the

Stolz-Cesaro Theorem. Let us show now the inequality concerning the restricted
primal-dual gap function. To this aim we fix for the beginning n > 0.

Ui>}§
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From the definition of the iterates we derive

i=1

1 .
~(@nt1 = Tna2) = (Z Livint1 + Vh(zni1) — Z) € 0f(Tnt2),

hence the definition of the subdifferential delivers the inequality

1 G
flz) > flant2) + ;(wnﬂ — Tpy2, T — Tpt2) — < § Livipt1 — 2,0 — xn+2>
=1

—(Vh(xpi1), 2 — Tpya) Vo € H. (2. 61)

Similarly, we deduce

1 * * .
—_(vi,n — Ui,n+1) + Liyn — Vll (Ui,n) -1, € 8gi (’Ui,n-i-l) 1=1,...,m,

K2

hence for all i = 1,...,m

1
gi(vi) > g (Vint1) + ;(Ui,n — Vin415 Vi — Ving1) + (Liln — T4, Vi — Vi ny1)

2

—(VI; (vin), vi — Vint1) Yvi € G (2. 62)

We claim that
-1

h(x) — h(zpnt2) — (VA(Tpi1), & — Tpi2) > —%Hxn_m — Zni1])? Vz € H. (2. 63)

Indeed, we have

h(z) — h(znt2) = (VA(Zn11), @ — Tny2)
(@nt1) + (VA(@nt1), @ — Tns1) — M(@nt2) = (VA(@p41), 2 — Tga)
( 1) = WM@ni2) + (VA(Tpi1), Tnyo — Tngr)

-
> —TH%H — Tppa?,

Ln+
Ln+

n
n

where the first inequality holds since h is convex and the second one follows follows
from Lemma 1.4. Hence (2. 63) holds.
Similarly, one can prove that for all i = 1,...,m

-1
v
U (i) =15 (Ving1) = (VI (Viin), i —Viny1) > —17||vi,n+1—vi,n\|2 Vu; € Gi. (2. 64)

By adding the inequalities (2. 61)—(2. 64) and noticing that

X — X 2 xr — T 2 xr — X 2
(Tos1 — Tnsos o — Tya) = — [ n [n+1 — Tne| n |znt2 — 2|
2 2 2
and
Nvin —will® | vinar —vinll® | vieen — il ?

(Vi = Vint1, Vi — Vipg1) = 5 + 5 9 )
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we deduce that for all (z,v1,...,v) € HX G1 X...X G

||33n+1 - x||2 Z Hvln U%H
27

> ”anr;T_ x||2z+1z Hvixnglai_ Ui||2
+ 1 273- |Zn+1 — $n+2|| + ; T 101 [vi,nt+1 — Uz‘,nHz
+ Zm: (Littnia — 15,05) + [(@nia) + h(@ns2) — (@nia, 2 Z (g7 (i) + 12 )))
im1 i=1
(Em: =7, Viny1) + f(z) + h(z) Z (gz Vint1) + lf(vi,nﬂ)))
im1 i=1
+ Zm:@i(ifnw — Yn)s Vin+1 — Vi)
=1

Taking into account the definition of y,,, we get the following estimation for the last
term:

<Li(xn+2 - yn)v Vin+1 — 'Ui>
=(L;i(nt2 — Tnt1), Vint1 — Vi) — (Li(Tnt1 — Tn), Vin — 04)
+ (Li(Tn41 — Tn)s Vin — Ving1)
>(Li(Tny2 = Tnt1), Vi1 — Vi) — (Li(Tot1 — Tn), Vin — vi)

UiHLi||2 2 Tzzilai”Li‘P 2
<2 TZ£10i||LiH2”$n+l Tnll® + 20, ||Uz,n+1 vinll® |,

hence we obtain the inequality

el i [vin — vil|?
2T . QUi

||xn+2 _$||2 Z ||Uz n+ Ui||2
20

K2

1—n~ " ol Li||?
T s — g = Y2z e
2T 2T
m m
1—v; Lo Y oyl Ll
+Z Z 2 ZZ_l L] Hvi7n+1_vi,n||2
g;

+ Z Lm0 — 14, ”1> + f(@Zny2) + h(Tny2) — mn+2» Z (gz v;) + 17 UZ)>>

i=1

I
s

7

(B

m

+ Z (Li(Tnt2 = Tni1), Vimsr = vi) = (Li(@ng1 = Tn), Vi — 03)).

i=1

Ms

= Tis Vi) + f(2) + h(2) = (2, 2) —

m

(07 (i) + l;-"(vz«,m)))

Il
-

i=1
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Summing up the above inequality from n = 0 to N — 1, where N € N/ N > 2, we
get

|331 - 53”2 + Z ”UzO - U?,HQ

S lzne - 30||2 n Z |vi,n — vill?

2T p 20;

N-1 —1 -1

1—n="'7 1—n="'7
+ Z T”%H — a|* + TH’IN — oyl

Ll ™S 12
TZZ IUZH Z Hﬂﬁ an2_ TZz:101|| ’L” ||

_ 2
2T z1 = o

=

~ — 1—v o — \/T21 1JZ||LH 2
+ Z 920, H Vi,n+1 Uzn”

i=1

3
Il
=)

m

| +
(= 11= 1
NE

3
Il
_
)
-

(Lix —riyvin) + f(z)+h i (gl Vin) + 17 (vg, n)))

1

Il
s

i

3
Il
—

3

+

IR

(<L¢(SCN+1 - SSN)7’U¢,N - Ui> - <L¢(1’1 - xo),vi,o - Uz>)

=1

Further, for the last term we use for all i = 1, ..., m the estimate

(Li(xN41 — TN), v, N — ;)

(= o L) s, TR L :
= m — =1 " P70 v; —
= ( 27—Zi:10i||Li||2 ||CUN+1 :CNH + 201-(1—7]*17) || N ||

(notice that 1 — =17 > 0 due to (2. 58)) and conclude that for all (x, vy, ...,v) €
Hx G X...X G,

2 LU TS mo 2
lzns1 — | +Z n T 721:1%” il lvs.n

— a2
2T . 20’1‘ UZ”
i=1
N-1 _ ™
1=t = /7307, o;||Li||?
+ 5 Zz_l Z” Z” ||$n+1_an2
T
n=1
N-1 ™
1—v; Loy T oyl L |2
+ Z l 2 2= ot Ll Hvi,nJrl_Ui,nH2
g
n=0 i=1

i

S

m

"
Mz

)

3
Il
—

1 i=1

=

-2

n=1

||S61*fv||2 vaw vil|?

T L
7212210’“ ZH |lz1 — xo ||2+E i(T1 — 20), vi,0 — vi).
-

i(Lix — 1, Vin) + flz)+ R i (gZ Vin) + 17 (vg, n)))

i=1 =1

+

Z L iTn+1 — T4, U7> + f(xn+1) + h(zn—&-l) In+1, Z (91 Ul Jrl Uz))

(Z (Lixpy1 — 1i,0) + f(@ne1) + B(@ny1) — (Tpa1, 2 Z (gz v;) + 17 ( vz))

)

)
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We can discard the first four terms in the left-hand side of the above inequality,
since due to (2. 58) we have

L—n'r— |7 aillLi]]> > 0 (2. 65)
and for alli=1,...,m

1-— yi_loi — 7'2:(7’1'||Li||2 > 0. (2. 66)

Thus we obtain for all (z,vy,...,vm) € HX G1 X...x G, that

N m m
> <Z<Lixn+1 =7, 0) + f(@ni1) + B@nt1) = (Tng1,2) = (92 vi) + 1 ( vz)))

= i=1 i=1

—z%z — iy vin) + (@) + @%@ﬁ—Z@MW+W@®
i=1

i=1

2 m 2 m
T —T Vio — Ui Ty .ol Ls
S || 127— || E || 7«1020-‘ 'L” Z’L—l 1” 7,|| —z || z : xl 1:() 'l}i70*U1'>-
T 7

2T

The conclusion follows by passing into the previous 1nequahty to the supremum
over ¢ € By and (v1,...,vm) € By and by taking into account the definition of
(xN, v, ... vY) and the convexity of the functions f,h and g/, hf,i=1,...m

(¢) According to [37, Proposition 4.4.6], the set dom g} is bounded for i =
1,...,m. Since B is weak sequentially closed and z,, — T, we have T € Bj.

Let be N > 2 fixed. We get from (b) that

C (B, Bs)

N >GN,oN, o)) >

» Um

F@™) + h(z™ +Z sup  {(Lix™ —ri,v7) — (g7 (v]) + 1 (v]) }

i—1 v,€dom g7

—<Z<Lx ri, vl ) + f(@) + h(z) - (T, 2) ~ (gf(va)+lf(va))>~

i=1 i=1

Further, since dom !} = G; for i =1, ...,m, it follows

sup  {(Lia™ — i, vf) — (g7 (v7) + 1 (v) }

v, €dom gF

— s (LY ) — (g (0) + B}

v;€dom gFNdom I}

= (g7 + 1) (Liz™ —r5) = (706 ) (Lia™ — ri) = (g:0L) (Lia™ — 1),

where we used [26, Proposition 15.2] and the celebrated Fenchel-Moreau Theorem
(see for example [26, Theorem 13.32]). Furthermore, the Young-Fenchel inequality
(see [26, Proposition 13.13]) guarantees that for all i = 1,...,m

9 W)+ (W)~ (Liz—rs,0]) = (9:0ha)" (oY) —(LiT—ri,0]) > —(g:0L) (LT —14)

and the conclusion follows.
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(d) We notice first that each of the conditions (d1),(d2) and (d3) implies that
LizN — L,z as N — 400 for all i = 1,...,m. (2. 67)

Indeed, in case of (d1) we use that %V — T as N — +oo, in case (d2) that
LiaN =~ L;7 as N = +00 (which is a consequence of 2N ~Fas N = +00), while
in the last case we appeal Theorem 2.1(b).

We fix i € {1,...,m} and show first that Un>19(g;:00;)(L;z™ —7;) is a nonempty
bounded set. The function g;00I; belongs to I'(H), as already mentioned in Re-
mark 2.14. Further, as dom(g;0l;) = domg; + doml; = G;, it follows that g;l;
is everywhere continuous (see [26, Corollary 8.30]) and, consequently, everywhere
subdifferentiable (see [26, Proposition 16.14(iv)]). Hence, the claim concerning the
nonemptiness of the set Uy>19(g;01;)(L;x™Y — ;) is true. Moreover, since the sub-
differential of g;0; is locally bounded at L,T — r; (see [26, Proposition 16.14(iii)])
and Lz —r; = L;T —r; as N — 400 we easily derive from [26, Proposition
16.14(iii) and (ii)] that the set Unx>10(g;0L;) (L™ — r;) is bounded.

Now we prove that the inequality (2. 60) holds. Similarly as in (c), we have

C (B, B2)
N

F@V) + (@) = (7, 2)

zg(a:N,v{V,. vN)z

Y Ym

m

+y sup {{Lia™ —ri,v) — (g7 (v]) + 17 (v]) }
i=1 v;EUN/ZQB(giDli)(LizN/773)

- <Z<Liw—mva>+f(w)+h(9ﬁ) —(T,2) —Z(gé‘(va)ﬂf(va)))

i=1 i=1
Further, for all ¢ = 1,...,m and for all N > 1 we have

sup {(Lix™ —ri, ) — (97 (V) + 15 (V) }
”EGUN/zza(gz:Dli)(LﬁN/—Tz')

Y

sup {{Lia™ —ri, o) — (g7 () + 17 (v]) }

= (¢:0) (L™ — 1),
where the last equality follows since 9(g;l;)(L;x™Y —r;) # 0 via

(Lix™ —rs,v}) = (g7 (0)+1; (v))) = (L™ —rs, v]) = (9:0hs)* (v]) = (¢:00) (Lix™ —r;),

which holds for every v} € 9(g;0l;)(L;z™N —r;) (see [26, Proposition 16.9]).
Using the same arguments as at the end of the proof of statement (c), the
conclusion follows. O

Remark 2.18 When considering the particular instance as described in Remark
2.15 with the additional assumption m = 1, similar results to Theorem 2.7 have
been reported in [69] for an equivalent form of the algorithm.

Remark 2.19 The conclusion of the above theorem remains true if condition (2. 58)
is replaced by (2. 52), (2. 65) and (2. 66). Moreover, if one works in the setting
of Remark 2.15, one can show that the conclusion of Theorem 2.7 remains valid if
instead of (2. 58) one assumes (2. 56).

Remark 2.20 Let us mention that in Theorem 2.7(c) and (d) one can chose for
B; any bounded set containing 7.
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Remark 2.21 If f is Lipschitz continuous, then, similarly to Theorem 2.7(c), one
can prove via Theorem 2.7(b) a convergence rate of order O(1/n) for the sequence
of values of the objective function of the dual problem (2. 38). The same conclusion
follows in case f has full domain and one of the conditions (d1), (d2) and (d3’) is
fulfilled, where (d3’) assumes that [} is strongly convex for any ¢ = 1,...,m.

Remark 2.22 For more recent advances concerning convergence rates for the ob-
jective function values via primal-dual splitting techniques we invite the reader to
consult [81,82], where also nonergodic convergence results are reported and also
to [72], where a multi-step acceleration scheme in the sense of Nesterov is incorpo-
rated into the primal-dual method in order to increase the speed of convergence.

2.2.2 Numerical experiments

We illustrate the theoretical results obtained in the previous subsection by means
of a problem occurring in imaging. For the applications discussed in this section
the images have been normalized in order to make their pixels range in the closed
interval from 0 to 1.

TV-based image deblurring

The considered numerical experiment addresses an ill-conditioned linear inverse
problem which arises in image deblurring. For a given matrix A € R"*™ describing
a blur operator and a given vector b € R™ representing the blurred and noisy image,
the task is to estimate the unknown original image T € R" fulfilling

AT =~ b.
To this end we solve the following regularized convex minimization problem

anf (1A bl + AT Viso(a) + [12]%)}. (2. 68)

where A > 0 is a regularization parameter and TVis,, : R® — R is the discrete
isotropic total variation functional. In this context, € R"™ represents the vectorized
image X € RM*N where n = M - N and x;,; denotes the normalized value of the
pixel located in the i-th row and the j-th column, fori =1,... M and j=1,...,N.

We invite the reader to consult the section corresponding to the numerical ex-
periments in chapter 2 for the definition of the isotropic total variational functional.
By using also the notations specified there, the optimization problem (2. 68) can
be written in the form of

inf {£(2) + g1(A7) + ga(Le) + h(a)},

where -
fR" >R, f(z) = 0,1 (z),
g1 :R" =R, g1(y) =Ily — b,
g92: Y = R, g2y, 2) = Al(y, 2) |l
and

h:R" > R, h(z) = Al|z|)?

(notice that the functions /; are taken to be doy for i = 1,2). For every p € R", it
holds

9 (p) = 8—11»(p) + p"b,
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(a) Original image (b) Blurred and noisy image (c¢) Reconstructed image

Figure 2.3: Figure (a) shows the original 256 X 256 boat test image, figure (b) shows
the blurred and noisy image and figure (c) shows the averaged iterate generated by the
algorithm after 400 iterations.

while for every (p,q) € Y, we have

95(p,q) = ds5(p, q),

with S = {(p,q) € Y : [|(p, q)||x+ < A}. Moreover, h is differentiable with n=1 := 2\-
Lipschitz continuous gradient. We solved this problem by the algorithm considered
in Theorem 2.7 above and to this end we made use of the following formulae

prox., ¢ (z) = projjg 4j» (¥) Vo € R"
prox. - (p) = proji_y 1= (p — 7b) Vp € R"

prox., - (p, q) = projs (p,q) V(p,q) €Y,
where v > 0 and the projection operator projg : Y — S is defined as (see [58])

Piatia) __ y<i<mi<i<n,

(pijs 4ig) = A
max {)\, \ /p?,j + qzj}

For the experiments we considered the 256 x 256 boat test image and constructed
the blurred image by making use of a Gaussian blur operator of size 9 x 9 and
standard deviation 4. In order to obtain the blurred and noisy image we added a
zero-mean white Gaussian noise with standard deviation 1073. Figure 2.3 shows
the original boat test image and the blurred and noisy one. It also shows the image
reconstructed by the algorithm after 400 iterations in terms of the averaged iterate,
when taking as regularization parameter A = 0.001 and by choosing as parameters
o1 = 0.01,00 = 0.7,7 = 0.49. On the other hand, in Figure 2.4 a comparison of
the decrease of the objective function values is provided, in terms of the last and
averaged iterates, underlying the rate of convergence of order O(1/n) for the latter.
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10°

[ —— Last iterate
- - - Averaged iterate|
- - O(ln)

10° 10" 10°
iterations

Figure 2.4: The figure shows the relative error in terms of function values for both the
last and the averaged iterate generated by the algorithm after 400 iterations.
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Chapter 3

Splitting algorithms
involving inertial terms

In this chapter we introduce and investigate several inertial-type proximal-splitting
algorithms designed for solving highly structured monotone inclusion problems. In
Section 3.1 we propose an inertial version of the forward-backward-forward proxi-
mal splitting algorithm, while in Section 3.2 the attention is focused on primal-dual
algorithms of Douglas-Rachford-type. In Section 3.3 we formulate and investigate
an inertial forward-backward algorithm in the context of solving nonconvex opti-
mization problems with analytic futures.

The following convergence results will be used in the proof of the main results
in this chapter. These statements can be seen as generalizations of Lemma 1.2 and
turn out to be useful for proving the first property in the Opial Lemma.

Lemma 3.1 (see [3-5]) Let (on)nen, (0n)nen and (on)nen be sequences in [0, +00)
such that ©ni1 < ©n + an(@n — Pn_1) + 0, for alln > 1, 37 0p < +o0 and
there exists a real number o with 0 < o, < a < 1 for all n € N. Then the following
statements hold:

(1) Y pz1len = pn-aly < +oo, where [t] = max{t,0};
(i) there exists p* € [0,+00) such that lim,_, .o ©n = ©*.
An easy consequence of Lemma 3.1 is the following result.

Lemma 3.2 Let (on)nen, (0n)neN; (@n)nen and (Bn)nen be sequences in [0, 4+00)
such that ony1 < —Bn + on + an(Pn — Pn_1) + 0y for alln >1, 7\ 0n < 400
and there exists a real number a with 0 < a,, < a < 1 for all n € N. Then the
following statements hold:

(i) D psilen — @n_1]+ < 400, where [t]+ = max{t,0};

(i1) there exists ©* € [0,400) such that lim,_, 4o @n = ©*;

(iti) 3 e Bn < +00.

3.1 Tseng’s type inertial primal-dual algorithms
for monotone inclusions

In this section we propose an inertial forward-backward-forward-type proximal split-
ting algorithms associated to a monotone inclusion problem. An essential argument

55
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in the favor of Tseng’s type splitting algorithms is given by the fact that they can
be used when solving a larger class of monotone inclusion problems. This is for
instance of importance when considering primal-dual splitting methods, as shown
by the approach described in [62].

3.1.1 An inertial forward-backward-forward splitting algo-
rithm

This section is dedicated to the formulation of an inertial forward-backward-forward
splitting algorithm which approaches the set of zeros of the sum of two maximally
monotone operators, one of them being single-valued and Lipschitz continuous, and
to the investigation of its convergence properties.

Theorem 3.1 Let A:H = H be a mazimally monotone operator and B : H — H
a monotone and [(-Lipschitz continuous operator for some B > 0. Suppose that
zer(A + B) # 0 and consider the following iterative scheme:

Pn = J)\ A[xn - AnBJ;n + o n(xn - xn—l)]
vn > 1 n 3
( - ) { Tpi1 = Pn + )\n(an - Bpn) + O‘2,n(mn - zn—l)v

where xg and x1 are arbitrarily chosen in H. Consider \,oc > 0 and a1,as > 0
such that

>1
1202 + 8(oy +az) +do+2 ' =

(3. 1)

1203 + 9(a1 +az) +40 <1 and A < A, <

1 [1-1202 —9(a1 + ag) — 4o
g
and for i = 1,2 the nondecreasing sequences (¢ n)n>1 fulfilling
0<aip<a;Vn>1.
Then there exists T € zer(A + B) such that the following statements are true:
(0) S [Tns1 = @all> < +00 and 3,2, llzn = pul? < +o;
(b) T, =T and p, =T as n — +00;
(¢) Suppose that one of the following conditions is satisfied:

(i) A+ B is demiregular at T;

(i) A or B is uniformly monotone at T.

Then x, — T and p,, — T as n — +o0.

Proof. Let z be a fixed element in zer(A+ B), that is —Bz € Az, and n > 1. From
the definition of the resolvent we deduce
1 1 n

r(xn 7pn) - an + /\7 (an — xn—l) S Apn

Further, taking into account the relation between p,, and z, 1 in the algorithm, we
obtain L N
(5] [6%)
7(xn _ xn+1) — Bp, + —n - en
An An

The monotonicity of A delivers the inequality

(Tp, — Tp—1) € App. (3. 2)

1 Q1+ Q2
OS <($n_1’n+1)_Bpn+172’

An )\n (wn_xn1)+Bzvpn_Z>a
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hence

0< 1
< T
o +«

+w<xn—xn_1,pn—2>-

n

Since B is monotone, we have
(Bz — Bppn,pn — 2) <0.

Moreover,

<l'n — Tn+1,Pn — Z> = <xn — Tn+4+1,Pn — ITL+1> + <J?n -

||pn — -Tn+1H2

_ ||37n_$n+1||2 +

<-Tn — Tp+1,Pn — Z> + <BZ - Bpnapn - Z>

Tn41,Tn+1 — Z>

2 2
+

lon = 2l flzn = @npal® flzngs — 2]

2 2

In a similar way we obtain

(Tp — Tp—1,Pn — 2) = (T — Tp—1,Tp — 2) + (Tp, — Tp—1,Pn —

_ [2n = 2n1]? + zn — 2|12 _ [zn—1 — 2|
2 2
+ [t _ [2n — @n1]? _ |#n —
2 2

Further, by using that B is 8-Lipschitz continuous, we have

|Zn+1 _pn||2 < QAiBQHxn _pn||2 + 2a%,n||mn - xn—1||2

and

lpn — mn—1||2 < 2|z, _an2 + 2|z — xn—1||2-

The above estimates together with (3. 3) imply

1 CY1n"|_042n 2
0< ZLn T 7an n —
< (% + St ) o — 2|

_L”m _2”2_m
2, 2\,

lzn—1 — 2

2, An 2An

2
a2,n a1 n + Q2 n 2
Tp — Tp—
+—< T ) zn — zn-1l"

+ <>‘n52 — L A1n + Q2.n A1,n + A2,n

from which we further obtain, after multiplying with 2\,,,
[2n41 = 212 = (L4 a1 + azp) |20 = 2% + (@10 + azn)[20-1 — 2|2
<—(1- Q1n — Q2n — 2/\$Lﬁ2)||xn _an2

+ 2(045,71 + ot O‘Qm)”xn - xnlez

) T

o7

(3. 4)

By using the bounds given for the sequences (Ay)n>1, (@1,n)n>1 and (a2 p)n>1,

one can easily show by taking into account (3. 1) that

2)\72162 <l—ag—ay<1-— A1p — Q2 n,
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thus
1-— a1y — Q2 — 2)\%,82 > 0.

Furthermore, since

lZnt1 — anQ = |lpn — Tn + An(Bzy — Bpn) + O‘Z,n(zn - In—l)HQ
< 2(1 4 M) |zn — pall? + 203 20 — @na]l?,

we obtain from (3. 4)

[Zns1 — Z||2 —(1+a1,+ a2,n>||xn - ZH2 + (al,n + O‘Q,n)llmnfl - Z||2
< 1-— Al p — 02 pn — 2)\%52
= 2(1+ A\, 5)2

[t *xn”2+7ﬂ”xn*xn—lH27 (3. 5)

where

2 2 02
O‘Z,n(l — Qlp — Q2n — 2)‘n )

TESWaE >0

Yo = 2(a§,n + a1+ azn) +

(a) For the proof of this statement we are going to use some techniques from [5].
We define the sequences
On = ||xn — 2| Vn €N

and
P i= On — (10 + Q2.0)Pn—1 + YullTn — xn71”2 Vn > 1.

Using the monotonicity of (a; ,)n>1, ¢ = 1,2, and the fact that ¢, > 0foralln € N,
we get

Hn+1 — Un S Pn+1 — (1 + Q1n + aln)‘pn + (al,n + 042,n)<Pn—1
+ Yns1l|Tny1 — xn”Q — YnllTn — xn71”27
which gives by (3. 5)

1- Alp — Q2 — 2)\%62
2(1+ A f3)2

Hn+1 — fbn < — ( —%+1> |Znt1 — $n||2 Vn >1. (3.6)

We claim that

1-— Q) p — Q02p — 2/\%52
2(1 + A f)?

— Ypa1 >0 Vn > 1. (3.7)

Indeed, this follows by taking into account that for all n > 1

Q1 + Qo gy + 2()\715)2 + 2<1 + Anﬁ)2(7n+1 + U)
<ar+az+2AB)” +2(1+ XB8)%(303 + 2(cn + a2) + 0)
2

< g +az+ 2087 +4(1+ (MB)?) (33 + 2(a; + az) + o)
<1

In the above estimates we used the upper bounds for (a; n)n>1, ¢ = 1,2, that
Vi1 < 2(043 + a1+ asz) +a§ VneN

and the assumptions in (3. 1).
We obtain from (3. 6) and (3. 7) that

Hnt1 — pn < _U||mn+1 - anQ Vn > 1. (3 8)
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Hence, the sequence (uy,)n>1 is nonincreasing and so, we can let M > 0 be an
upper bound of it, that is p, < M for all n > 1. The bounds for (& n)n>1, %= 1,2,
deliver

—(a1 4+ a2)pn—1 < on — (a1 + 02)pn_1 < pin < M Vn > 1. (3. 9)

We obtain for all n > 1

n—1
on < (o +a2)"po+ M Z(al + ag)*
k=0

< " _—.
< (o1 +az) @0+1—a1—a2

Combining (3. 8) and (3. 9) we have for all n > 1

n
o) lorsr =@l < 1 = pna
k=1

<+ (o + az)en
Mo + o
< 1+ (o0 + )" g + M,
1-— a1 — Qg
which shows that Y [|#ns1 — 2a||* < +o00.
Combining this relation with (3. 4) and Lemma 3.2 it yields

S (1= an — az — 2026%) 2 — pall® < +oo.
n>1

Moreover, from (3. 7) we have 1 — ay, — ag,, — 202 8% > 20(1 4+ A\B)? for all n > 1
and obtain, consequently, > <, [z, — pn||* < 400.

(b) We are going to use Lemma 1.1 for the proof of this statement. We proved
above that for an arbitrary z € zer(A 4+ B) the inequality (3. 4) is true. By part
(a) and Lemma 3.2 it follows that lim, 4 ||zn — 2| exists. On the other hand,
let = be a weak sequential cluster point of (z,,),en, that is, let be the subsequence
(zn, )ken fulfilling x,,, — x as k — +oo. Since z,, — p, — 0 as n — 400, we get
Pn, — % as k — +o00. Since A+ B is maximally monotone (see [26, Corollary 20.25
and Corollary 24.4]), its graph is sequentially closed in the weak-strong topology
of H x H (see [26, Proposition 20.33(ii)]). As (An)n>1 and (®in)n>1, ¢ = 1,2, are
bounded, we derive from (3. 2) and part (a) that 0 € (A+B)z, hence z € zer(A+B).
By Lemma 1.1 there exists T € zer(A + B) such that z,, = 7 as n — +o00. In view
of (a) we have p, = T as n — +o0.

(c) Since (ii) implies that A + B is uniformly monotone at Z, hence demiregular
at T, it is sufficient to prove the statement under condition (i). Since p,, — T and
)%(xn — Tpt1) + al")\&(xn — Zp—1) — 0 as n — +o00, the result follows easily
from (3. 2) and the definition of demiregular operators. O

Remark 3.1 Assuming that ay = 0, which enforces as, = 0 for all n > 1, the
conclusions of Theorem 3.1 remains valid if one takes as upper bound for (A,)n>1

the expression %, / m%. This is due to the fact that in this situation one can

use in its proof the improved inequalities ||z,11 — pnll? < A282||2, — pnl|? and
|lzne1 — zall> < (1 + A\uB)?|| 2 — pnl|? for all n > 1. On the other hand, let us
also notice that the algorithmic scheme obtained in this way and its convergence
properties can be seen as generalizations of the corresponding statements given for
the error-free case of the classical forward-backward-forward algorithm proposed by
Tseng in [129] (see also [62, Theorem 2.5]). Indeed, if we further set «; = 0, having
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as consequence that o , = 0 for all n > 1, we obtain nothing else than the iterative

scheme from [62,129]. Notice that for e € (0,1/(8 4 1)), one can chose A := ¢
1—(1—¢)?

and o = m

In this case the sequence (Ay),>1 must fulfill the inequalities

e< A\ < %, / % = % for all n > 1, which is exactly the situation considered
in [62].

Remark 3.2 In case Bx = 0 for all x € H the iterative scheme in Theorem 3.1
becomes

Tn+1 = J)\nA[xn + O‘l,n(xn - xn—l)] + O‘2,n(-rn - xn—l) Yn > 1,

and is to the best of our knowledge new and can be regarded as an extension of the
classical proximal-point algorithm (see [122]) in the context of solving the monotone
inclusion problem 0 € Az. If, additionally, as = 0, which enforces as already noticed
ag, =0 for all n > 1, we get the algorithm

Tn+1 = J)\nA[xn + al,n(xn - xnfl)]v

the convergence of which has been investigated in [5].

3.1.2 Solving monotone inclusion problems involving mix-
tures of linearly composed and parallel-sum type oper-
ators

In this section we employ the inertial forward-backward-forward splitting algorithm
proposed above to the concomitantly solving of a primal monotone inclusion prob-
lem involving mixtures of linearly composed and parallel-sum type operators and
its Attouch-Théra-type dual problem. We consider the following setting.

Problem 3.1 Let H be a real Hilbert space, z € H, A : H = H a mazximally
monotone operator and C : H — H a monotone and p-Lipschitz continuous operator
for > 0. Let m be a strictly positive integer and, for every i € {1,...,m}, let G; be
a real Hilbert space, r; € G;, let B; : G; = G; be a maximally monotone operator, let
D; : G; = G; be monotone such that Di_1 18 v;-Lipschitz continuous for v; > 0 and
let Ly : H — G; be a nonzero linear continuous operator. The problem is to solve
the primal inclusion

find T € H such that z € AT + Z L; ((B;OD;) (LT — ;) + CT (3. 10)

i=1
together with the dual inclusion

z—Y." Lt € Az + Cx
v; € (BluDZ)(LZLC — T‘i), 1= 1,...,m.
(3. 11)

find 01 € G1,..., U, € Gy, Such that Iz € H : {

Similar to Problem 2.1, one can define primal-dual solutions to Problem 3.1.

Problem 3.1 covers a large class of monotone inclusion problems and we refer
the reader to consult [76] for several interesting particular instances of it. The main
result of this section follows.

Theorem 3.2 In Problem 3.1 suppose that

z € ran <A + iL;‘((BiDDi)(Li c—1y)) + C) : (3. 12)

i=1
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Chose xg,x1 € H and v;0,v;1 € Gi, i =1,...,m, and set

Pin = J)\nA[xn - )\n(cxn + Z:il L;‘kvi,n - Z) + al,n(xn - xnfl)]
Prin = Iy p-1[vin + An(Litn — D7 0in — 1) + @10 (Vi = Vin-1)];
1=1,....m
(Vn 2 1) Vin+1 = /\nLi(pl,n - an) + )\n(Di_lvi,n - Di_lp2,i,n) + D2,in

+a2,n(vi,n - 'Ui,nfl),i = 1, e M
Tnyl1 = An Z?il L;k (Uz’,n - p2,i,n) + /\n(cxn - Cpl,n) +p1,n
+a2,n(xn - mnfl)-

Consider \,o > 0 and a1, as > 0 such that

>1
1202 + 8(oy +az) +do +2 ' =

1203 +9(c1 + a2) +40 < 1 and A < A, <

)

1 [1-1205 —9(u +ag) — 4o
B
where

B =max{u,v1,....Um} +

m
DL,
i=1

and for i = 1,2 the nondecreasing sequences (i n)n>1 fulfilling

0<a;,<a; Vn>1.
Then the following statements are true:

(a) > enllTnt1 — T,||? < 400, Zn21 |zn — p1ull? < 400 and, fori=1,...,m,
Y onen Iins1 = vinl* < 400 and 3-,5 1 [vin — p2,inll® < +00;

(b) There exists (T,T1,...,Um) € HX G1X...XGp, a primal-dual solution to Problem
3.1 such that the following hold:

(i) ¢, =T, p1pn — T and, fori=1,..,m, v;, = T; and p2;n — T; as
n — +00;
(i) If A+ C is uniformly monotone at T, then , — T and p1, — T as
n — +00.
(iii) If B;* + D; ' is uniformly monotone at v; for some i € {1,...,m}, then
Vin — Ui and P2 in — V; as N — +00.

Proof. We apply Theorem 3.1 in an appropriate product space and make use to
this end of a construction similar to the one considered in [76]. We endow the
product space IC = Hx Gy X ... X G,,, with the inner product and the associated
norm defined for all (z,v1, ..., 0m), (Y, w1, ..., W) € K as

m

<(‘T>’U17 "'7Um)7 (y7w1a () wm)>7C = <.’L',y>7.( + Z<Ui7wi>gi
=1

and

m
I, 01y om) e = [ l2l3,+ D N3,
i=1

respectively.
We introduce the operators M : IC = K,

M(z,v1,...;Vm) = (—2 4+ Az) X (r; + B;lvl) X wooe X (P + B g
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and Q : I — IC,

Q(x,v1, .y V) = (Cm + Z Livi,—Lix + Dy 'y, ooy =Lz + D'r_nlvm)

i=1

and show that Theorem 3.1 can be applied for the operators M and Q in the
product space K. Let us start by noticing that

(3. 12) & zer(M + Q) # 0
and

(x,v1, ..., 0m) € zZer(M+Q) < (x,v1,...,0,) is a primal-dual solution of Problem 3.1.
(3. 13)

Further, since A and B;, i = 1,...,m, are maximally monotone, M is maximally
monotone, too (see [26, Propositions 20.22 and 20.23]). On the other hand, @ is
monotone and S-Lipschitz continuous (see, for instance, the proof of [76, Theorem
3.1]).

For every (z,v1,...,v) € K and every A > 0 we have (see [26, Proposition
23.16))

It (2,01, o) = (Iaa(z + A2), J)\Bl—1(1)1 —Ar1), .., J)\B;Ll (Vm — ATm)).
Set

Ty = (znavl,vu ~--7Um,n) Vn € N and b, = (pl,nap2,1,na -~-ap2,m,n) Vn > 1.

In the light of the above considerations it follows that the iterative scheme in
the statement of Theorem 3.2 can be equivalently written as

Pn = D M[Tn — M QT + a1 o (Tn, — Tpo1)]
Vn >1 n " ’
(Vn>1) { Tnt+1 = Py, + M (Qxy, — Qpp) + a2n (X, — Tp—1),

which is nothing else than the algorithm stated in Theorem 3.1 formulated for the
operators M and Q.

(a) Is a direct consequence of Theorem 3.1(a).

(b)(i) Is a direct consequence of Theorem 3.1(b) and (3. 13).

(b)(ii) Let n > 1 be fixed. From the definition of the resolvent we get

1 o,
E(xn —p1,n) — Cop — ;Livi,n +z+

A1.n

An

(xn - xn—l) S Apl,n~

The update rule for x,, yields

1 i Q2 n

3 n — &n Cn L} wn in : n — dn— =C ny

N, (P1,n — Tnt1) + Cx —&-; T(Vin — DP2.im) . (Tp — Tp—1) 1,
hence,

1 o n n

x(xn - xn+1) - Z L:pQ,i,n +z+ %(In - mn—l) € (A + C)pl,n-

i=1

Further, since z — >, Liv; € (A + C)T and A + C' is uniformly monotone at 7,
there exists an increasing function ¢4 ¢ : [0, +00) — [0, +00] that vanishes only at
0, such that
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1 SN
<p1,n =T, (@ — Tng1) — > Lipain+2
" i=1

4—a1’n;a2’n (T — Tp_1) — (z — ; L;-k@->>

> ¢a,cllpin —Z|),
thus

1 _ R .
r(pl,n —T,Tn — Tny1) + <p1,n - T, ZLI(W - p2,z',n)>
i=1

n
Q1n + a2 n

+ N,

<p1,n —T,Tp — xn—1> > ¢A,C(”p1,n - f”) (3' 14)

In a similar way, for ¢ = 1, ..., m, the definition of ps ; ,, yields

a1 n

An

1 _ _
T(Ui,n —p2in) + Lizn — D] i — 1 + (Vi — Vin—1) € B 'pain
n

and from

1 _
r(pQ,i;n - Ui7n+1) + Lian - Lixn + Dl lvi,n +
n

Q2 n
An

(Vi — Vin—1) = D; 'pain

we further obtain

! Qi+ oo
7(1)1',71 - Ui,n+1) + Lipl,n —r; + %
n

3 (Vi — Vin—1) € (B " + Dy pa,in.
n

Moreover, since L;,T —r; € (Bi_1 + D;l)@, the monotonicity of Bi_1 + Di_l,i =
1,...,m, yields the inequality

1
<)\7(Ui,n — Vint1) + Lipin — 13
n

a1,n + Q2 n

3 (Vin — Vin—1) — (LiT — 13),p2,in — @‘>
n

+
>0

hence

1 m m . B
o Z<vi,n — Vin+41,P2,i,n — Vi) + <p1,n -, Z Li(p2,in — Uz)>

" oi=1 i=1
a1 n + Qa2 n

T

Z<vi,n — Ui n—1,D2,i,n — U;) > 0. (3. 15)
i—1

Summing up the inequalities (3. 14) and (3. 15) we obtain for all n > 1

a1n + Qa2 n

1 _ _
/\*<p1,n —T,Lp — Tpy1) + 3 (P1n — Ty Ty — Tp—1)
n n
1 a1, + -
_ 1, 2, _
+E Z<Uzn — Vin+1,P2,i,n — ’Ui> + n)\n n Z<v’n — Vin—1,D2,i;n — vi>

1 i=1
> dac(llprn — 7). (3. 16)

K2
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It then follows from (a), (b)(i) and the boundedness of the sequences (o n)n>1,
i =1,2and (Ay)n>1 that lim, o ¢a,c(||lp1,,—Z|) = 0, thus p1,, = T asn — +oo.
From (a) we get that x,, — T as n — +o0.

(b)(iii) In this case one can show that instead of (3. 16) one has for all n > 1

1 _ Q1n + Qo _
)\7<p17n — T, Tp — xn+1> + %Q)Ln — L, Tp — xn—l)
n n
m a + «a m
_ 1, 2, _
iDW Z Vjn — Vjn+1,P2,5m — Uj) + 4n/\ — N " (Vjn = Vjn-1:P24n — Tj)
=z ¢B;1,D;1(sz,i,n = il). (3. 17)
where ¢5-1 -1 : [0,+00) — [0,400] is an increasing function that vanishes only
at 0. The same arguments as in (b)(ii) provide the desired conclusion. O
Remark 3.3 The case oy = ag = 0, which enforces oy, = a, = 0 for all

n > 1, shows that the error-free case of the forward-backward-forward algorithm
considered in [76, Theorem 3.1] is a particular case of the iterative scheme introduced
in Theorem 3.2. We refer to Remark 3.1 for a discussion on how to choose the
parameters A and o in order to get exactly the bounds from [76, Theorem 3.1].

3.1.3 Convex optimization problems

The aim of this section is to show how the inertial forward-backward-forward primal-
dual algorithm can be implemented when solving a primal-dual pair of convex op-
timization problems.

Problem 3.2 Let H be a real Hilbert space, z € H, f € T(H) and h: H > R a
convex and differentiable function with a p-Lipschitz continuous gradient for p > 0.
Let m be a strictly positive integer and for all i € {1,...,m} let G; be a real Hilbert
space, T; € G, gi,li € T(G;) such that l; is Vi_l-strongly convez for v; > 0 and
L; : H — G; a nonzero linear continuous operator. Consider the convexr optimization
problem

inf {f(x) + Z(gimli)(Lﬁ —ri) + h(z) — (2, Z>} (3. 18)

zEH .
=1

and its Fenchel-type dual problem

5 { (f0On%) (zZL vl> i (g7 (v3) + 15 (vi) + (vi,nv))}.
e - - (3. 19)
Considering the maximal monotone operators

A=0f,C=Vh,B; =0g; and D; =0l;, i =1,....m,

according to [26, Proposition 17.10, Theorem 18.15], DZ-_1 = VI} is a monotone and
v;-Lipschitz continuous operator for i = 1,...,m. The monotone inclusion problem
(3. 10) reads

find T € H such that z € 3f(T) + Z L7 ((0¢g;00L;)(LiT — 1;)) + VA(Z), (3. 20)
i=1

while the dual inclusion problem (3. 11) reads

=Y, Liv; € 0f(z) + Vh(x)

S (6ngall)(L1x — 7“1'), 1=1,....m
(3. 21)

find 71 € G1,...,Uy, € Gy, such that 3z € H : { ;
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The optimality conditions concerning the primal-dual pair of optimization prob-
lems (3. 18)-(3. 19) are nothing else than

2= Liw; € 0f(T) + Vh(T) and T; € (0g:00L)(LiT —14), i = 1,..,m. (3. 22)
i=1

Notice that the aforementioned optimality conditions are also necessary in case the
regularity condition (2. 42) is fulfilled.
The following statement is a particular instance of Theorem 3.2.

Theorem 3.3 In Problem 3.2 suppose that

z € ran <3f + iLf((@gin)li)(Li c—1y)) + Vh) . (3. 23)

i=1

Chose xg,x1 € H and v;0,v;1 € Gi, i =1,...,m, and set

Pin = PYOXAnf[xn = M(Vf(zn) + 2111 Livin — z) + O‘Ln(mn - xn—l)]
D2,i;n = DPIOXy o= [Vin + A (Lizn — VI (vin) — 7i) + 010 (Vin — Vin—1)],
1=1,...m
(Vn>1) Vint1 = AnLi(p1n — o) + A(VE (vin) — VI (P2,in)) + P2,in
+a2,n(vi,n — 1}7;77,,_1)71. = 1, ey
Tn+1 = )\n Z;il L;k (vi,n - p2,i,n) + )\n(Vh(l'n) - Vh(pl,n)) + pl,n
+042,n(xn - xn71)~

Consider \,o > 0 and oy > 0, a5 > 0 such that

12024+ 9(a1 +az) +40 <1 and A < \, < > 1,

1 [1—-12a3 —9(a; + as) — 4o
n
1203 + 8(ag + ag) +4o+2

B
where

B =max{p, V1, ...;Vm} +

m
DI,
i=1
and for i = 1,2 the nondecreasing sequences (¢ n)n>1 fulfilling

0<ajp <y Vn > 1.
Then the following statements are true:

(a) ZnGN ||xn+1 - $n||2 < +o0, anl |27 —Pin
Y onen [Vimt1 = vinl®> < +o0 and 35, 5 Vim — painll® < +00;

|2 < 400 and, fori=1,...m,

(b) There exists (T,T1,...,Tm) € HX G1 X ... X Gy, satisfying the optimality condi-
tions (3. 22), hence T is an optimal solution of the problem (3. 18), (U1,...,Tm)
is an optimal solution of (3. 19) and the optimal objective values of the two
problems coincide, such that the following hold:

(i) xn =T, p1n = T and, fori =1,...m, v;, — U; and pain — U; aS
n — +00;
(i1) If f + h is uniformly convez, then x,, — % and p1,, = T as n — +00;
(i1) If gf +1F is uniformly convex for some i € {1,...,m}, then v; ,, — T; and

P2,i;n — V; S N — +00.

Remark 3.4 Under the hypotheses considered in Problem 3.2, condition (3. 23)
is fulfilled if the primal problem (3. 18) has an optimal solution and the regularity
condition (2. 42) holds.
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3.2 Inertial Douglas—Rachford splitting for mono-
tone inclusions

The aim of this section is the investigation of an inertial-type Douglas-Rachford
algorithm for solving monotone inclusion problems and the illustration of the nu-
merical advantages in comparison with its noninertial version.

3.2.1 An inertial Douglas—Rachford splitting algorithm

This subsection is dedicated to the formulation of an inertial Douglas—Rachford
splitting algorithm for finding the set of zeros of the sum of two maximally monotone
operators and to the investigation of its convergence properties.

In the first part we propose an inertial version of the Krasnosel’skii-Mann algo-
rithm for approximating the set of fixed points of a nonexpansive operator, a result
which has its own interest. Notice that due to the presence of affine combinations
in the iterative scheme, we have to restrict the setting to nonexpansive operators
defined on affine subspaces. Let us underline that this assumption is fulfilled when
considering the composition of the reflected resolvents of maximally monotone op-
erators, which will be the case for the inertial Douglas-Rachford algorithm. Let us
also mention that some inertial versions of the Krasnosel’skii-Mann algorithm have
been proposed also in [99], which, however, in order to ensure the convergence of
the generated sequence of iterates, ask for a summability condition formulated in
terms of this sequence.

Theorem 3.4 Let M be a nonempty closed affine subset of H and T : M — M
a nonexpansive operator such that FixT # @. We consider the following iterative
scheme:

LTnt1 = xn"‘ran(xn_xnfl)"'_)\n [T(mn'i_an(xn_xnfl))_xn_an(xn_xnfl)} vn > 1
(3. 24)
where xg,x1 are arbitrarily chosen in M, (o )n>1 95 nondecreasing and fulfills

0<a,<a<lVn>1

and X\, 0,8 > 0 are such that

a?(1+a) +ac 5—a[a(1+a)+a5+a]

1— a2

5> and0 < A < A, < vn > 1. (3. 25)

5[1+o¢(1+0z)+a5+0]

Then the following statements are true:

(Z) ZnGN ||.’En+1 - ‘rn”2 < +OO,'

(ii) (zn)nen converges weakly to a point in FixT.

Proof. We start with the remark that, due to the choice of §, A, € (0,1) for every
n > 1. Furthermore, we would like to notice that, since M is affine, the iterative
scheme provides a well-defined sequence in M.

(i) We denote

Wy i= Ty, + ap(Ty — Tp—1) Yn > 1.

Then the iterative scheme reads for every n > 1:

Tpp1 = Wy + A (Tw,, — wy). (3. 26)
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We fix an element y € FixT and n > 1. It follows from (1. 28) and the nonexpan-
siveness of 1" that

Zn+1 — y”2 = (1= Ap)llwy — y”2 + A | Twn, — T:‘/HQ = (1= A)[|Tw,, — wn||2

Applying (1. 28) again, we have

lwn =yl = 11+ an)(@n = ) = an(zn-1 =)

= (14 an)llen = yl* = anllen =yl + an (1 + an) |20 — 20|,
hence from (3. 27) we obtain

|Znt1 — yH2 — (14 an)l|zn — y”2 + anl|Tp—1 — yH2 < =M1 = A)[[Tw, — wn||2

+ an(1+ ap)l|zn — xn71||2~
(3. 28)

Furthermore, we have

2

O

)\n ((Enfl - wn)

1
HTwn - wnH2 = H by (anrl - wn) +
n

1 2 a% 2
= )\72||37n+1 | +>\72Hxn_$n71” +2
n n

Qn

)\2

n

<xn+1 — Tn, Tpn—1 — xn>

1 o
> S lent1 — znll® + Hllzn — 2na|?

V

@ 1
+ )\*; <—Pn||$n+1 —z,|* - ?||$n — xn_1||2> , (3. 29)

where we denote py, 1= ;—

Qn+0A, "
We derive from (3. 28) and (3. 29) the inequality

zns1 =yl = 1+ an)llzn = yl* + anllon—1 — yl?

< (1 = An)(anpn — 1)
< .

i1 = 2all® + Yallzn — zacal? (3. 30)

where 1
Tn = an(l + an) + an(l - /\n)% >0, (3 31)

since ppay, < 1 and A, € (0,1).
Again, taking into account the choice of p,,, we have

5= 1—pnan
PnAn

and, from (3. 31), it follows
Yo =an(1+ay) +a,(1—=X)d <a(l+a)+ad Vn > 1. (3. 32)

In the following we use some techniques from [5] adapted to our setting. We
define the sequences
¢n = |lzn —yl? VR €N

and
= On — CnPn-1 + VullTn — Tn_1||* Y0 > 1.
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Using the monotonicity of (e, ),>1 and the fact that ¢, > 0 for all n € N, we get
tnt1 — fn < @y — (1 + an)@n + ann—1+ 'Yn+1||xn+1 - CL’n”Q - Vonn - xn71”2~
Employing (3. 30), we have

(1= An)(anpn —1)
An

st — pin < ( + %+1) lnpr — 2al? ¥n > 1. (3. 33)

We claim that

(1 B )‘n)(anpn - 1)
An

Let be n > 1. Indeed, by the choice of p,,, it holds

(1 - An)(anpn - 1)

+ Y1 < —oVn>1. (3. 34)

)\ +7n+1 S —0
Aand )\n(7n+1 + U) + (anpn - 1)(1 - /\n) S 0
SAn(1 = M)
- <
<~ M(Vnt1 +0) PO W 0

<= (an 4+ 0An) (g1 +0) + 0, <6

By using (3. 32), we further get
(an + 6X0) (Yng1 +0) + 0, < (@ +0X,) (a(l +a)+ad+ 0) +0An <0,

where the last inequality follows by using the upper bound for (\,),>1 in (3. 25).
Hence, the claim in (3. 34) is true.
We obtain from (3. 33) and (3. 34) that

Pnil — fin < —0||Tpi1 — Tnl|? VR > 1. (3. 35)

Hence, the sequence (fin)n>1 is nonincreasing and we take M > 0 an upper
bound of it, that is p, < M for all n > 1. The bound for (ay,),>1 delivers

—pn-1 < @n —app_1 < iy < M Vn > 1. (3. 36)
We obtain
n—1 M
on < Ao +M;ak <a"po + 1o Vn > 1.

Combining (3. 35) and (3. 36), we get for all n > 1

n
UZ lzpr1 = 2ull* < 1 — ot
k=1
< p+ ap,
Mo

§M1+an+1w0+ )
11—«

which shows that Y o [[#nt1 — 2a]|* < +00.

(ii) We prove this statement by using the result of Opial given in Lemma 1.1.
We have proven above that for an arbitrary y € Fix T the inequality (3. 30) is true.
By part (i), (3. 32) and Lemma 3.1 we derive that lim, 4 ||z, — y|| exists (we
take into consideration also that in (3. 30) a,p, < 1 for all n > 1). On the other
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hand, let z be a weak sequential cluster point of (x,)nen, that is, the latter has a
subsequence (2, )ren fulfilling z,, — = as k — 4o00. By part (i), the definition of
wy, and the upper bound for (o, )n>1, we get w,, — = as k — +oo. Furthermore,
from (3. 26) we have

1
[ Twn, — wy|| = r“wrﬂrl — wy|
n

< $llzass = wnl
= )\ n+1 n
1
S X(”xnle - (EnH + Ck”:L’n - l’n,1||)7 (3 37)

thus by (i) we obtain Tw,, —w,, — 0 as k — 4o0o0. Applying now Lemma 1.3
for the sequence (wp, )reny we conclude that x € FixT. Since the two assumptions
of Lemma 1.1 are verified, it follows that (x,)nen converges weakly to a point in
FixT. |

Remark 3.5 Assuming that « = 0 (which forces a,, = 0 for all n > 1), the
iterative scheme in the previous theorem is nothing else than the one in the classical
Krasnosel’skii-Mann algorithm:

Tpt1 = Tp + A(Txy — ) Y > 1. (3. 38)

Let us mention that the convergence of this iterative scheme can be proved under
more general hypotheses, namely when M is a nonempty closed and convex set and
the sequence (A, )nen satisfies the relation ) .y An(1—A,) = +00 (see [26, Theorem
5.14]).

Let us recall some technical results which are needed in the following.
If A,B: H = H are monotone, then we have the following characterization of
the set of zeros of their sum (see [26, Proposition 25.1(ii)]):

zer(A+ B) = Jyg(Fix RyaR,p) Vv > 0. (3. 39)

The following result is a direct consequence of [26, Corollary 25.5] and it will
be used in the proof of the convergence of the inertial Douglas—Rachford splitting
algorithm.

Lemma 3.3 Let A,B : H = H be mazimally monotone operators and the se-
quences (Tpn,Un)neN € A, (Yn, Un)nen € gr B such that x, — x,u, — u,y, —
Yy Up — VU, Up + v, = 0 and z,, — Yy, — 0 as n — +00. Then x =y € zer(A + B),
(z,u) € gr A and (y,v) € gr B.

We are now in position to state the inertial Douglas—Rachford splitting algorithm
and to present its convergence properties.

Theorem 3.5 (Inertial Douglas—Rachford splitting algorithm) Let A,B : H = H
be mazimally monotone operators such that zer(A+ B) # &. Consider the following
iterative scheme:

Yn = 'yB[(En + an(xn - xnfl)}
(vn > 1) Zn = 'yA[zyn — Tn — an(xn - :Enfl)]
Tptl = Tp + an(xn - xn—l) + /\n(zn - yn)

where y > 0, xg, 1 are arbitrarily chosen in M, (ap)n>1 i nondecreasing and fulfills

0<ao, <a<lvVn>1
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and X\, 0,8 > 0 are such that

2 d—ala(l+a)+ad+o
Mand0<)\§)\n§2 { }

Vn > 1.
5[1+a(1+a)+a6+0]

Then there exists x € Fix(RyaRyp) such that the following statements are true:
(i) Jypx € zer(A + B);

(1) Yen ns1 — a2 < +00;

(iii) (zn)nen converges weakly to x;

(1) Yn — 2n — 0 as n — +00;
(v) (Yn)n>1 converges weakly to J,px;

(vi) (zn)n>1 converges weakly to J,px;

(vii) if A or B is uniformly monotone, then (Yn)n>1 and (z,)n>1 converge strongly
to the unique point in zer(A + B).

Proof. We use again the notation w,, = x,, + a,(x, — x,—1) for all n > 1. Taking
into account the iteration rules and the definition of the reflected resolvent, the
iterative scheme in the enunciation of the theorem can be written as

(V> 1) Znp1 = wn + An [JWA o (2,5 — Id)w, — WBwn}

Id+R Id+R
= wy + A [(—*_27‘40373> wn_';VBwn]

An
= w, + 7(Twn — wn), (3 40)

where T':= R4 o Ryp : H — H is a nonexpansive operator. From (3. 39) we have
zer(A+ B) = J,p(FixT), hence FixT # @&. By applying Theorem 3.4, there exists
x € Fix T such that (i)-(iii) hold.
(iv) Follows from Theorem 3.4, (3. 37) and 2z, — y, = 3(Tw, — wy,) for n > 1.
(v) We will show that (y,)n>1 is bounded and that J,pz is the unique weak
sequential cluster point of (y,)n>1. From here the conclusion will automatically
follow. By using that J,p is nonexpansive, for all n > 1 we have

||yn - yl” = HJ"/BUJH - WBU)IH < Hwn - wl” = ”xn —x1 + O‘n<xn - xn,1)||.

Since (zy,)nen is bounded (by (iii)) and (o, )n>1 is also bounded, so is the sequence

(Un)n>1-
Now let y be a sequential weak cluster point of (y,)n>1, that is, the latter has

a subsequence (yn, )ren fulfilling y,, — y as k& — +oo. We use the notations
Uy = 2Yn — Wy — 2p and v, := w, — Yy, for all n > 1. The definitions of the
resolvent yields

(2n,un) € grt(YA), (Yn,vn) € gr(vB) and up + vy, =yn — 2, VR > 1. (3. 41)
Furthermore, by (ii), (iii) and (iv) we derive
Zng — YsWn, — T,Up, —y—x and v,, = —y as k — +oo.

Using again (ii) and Lemma 3.3 we obtain y € zer(yA+vyB) = zer(A+B), (y,y—=x) €
gryA and (y,z —y) € gryB. As a consequence, y = J,pz.
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(vi) Follows from (iv) and (v).

(vil) We prove the statement in case A is uniformly monotone, the situation
when B fulfills this condition being similar. Denote y = J,px. There exists an
increasing function ¢4 : [0, +00) — [0, 400] that vanishes only at 0 such that (see
also (3. 41) and the considerations made in the proof of (v))

’V(bA(HZn - y”) < <Zn — Y, Up — Y+ m> Vn > 1.
Moreover, since B is monotone we have (see (3. 41))
OS <yn_y7vn_'r+y> = <yn_yayn_z7z_un_x+y> VTLZ 1

Summing up the last two inequalities we obtain
7¢A(||Zn - y”) < <Zn — Yn, Up — Yp + £C> = <Zn — YnsYn — Zn — Wy + ZE> Vn > 1.

Since z, — ¥y, — 0 and w, — z as n — 400, from the last inequality we get
lim, 100 @4 (]|2n — y||) = 0, hence z, — y and therefore y,, = y as n — 4o0. O

Remark 3.6 In case a = 0, which forces a,, = 0 for all n > 1, the iterative
scheme in Theorem 3.5 becomes the classical Douglas—Rachford splitting algorithm
(see [26, Theorem 25.6]):

Yn = JyBIn
(Vn >1) Zn = JyA(2yn — Tn)
Tp41 = Tp + An(zn - yn)7

the convergence of which holds under the assumption ) -y An(2 — Ay) = +o0.
Let us mention that the weak convergence of the sequence (y,),>1 to a point in
zer(A + B) has been for the first time reported in [127].

Remark 3.7 In case Bz = 0 for all x € H, the iterative scheme in Theorem 3.5
becomes

Tn+1 = )\nJ'yA (-rn + an(xn - xn71>) + (1 - )\n)<xn + an(xn - mn71)> vn > 17

which was already considered in [4] as a proximal-point algorithm (see [122]) in
the context of solving the monotone inclusion problem 0 € Axz. Notice that in
this scheme in each iteration a constant step-size v > 0 is considered. Proximal-
point algorithms of inertial-type with variable step-sizes have been proposed and
investigated, for instance, in [5, Theorem 2.1], [4] and [44, Remark 7].

3.2.2 Solving monotone inclusion problems involving mix-
tures of linearly composed and parallel-sum type oper-
ators

We apply the inertial Douglas—Rachford algorithm proposed in the previous section
to a highly structured primal-dual system of monotone inclusions by making use of
appropriate splitting techniques. The problem under investiagtion reads as follows.

Problem 3.3 Let A : 'H = H be a mazimally monotone operator and let z € H.
Moreover, let m be a strictly positive integer and for every i € {1,...,m}, let r; € G;,
B;:G; = G; and D; : G; = G; be maximally monotone operators and let L; : H — G;
be nonzero linear continuous operators. The problem is to solve the primal inclusion

find T € H such that z € AT + Z Ly (B;,OD;)(L;z —r;) (3. 42)

i=1
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together with the dual inclusion

V; G(BZDDZ)(LZZ' — Ti); L= 1,...,m.
(3. 43)

find vy € Gy, Uy € G such that (3z € H) {Z — 2 iz L € Az

We say that (T,01,...,0m) € H X G1 ... X G, is a primal-dual solution to Problem
3.3, if

2= LT € AT and v; € (BiOD;)(LiT — 1), i = 1,...,m. (3. 44)
i=1
Several particular instances of the primal-dual system of monotone inclusions
(3. 42)—(3. 43) when applied to convex optimization problems can be found in [76,
130].
The inertial primal-dual Douglas-Rachford algorithm we would like to propose
for solving (3. 42)—(3. 43) is formulated as follows.

Algorithm 3.1 Let x9,z1 € H, vio,vi1 € Gi, ¢ = 1,....m, and 7,0, > 0, ¢ =
1,...,m, be such that

m
TZO’,’HL”P < 4.
1=1

Furthermore, let (am)n>1 be a nondecreasing sequence fulfilling 0 < o, < v < 1 for
everyn > 1 and A\, 0,0 > 0 and the sequence (Ap)n>1 be such that

2 d—ala(l+a)+ad+o
Mand0<)\§)\n§2 { }

Vn > 1.
6[1+a(1+a)+a6+0]

For alln > 1 set

Pin = JrA (xn + O‘n(wn - xnfl) - % Z:il L;k (Ui,n + an(vi,n - /Ui,nfl)) + TZ)
Wi,n = 2p1,n —Tn — an(xn - .’L'n,1)
Fori=1,....m
{ D2,in = JaiB;I (Vi + 0 (Vi — Vin—1) + G Liwy n — 047;)
W2 in = 2p2,i,n — Uin — an(vi,n - 'Ui,nfl)
Z1n = Win — % Z?il L;‘ka,i,n
Tpn+1 = Tn + an(xn - mnfl) + )\n(zl,n - pl,n)
Fori=1,...m
{ 22in = Jo p1 (wa,in + FLi(221,0 — w1,n))
Vint1 = Vi + (Vi — Vin—1) + A (22,00 — D2,in)-

(3. 45)
Theorem 3.6 In Problem 3.3, suppose that

z € ran <A + iL:‘(BiDDi)(Li . ri)), (3. 46)

=1

and consider the sequences generated by Algorithm 3.1. Then there exists an element
(T, U1y Um) € H X Gy ... X Gy such that the following statements are true:

(i) By setting
D =J T L Em Lo
Py TA ;13—5._1 U+ T2,

g; .
ﬁZ,i = ‘]criBfl (51 + EZL7(2?1 7f) - O'i’l’i) , L= 17"'am7
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the element (py,Da 15 P2m) € H X G1 X... X Gy is a primal-dual solution to
Problem 3.3;

(1) 3 pen |Tns1 — znll? < 400 and 32,y 1Vint1 — vinll? < 400, i = 1,...,m;

(73) (Tn,V1msees Umon)nenN converges weakly to (T,01,...,Um);

() (P1n — 21,05 P2,0,0 — 22,1,m5- P2.mn — 22,m.n) — 0 as n — +00;
(v) (P11, D215+ P2mm)n>1 converges weakly to (P, Pa 1y Dam);
(Vi) (21,n 22,150+, 22,m,n)n>1 converges weakly to (Py, Pa 15+ D2 m)s

(vii) if A and B;l, 1 = 1,....,m, are uniformly monotone, then the sequences

(P1,ns P2, 1m0 P2mon)n>1 AN (21,05 22,1 0500, 22,m,n)n>1 cOnverge strongly to
the unique primal-dual solution (Py, P 15+ Da,y) to Problem 3.3.

Proof. For the proof we use Theorem 3.5 and adapt the techniques from [59] (see
also [130]) to the given settings. We consider the Hilbert space I = H x G; X
... X Gy, endowed with inner product and associated norm defined, for (z,v1,..., vy,),
(Y, q15e-, Gm) € IC, via

m
<(Jf, ’Ul,...,’Um), (ya qi1,---, qm)>}c = <m7y>7{ + Z <U1‘, Qz>g1
1=1
and (3. 47)
(@, o1, vm)llxc = 4 | el + Y will,,
i=1

respectively. Furthermore, we consider the set-valued operator
M: K=K, (2,01,0,0m) = (—2+ Az, 71 + By 1,0, 7 + B om),

which is maximally monotone, since A and B;, i = 1,...,m, are maximally mono-
tone (see [26, Proposition 20.22 and Proposition 20.23]), and the linear continuous
operator

m
S K=K, (z,v1,,0m) — (Z Liv,, —Lyz,..., —me> ,
i=1

which is skew-symmetric (i.e. 8™ = —S) and hence maximally monotone (see [26,
Example 20.30]). Moreover, we consider the set-valued operator

Q: K=K, (2,01,0)— (O,Dflvh...,D;fvm) ,

which is once again maximally monotone, since D; is maximally monotone for i =
1,...,m. Therefore, since dom S = KC, both %S + Q and %S + M are maximally
monotone (see [26, Corollary 24.4(i)]). Furthermore, one can easily notice that

(3.46) . zer( M+ S+ Q) #0

and

(2,01,...,0m) €Ezer (M + S+ Q)

3. 48
=(z,v1,..., V) is a primal-dual solution to Problem 3.3. ( )
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We also introduce the linear continuous operator

z 1 m - 1 . 1
V:K—-K ey Upn ) 7—75 Liv,,— — = LTy, - — Lz |,
o (@1 vm) (7‘ 2 P iV o1 2 e Om 2 x)

which is self-adjoint and p-strongly positive (see [59]) for

m 1 1 1
T2 S R L
TZE:lUlHL,H mm{T,Ul,...,am}>O,

namely, the following inequality holds
(@, Va) = pllelk Ve € K.

Therefore, its inverse operator V! exists and it fulfills ||V ! < %.
Note that for all n > 1, the algorithmic scheme (3. 45) is equivalent to

Tn—P1,n Tp—Tn—1 1 xm * () . _
= + ay T -2 Zi:l Lz (Uz,n + an(vz,n 'Ul,n—l)) € Apl,n z
Win = 2p1,n — Tn — Oln(xn - xn—l)
Fori=1,....m

Vin—P2,, Vin=Vin-1 _ 1

REERRE 4 oy ettt — S Li(@y — i+ (T — Tpo1))

g a4
1
€ _%Lipl,n + B pain+ i

w2 in = 2p2,i,n — Vin — an(vi,n - ’Ui,nfl)
Wi,n—21,n __ l m * . —
— 3 2iv1 Liwzin =0
Tpn+1 = Tn + an(xn - xnfl) + )‘n(zl,n - pl,n)
Fori=1,..,m

W2,i,n—22,i,n 1 1 —1
{ =it — S Li(win — 21n) € —5Lizin + Dy 2200

gi

Vin+1 = Vin + an(vi,n - /Ui,nfl) + )\n(22,i,n - p2,i7n)'

(3. 49)
By considering for all n > 1 the notations
LTy = (xn; Vl,nyeey Um,n)7

Y, = (pl,nap2,1,n7---7p2,m,n)

and
Zn = (Zl,n; 22,1,m 505 ZQ,m,n)7

the scheme (3. 49) can equivalently be written in the form

(Vn>1)| V(2y, —Tn — 2n — an(@n — Tp_1)) € (354 Q) 2y, (3. 50)
Tp+1 = Tp, + an(wn - wn71> + )\n (zn - yn) )

which is equivalent to
1,1 —1
Y= Id+VIH(GS+M)) (2, + () — Tp1))

(Vn=1) | 2, =(1d+V (LS + Q))f1 (2y,, — Tn — an(Ty — Tp_q)) (3. 51)
Tpi1 = Ty + an(mn - mn—l) + An (zn - yn) y

In the following, we consider the Hilbert space Ky with inner product and norm
respectively defined, for &,y € IC, via

(@, Y)x, = (@ Vy)re and 2]y, =/ (2, VE)). (3. 52)
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As the set-valued operators %S + M and %S + @ are maximally monotone on IC,
the operators

B:=Vv! <;s + M) and A :=V~! (;S + Q> (3. 53)

are maximally monotone on Cy. Moreover, since V' is self-adjoint and p-strongly
positive, weak and strong convergence in Ky are equivalent with weak and strong
convergence in K, respectively.

Taking this into account, it shows that (3. 51) becomes

Y, = JB (xn + O‘n(xn - mn—l))
(n>1) | zn=Ja 2y, — @n — an(Tn — Tn-1)) (3. 54)
LTpt1 = Ty, + an(wn - 213”,1) + >\n (zn - yn) )

which is the inertial Douglas—Rachford algorithm presented in Theorem 3.5 in the
space ICy for v = 1. Furthermore, we have

zer(A+ B) =zer(V' (M + S+ Q)) = zer(M + S + Q).

(i) By Theorem 3.5 (i), there exists T = (T, 71, ..., Um) € Fix(RaRp), such that
JBT € zer(A + B) = zer(M + S + Q). The claim follows from (3. 48) and by
identifying Jp@.

(ii) Since V is p-strongly positive, we obtain from Theorem 3.5 (ii) that

PZ (B anIQC < Z [E $n||72cv < +00,
neN neN

and therefore the claim follows by considering (3. 47).

(iii)—(vi) Follows directly from Theorem 3.5 (iii)—(vi).

(vii) The uniform monotonicity of A and B; i = 1,..,m, implies uniform
monotonicity of M on K (see, for instance, [59, Theorem 2.1 (ii)]), while this
further implies uniform monotonicity of B on Ky . Therefore, the claim follows
from Theorem 3.5 (vii). O

3.2.3 Convex optimization problems

The aim of this section is to show how the inertial Douglas-Rachford primal-dual al-
gorithm can be implemented when solving a primal-dual pair of convex optimization
problems.

We deal with the following problem.

Problem 3.4 Let H be a real Hilbert space and let f € T'(H), z € H. Let m be a
strictly positive integer and for every i € {1,...,m}, suppose that G; is a real Hilbert
space, let g;, l; € T(G;), r; € G; and let L; : H — G; be a nonzero bounded linear
operator. Consider the convex optimization problem

(P) inf {f(m) + Z(giDli)(Lix —r;) — (=, z)} (3. 55)

zEH |
and its conjugate dual problem

(D) sup . {—f* <Z_ZL:UZ'> Z gi (vs) + 17 (vs) + (vi,ri))}.

(V150 sUm )EGT X .. X i=1
(3. 56)
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By taking into account the maximal monotone operators
A= 6f, Bi = 5%‘ and Di = 8[1', 1= 1,...,m,

the monotone inclusion problem (3. 42) reads

find T € H such that z € df(T) + Z L} (8¢;000;)(LiT — 1), (3. 57)
i=1

while the dual inclusion problem (3. 43) reads

find 71 € Gy, ..., U, € Gy, such that (Jz € H) {DZ ;(%ﬁ}zaalél)zzexﬁjgx; L

(3. 58)
If (Z,U1,..., Um) € HXG1 ... X Gy, is a primal-dual solution to (3. 57)—(3. 58), namely,

z— ZL;@Z‘ S af(f) and v; € (8gzDall)(LZ§ — TZ'), t=1,...,m, (3 59)
i=1
then T is an optimal solution to (P), (U1,..., Vs ) is an optimal solution to (D) and
the optimal objective values of the two problems, which we denote by v(P) and
v(D), respectively, coincide (thus, strong duality holds).
Combining this statement with Algorithm 3.1 and Theorem 3.6 gives rise to the
following iterative scheme and corresponding convergence theorem for the primal-
dual pair of optimization problems (P)—(D).

Algorithm 3.2 Let zg,21 € H, vio,vi1 € Gi, @ = 1,...,m, and 7,0; > 0, i =
1,...,m, be such that

m
TZU‘Z‘HLZ‘H2 < 4.
=1

Furthermore, let (on)n>1 be a nondecreasing sequence fulfilling 0 < o, < a <1 for
every n > 1 and X\,0,5 > 0 and the sequence (Ap)n>1 be such that

a?(1+a)+ac (5—04[0((14—04)—}—0464-0}

and 0 < A< )\, <2 Vn > 1.

5[1+a(1+a)+a5+a]
For allm > 1 set

Pin = prOX-rf (xn + Oén(l'n - xnfl) —52211 L: (vi,n + an(vi,n - Ui,nfl)) + TZ)
Win = 2p1,n — Tn — an(-rn - -Tnfl)
Fori=1,...m
{ P2,i;n = PIOXg, o= (Vi + 0 (Vi — Vin—1) + G- Liwy , — 047;)
W2 4.n = 2172,1',7;, — Uin — Otn(w,n - Ui,n—l)
2l = Win — 5 2221 Liwsz i
Tn4+1l = Tn + an(xn - xnfl) + )\n(zl,n - pl,n)
Fori=1,...m
\\ 22in = prOXgil; (w2,i,n + %Li(zzl,n - wl,n))
L | Vint1 = Vin + @ (Vi — Vin—1) + An(22,im — D2.in)-

(3. 60)
Theorem 3.7 In Problem 3.4, suppose that

z € ran (af + iLf(agiﬂali)(Li . —n))7 (3. 61)

i=1
and consider the sequences generated by Algorithm 3.2. Then there exists an element
(T, 01,0, V) € H X Gy ... X Gy, such that the following statements are true:
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(i) By setting

m
_ _ T —
P = pI‘OXTf <Q]‘ — 5 ii - Li'Ui + TZ) y

_ _ g; _ _ .
Pai = prOXa'ig;‘ (vi + EZLZ(2p1 - x) - 0'1'7"1') , 1=1,...,m,

the element (Py,Da 15 P2m) € H X G1 X... X Gy is a primal-dual solution to
Problem 3.4, hence py is an optimal solution to (P) and (Py y,...,Pa.m) is an
optimal solution to (D);

|2 < 400, i=1,...,m;

(i) Ppen Tnt1 — 2all? < +o0, and 3, oy Vi1 — Vi

(111) (Tpn,V1m,ee, Umon)nen converges weakly to (T,T1,...,Tm);

(1) (P1.n — Z1.m:D2,1.0 — 221, n5e-s D2mn — Z2.mn) — 0 as n — +00;
(v) (P11 P2,1,m5e+ P2mn)n>1 converges weakly to (D, Pa 1y Dam);
(Vi) (21,ns 22,15+ 22,m,n)n>1 converges weakly to (Py, Pa 15+ D2 m)s

(vii) if f and g, i = 1,...,m, are uniformly convex, then (P1,n,P2.1,ns P2m,n)n>1
and (21,n, 22,1,ny- Z2,m.n)n>1 converge strongly to the unique primal-dual so-
lution
(P1,P2,15+++ Pa.m) to Problem 3.4.

Remark 3.8 Considering the setting of Problem 3.4, the hypothesis (3. 61) in the
above theorem is fulfilled if the primal problem (3. 55) has an optimal solution, the
regularity condition (2. 42) holds and

0 € sqri(dom g7 — dom!}) for i = 1,...,m.

According to [26, Proposition 15.7], the latter guarantees that I'(G;), i = 1, ..., m.

3.2.4 Numerical experiments
Clustering

We consider again a numerical experiment in cluster analysis, where one can observe
a better performance of the inertial Douglas-Rachford algorithm in comparison with
the noninertial one. We briefly recall some notations used in clustering and we refer
to Chapter 2 for other details concerning this application. In cluster analysis one
aims for grouping a set of points such that points in the same group are more
similar to each other than to points in other groups. Let u; € R, ¢+ = 1,...,m,
be given points. For each point u; we are looking for determining the associated
cluster center x; € R™,i =1,...,m. By taking into account [73,96], clustering can
be formulated as the convex optimization problem

. 1 &
inf 5 ZZ:; ||$z - Uz‘||2 + VZwina:i — l‘ij s (3 62)

z;€ER",i=1,....m —
1<J

where v € Ry is a tuning parameter, p € {1,2} and w;; € R, represent weights on
the terms ||z; — x;||p, for 4, 7 € {1,...,m}, i < j. Since the objective function is

strongly convex, there exists a unique solution to (2. 47).
Let k£ be the number of nonzero weights w;;. Then, one can introduce a linear
operator A : R™" — R*" such that problem (2. 47) can be equivalently written as
inf {h(z)+ g(Az)}, (3. 63)

TE Rmn
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p=2,v=52 p=1,~v=4
e=10"* e=10"8 e=10"" e=10"8

Algorithm 3.2 0.65s (175) 1.36s (371) 0.63s (176) 1.27s (374)
DR [59] 0.78s (216) 1.68s (460) 0.78s (218) 1.68s (464)
FB [130] 2.48s (1353)  5.72s (3090) 2.01s (1092)  4.05s (2226)
FB Acc [53] 2.04s (1102)  4.11s (2205) 1.74s (950) 3.84s (2005)
FBF [76] 7.67s (2123)  17.58s (4879) 6.33s (1781)  13.22s (3716)
FBF Acc [58] 5.05s (1384)  10.27s (2801) 4.83s (1334)  9.98s (2765)
PD [69] 1.48s (780) 3.26s (1708) 1.44s (772) 3.18s (1722)
PD Acc [69] 1.28s (671) 3.14s (1649) 1.23s (665) 3.12s (1641)
Nesterov [107]  7.85s (3811)  42.69s (21805)  7.46s (3936) > 190s (> 10°)
FISTA [28] 7.55s (4055)  51.01s (27356)  6.55s (3550)  47.81s (26069)

Table 3.1: Performance evaluation for the clustering problem. The entries refer to the
CPU times in seconds and the number of iterations, respectively, needed in order to attain
a root mean squared error for the iterates below the tolerance . The tuning parameter
v is chosen in order to guarantee a correct separation of the input data into the two half
moons.

the function h being 1-strongly convex and differentiable with 1-Lipschitz continuous
gradient. Also, by taking p € {1,2}, the proximal points with respect to g* are
known to be available via explicit formulae.

For our numerical tests we consider the standard data set consisting of two
interlocking half moons in R?, each of them being composed of 100 points (see
Figure 3.1). The stopping criterion asks the root-mean-square error (RMSE) to be
less than or equal to a given bound & which is either ¢ = 107% or ¢ = 1078, As
tuning parameters we use v = 4 for p = 1 and v = 5.2 for p = 2 since both choices
lead to a correct separation of the input data into the two half moons.

Given Table 3.1, it shows that Algorithm 3.2 performs better than the noninertial
Douglas—Rachford (DR) method proposed in [59, Algorithm 2.1]. One can also see
that the inertial Douglas—Rachford algorithm is faster than other popular primal-
dual solvers, among them the forward-backward-forward (FBF) method from [76],
and the forward-backward (FB) method from [130], where in both methods the
function h is processed via a forward step. The accelerated versions of the latter
and of the primal-dual (PD) method from [69] converge in less time than their
regular variants, but are still slower than Algorithm 3.1. Notice that the methods
called Nesterov and FISTA are accelerated proximal gradient algorithms which are
applied to the Fenchel dual problem to (3. 63).

The generalized Heron problem

In the sequel we investigate the generalized Heron problem which has been recently
investigated in [102,103] and where for its solving subgradient-type methods have

A Figure 3.1: Clustering two interlocking half
';g':'; v“.:v'"'; moons. The colors (resp. the shapes) show
b AU £ S the correct affiliations.
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(a) Problem with optimizer (b) Progress of the RMSE values
—|nert|al DR
---DR
- - Subgradient |
107 107 10" 10° 10"

CPU time in seconds

Figure 3.2: Generalized Heron problem with cubes and ball constraint set on the left-hand
side, performance evaluation for the RMSE on the right-hand side.

been proposed.

While the classical Heron problem concerns the finding of a point % on a given
straight line in the plane such that the sum of its distances to two given points is
minimal, the problem that we address here aims to find a point in a closed convex
set 2 C R™ which minimizes the sum of the distances to given convex closed sets
Qi an,Z: 1,...7’[7’1/.

The distance function from a point € R™ to a nonempty set 2 C R™ is defined
as

(5 2) = (I |080)(z) = inf [l — 2.

Thus the generalized Heron problem reads

;relg 2 d(x; ), (3. 64)
where the sets Q@ C R™ and ©; C R™, ¢ = 1,...,m, are assumed to be nonempty,

closed and convex. We observe that 3 64) perfectly fits into the framework con-
sidered in Problem 3.4 when setting

f=0q, and gi= |-, l; =dq, foralli=1,...,m. (3. 65)

However, note that (3. 64) cannot be solved via the primal-dual methods in [76]
and [130], which require for each i = 1,...,m, that either g; or I; is strongly convex,
unless one substantially increases the number of primal and dual variables. Notice
that

g;k : R’ﬂ %Ra gz*(p) = seu]lgl {<p,l’> - HI‘”} = 5§(071)(p)7 1= 17' .., M,

where B(0, 1) denotes the closed unit ball, thus the proximal points of f, g} and I},
i =1,...,m, can be calculated via projections, in case of the latter via Moreau’s
decomposition formula (1. 33).

In the following we solve a number of random problems where the closed convex
set © C R™ will always be the unit ball centered at (1,...,1)7. The sets €; C
R™ ¢ = 1,...,m, are boxes in right position (i.e., the edgeb are parallel to the
axes) with 31de length 1. The box centers are created via independent identically
distributed Gaussian entries from A'(0,n2) where the random seed in Matlab is set
to 0. After determining a solution, the stopping criterion asks the root-mean-square
error (RMSE) to be less than or equal to a given bound e.
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Algorithm 3.2 Douglas—Rachford, [59] Subgradient, [102,103]

e=10"2° e=10"10 e=10"2 e=10"10 e=10"° e=10""1

n=2 m=5 00Is(33) 0.03s (72) 0.01s (30)  0.03s (63) - -

n=2 m=10 00ls(21)  0.03s (59) 0.01s (21)  0.02s (43) 0.01s (8) 0.03s (120)
n=2 m=20 006s (205 0.11s(522)  0.11s (329) 0.19s (583)  0.05s (204)  16.78s (69016)
n=2 m=>50 0.18s (517) 0.45s (1308) 0.22s (579) 0.55s (1460) 0.04s (152) 4.82s (19401)

(

(

( (
n=3 m=5 001s (16)  0.01s (37) 0.01s (16)  0.01s (33) 0.02s (70)  2.17s (8081)
n=3 m=10 0.01s(37)  0.03s (91) 0.01s (41)  0.03s (101)  0.01s (11)  0.03s (199)
n=3 m=20 001s(22) 0.03s (52) 0.01s (25)  0.03s (59) 0.01s (6) 0.01s (32)
n=3 m=>50 0.01s(19)  0.02s (44) ) (51) 0.01s (10)  0.01s (1

0.01s (21)  0.02s 7)

Table 3.2: Performance evaluation for the Heron problem. The entries refer to the CPU
times in seconds and the number of iterations, respectively, needed in order to attain a
root-mean-square error lower than the tolerance €.

Table 3.2 shows a comparison between Algorithm 3.2, the Douglas—Rachford
type method from [59, Algorithm 3.1], and the subgradient approach described
in [102,103] when applied to different instances of the generalized Heron problem.
One such particular case is displayed in Figure 3.2 when n = 3 and m = 5, while the
evolution of the RMSE values is given there in more detail. Empty cells in Table 3.2
indicate that it took more than 60 seconds to pass the stopping criterion. Based on
the provided data, one can say that both Algorithm 3.2 and the noninertial Douglas—
Rachford type method are performing well in this example and that differences in
the computational performance are almost negligible. However, one very interesting
observation arises when the dimension of the space is set to n = 3, as the subgradient
approach then becomes better and surpasses both primal-dual methods.

3.3 Splitting algorithms for nonconvex optimiza-
tion problems

The extension of proximal-type algorithms and of the corresponding convergence
analysis to the nonconvex setting is a challenging ongoing research topic. By
assuming that the functions in the objective share some analytic features and
by making consequently use of a generalization to the nonsmooth setting of the
Kurdyka-Lojasiewicz property initially introduced for smooth functions, the proxi-
mal point algorithm for minimizing a proper and lower semicontinuous function and
the forward-backward scheme for minimizing the sum of a nonsmooth lower semi-
continuous function with a smooth one have proved to possess good convergence
properties also in the nonconvex case, see Attouch and Bolte [9], Attouch, Bolte,
Redont and Soubeyran [10], Attouch, Bolte and Svaiter [11], Bolte, Sabach and
Teboulle [35], Chouzenoux, Pesquet and Repetti [74], Frankel, Farrigos and Pey-
pouquet [88] (wee mention here also the work of Noll [108] concerning descent meth-
ods). The particular class of functions fulfilling the Kurdyka-Lojasiewicz property
includes semi-algebraic functions, real subanalytic functions, semi-convex functions,
uniformly convex functions, etc. (see also [34,94,98]).

The interest of having convergence properties in the nonconvex setting is mo-
tivated among others by applications in connection to sparse nonnegative matrix
factorization, hard constrained feasibility, compressive sensing, etc. In what regards
the latter, they give rise to the solving of optimization problems where the sparsity
measure is used as regularization functional. Due to the fact that this functional is
semi-algebraic, algorithms for solving nonsmooth optimization problems involving
KL functions represent a serious option in this sense (see [11, Example 5.4]).

Throughout this section, we consider on R (where m > 1) the Euclidean scalar
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product and the induced norm denoted by (-,-) and || - ||, respectively. Notice that
all the finite-dimensional spaces considered below are endowed with the topology
induced by the Euclidean norm.

For the following generalized subdifferential notions and their basic properties we
refer to [101,123]. Let f : R™ — (—00,+c0] be a proper and lower semicontinuous
function. If x € dom f, we consider the Fréchet (viscosity) subdifferential of f at x
as being the set

df (z) = {v € R™ : liminf f) = f@) = vy —z) > O}.

vz ly — |

For z ¢ dom f we set Of (z) := 0. The limiting (Mordukhovich) subdifferential is
defined at x € dom f by

Of(x) = {veR™: 3z, = x, f(x,) = f(x) and Jv, € Of (2,), v, = v as n — +00},

while for z ¢ dom f, one takes df(z) := 0.

Notice that in case f is convex, these notions coincide with the convex subdiffer-
ential, which means that df (z) = f(z) = {v € R™ : f(y) > f(z)+ (v,y —z) Vy €
R™} for all x € dom f.

It holds df (x) C 8f(x) for each 2 € R™. We will use the following closedness
criteria concerning the graph of the limiting subdifferential: if (z,,)nen and (v, )nen
are sequences in R™ such that v, € 9f(x,) for all n € N, (z,,v,) — (x,v) and
flxy) = f(x) as n — +oo, then v € Jf ().

The Fermat rule reads in this nonsmooth setting as: if z € R™ is a local min-

imizer of f, then 0 € df(x). Notice that in case f is continuously differentiable
around x € R™ we have 0f(z) = {Vf(z)}. Let us denote by

crit(f) ={xz e R™: 0 € 0f(z)}

the set of (limiting)-critical points of f. We mention also the following subdifferen-
tial rule: if f : R™ — (—o00, 400] is proper and lower semicontinuous and h : R™ —
R is a continuously differentiable function, then 9(f + h)(x) = 0f(z) + Vh(z) for
all z € R™.

We turn now our attention to the class of functions satisfying the Kurdyka-
Lojasiewicz property. This class of functions will play a crucial role when proving
the convergence of the proposed inertial algorithm. For n € (0, +0o0], we denote by
©,, the class of concave and continuous functions ¢ : [0,7) — [0, +00) such that
©(0) = 0, ¢ is continuously differentiable on (0,7), continuous at 0 and ¢'(s) > 0
for all s € (0,n). In the following definition (see [10,35]) we use also the distance
function to a set, defined for A C R™ as dist(x, A) = infye 4 ||z —y| for all z € R™.

Definition 3.1 (Kurdyka-Eojasiewicz property) Let f : R™ — (—o0,+0o0] be a
proper and lower semicontinuous function. We say that f satisfies the Kurdyka-
Lojasiewicz (KL) property at T € domdf = {x € R™ : 9f(x) # 0} if there exists
n € (0,+00], a neighborhood U of Z and a function ¢ € ©,, such that for all  in
the intersection

Un{z e R™: f(z) < f(z) < f(Z) +n}
the following inequality holds
¢'(f(x) - £(7))dist(0,0f(x)) > 1.

If f satisfies the KL property at each point in dom 0f, then f is called a KL function.
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The origins of this notion go back to the pioneering work of Lojasiewicz [98],
where it is proved that for a real-analytic function f : R”™ — R and a critical point
T € R™ (that is Vf(Z) = 0), there exists § € [1/2,1) such that the function |f —
f@)|?|V£||~! is bounded around Z. This corresponds to the situation when ¢(s) =
Cs'=9, where C' > 0. The result of Lojasiewicz allows the interpretation of the KL
property as a re-parametrization of the function values in order to avoid flatness
around the critical points. Kurdyka [94] extended this property to differentiable
functions definable in an o-minimal structure. Further extensions to the nonsmooth
setting can be found in [10,32-34].

One of the remarkable properties of the KL functions is their ubiquity in ap-
plications (see [35]). To the class of KL functions belong semi-algebraic, real sub-
analytic, semiconvex, uniformly convex and convex functions satisfying a growth
condition. We refer the reader to [9-11,32-35] and the references therein for more
details regarding all the classes mentioned above and illustrating examples.

An important role in our convergence analysis will be played by the following
uniformized KL property given in [35, Lemma 6].

Lemma 3.4 Let @ C R™ be a compact set and let f : R™ — (—o0, +00] be a proper
and lower semicontinuous function. Assume that f is constant on ) and f satisfies
the KL property at each point of Q2. Then there exist €, > 0 and ¢ € ©, such that
for all T € Q and for all x in the intersection

{x e R™ : dist(z,Q) <e}nN{z e R™: f(T) < f(z) < f(T)+n} (3. 66)
the following inequality holds
¢ (f(z) = f(@)) dist(0,0f (x)) = 1. (3. 67)

Finally, let us present a convergence result (see for example [47]) which will be
used in the convergence analysis below.

Lemma 3.5 Let (an)nen and (bn)nen be nonnegative real sequences, such that
ZnEN b, < +00 and ap41 < a-an +b-apn_1 + b, for alln > 1, where a € R,

b>0anda+b<1. Then ) yan < -+oo.

3.3.1 An inertial forward-backward algorithm in the noncon-
vex setting

In this section we present an inertial forward-backward algorithm for solving a fully
nonconvex optimization problem and study its convergence properties. The problem
under investigation has the following formulation.

Problem 3.5 Let f : R™ — (—o00,+00] be a proper, lower semicontinuous func-
tion which is bounded from below and let g : R™ — R be a Fréchet differentiable
function with Ly 4-Lipschitz continuous gradient, where Lyg > 0. We deal with the
optimization problem

(P) inf [£(x) + (). (3. 69)
In the iterative scheme we propose below, we use also the function F' : R™ — R,
assumed to be o—strongly convex, Fréchet differentiable and such that VF' is Ly p-

Lipschitz continuous, where o, Lyr > 0. The Bregman distance to F', denoted by
Dr :R™ x R™ — R, is defined as

Dp(xz,y) = F(z) = F(y) = (VF(y),z —y) V(z,y) € R™ x R™.
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Notice that the properties of the function F' ensure the following inequalities
ag 2 LVF 2 m
5lle=yl” < Dr(e,y) < —=llz = yl” Yo,y € R™. (3. 69)
We propose the following iterative scheme for solving (3. 68).

Algorithm 3.3 Chosexg,z1 € R™, a,@ > 0, 8 > 0 and sequences (0, )n>1, (Bn)n>1
fulfilling
O<a<a, <aVvVn>1

and
0SB, <BVn2=>1.

For all n > 1, we consider the iterative scheme

Tpy1 € argmin {Dp(u, ) + an(u, Vg(xn)) + Bn (U, Tno1 — Tn) + anf(u)}.
ueR™
(3. 70)

Due to the subdifferential sum formula mentioned in the previous section, one
can see that any sequence generated by this algorithm satisfies the relation

Tpi1 € (VE + 0, 0f) N (VF(2,) — anVg(x) + Bu(@n — 2,-1)) Yo > 1. (3. 71)

Further, since f is proper, lower semicontinuous and bounded from below and
Dr is coercive in its first argument (that is lim, |40 Dr(z,y) = +oo for all
y € R™), the iterative scheme is well-defined, meaning that the existence of z,, is
guaranteed for each n > 2, since the objective function in the minimization problem
to be solved at each iteration is coercive.

Remark 3.9 The assumption that f should be bounded from below is imposed in
order to ensure that in each iteration one can chose at least one z, (that is the
argmin in (3. 70) is nonempty). One can replace this requirement by asking that
the objective function in the minimization problem considered in (3. 70) is coercive
and the theory presented below still remains valid. This observation is useful when
dealing with optimization problems as the ones considered in Subsection 3.3.2.

Before proceeding with the convergence analysis, we discuss the relation of our
scheme to other algorithms from the literature. Let us take first F(z) = 1|/z|?
for all z € R™. In this case Dp(z,y) = ||z — y||? for all (z,y) € R™ x R™ and
0 = Lyr = 1. The iterative scheme becomes

Ju— (0 — anVg(zn) + Bn(@n — zn1))|?
2au,

+ 1w}

(3. 72)
A similar inertial type algorithm has been analyzed in [110], however in the restric-
tive case when f is convex. If we take in addition 8 = 0, which enforces 3, = 0 for
all n > 1, then (3. 72) becomes

(Vn>1) zpy1 € argmin{
uER™

{ [u — (2 — anVg(a,))|?
200,

+ f(u)}, (3. 73)

(Vn>1) zp41 € argmin
uER™

the convergence of which has been investigated in [35] in the full nonconvex setting.
Notice that forward-backward algorithms with variable metrics for KL functions
have been proposed in [74, 88].
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On the other hand, if we take g(z) = 0 for all x € R™, the iterative scheme in
(3. 72) becomes

{ Hu - (zn + ﬂn(xn - xn—l))H2

200,

+ f(u)}, (3. 74)

(Vn>1) zp41 € argmin
u€R™

which is a proximal point algorithm with inertial/memory effects formulated in the
nonconvex setting designed for finding the critical points of f. The iterative scheme
without the inertial term, that is when 8 = 0 and, so, 8, = 0 for all n > 1, has
been considered in the context of KL functions in [9].

Let us mention that in the full convex setting, which means that f and g are
convex functions, in which case for all n > 2, z,, is uniquely determined and can be
expressed via the prozimal operator of f, (3. 72) can be derived from the iterative
scheme proposed in [104], (3. 73) is the classical forward-backward algorithm (see
for example [26] or [75]) and (3. 74) has been analyzed in [5] in the more general
context of monotone inclusion problems.

Let us start now with the investigation of the convergence of the proposed algorithm.

Lemma 3.6 In the setting of Problem 3.5, let (zn)nen be a sequence generated by
Algorithm 8.3. Then one has

(f + 9 (@ns1) + M|z — znga |* < (f + 9)(@n) + Mooy — @a]* Vn > 1,

where ~I 5 5
g-alvg P =2
o % and M, " (3. 75)

Moreover, for 0 < a <@ and 8 > 0 satisfying

M, =

[9)

o> ahyy + 25%, (3. 76)

one has My > M.
Proof. Let be n > 1 fixed. Due to (3. 70) we have

DF(anrla xn) + Qp <xn+17 Vg($n)> + Bn <xn+17 Tp—1 — xn> + anf(anrl)
< DF(xnaxn) + ap <1'n; VQ(xn» + Bn <xn>$n—1 - xn) + O‘nf(mn)

or, equivalently,

DF(xn-i-la xn) + <xn+1 — Tp, Oéan(l‘n) - Bn(mn - xn—1)> + anf(mn-&-l)
< anf(zn). (3. 77)

On the other hand, by Lemma 1.4 we have

Ly
(Vg(@n), Tny1 — Tn) 2> g(@ny1) — g(xn) — Tg”zn - In-&-l”z-

At the same time
1 9 1 2
<xn+1 —Tn,Tpn—-1 — xn> 2 - 5”1;71 - anrlH + 5”1;7171 - xn” )
and from (3. 69) we get

g
§||xn+1 - xn||2 < DF($n+17xn)'
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Hence, (3.77) leads to

o — LVgan — Bn
20y,

< (f+g)(xn) + %len_l —z? (3. 78)

(f+9)(@ns1) + |Zny1 — xn||2

Obviously M = Z=3%2% — [ < T=bven=fu and My = L > Lo thus,

(f +9)(@nt1) + M|z, — CEn+1||2 < (f+9)(zn) + M|z, 1 — anQ

and the first part of the lemma is proved.
Let 0 < a <@ and 3 > 0 be such that o > @@Ly, +28%. One can immediately
see that the latter is equivalent to M7 > M, and the proof is complete. O

Remark 3.10 If o and 3 are positive numbers such that o > alvy4 + 23, then

< a7
(0% —_——.
B QLVQ +23

By choosing
Qo

o < o < *7’
T QLVQ +28
relation (3. 76) is satisfied.
On the other hand, if & and 3 are positive numbers such that o > aLvy, + 25,
then
20a

— <
O’*@ng

ol

By choosing
<a<aq,
relation (3. 76) is again satisfied.

Proposition 3.1 In the setting of Problem 3.5, chose a, @, satisfying (3. 76)
and My, My satisfying (3. 75). Assume that f+ g is bounded from below. Then the
following statements hold:

(@) 2oz llTn = 2na? < +00;

(b) the sequence ((f + g)(xn) + Ma||xpn—1 — Tn||*)n>1 is monotonically decreasing
and convergent;

(c) the sequence ((f + g)(Tn))nen is convergent.

Proof. For every n > 1, set a, = (f + g)(zn) + Ma||xp_1 — 2,||> and b, =
(My — M3)||zy, — Zns1]|?. Then obviously from Lemma 3.6 one has for every n > 1

Apt1+by = (f+g)(1’n+1)JerHscn—xn_HHQ < (f+9)(@n) +Mal|x, o *InH2 = Qn.
The conclusion follows now from Lemma 1.2. O

Lemma 3.7 In the setting of Problem 3.5, consider the sequences generated by
Algorithm 3.3. For every n > 1 we have

Ynt1 € O(f + 9)(Tnt1), (3. 79)
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where

ygs = V@) = VE@u41) | Gy - Vgt + P2 @ — 20i).

On Qn

Moreover,

L nL n
L Y AL P Y E-S W

n n

Proof. We fix n > 1. From (3. 71) we have that

VE@a) = VE@nt) ooy %n(xn — T 1) € Of(Tns1),

Qp n

Hyn—&-ln <

or, equivalently,
Ynt+1 — Vg(Znt1) € Of (Tnt1),
which shows that yn,+1 € O(f + g)(Xn+1)-
The inequality (3. 80) follows now from the definition of y,+1 and the triangle
inequality. ]

Lemma 3.8 In the setting of Problem 3.5, chose a, @, satisfying (3. 76) and
My, My satisfying (3. 75). Assume that f + g is coercive, i.e.
(f +9)(x) = Fo0.
llzll—+o0
Then any sequence (x,,)nen generated by Algorithm 3.3 has a subsequence convergent
to a critical point of f + g. Actually every cluster point of (Tn)nen 8 a critical point

of f+g.

Proof. Since f 4 g is a proper, lower semicontinuous and coercive function, it
follows that inf,crm [f(z) + g(2)] is finite and the infimum is attained. Hence f +g¢
is bounded from below.

Let (2, )nen be a sequence generated by Algorithm 3.3. According to Proposition
3.1(b), we have

(f +9)(@n) < (f +9)(xn) + Ma||zy, _iCanH2

<
< (f 4+ 9)(@1) + Mallzy — zo* Vn > 1.

Since the function f + g is coercive, its lower level sets are bounded, thus the
sequence (Z,)nen is bounded.

Let « be a cluster point of (z,,)nen. Then there exists a subsequence (2, )ken
such that z,, — = as k — +oo. We show that (f + g)(zn,) — (f + 9)(x) as
k — 400 and that z is a critical point of f + g, that is 0 € (f + g)(z).

We show first that f(z,,) — f(z) as k — +oo. Since f is lower semicontinuous
one has

liminf f(x,,) > f(z).

k—+o00

On the other hand, from (3. 70) we have for every n > 1

Drp(Tny1,Tn) + on (Tny1, Vg(@n)) + Bn (Tng1, Tno1 — Tn) + @ f(Tni1)
< Dp(z,2n) + on (2, V() + Bn (T, 2n—1 — zn) + an f(x),

which leads to

1
o (Dp(@nys Tny—1) — Dp(2, 20, 1)) +
Nk —
1
o L (<Ink - Z, O‘nk—lvf](xnk—l) - /Bnk—l(znk_l - xnk—2)>) +
ng—

f@n,) < f(2) Yk = 2.
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The latter combined with Proposition 3.1(a) and (3. 69) shows that

limsup f(z,,) < f(z),

k— 400

hence limg_, oo f(2n,) = f(x). Since g is continuous, obviously g(z,,) — g(z) as
k — +oo, thus (f + g)(zn,) — (f + g)(x) as k — +o0.
Further, by using the notations from Lemma 3.7, we have y,,, € 9(f + g)(zn,)
for every k > 2. By Proposition 3.1(a) and Lemma 3.7 we get y,,, — 0 as k — +o0.
Concluding, we have:

Y € O(f +9)(wn,) VE > 2,
(Tny s Yny) — (2,0), as k — +o0,
(f+9)(@n,) = (f +9)(x), as k — +oo.

Hence 0 € 9(f + g)(z), that is, = is a critical point of f + g. O

Lemma 3.9 In the setting of Problem 3.5, chose a,@,f satisfying (3. 76) and
My, My satisfying (3. 75). Assume that f + g is coercive and consider the function

H:R™xR™ — (=00, 400, H(z,y) = (f +9)(x) + M|z —y||* ¥V(z,y) € R™ x R™.

Let (zn)nen be a sequence generated by Algorithm 3.3. Then there exist M, N > 0
such that the following statements hold:

(Hi) H(zpy1,70) + M| 2pni1 — 20||? < H(2n, n_1) for alln > 1;
(H3) for alln > 1, there exists wp1 € OH (Tpt1, %) such that

lwns1ll < N([|2ns1 — zall + |20 — Tp-1]]);

(Hs) if (xn, )ken 1S a subsequence such that x,, — x as k — 400, then we have
H(xp, , Tn,—1) = H(z,x) as k — 400 (there exists at least one subsequence
with this property).

Proof For (Hy) just take M = M; — M5 and the conclusion follows from Lemma
3.6.
Let us prove (Hs). For every n > 1 we define

Wn+1 = (yn+1 + 2M2($n+1 - zn), 2M2($n - xn+1))a

where (y,)n>2 is the sequence introduced in Lemma 3.7. The fact that w,41 €
OH (xp41,2y) follows from Lemma 3.7 and the relation

OH (z,y) = (0(f+h)(z)+2Mz(z—y)) x {2Ma(y —2)} V(z,y) € R™ xR™. (3. 81)
Further, one has (see also Lemma 3.7)

[wniall < yns1 + 2Ma(@n 1 — )| + [[2Ma (20 — 2nga )|

L Bn
< (B2 4 Loy 40 s = ol + 22, =

n n

Since0 < a<a, <a@and 0< B, <pforall n>1, one can chose

L n
N:Sup{ VF+LV9+4M2aB7

n>1 Qo Qp

}<+OO
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and the conclusion follows.

For (Hs), consider (z,,)ren a subsequence such that z,, — z as k — +oo.
We have shown in the proof of Lemma 3.8 that (f + g)(zn,) — (f + g)(z) as
k — +o00. From Proposition 3.1(a) and the definition of H we easily derive that
H(zp,,Tn,—1) = H(z,z) = (f + g)(x) as k — 4o00. The existence of such a se-
quence follows from Lemma 3.8. O

In the following we denote by w((2y,)nen) the set of cluster points of the sequence
(mn)neN'

Lemma 3.10 In the setting of Problem 3.5, chose a, @, satisfying (3. 76) and
My, My satisfying (3. 75). Assume that [ + g is coercive and consider the function

H:R™xR™ — (—o0,+00], H(x,y) = (f—i—g)(x)—i—Mng—sz V(z,y) € R™ xR™.

Let (zn)nen be a sequence generated by Algorithm 3.3. Then the following state-
ments are true:

(a) w((Zpn, Tn—1)n>1) Ccrit(H) = {(z,2) e R™ x R™ : x € crit(f + g)};

(b) lim,, o0 dist((zn, Zn—1),w((@n, Tn-1))n>1) = 0;

(c) w((Tn,Tn-1)n>1) is nonempty, compact and connected;

(d) H is finite and constant on w((Ty, Tn—1)n>1)-
Proof. (a) According to Lemma 3.8 and Proposition 3.1(a) we have

W((Tns Tn—1)n>1) € {(z,2) e R™ x R™ : z € crit(f + ¢g)}.
The equality
crit(H) = {(z,2) e R™ x R™ : z € crit(f + g)}

follows from (3. 81).

(b) and (c) can be shown as in [35, Lemma 5], by also taking into consideration
[35, Remark 5], where it is noticed that the properties (b) and (c) are generic for
sequences satisfying z,, 11 — x, — 0 as n — 4o00.

(d) According to Proposition 3.1, the sequence ((f + ¢)(zn))nen is convergent,
ie.

lim (f+g)(zn) =1€R.

n—-+oo

Take an arbitrary (z,z) € w((zn, Tn—1)n>1), Where x € crit(f + g) (we took state-
ment (a) into consideration). From Lemma 3.9(Hs) it follows that there exists a
subsequence (2, )ken such that x,, — x ask — +oo and H(zp,, Tn,—1) — H(z, )
as k — +oo. Moreover, from Proposition 3.1 one has

H(‘T’x) = lim H(znk’znk—l) = lim (f+g)(‘rnk) +M2H‘Tnk - xnk—le =1

k—4o00 k—+o00
and the conclusion follows. |
We give now the main result concerning the convergence of the whole sequence
(Tn)nen.

Theorem 3.8 In the setting of Problem 3.5, chose a, @, satisfying (3. 76) and
My, My satisfying (3. 75). Assume that f + g is coercive and that

H:R™xR™ — (—o00, +oc], H(w,y) = (f +g)(x) + Mallz —y|* ¥(z,y) € R™ xR™

is a KL function. Let (z,)nen be a sequence generated by Algorithm 3.3. Then the
following statements are true:
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(a) ZnEN Hxn-i-l - an < +00;

(b) there exists x € crit(f + g) such that lim, 400 Z,, = T.

Proof. (a) Let (z,)nen be a sequence generated by Algorithm 3.3. According
to Lemma 3.10 we can consider an element T € crit(f 4+ g) such that (Z,T) €
W((Tns Tn—1)n>1)- In analogy to the proof of Lemma 3.9 (by taking into account
also the decrease property (H1)) one can easily show that

ngr_sr_loo H(zp, 2pn-1) = H(Z,T).
We separately treat the following two cases.

I. There exists @ € N such that H(x7, 27-1) = H(Z,T). The decrease property
(H1) in Lemma 3.9 implies H(zp,2n—1) = H(Z,T) for every n > m. By using
again property (H1) in Lemma 3.9, one can show inductively that the sequence
(T, Tn—1)n>n is constant. From here the conclusion follows automatically.

II. For all n > 1 we have H(xy,,zn—1) > H(Z,T). Take Q := w((zp, Tn—1)n>1)-

In virtue of Lemma 3.10(c) and (d) and Lemma 3.4, the KL property of H leads
to the existence of positive numbers € and 1 and a concave function ¢ € ©,, such
that for all

(x,y) €{(u,v) € R™ x R™ : dist((u,v), Q) < €}
N{(u,v) e R™ x R™: H(z,T) < H(u,v) < H(Z,T) + n} (3. 82)
one has
¢ (H(x,y) — H(z,7))dist((0,0), 0H (z,y)) > 1. (3. 83)

Let n; € N such that H(x,,x,-1) < H(Z,T) + n for all n > ny. According to
Lemma 3.10(b), there exists ne € N such that dist((xy,, zn_1), Q) < € for all n > na.

Hence the sequence (z,, Zn—1)n>m where T = max{ni, na}, belongs to the in-
tersection (3. 82). So we have (see (3. 83))

¢ (H(xp,n_1) — H(Z,T))dist((0,0),0H (2, Tn_1)) > 1 Vn > 7.
Since ¢ is concave, it holds

P(H(Tn, xp—1) — H(@, 7)) — p(H(Tn+1,20) — H(Z,T))
@' (H(wn, xn-1) — H(Z,7)) - (H(@n, Tpn—1) — H(Tn+1,2n))
H(xp,xn-1) — H(xpt1,zn)

dist((0,0), 0H (zpn, Trn—1))

2
>

<C

n>mn.

Let M,N > 0 be the real numbers furnished by Lemma 3.9. According to
Lemma 3.9(Hs) there exists w,, € OH(xy, x,—1) such that

lwn|l € N([l#n — n—1ll + [[£n-1 — Tn—2l]) Vn > 2.
Then obviously dist((0,0), 0H (2, Trn—1)) < ||wy||, hence
o(H (2, n—1) — H(Z,T)) — p(H (znt1,20) — H(T, 7)) >
H(zp,xn-1) — H(Tnt1,T0)
[[wn |

H((Eny xnfl) - H(xn+1> xn)
N(llzn — znall + [#n—1 — Tn—2ll)

\%

Vn > 7.

On the other hand, from Lemma 3.9(H;) we obtain that

H(xnamnfl) - H(anrlwrn) > M”anrl - mn”Z vn > 1.
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Hence, one has

o(H(vp, vn1) — H(T, 7)) — p(H(zpy1,7,) — H(Z,T)) >
M||$n+1 - anz

N(lJzn =zl + [[en-1 = zn-2l))

Vn > 7.

For all n > 1, let us denote

(p(H(zn,2n-1) — H(Z, 7)) — p(H(p41,75) — H(T,T))) = €

<=

and
[z = Zn-1]] = an.

Then the last inequality becomes
a? +1
€y > ——— ¥n >7. (3. 84)
p + Ap—1

Obviously, since ¢ > 0, for S > 1 we have

S
Sen= %(@(H(Il, x0) — H(T,T)) — o(H(x541,25) — H(T,T)))
< T (p(H(z1, ) ~ H(E. ),

hence ), -, €, < +00.
On the other hand, from (3. 84) we derive

1
Up+1 = €n(an + an—l) < z(an + an—l) + €n Yn > n.

Hence, according to Lemma 3.5, ) -, a, < 400, thatis >y |[2n —Tpny1]| < +o00.
(b) It follows from (a) that (z,,)nen is a Cauchy sequence, hence it is convergent.
Applying Lemma 3.8, there exists x € crit(f + g) such that lim, , o2, = 2. O

Remark 3.11 A similar conclusion to the one of Theorem 3.8 can be obtained
by applying [11, Theorem 2.9] in R™ x R™ endowed with the Euclidean product
topology for the function

~ — o~ 1
H:R™ xR™ 5 R, H(z,y) = (f +9)(@) + 5 (M + Ma)||lz — y|*.

Indeed, a direct consequence of Lemma 3.6 is the following inequality which holds
foralln>1

1 ~
H(zny1,70) + §(M1 — Ma)(||[zns1 — anQ + [|zn — CEnleQ) < H(xp,Tn-1)-

This shows that H1 in [11] is fulfilled. The assumptions H2 and H3 in the above-
mentioned article are direct consequences of (Hs) and, respectively, (H3) in Lemma
3.9. Under these considerations, provided that H is a KL function, one obtains
via [11, Theorem 2.9] the same conclusion as in Theorem 3.8.

However, the hypothesis that H is a KL function, as assumed in Theorem 3.8,
is in our opinion in this context the most natural one, at least in what concerns the
way in which it approaches the non-inertial case. Indeed, if 3 is equal to zero, then
M5 is equal to zero, too, and the conclusion of Theorem 3.8 follows by only assuming
that f + ¢ is a KL function. On the other hand, in order to apply [11, Theorem
2.9], one would ask that (z,y) — (f +g)(z) + $ Mi||z — y||* is a KL function, which
is in general a stronger assumption.
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Since the class of semi-algebraic functions is closed under addition (see for ex-
ample [35]) and (z,y) — c||z — y||? is semi-algebraic for ¢ > 0, we obtain also the
following direct consequence.

Corollary 3.1 In the setting of Problem 3.5, chose a, @, satisfying (3. 76) and
My, My satisfying (3. 75). Assume that f + g is coercive and semi-algebraic. Let
(zn)nen be a sequence generated by Algorithm 3.3. Then the following statements
are true:

(@) 2nen |Tns1 = znl| < +oo;

(b) there exists x € crit(f + g) such that lim, 400 T, = .

Remark 3.12 As one can notice by taking a closer look at the proof of Lemma 3.8,
the conclusion of this statement as the ones of Lemma 3.9, Lemma 3.10, Theorem
3.8 and Corollary 3.1 remain true, if instead of imposing that f + g is coercive, we
assume that f + ¢ is bounded from below and the sequence (x,,)nen generated by
Algorithm 3.3 is bounded. This observation is useful when dealing with optimization
problems as the ones considered in Subsection 3.3.2.

3.3.2 Numerical experiments

This subsection is dedicated to the presentation of two numerical experiments which
illustrate the applicability of the algorithm proposed in this work. In both numerical
experiments we considered F' = 1| - [|* and set o = 1.

Detecting minimizers of nonconvex optimization problems

As emphasized in [110, Section 5.1] and [30, Exercise 1.3.9] one of the aspects which
makes algorithms with inertial /memory effects useful is given by the fact that they
are able to detect optimal solutions of minimization problems which cannot be found
by their non-inertial variants. In this subsection we show that this phenomenon
arises even when solving problems of type (3. 85), where the nonsmooth function f
is nonconvex. A similar situation has been addressed in [110], however, by assuming
that f is convex. Consider the optimization problem

inf 21| — |zo| + 23 —log(1 4 23) + 22. (3. 85)
(z1,22)ER2

The function
f: R? — R, f(z1,22) = |21 — |22},

is nonconvex and continuous, the function
.2 ) 2 2
g:R* = R, g(z1,22) = 27 — log(1 + z7) + 23,

is continuously differentiable with Lipschitz continuous gradient with Lipschitz con-
stant Ly, = 9/4 and one can easily prove that f + g is coercive. Furthermore,
combining [10, the remarks after Definition 4.1], [33, Remark 5(iii)] and [35, Section
5: Example 4 and Theorem 3], one can easily conclude that H in Theorem 3.8 is a
KL function. By considering the first order optimality conditions

—Vyg(x1,22) € Of (21, 22) = O(] - [)(21) x (=] - [)(22)
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and by noticing that for all x € R we have

1, ifx >0
(|- (x) = -1, ifz <0
[-1,1], ifxz=0
and
-1, ifx >0,

1, if x <0,
{(~1,1}, ifz=0,

(for the latter, see for example [101]), one can easily determine the two critical
points (0,1/2) and (0, —1/2) of (3. 85), which are actually both optimal solutions
of this minimization problem. In Figure 3.4 the level sets and the graph of the
objective function in (3. 85) are represented.

For v > 0 and o = (21, 72) € R? we have (see Remark 3.9)

_ u— z|?
prox. ¢ () = a&gerﬂrg;n {”27” + f(u)} = prox,|. (1) x prox,_p.(x2),

where in the first component one has the well-known shrinkage operator
prox, (z1) = 1 — sgn(z1) - min{|z1],v},

while for the proximal operator in the second component the following formula can
be proven

xo + 1, if o >0
prOX'Y(_H)(IQ) = o — 7, lf To < 0
{=7,7}, ifaz=0.

We implemented Algorithm 3.3 by choosing 3, = 8 = 0 for all n > 1 (which
corresponds to the non-inertial version), 8, = f = 0.199 for all n > 1 and 3, =
£ = 0.299 for all n > 1, respectively, and by setting a,, = (0.99999 — 24,,)/ Ly, for
all n > 1. As starting points we considered the corners of the box generated by the
points (8, £8). Figure 3.3 shows that independently of the four starting points we
have the following phenomenon: the non-inertial version recovers only one of the
two optimal solutions, situation which persists even when changing the value of a,,;
on the other hand, the inertial version is capable to find both optimal solutions,
namely, one for = 0.199 and the other one for § = 0.299.
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(a) zo = (—8,-8),8=0

Figure 3.3: Algorithm 3.3 after 100 iterations and with starting points
(—8,—-8),(—8,8),(8,—8) and (8,8), respectively: the first column shows the iterates of
the non-inertial version (8, = 8 = 0 for all n > 1), the second column the ones of the
inertial version with 8, = 8 = 1.99 for all n > 1 and the third column the ones of the
inertial version with 8, = 8 =2.99 for all n > 1.

Restoration of noisy blurred images

The following numerical experiment concerns the restoration of a noisy blurred
image by using a nonconvex misfit functional with nonconvex regularization. For
a given matrix A € R™*™ describing a blur operator and a given vector b € R™
representing the blurred and noisy image, the task is to estimate the unknown
original image = € R™ fulfilling

Az =b.
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(a) Contour plot (b) Graph
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Figure 3.4: Contour plot and graph of the objective function in (3. 85). The two global
optimal solutions (0,0.5) and (0, —0.5) are marked on the first image.

To this end we solve the following regularized nonconvex minimization problem

M N
inf ¢ " o((Az = b)) + MWzl ¢, (3. 86)

TERM
k=11=1

where ¢ : R — R,
p(t) = log(1+1%),

is derived form the Student’s t distribution, A > 0 is a regularization parameter,
W :R™ — R™ is a discrete Haar wavelet transform with four levels and

m
lyllo = Z|yi|0
i=1

(| - lo = |sen(+)|) furnishes the number of nonzero entries of a given vector y =
(Y1, .-y Ym) € R™. In this context, € R™ represents the vectorized image X €
RMXN where m = M - N and x; ; denotes the normalized value of the pixel located
in the i-th row and the j-th column, fori=1,...,M and j = 1,..., N. Again, by
combining [10, the remarks after Definition 4.1], [33, Remark 5(iii)] and [35, Section
5: Example 3, Example 4 and Theorem 3|, one can conclude that H in Theorem
3.8 is a KL function.
It is immediate that (3. 86) can be written in the form (3. 68), by defining

f(x) = N[Wzllo

and

9(@) => > o((Az — b))

k=11=1

for all x € R™. By using that WW* = W*W = I,,, one can prove the following
formula concerning the proximal operator of f

prox, s(z) = W* prox,, ., (Wz) Vo € R™ ¥y > 0,
where for all u = (uq, ..., um,) we have (see [11, Example 5.4(a)])

PIOX [l (1) = (PTOXq .| (U1), -y PTOX\4 1.1 (U ))
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and for all t € R

t, if [t] > V2,
proxy,.,(t) = q {0,t}, if [t =2\,
0, otherwise.

For the experiments we used the 256 x 256 boat test image which we first blurred by
using a Gaussian blur operator of size 9x9 and standard deviation 4 and to which we
afterward added a zero-mean white Gaussian noise with standard deviation 1076,
In the first row of Figure 3.5 the original boat test image and the blurred and noisy
one are represented, while in the second row one has the reconstructed images by
means of the non-inertial (for 8, = 8 = 0 for all n > 1) and inertial versions (for
Bn = =10"7 for all n > 1) of Algorithm 1, respectively. We took as regularization
parameter A = 1075 and set a;,, = (0.999999 — 23,,)/ Ly, for all n > 1, whereby the
Lipschitz constant of the gradient of the smooth misfit function is Ly, = 2.

original image blurred & noisy image

inertial reconstruction

Figure 3.5: The first row shows the original 256 x 256 boat test image and the blurred
and noisy one and the second row the reconstructed images after 300 iterations.

We compared the quality of the recovered images for 5, = 5 for all n > 1
and different values of # by making use of the improvement in signal-to-noise ratio
(ISNR), which is defined as

2

lz — ||

where x, b and x,, denote the original, observed and estimated image at iteration
n, respectively.
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B 0.4 0.2 0.01 0.0001 1077 0
ISNR(300) 2.081946 3.101028 3.492989 3.499428 3.511135 3.511134

Table 3.3: The ISNR values after 300 iterations for different choices of 3.

In Table 3.3 we list the values of the ISNR~function after 300 iterations, whereby
the case 8 = 0 corresponds to the non-inertial version of the algorithm. One can
notice that for § taking very small values, the inertial version is competitive with
the non-inertial one.



Chapter 4

Penalty-type splitting
algorithms for monotone
inclusion problems

It is the aim of this chapter to present and investigate penalty-type methods for
monotone inclusion problems. In Section 4.1 we pay attention on forward-backward-
type penalty methods, while in Section 4.2 we consider Tseng’s type penalty schemes
for monotone inclusion problems, including highly structured inclusions involving
composition with linear and continuous operators and parallel-sums.

We need some additional notions and technical results which are recalled in the
following.

The Fitzpatrick function associated to a monotone operator A : H = H, defined
as

YA :HXH%Ra QDA(:E7’U’): sup {(m,v>+<y,u>—<y,v>},
(y,v)€grA

is a convex and lower semicontinuous function and it will play an important role
throughout this chapter. Let us note that a similar object has been considered also
by Krylov in 1982, see [93]. The terminology used in the literature is Fitzpatrick
function, due to [87], where some fundamental properties have been investigated in
connection with monotone operators. Let us underline that this notion opened the
gate towards the employment of convex analysis specific tools when investigating
the maximality of monotone operators (see [26,27,36-39,64,124] and the references
therein). In case A is maximally monotone, ¢ 4 is proper and it fulfills

va(z,u) > (z,u) V(z,u) € H X H,

with equality if and only if (z,u) € gr A. Notice that if f : H — R, is a proper,
convex and lower semi-continuous function, then the following inequality is true
(see [27])
var(z,u) < fz) + f*(u) Y(z,u) € H X H. (4. 1)
We refer the reader to [27], for formulae of the corresponding Fitzpatrick functions
computed for particular classes of monotone operators.
The following ergodic version of the Opial Lemma will be used several times in
this chapter. Let (z,)n>1 be a sequence in H and (A;)r>1 a sequence of positive
numbers such that Y, o, A = +00. Let (2,)n>1 be the sequence of weighted

averages defined as (see [16])

1 n n
W= — S M\uzk, where 7, = S A Vi > 1. 4.2
z Tzka:k where T, ,;k n (4. 2)

" k=1
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Lemma 4.1 (Opial-Passty, see [112,113] and [15, Lemma 2.1]) Let C be a nonempty
subset of H and assume that the limes limy, o ||x, — z|| exists for every x € C. If

every weak sequential cluster point of (€, )n>1 (Tespectively (zn)n>1) lies in C, then

(Tn)n>1 (respectively (zn)n>1) converges weakly to an element in C' as n — +00.

4.1 A forward-backward penalty scheme

In this section we propose and investigate the convergence properties of a forward-
backward penalty type scheme for solving inclusion problems governed by monotone
operators. The problem we deal with at the beginning of this section has the
following formulation.

Problem 4.1 Let ‘H be a real Hilbert space, A, B : H = H maximally monotone
operators, D : H — H an n-cocoercive operator with n > 0 and suppose that M =
zer B # (). The monotone inclusion problem to solve is

find x € H such that 0 € Ax + Dz + Nps(x).
The following iterative scheme for solving Problem 4.1 is inspired by [16].

Algorithm 4.1
Initialization: Choose 1 € H
For n > 1: Choose w,, € Bz,
Set Tn+1 = JAnA($n - Anl)xn - )\n/ann)7

where (A,)n>1 and (8,)n>1 are sequences of positive real numbers. Notice that
Algorithm 4.1 is well-defined, if dom B = H, which will be the case in the next
section, when B is assumed to be cocoercive. For the convergence statement the
following hypotheses are needed

(1) A+ Ny is maximally monotone and zer(A + D + Nyy) # 0;
(74) For every p € ran Ny :

Sz M s o () o ()] < oo
(id1) (An)nz1 € €2\ £,

(Hpitz)

Remark 4.1 Since A is maximally monotone and M is a nonempty convex and
closed set, A + N,; is maximally monotone if a so-called regularity condition is
fulfilled. This is the cae if one of the Rockafellar conditions M N intdom A # () or
dom ANint M # @, is fulfilled (see [121]). We refer the reader to [26,36-39,124,131]
for further conditions which guarantee the maximality of the sum of maximally
monotone operators. Further, we refer to [26, Subsection 23.4] for conditions eun-
suring that the set of zeros of a maximally monotone operator is nonempty.

Further, as D is maximally monotone (see [26, Example 20.28]) and dom D = H,
the hypothesis (i) above guarantees that A + D + N), is maximally monotone, too
(see [26, Corollary 24.4]). Moreover, for each p € ran Nj; we have

P p
,— | = — | >0Vn>1.
5&%”(“ m) ”M<ﬂn> "

Indeed, if p € ran Nj;, then there exists w € M such that p € Ny (w). This implies

that
32}1&@3 (% Bi) — oM (;) > <u,ﬁpn> — oM (ﬂi) =0Vn>1.
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Remark 4.2 Let us underline that the hypothesis (ii) is a generalization of the
condition considered in [16] (we refer to (H}’fttz) and Remark 4.7 in Section 4.2.3 for
conditions guaranteeing (ii)). Indeed, if Dax = 0 for all z € H and B = 0¥, where
U : H — R is a proper, convex and lower semicontinuous function with min ¥ = 0,

then the monotone inclusion in Problem 4.1 becomes
find © € H such that 0 € Az + Ny (), (4. 3)

since in this case M = argmin ¥. This problem has been investigated in [16] under
the condition

(i) A+ Ny is maximally monotone and zer(A + Nys) # 0;
For every p € ran Ny, :
Zn21 AnBn {\IJ* (ﬁ) —oc (ﬁ)] < 4o0;
(i) (An)nen € €2\ £1.

(H)

Moreover, as ¥(z) = 0 for all x € M, by (4. 1) it follows that condition (ii) in
(H) implies condition (ii) in (Hyi.), hence the hypothesis formulated by means
of the Fitzpatrick function extends the one given [16] to the more general setting
considered in Problem 4.1. It remains an open question to find examples of proper,

convex and lower semicontinuous functions ¥ : H — R with min ¥ = 0 for which
(ii) in (H) is not fulfilled, while for B = 0¥ condition (ii) in (H ;) holds.

4.1.1 The general case

In this subsection we will prove an abstract convergence result for Algorithm 4.1,
which will be subsequently refined in the case when B is a cocoercive operator.
Some techniques from [16] are adapted to the more general setting we consider
here.

Lemma 4.2 Let (zp)n>1 and (wy)n>1 be the sequences generated by Algorithm 4.1
and take (u,w) € gr(A+ D + Np) such that w = v+ p 4+ Du, where v € Au and
p € Npys(u). Then the following inequality holds for alln > 1

i1 = ull? = llam — ull® + A (2 — 30| Do — D
p D
<2\, 05, | su u,— | —o —
<20 |sup o (w4 ) on ()]
+ 3/\,21572,”11)7;”2 + 3/\$L||Du +v|]? + 20 (U — Ty, w). (4. 4)
Proof. From the definition of the resolvent of A we have

Tn — Tn41 —B w
n

n— Dxy € Axpqq
An

and since v € Au, the monotonicity of A guarantees
<$n+1 — Uy Tp — Tpt+1 — An(ﬂnwn + Dmn + 'U)> Z 0Vn Z 17 (4 5)

thus
<U — Tpt+1,Tn — xn+1> < /\n<u - xn+175nwn + D:En + U> vn > 1.

Further, since

1 1 1
(0= Zns1, 20 = T1) = 5o =l = S lan = ul? + 5 znss — 2ol
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we get for any n > 1

[2nt1 — “”2 = l|zn — uH2

< 22 (t — Tpy1, Buwn + Dy +0) — || Tng1 — 0|

= 2\ {u — Ty, Ppwn + Dz + 0) + 20, (T, — Tpy1, Bpwn + Dy, + 0)
= l|zn41 — an2

< 20 (U = T, Buwn + Dy +v) + AL || Bywn + Dy, + 0|2

< 20 (U — T, Bpwn + Dy 4 v) + 3N2 B2 ||wn||? + 3\ || Du 4 v||?
+ 3)\2||Dx,, — Dul|*.

Next we evaluate the first term on the right hand-side of the last of the above
inequalities. By using the cocoercivity of D and the definition of the Fitzpatrick

function and that w,, € Bz, and oy (%) = (u, BL> for every n > 1, we obtain

n

22 (U — Ty, Bpwy, + Dy, + 0)
= 2\, (u — &y, Bpwy, + Dy, + w — p — Du)
= 2M\(u — @y, Dy, — Du) + 20, (u — Ty, Brwn — P) + 2A, {(u — Ty, w)

= 2\, (u — xy, Dz, — Du) + 20, 8, ((u,wn) + <xn, ﬁp> —{ZTpywp) — <u, ﬂp>>
+ 2\, (u — xp, w)
< —2n\,|| Dz, — Dul?
p p
+ 2XnBn [sup vB (u7 ) — oM ()} + 20 (u — zp, w).

ueM /Bn

This provides the desired conclusion. O

Theorem 4.1 Let (zy)n>1 and (wy)n>1 be the sequences generated by Algorithm
4.1 and (zn)n>1 the sequence defined in (4. 2). If (Hyi,) is fulfilled and the con-
dition (ApBnl|wnl)n>1 € €2 holds, then (2,)n>1 converges weakly to an element in
zer(A+ D+ Nyy) as n — +00.

Proof. As lim,, o A, = 0, there exists ng € N such that 2n — 3\, > 0 for all
n > ng. Thus, for (u,w) € gr(A + D + Nyy), such that w = v + p + Du, where
v € Au and p € Nps(u), by (4. 4) it holds for all n > ng

lensr — ull® = llan — ul® < 2008, [sup o (u ”) ou (p)]
ueM ﬁn Bn

+ 3N B2 wall® + A2 | Du + v|* + 2, (u — @, w).
(4. 6)

By Lemma 4.1, it is sufficient to prove that the following two statements hold:
(a) for every u € zer(A + D + Ny) the sequence (||z, — u||)n>1 is convergent;
(b) every weak sequential cluster point of (z,,),>1 lies in zer(A + D + Nyy).

(a) For every u € zer(A + D 4 Njs) one can take w = 0 in (4. 6) and the
conclusion follows from Lemma 1.2.

(b) Let z be a weak sequential cluster point of (2,)n>1. As we already noticed
that A+ D+ Ny is maximally monotone, in order to show that z € zer(A+D+Nyy)
we will use the characterization given in (1. 29). Take (u,w) € gr(A + D + Ny)
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such that w = v + p + Du, where v € Au and p € Njs(u). Let be N € N with
N > ng + 2. Summing up for n = ng + 1, ..., N the inequalities in (4. 6), we get

N N no 70
H.’L‘N+1_UH2_||$nO+1—UH2 < L+2 <Z Anll — Z AnTn — Z Antt + Z Anxna ’LU> )
n=1 n=1 n=1 n=1

where

v=2 3 e (7)o (7))

n>no+1
+3 > AB2wallP+3 Y ADutv|? R
n>nop+1 n>nop+1

Discarding the nonnegative term ||z 41 —u||? and dividing by 27y = 2 Zivzl Ak
we obtain
—ull? I
_Hxno-i-l UH < + <U—ZN,U)>,
2TN 27‘]\]
where L := L+ 2(— 3" Au+ 32" Ay, w) € R. By passing to the limit as
N — 400 and using that limy_, oo 787 = +00, We get

liminf (v — zy,w) > 0.
N—+oo

Since z is a weak sequential cluster point of (z,)n>1, we obtain that (u—z,w) > 0.
Finally, as this inequality holds for arbitrary (u,w) € gr(A 4+ D + Nys), the desired
conclusion follows. O

In the following we show that strong monotonicity of the operator A ensures
strong convergence of the sequence (Zy,)n>1-

Theorem 4.2 Let (zy)n>1 and (wy)p>1 be the sequences generated by Algorithm
4.1. If (Hpitz) is fulfilled, (AnBnllwnl)n>1 € €2 and the operator A is y-strongly
monotone with v > 0, then (z,)n>1 converges strongly to the unique element in
zer(A+ D+ Nyy) as n — +o0.

Proof. Let be u € zer(A+ D + Nyps) and w = 0 = v + p + Du, where v € Au and
p € Np(u). Since A is vy-strongly monotone, inequality (4. 5) becomes

(L1 — U Ty — Trg1 — A (Buwn + Dy +0)) > Nyl —ul?> Vo > 1. (4. 7)
Following the lines of the proof of Lemma 4.2 for w = 0 we obtain for all n > 1
29\ [ — ul)? + lzngr — ull? = llzn —ull® + An(20 = 3M) | D2, — Dul®

<20 [sup s (u, p) o (p)} T 3A2B2lwn]? + 372 Du + o]
ueM Bn /Bn

Thus, as lim,, o, A, = 0, there exists ng € N such that for all n > ng
29| s1 = ul? + [Jzpn — ull® = [Jan — ul®

< 2Au6n [sup s (u p) —ou (p)} 3N 82w 2 + 3M2 | D + o]
ueM Bn ﬁn
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and, so,

2y Z Anl|@ng1 — u||2 < @, — “”2

n>ng
w2 3 doin s (u. ) -om ()

n>ng
+3 Y ABlwal® + 3 Du+of* Y X
n>ng n>mng
< 4+ o0.

Since ), <1 Ap = +00 and (||z,, — u[[)n>1 is convergent (see the proof of Theorem
4.1 (a)), it follows lim,, o ||z, — ul| = 0. 0

4.1.2 The case B is cocoercive

In this subsection we deal with the situation when B is a (single-valued) cocoercive
operator. Our aim is to show that in this setting the assumption (A, By || wn||)n>1 €
£2 in Theorem 4.1 and Theorem 4.2 can be replaced by a milder condition involving
only the sequences (A,)n>1 and (By,)n>1. The problem under consideration has the
following formulation.

Problem 4.2 Let H be a real Hilbert space, A : H = H a mazximally monotone
operator, D : H — H an n-cocoercive operator with n > 0, B : H — H a pu-
cocoercive operator with p > 0 and suppose that M = zer B # (). The monotone
inclusion problem to solve is

find x € H such that 0 € Az + Dz + Ny (z).
Algorithm 4.1 has in this particular setting the following formulation.

Algorithm 4.2
Initialization: Choose 1 € H
For n > 1 set: 1 = Ja, A(@n — A\Dxy — NS Bay).

Remark 4.3 (a) If Dx =0 for every x € H and B = VU, where ¥ : H — Risa
convex and differentiable function with p~!-Lipschitz continuous gradient for
p > 0 fulfilling min ¥ = 0, then we rediscover the setting considered in [16,
Section 3], while Algorithm 4.2 becomes the iterative method investigated in
that paper.

(b) In case Bx = 0 for all z € H Algorithm 4.2 turns out to be classical forward-
backward scheme (see [26,75,130]), since under these premises M = H, hence
Ny (z) = {0} for all z € H.

Before stating the convergence result for Algorithm 4.2 some technical results
are in order.

Lemma 4.3 Let be u € M Ndom A and v € Au. Then for every e > 0 and all
n > 1 we have

€
1+4+¢
2u

< MBn <(1 + E)Anﬂn - 1—}—8) HB‘Tn”2 + 2/\n<u — Tpy1, Doy + U>- (4' 8)

2¢
||$n+1 - xn||2 + 7Anﬂn<$n —u, an>

[Zn+1 —u||2— ||xn_u||2+ 14+¢
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Proof. As in the proof of Lemma 4.2 we obtain for all n > 1 that
21 = wll? = |20 = ull® + [|2041 — 2412
< 2)\71 <’LL — Tn+1, Bann + Dwn + U>
= 2)\nﬂn <u — Tn, an> + 2)\nﬁn<xn — Tn+1, an>
+ 22\ (u — xpy1, Dy + 0).
Since B is p-cocoercive and Bu = 0 we have that
(u — &, Bxy,) < —pl|Bxy||* Vo > 1,

hence for all n > 1 and € > 0 it holds

2

22X Bn{u — xyp, Bxy) fg)\nﬂn<u—xn,3xn>.

2
< _17_’/_L€>\n5n“anH2 + 1

Inequality (4. 8) follows by taking into consideration also that for all n > 1 and
€ > 0 we have

2ABn(®n — Tnt1, Baa) < |ns1 = @nll® + (1 + )N85 [ B .

1+¢
O

Lemma 4.4 Assume that limsup,, ,,  ApfBn < 2p and let be u € M Ndom A and
v € Au. Then there exist a,b > 0 and ng € N such that for all n > ng it holds

Znt1 — u||2 — [|en — UH2 +a (HaJn-i-l - an2 + AnBn{Tn — u, Bry) + /\nﬁnHanHQ)
< (bAZ = 2nA,) | Dz, — Dul|® + 2X, (u — 2, v + Du) + bA2 || Du + v||°. (4. 9)

Proof. We start by noticing that, by making use of the cocoercivity of D, for every
e>0and all n > 1 it holds

2Mn(u — xpy1, Dy + 0)
= 20\ {@n — Tpg1, DTy + ) + 20 (u — x4y, Dy + )
€ 2(1+¢
= m”xn-&-l - 937LH2 + %)‘%HD‘WL "’U”2 + 2\ (u — 2y, Dy +v)
3 o  Al+e) ., o Al+e) 5 2
< ap — a2+ N2 Dy, — D T8N p
< srggllonss = ol + 22 D0, - ul + LD Dut o)
+ 2\, (u — xp, Dz, — Du) 42X\, (u — 2, v + Du)
€ o  Al+e) ., o 4l+e) o 2
< ap — a2+ N2 Dy, — D T8N p
< ggglonn — ol + L Do, - Dul + LD Do

— 2\l D2y, — Dul|* + 2)\, (u — 2, v 4+ Du).

In combination with (4. 8) it yields for every £ > 0 and every n > 1

2
|21 — ull® = Jan — ul® + ﬁnwm — @ulP + T AuBalen — u, Bay)
13
7)\71 n B n 2
+ oMbl B
2u 5 9
<>\n n 1 )\n n— T _ B n
< b (LMo = 2 4 12 ) B

4(1
n <(€+€)A3 _ 277>\n> 1Dz, — D

N 4(1+4¢)

+ 2\, (4 — @, v + Du) Al Du + vl?.
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Since limsup,, ,, ., AnBn < 2, there exists o > 0 and ng € N such that \,8, <
a < 2u for all n > ng. Hence, for all n > ng and every € > 0 it holds

20 € 2u €
1 _ _< 1 _
A"ﬁ”<( +E)Anbn 1+6+1+5><a<( +e)a 1+5+1+5>

24 €
m‘i‘ 1+Oso < 0. The

desired conclusion follows by choosing a = 2(13‘_)50) and b = 4(1;(-)80), O

and one can take g9 > 0 small enough such that (1 + o) —

Lemma 4.5 Assume that limsup,, ,,  AnBn < 2p and limy, o A, = 0 and let be
(u,w) € gr(A+ D+ Nyy) such that w = v+ p+ Du, where v € Au and p € Ny (u).
Then there exist a,b > 0 and ny € N such that for all n > ny it holds

lznr1 =l = llen = ul® (4. 10)

A
+a (R =l + 2500 = . Bay) 4 Mo | B )

< @Anfn [sup B (u, p) —oMm (p)] + 2Xn (U — 2, w) + DAL || Du + 0.
weM afBn afBn
(4. 11)

Proof. According to Lemma 4.4, there exist a,b > 0 and ng € N such that for all
n > ng inequality (4. 9) holds. Since lim,, o A, = 0, there exists n1 € N;ny > ng
such that b/\% —2nA, <0 for all n > nq, hence,
€41 = wll® = fln — ul®
+a (”x’n+1 - {L'n||2 + )‘nﬂn<xn —u, B$n> + )\nﬁnHB‘rnH2)
< 2M\(u — 2, v + Du) + bA2 || Du +v||* Vn > ny.

The conclusion follows by combining this inequality with the subsequent estimation
that holds for all n > 1:

An n
2An{u — xp, v + Du) + a4 2ﬁ (u— @y, Bxy)
>\n n
=2\, {u — xy, —p) + a4 25 (U — Xy, Bxp) + 20 (u — zp, w)

_ adnfe <<U’an> + <:£n 4p> (2, By — <u 4p>> 20— )

2 aﬁn aﬁn
aX,fPn 4p 4p
< —Q |~ - 200 (U — Ty, w).
< 8 |sup o (1) o () |+ 20t =

O

Theorem 4.3 Let (zy,)n>1 and (wy)n>1 be the sequences generated by Algorithm
4.2 and (zp)n>1 be the sequence defined in (4. 2). If (Hyu,) is fulfilled and the
condition

limsup A\, 8, < 2u

n—-+o0o

holds, then the following statements are true:

(1) for everyu € zer(A+D+Nyy) the sequence (||, —u||)n>1 is convergent and the
series Y5y ||Tnt1 — zn %, Y1 B (Bry, xn —u) and 3 4 AnBnl| B
are convergent as well. In particular lim,—, 1 o ||Tpt1 — || = 0. If, moreover,
lminf, oo AnfBn > 0, then limy, oo (Bxy, Tn — u) = lim, 4o || Bz, = 0
and every weak sequential cluster point of (xy)n>1 lies in M.
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(11) (zn)n>1 converges weakly to an element in zer(A+ D + Npy) as n — +o00.

(i11) if, additionally, A is strongly monotone, then (z,)n>1 converges strongly to
the unique element in zer(A+ D + Nys) as n — +oo.

Proof. For every u € zer(A + D + Nys), according to Lemma 4.5, there exist
a,b > 0 and n; € N such that for all n > n; inequality (4. 10) is true for w = 0.
This gives rise via Lemma 1.2 to the statements in (i). As the sequence (A, 8n)n>1
is bounded above, it automatically follows that (A,B3,| By |)n>1 € €2, Hence, (ii)
and (iii) follow as consequences of Theorem 4.1 and Theorem 4.2, respectively. [

Remark 4.4 We emphasize the fact that the results obtained in this subsection
by assuming that B is a cocoercive operator enables us to treat the more general
case where M is the set of zeros of an arbitrary maximally monotone operator.

Indeed, we consider in Problem 4.1 that M = zer N # (), where N : H = H
is a (possibly set-valued) maximally monotone operator. The idea is to apply the
results in Subsection 2.1.2 to the operator B := Jy-1 : H — H, which according
to [26, Proposition 20.22, Corollary 23.10 and Proposition 4.2] is u-cocoercive with
u = 1. By noticing that zer Jy-1 = zer N, we can address the monotone inclusion
problem to be solved as a problem formulated in the framework of Problem 4.2.
Obviously, in the iterative scheme given in Algorithm 4.2 the operator N will be
evaluated by a backward step.

Further, we will show that one can provide sufficient conditions for (ii) in (Hs-)
written in terms of the Fitzpatrick function of the operator V. To this end we use the
following estimation of for Fitzpatrick function of Jy-1, obtained by applying [27,
Proposition 4.2], which is a result that gives an upper bound for the Fitzpatrick
function of the sum of two maximally monotone operators in terms of the Fitzpatrick
functions of the operators involved. Take an arbitrary p € ran Ny; and u € M. We
have for every n > 1

wJ (U p) = Pld+N-1 (p U)
NN B * Bn’
p p
®Y1d (Bn,o> + on-1 (Bnﬂl)
? p
+ YN <U, > 9

where we used the fact that prq(z,v) = 1 ||z + v|)? for all (z,v) € H x H.
This means that the condition (ii) in (Hy;.) applied to the reformulation of

Problem 4.1 described above is fulfilled, if we assume that > -, % < +oo and

IN

1ip
4|8,

that for every p € ran Nag, >, <1 Anfn [sup ON (u, BL) — oM (ﬁp)] < 4o00.
- weM " "

4.2 Tseng’s Type penalty schemes

In this section we deal first with the monotone inclusion problem stated in Problem
4.2 by relaxing the cocoercivity of B and D to monotonicity and Lipschitz continuity.
The iterative method we propose in this setting is a forward-backward-forward
penalty scheme and relies on a method introduced by Tseng in [129] (see [26,62,76]
for further details and motivations). By making use of primal-dual techniques
we will be able then to employ the proposed approach when solving monotone
inclusion problems involving parallel sums and compositions of maximally monotone
operators with linear continuous ones.
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4.2.1 Relaxing cocoercivity to monotonicity and Lipschitz
continuity

We deal first with the following problem.

Problem 4.3 Let H be a real Hilbert space, A : H = H a maximally monotone
operator, D : H — H a monotone and n~'-Lipschitz continuous operator with
n >0, B:H — H a monotone and u~*-Lipschitz continuous operator with p > 0
and suppose that M = zer B # (). The monotone inclusion problem to solve is

find x € H such that 0 € Ax + Dz + Nps(x).
The investigated algorithm has the following form.

Algorithm 4.3
Initialization: Choose x1 € H
Forn > 1set: p,= JAHA(xn — A Dxp — )\n/Bann)
Tnyl = /\nﬂn(an - Bpn) + )\n(Dmn - Dpn) + Dn;

where (An)n>1 and (8,)n>1 are sequences of positive real numbers.

Remark 4.5 If Bz = 0 for every € H (which corresponds to the situation
Ny(z) = {0} for all x € H), then Algorithm 4.3 turns out to be the error-free
forward-backward-forward scheme from [62, Theorem 2.5] (see also [129]).

We start with the following technical statement.

Lemma 4.6 Let (x,)n>1 and (pn)n>1 be the sequences generated by Algorithm 4.3
and let be (u,w) € gr(A+ D+ Nyr) such that w = v+ p + Du, where v € Au and
p € Ny(u). Then the following inequality holds for alln > 1:

MAbBr A
s — ull? — llzn — ul® + (1 - (ﬂ n n) ) n = pul?

< 2X\,.0n [sup OB (u, ;) — oM (p)} + 2\ (u — P, w). (4. 12)

weM 5
Proof. From the definition of the resolvent we have

Tn — Pn
An

— BpBx, — Dz, € Ap, Vn >1

and since v € Au, the monotonicity of A guarantees
(pn, — Uy, Ty, — pr — A (BnBxy, + Dz, +0)) > 0Vn > 1,

thus
(U =P, Tn = Pn) < (U = Py M Bn By + A Dz + Apv) ¥n > 1.

By using the definition of x,,41 given in the algorithm we obtain
(U=Pn;, Tn — Pn)
< <u — PnyTnt+1 — Pn + AnBnBpn + A Dpp, + /\n'U>

= (U — P, Tnt1 — Pn) + AuBn(u — D, Bpn)
+ AU = P, Dpn) + An(u — pn,v) ¥n > 1.
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From here it follows for all n > 1

1 1 1
3w =pall* = Sllzn = ull* + Sllzn = pal?

1 1
I2 = Slenss =l + 5 lenss = ool

1
< 7||u_pn
+ )\nﬁn<u — Pn, Bpn> + )\n<u _pnaDpn> + )‘n<u - pn,’U>-

Since v = w — p — Du and due to the fact that D is monotone, we obtain for every
n>1

241 = ull® = lzn — ul?

< llansr = pall* = llon — pal®

+ 2 Bn (<U7 Bpn> + <pm 6p> - <mepn> - <u7 ﬂp>>
+ 2)\n<u = Pn> Dppn — DU> + 2)\n<u — Pn, w>

< ||mn+1 _pn||2 - ||xn _an2

+2X8n [sup B (u p) —ouM (p>] + 20 (u — P, w).
ueM ﬁn Bn

The conclusion follows, by noticing that the Lipschitz continuity of B and D yields

A A
[Zns1 — pull < = n||$n_pn||+l“$n_pn||
1Y n
A A
v n

The convergence of Algorithm 4.3 is stated below.

Theorem 4.4 Let (x,)n>1 and (pn)n>1 be the sequences generated by Algorithm
4.8 and (zp)n>1 the sequence defined in (4. 2). If (Hyi,) is fulfilled and the condi-

tion \ \
lim sup < nfn + n) <1
n—+oo M n

holds, then (z,)n>1 converges weakly to an element in zer(A+D+Nyr) asn — +00.

Proof. The proof of the theorem relies on the following three statements:
(a) for every u € zer(A + D + N)ps) the sequence (||, — u||)n>1 is convergent;

(b) every weak cluster point of (z/,),,>1, where

1 n n
r_ _
2, = Tn;)\kpk and Tn—;)\k Vn > 1,

lies in zer(A 4+ D + Ny );
(c) every weak cluster point of (z,),>1 lies in zer(A + D + Nyy).

In order to show (a) and (b) one has only to slightly adapt the proof of Theorem
4.1 and this is why we omit to give further details. For (c) it is enough to prove that
limy, 400 ||2n — 2, || = 0 and the statement of the theorem will be a consequence of
Lemma 4.1.
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Taking u € zer(A + D + Nys) and w = 0 = v + p + Du, where v € Au and
p € Nps(u), from (4. 12) we have

5 2
lnsr = ull® = flan — ul® + (1 - (R4 22 ) I — pal?
14 n
p P
< 2\,.06, | su u,— | — o

As limsup,,_, | o (A”f" + %”) < 1, we obtain by Lemma 1.2 that

Z Hxn _an2 < +o0.

n>1

Moreover, for all n > 1 it holds

1 1
len = 24lI* = = ZM we—p)|| < (ZMIIM —pk||>
1
<L (z ) (St
n \k=1 k=1

Since (Ap)n>1 € £2\0*, by taking into consideration that 7, = Y ;_; Ay = +o0 (n —
+00), we obtain ||z, — z.,|| = 0 (n = +00). O

As it happens for the forward-backward penalty scheme, strong monotonicity of
the operator A ensures strong convergence of the sequence (x,,)n>1.

Theorem 4.5 Let (n)n>1 and (pn)n>1 be the sequences generated by Algorithm
4.3. If (Hyit) is fulfilled,

)\n n )"n,
lim sup < b + > <1
n

n——+oo 1%

and the operator A is «y-strongly monotone with v > 0, then (z,)p>1 converges
strongly to the unique element in zer(A+ D + Nyr) as n — +o0.

Proof. Let be u € zer(A+ D + Njs) and w = 0 = v + p + Du, where v € Au and
p € Nps(u). Following the lines of the proof of Lemma 4.6 one can easily show that

ABn A\’
2o — ull? + Jenss — wl? — low — ul® + (1 - ( Py n) ) n = pull

< 2Xn0n [5;1[\%@5 (U, él) —ouM (ﬂn):| vn > 1.

The hypotheses imply the existence of ng € N such that for every n > ng

210l P+ s~ i =l < 200 | sup o (102 ) = o (2]
ueM 5n ﬂn
As in the proof of Theorem 4.2, from here it follows that

Z Allpn — ul|? < +o0.

n>1
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Since (An)n>1 is bounded above and Y-, .y [[#n — pul/* < 400 (see the proof of
Theorem 4.4), it yields

Z Anllzn — “”2 < 22 AnllZn _pn||2 +2 Z Anllpn — UH2 < +oo.

n=1 n=1 n=1

Asy " <1 Ay = +oo and (||, —ul|)n>1 is convergent, it follows limy, o ||zn —u|| =
0. -

4.2.2 Primal-dual Tseng’s type penalty schemes

In this section we propose a forward-backward-forward-type algorithm for solving
the following monotone inclusion problem involving linearly composed and parallel-
sum type monotone operators and investigate its convergence.

Problem 4.4 Let H be a real Hilbert space, A : H = H a mazximally monotone
operator and C : H — H a monotone and v-Lipschitz continuous operator for
v > 0. Let m be a strictly positive integer and for every i € {1,....,m} let G; be a
real Hilbert space, B; : G; = G; a maximally monotone operator, D; : G, = G; a
monotone operator such that D;l 18 v;-Lipschtz continuous forv; >0 and L; : H —
G; a nonzero linear continuous operator. Consider also B : H — H a monotone
and p~t-Lipschitz continuous operator with > 0 and suppose that M = zer B # ().
The monotone inclusion problem to solve is

m

find x € M such that 0 € Az + > L7 (B,0D;)(Lix) + Cx + Nar(z). (4. 13)

=1

Let us present our algorithm for solving this problem.

Algorithm 4.4
Initialization: Choose (21,011, ..,Um1) € HX G1 X ... X G
For n > 1set: p, = Jx altn — M(Cap+ > i) Livin) — A Bn By
Gin = JAntl [Vin + An(Lizy — Di_lvi,n)], 1=1,...,m
A0 iy L (Vin — Gin) + Pn
vi,n+1 :)\nLl(pn - xn) +)\n(D;1Ui,n - D;1QZ,n)
+qin,t=1,...,m,

where (A,),>1 and (8,)n,>1 are sequences of positive real numbers.

Remark 4.6 In case Bx = 0 for all x € H, Algorithm 4.4 collapses into the
error-free variant of the iterative scheme given in [76, Theorem 3.1] for solving the
monotone inclusion problem

0€ Az + Y Ly(B,0D;)(Liz) + Cx,

i=1
since in this case M = H, hence Ny (z) = {0} for all z € H.

For the convergence result we need the following additionally hypotheses (we

refer the reader to the remarks 4.1 and 4.7 for sufficient conditions guaranteeing

(HEE ™)
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(1) A+ Ny is maximally monotone and
zer (A+ 3000, L o (B,OD;) o Li + C + Nar) # 05
(74) For every p € ran Ny :
)‘nﬁn[sup@ u, g ) —om (52 ] < +o00;
nZE:I ueM B( 5") M(B")

(ii1) (An)n>1 € €2\ £V,

Let us give the main statement of this section. The proof relies on the fact that
Problem 4.4 can be written in the same form as Problem 4.3 in an appropriate
product space.

Theorem 4.6 Consider the sequences generated by Algorithm 4.4 and (z,)n>1 the
sequence defined in (4. 2). Assume that (Hp5""™) is fulfilled and the condition

)\n n
lim sup ( b + )\nﬁ) <1
n—+4o0o0 12

holds, where

m

DI
=1

Then (zn)n>1 converges weakly to an element in zer (A + Z:’;l Lfo(B;0D;)oL; +
C’JrNM) as n — +oo. If, additionally, A and Bi_l, i=1,...,m are strongly mono-
tone, then (z,)n>1 converges strongly to the unique element in zer (A + Z:il Lio

(B;OD;)o L; +C + NM) as n — +o0o.

B =max{v,v1,....Um} +

Proof. We start the proof by noticing that € H is a solution to Problem 4.4 if
and only if there exist v1 € Gy, ..., Um € Gy, such that

0€ Az + >, Liv; + Cx + Np(x) (4. 14)
v; € (Blsz)(LlZ‘),’L =1,....m, ’
which is nothing else than
0€ Az + > Liv; + Cz + Ny (z) (4. 15)
0€ B v+ D; vy — Liz,i = 1,...,m. :

In the following we endow the product space Hx Gy X ... X G,,, with inner product
and associated norm defined for all (z, vy, ..., v ), (Y, W1, oo, W) € HX Gy X oo. X Gy

as
m

<(£C71)1, mvvm)a (y,w1, "'7wm)> = <x7y> + Z<Uivwi>
i=1

and

m
(@, 01, e vm) [l = (| 2012+ ) floil%,
i=1
respectively. _
We introduce the operators A : Hx Gy X ... X Gy = HX G X ... X Gy,
/T(x,vl, ey Upn) = Az X Bl_lvl X X B;lvm,
D:Hx G1 X oo X Gy = HX G1 X ... X Gy,

D(z,v1, .y ) = (ZL;‘W + Cz, Dy vy — Ly, ..., D oy, — me)
i=1
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and B : Hx G1 X . X G — HX G1 X oo X Gy,

B(z,v1,...,um) = (Bz,0,...,0).

Notice that, since A and B;, i = 1, ..., m, are maximally monotone, A is max-
imally monotone, too (see [26, Props. 20.22, 20.23]). Further, as it was done
in [76, Theorem 3.1], one can show that D is a monotone and [B-Lipschitz contin-
uous operator. For the sake of completeness we include here some details of the
proof of these two statements.

Let be (z,v1,...;Vm), (Y, W1, ..oy W) € HX G1 X ... X Gp,. By using the mono-
tonicity of C' and D;l, i=1,...,m, we have

((,v1, ey V) — (Y, W1, ooy Wi ), D(T, 01, ooy Um) — D(y, w1, oy W)

:(:cfy,C’waerZ( wl,D - D; wl>
+ Z((x =y, Li(vi —w;)) = {vi —wi, Li(z — y))) 2 0,

which shows that D is monotone.
The Lipschitz continuity of D follows by noticing that

Hf)(:c,vl, ey U ) — lN?(y,wl7 ,wm)H

< ||(C:13 — Cy,Dflvl — Dflwh...,D -D,, Lwm H

m

N

m
<\l =yl + Y vl — wi?
i=1

m 2 m
+ (Z 1Ll - fJoi = will) + > ILill? - e — yll?
i=1 i=1

< ﬂ“((E,Ul, ~"7Um) - (val, '~->wm)H'

Moreover, B is monotone, p~!-Lipschitz continuous and
zer B=zerBx Gy X ... X G, =M X Gy X ... X Gy,

hence
Nyp(z,v1,.0,0m) = Nag(z) x {0} x ... x {0},
where . _
M=M x Gy X ... XG,, = zer B.

Taking into consideration (4. 15), we obtain that z € H is a solution to Problem
4.4 if and only if there exist v1 € G1, ..., vy, € G, such that
(2,01, ..., Um) € zer(A+ D + Nz)-

Conversely, when (z,v1,...,0) € zer(g + D+ N7z), then x € zer (A +> i Lo
(B;OD;)o L; +C + NM). This means that determining the zeros of A + D + N7
will automatically provide a solution to Problem 4.4.
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Using that
J)\g(l‘,vl, ...,Um) = (JAA(J}), J/\Bl—l(vl), ceey J)\B;Ll (Um))

for every (z,v1,...,0m) € HX G1 X ... X G,,, and every A > 0 (see [26, Proposition
23.16]), one can easily see that the iterations of Algorithm 4.4 read for all n > 1:

(Prs @i ns ooos Gmn) = N {(xn,vl,n, oy Umn) — /\nﬁ(xn,vlm, ey Umom)
—)\nﬂng(xn,vlyn, ...,vm’n)}
(Tnt1, V1415 - Umont1) = AnBn {E(mmvl’n, iy Umn) — E(pn,ql,n, ...,qm,n)}
+An [f)(a:n, Vi ooy Umon) — D(pn, Qs s qmn)}
+(Prs Q1ns s Gmon)s

which is nothing else than the iterative scheme of Algorithm 4.3 employed to the
monotone inclusion problem

0€ Az + Dz + Nyp().

In order to compute the Fitzpatrick function of B , we consider arbitrary elements
(T, 01, ooy V), (2, 07, oy 0)) € HX G1 X oo X Gy Tt holds

o5 (T, 01, .0y vm), (@, 0], ..., 0p,))

= sw {{(@ 01 00), By wn)
(YW1 5wy Wi ) €
HXG1X...XGm,

+ <(.T/,U1, ceey /U:n)7 (y7w17 7wm)> - <(y?w15 ceey wm)a B(y7 w1y, awm)>}

= sup {(w, By) + (@, y) + Y (vi,wi) — (y, By}} :

(YW1 5ee Wi ) €

HXG1X...XGm, i=1
thus
! / oz, ifvj=..=2v =0
ep((@ o1,y vm), (@01, s 0y,)) = { ~+00, s oth:erwise. " 7
Moreover,
(T, 01, o U) = { om(z), if v == U = 0,
+00, otherwise,

ar—sum

hence condition (ii) in (H]]fitz ) is nothing else than: for each (p,p1,...,pm) €
ran N3z = ran Ny x {0} x ... x {0} one has

p,P1,--, P
Z)‘nﬂn[ sup N@E ((U, vl)"'7vm)7%)
n>1 (w,v1,...,vm )EM "
_ UM((pvph 7pm)):| < 400.
P
Furthermore, condition (i) in (HJ;;,"""™) ensures that A+N 77 is maximally mono-

tone and zer(A+ D + N +7) # 0. Hence, we are in the position of applying Theorem

4.4 in the context of finding the zeros of g—i—ﬁ—i—Nﬁ. The statements of the theorem
are an easy consequence of this result. |
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4.2.3 Convex minimization problems

In this subsection we employ the results given for monotone inclusions in the special
instance when minimizing a convex function with an intricate formulation with
respect to the set of minimizers of another convex and differentiable function with
Lipschitz continuous gradient.

Problem 4.5 Let H be a real Hilbert space, f € T(H) and h : H — R a convex
and differentiable function with a v-Lipschitz continuous gradient for v > 0. Let m
be a strictly positive integer and for every i = 1,...,m let G; be a real Hilbert space,
9isli € T(G;) such that l; is l/fl—stmngly convex for v; > 0 and L; : H — G; a
nonzero linear continuous operator. Further, let ¥ € I'(H) be differentiable with a
wL-Lipschitz continuous gradient, fulfilling min W = 0. The conver minimization
problem under investigation is

xr€argmin W 2
i=1

inf {f(x) +) (9:00) (Liz) + h(x)} : (4. 16)

Consider the maximal monotone operators
A=0f,B=VV,C=Vh,B; =0g; and D; =0l;,i =1,...,m.

According to [26, Proposition 17.10, Theorem 18.15], D;l = VI} is a monotone and
v;-Lipschitz continuous operator for ¢ = 1,...,m. Moreover, B is a monotone and
p~1-Lipschitz continuous operator and

M = argmin ¥ = zer B.

Taking into account the sum rules of the convex subdifferential, every element
of zer (8f + > ", L} 0(8¢;001;) o L; + Vh+ Nyy) is an optimal solution of (4. 16).
The converse is true if an appropriate qualification condition is satisfied. For the
readers convenience, we present some qualification conditions which are suitable in
this context. One of the weakest qualification conditions of interiority-type reads
(see, for instance, [76, Proposition 4.3, Remark 4.4])

m
(0,...,0) € sqri (H(domgi +doml;) — {(L1z, ..., Lypx) : © € dom f N M}) .
i=1
(4. 17)
The condition (4. 17) is fulfilled if one of the following conditions holds (see for
example [76, Proposition 4.3]):

(i) domg; + doml; =G;, i =1,...,m;

(ii) H and G; are finite-dimensional and there exists « € ridom f Nri M such that
L;x € ridom g; +ridoml;, i = 1,...,m.

Algorithm 4.4 becomes in this particular case

Algorithm 4.5
Initialization: Choose (21,011, ..,Um1) € HX G1 X ... X G
For n > 1set: pu =proxy ;[en — A(Vh(zn) + 2070 Livin) — M Bn VU (2,)]

Gi,n = ProXy g Wi + An(Lizy, — VI ()], i =1,...,m

Tpt+1 = )\nﬁn(vqj(xn) - V\II(pn)) + An(Vh(xn) - Vh(pn))
+)\n Zyil L;k (vi,n - qz,n) + Pn

Vin+1 :)\an(pn - xn) +)\n<VZr (Ui,n> _Vl: (Q'L,n))
+qin,t=1,....m
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For the convergence result we need the following hypotheses:

(¢) Of + Ny is maximally monotone and
(ot (4. 16) has an optimal solution;

f“Z) (i¢) For every p € ran Ny, Zn21 AnBn [\IJ* (ﬁ) — oM (B%)} < 00
(iii) (An)n>1 € €2\ £1.
Remark 4.7 (a) Let us mention that 0f + Ny, is maximally monotone, if
0 € sqri(dom f — M),
a condition which is fulfilled if, for instance,
f is continuous at a point in dom f N M

or
int M N dom f # 0.
(b) Since ¥(z) = 0 for all z € M, by (4. 1) it follows that whenever (ii) in

(H}’ftfz) holds, condition (ii) in (Hfj,, ™™), formulated for B = V¥, is also true.

(c¢) Let us mention that hypothesis (ii) is satisfied, if
A
Z < 4oo
=1 Pn

and ¥ is bounded below by a multiple of the square of the distance to C' (see [15]).
This is for instance the case when

M =zer L,
where L : H — H is a linear continuous operator with closed range and
U:H— R U(2) = |Lz|?
(see [15,16]). For further situations for which condition (ii) is fulfilled we refer
to [16, Section 4.1] (see also [24]).

We are able now to formulate the convergence result.

Theorem 4.7 Consider the sequences generated by Algorithm 4.5 and (z,)n>1 the
sequence defined in (4. 2). If (H}’fttz) and (4. 17) are fulfilled and

lim sup ()\7;;8” + /\nﬁ> <1,

n—-+o0o

where

m
B =max{v,v1, ..., Vm} + Z | L:il2,
i=1
then (zn)n>1 converges weakly to an optimal solution to (4. 16) as n — +oo. If,
additionally, f and gf, i = 1,...,m are strongly convez, then (x,)n>1 converges
strongly to the unique optimal solution of (4. 16) as n — +o0.

Remark 4.8 (a) According to [26, Proposition 17.10, Theorem 18.15], for a func-
tion g € I'(#H) one has that g is strongly convex if and only if ¢ is differentiable with
Lipschitz continuous gradient.

(b) Notice that in case U(z) = 0 for all € H, Algorithm 4.5 turns out to be
the error-free variant of the iterative scheme given in [76, Theorem 4.2] for solving
the convex minimization problem

zcH

inf {f(x) + Z(giDli)(Lix) + h(m)} . (4. 18)

i=1
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4.2.4 A numerical experiment in TV-based image inpainting

In this section we illustrate the applicability of Algorithm 4.5 when solving an image
inpainting problem, which aims for recovering lost information. We consider images
of size M x N as vectors x € R" for n = M - N, while each pixel denoted by z; ;,
1<i< M,1<j< N, ranges in the closed interval from 0 (pure black) to 1
(pure white). We denote by b € R™ the image with missing pixels (in our case set
to black) and by K € R"*" the diagonal matrix with K, ; = 0, if the pixel ¢ in the
noisy image b € R™ is missing, and K;; = 1, otherwise, i = 1,...,n (notice that
|[K|| = 1). The original image will be reconstructed by considering the following
TV-regularized model

inf {TViso(z) : Kz = b,z € [0,1]"}. (4. 19)

The objective function TV, : R® — R is the isotropic total variation and we
refer the reader to the section concerning numerical experiments in Chapter 2 for
its definition. By using also the notations introduced there, and by considering the
function ¥ : R™ — R,

1
W) = LK b,
problem (4. 19) can be reformulated as

inf  {f(z) +g1(Lx)}, (4. 20)

r€argmin ¥
where f: R" — R,
J=9p1
and g1 : Y — R,
91(y1,92) = l(y1, y2)llx-

Problem (4. 20) is of type (4. 16), when one takes m = 1, Ly = L, I} = 00y and
h = 0. Notice that VU(x) = K(Kz —b) = K(x — b) for every z € R", thus V¥
is Lipschitz continuous with Lipschitz constant p = 1. The iterative scheme in
Algorithm 4.5 becomes for every n > 0 in this case

Pn = Proxy ¢[Tn — A L*v1 0 — A Bn K (2 — )]
qi,n = prOXAngi‘ (Ul,n + )\ann)

Tn+l = /\nﬁnK(xn _pn) + )\nL*(Ul,n - q1,n) + Pn
Vl,n+1 :/\nL(pn - xn) +q1,n-

For the proximal points we have the following formulae:

prox., ¢ () = projjg qj» () ¥y > 0 and Vo € R"
and (see [58])

prox, - (p, q) = projg (p,q) Vy >0 and V(p,q) € Y,

S=qPag)ey: max \/p?;+q}; <1

155N

where

and the projection operator projg : YV — S is defined via

(Pijs @i5)

(Pijs 4ig) = ——
max {17 VPis T qz‘,j}

,1<i<M, 1<j<N.
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We tested the algorithm on the fruit image and considered as parameters A\, =
0.9-n7%7 and B, = n®"™ for all n > 1. Figure 4.1 shows the original image,
the image obtained from it after setting 80% randomly chosen pixels to black, the
nonaveraged reconstructed image ™ and the averaged reconstructed image 2™ after
1000 iterations.

original noisy image nonaveraged denoised image  averaged denoised image

Figure 4.1: TV image inpainting: the original image, the image with 80% missing
pixels, the nonaveraged reconstructed image z™ and the averaged reconstructed
image z™ after 1000 iterations.

The comparisons concerning the quality of the reconstructed images were made
by means of the improvement in signal-to-noise ratio (ISNR), which is defined as

2
mmam:1m%m<”m_a|>,

2
[l — 2"

where x, b and x™ denote the original, the image with missing pixels and the recov-
ered image at iteration n, respectively.

Figure 4.2 shows the evolution of the ISNR values for the averaged and the
nonaveraged reconstructed images. Both figures illustrate the theoretical outcomes
concerning the sequences involved in Theorem 4.7, namely that the averaged se-
quence has better convergence properties than the nonaveraged one.

ISNR

L )
Y] isnr averaged

) — — — isnr nonaveraged

4 L L L L
0 200 400 600 800 1000
Iterations

Figure 4.2: The ISNR curves for the averaged and nonaveraged reconstructed images



Chapter 5

Implicit-type dynamical
systems associated with
monotone inclusion problems

In this chapter we approach the solving of monotone inclusion problems of the
form (1. 3) by investigating dynamical systems of implicit-type formulated via the
resolvents of the operators involved. In Section 5.1 we consider first-order dynamical
systems and investigate the asymptotic properties of the trajectories, obtaining
also convergence rates and in Section 5.2 we focus our attention on second order
dynamics.

We recall first some technical results and specific tools which will be used in
this framework. We consider the following definition of an absolutely continuous
function, see also [2,20].

Definition 5.1 (see, for instance, [2,20]) A function z : [0,b] — H (where b > 0) is
said to be absolutely continuous if one of the following equivalent properties holds:

(i) there exists an integrable function y : [0,b] — H such that
¢
z(t) = z(0) +/ y(s)ds Wt € 0,0b];
0

(ii) z is continuous and its distributional derivative is Lebesgue integrable on [0, b];

(iii) for every € > 0, there exists 7 > 0 such that for any finite family of intervals
I, = (ag, br) C [0,b] we have the implication

(Ik: ﬂ]j = @ and Z|bk —CLk| < 77) - ZHJ?(bk) —J?(CLk)H <e.
k k

Remark 5.1 (a) It follows from the definition that an absolutely continuous
function is differentiable almost everywhere, its derivative coincides with its
distributional derivative almost everywhere and one can recover the function
from its derivative & = y by the integration formula (i).

(b) If = : [0,b] — H, where b > 0, is absolutely continuous and B : H — H is
L-Lipschitz continuous for L > 0, then the function z = B o x is absolutely
continuous, too. This can be easily seen by using the characterization of
absolute continuity in Definition 5.1(iii). Moreover, z is differentiable almost
everywhere on [0, b] and the inequality ||2(¢)|| < L||#(t)| holds for almost every
t €10,0].

117
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The following two well-known results, which can be interpreted as continuous
versions of the quasi-Fejér monotonicity for sequences, will play an important role in
the asymptotic analysis of the trajectories of several dynamical systems investigated
in this chapter. For their proofs we refer the reader to [2, Lemma 5.1] and [2, Lemma
5.2], respectively.

Lemma 5.1 Suppose that F : [0,+00) — R is locally absolutely continuous and
bounded from below and that there exists G € L'([0,+o0)) such that for almost
every t € [0, 400)

%F(t) <G,

Then there exists lim;_,» F(t) € R.

Lemma 5.2 If1<p<oo, 1 <r<oo, F:[0,+00) = [0,400) is locally absolutely
continuous, F € LP([0,+0)), G : [0,+0) = R, G € L"([0,+00)) and for almost
every t € [0, 400)

then lim;—, 4 o F'(t) = 0.

The next result which we recall here is the continuous version of the Opial
Lemma (see, for example, [2, Lemma 5.3], [1, Lemma 2.10]).

Lemma 5.3 Let S C H be a nonempty set and x : [0,400) — H a given map.
Assume that

(i) for every x* € S, limy_, 4o ||2(t) — x*|| exists;

(ii) every weak sequential cluster point of the map x belongs to S.
Then there exists T € S such that x(t) converges weakly to oo ast — +oo.

5.1 First order dynamical systems

This section is dedicated to the asymptotic analysis of the trajectories of first order
dynamical systems associated to monotone inclusion problems.

5.1.1 First order dynamical systems for monotone inclusion
problems

We start with studying a dynamical systems associated to the fixed points set of a
nonexpansive operator. Let T : H — H be a nonexpansive mapping A : [0, +00) —
[0,1] be a Lebesgue measurable function and z¢o € H. For the beginning we are
concerned with the following dynamical system:

(t) = A1) (T(x(t) — =(t))
{ x(0) = xp. (5. 1)

The first issue we investigate is the existence of strong solutions for (5. 1).

Definition 5.2 We say that x : [0,+00) — H is a strong global solution of (5. 1)
if the following properties are satisfied:

(i) z :[0,400) — H is absolutely continuous on each interval [0,b], 0 < b < +00;
(i) &(t) = A(t)(T(2(t)) — (t)) for almost every ¢ € [0, +00);
(iii) z(0) = xo.
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In what follows we verify the existence and uniqueness of strong global solutions
of (5. 1). To this end we use the Cauchy-Lipschitz theorem for absolutely continues
trajectories (see for example [90, Proposition 6.2.1], [125, Theorem 54]).

It is immediate that the system (5. 1) can be written as

{ ﬁ?) = ‘iﬁ’x(t» (5. 2)

where f : [0,4+00) x H — H is defined by

ft,z) =At)(Tx — z).

(a) Take arbitrary x,y € H. Relying on the nonexpansiveness of T', for all ¢ > 0
we have

1f(t2) = f(E 9l < 2A(0) [z -yl

Since \ is bounded above, one has 2\(-) € L*([0,b]) for any 0 < b < +o0;
(b) Take arbitrary x € H and b > 0. One has

b b
[ Iralde= 72~ a| [ Aoy < bz -z,
0 0

hence
Vo € H, Vb >0, f(-,x)e€ L([0,b],H).

By considering the statements proven in (a) and (b), the existence and unique-
ness of a strong global solution of the dynamic system (5. 1) follows.

Remark 5.2 (i) From the considerations above one can easily notice that the ex-
istence and uniqueness of strong global solutions of (5. 1) can be guaranteed in
the more general setting when T is Lipschitz continuous and A : [0,+00) — R is a
Lebesgue measurable function such that A(-) € L ([0, +00)).

(ii) Let us mention that if we suppose additionally that A is continuous, then
the global version of the Picard-Lindel6f Theorem allows us to conclude that, for
xo € H, there exists a unique trajectory z : [0, 4+00) — H which is a C! function

and which satisfies the relation (ii) in Definition 5.2 for every ¢ € [0, +00).

In the following we investigate the convergence properties of the trajectories of
the dynamical system (5. 1). We show that under mild conditions imposed on the
function A, the orbits converge weakly to a fixed point of the nonexpansive operator,
provided the set of such points is nonempty.

Theorem 5.1 Let T : H — H be a nonexpansive mapping such that FixT # (),
A [0,400) = [0,1] a Lebesgue measurable function and xg € H. Suppose that one
of the following conditions is fulfilled:

+oo
/ A(t)(1 = A(t))dt = +oo or inf A(t) > 0.
0 >0

Let x : [0,400) — H be the unique strong global solution of (5. 1). Then the
following statements are true:

(i) the trajectory x is bounded and f0+°° l&(¢)||2dt < +o0;

(i) Timy s oo (T(2(8)) — 2(2)) = 0;
(i) im0 (t) = 0;

(iv) x(t) converges weakly to a point in FixT, as t — +oo.
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Proof. We rely on Lyapunov analysis combined with the Opial Lemma. We take
an arbitrary 2* € FixT and give an estimation for 4 ||2(t) — z*||%. By (1. 28), the
fact that z* € FixT and the nonexpansiveness of 7" we obtain for almost every
t>0:

%Ilm(t) =@t |F =2(@(t), 2(t) — ") = () + 2(t) — 2|7 — [la(t) — 27||* — [|l2(t)]|?

=[AO(T(x(t) — %) + (1= A)) (2(8)) — 2")|*
= lla(t) = 2*|* = &)
=AONT (2(1) = 2™ + (1 = A(t)) |l (t) — 27|
(L= MXEDIT (@ (t) — () — lla(t) — 2*]* = [la()]
(1-

—A(?) )
— A1 = AT (2 (t) — (b)) = [lE(0)]]>.
Hence for almost every t > 0 we have that
%Hx(t) — 2|2+ A (1 = AT ((t) — 2(8))]1* + [|£(8)]1* < 0. (5. 3)

Since A(t) € [0,1] for all ¢ > 0, from (5. 3) it follows that t — ||x(t) — z*| is
decreasing, hence limy_, o || (¢) —2*|| exists. From here we obtain the boundedness
of the trajectory and by integrating (5. 3) we deduce also that

“+o0
/ () [2dt < +oo
0

and
+o0
/O AW (1 = X (z(8)) = x(t)]|*dt < +o0, (5. 4)

thus (i) holds. Since z* € FixT has been chosen arbitrary, the first assumption in
the continuous version of Opial Lemma is fulfilled.

We show in the following that lim;_, o (T'(x(t)) — x(t)) exists and it is a real
number. This is immediate if we show that the function t — 3| T(x(t)) — z(t)|?
is decreasing. According to Remark 5.1(b), the function t — T'(z(t)) is almost
everywhere differentiable and ||-£7'(x(t))|| < [[2(¢)|| holds for almost every ¢t > 0.
Moreover, by the first equation of (5. 1) we have

& (31T - o)1?) = ( £T0e0) - 50, 7((0) - 2(0))

= (0. T(() - o) + <jtT<x<t>>,T<x<t>> ~ (1)
=~ XOITG(0) ~ o) + { T, Tl -l >

<= XOIT () — =@ + [le@)] - 1T (2(8) — 2(t)]| =0,

hence lim;_, oo (T(x(t)) — x(¢)) exists and is a real number.

(a) Firstly, let us assume that f0+oo A(t)(1 — A(t))dt = 4+o00. This immediately
implies by (5. 4) that lim; ;oo (T(2(t)) — x(t)) = 0, thus (ii) holds. Taking into
account that A is bounded, from (5. 1) and (ii) we deduce (iii). For the last property
of the theorem we need to verify the second assumption of the Opial Lemma. Let
T € H be a weak sequential cluster point of z, that is, there exists a sequence
t, — +oo (as n — o0) such that (z(t,))nen converges weakly to T. Applying
Lemma 1.3 and (ii) we obtain Z € FixT and the conclusion follows.

(b) We suppose now that inf;>o A(t) > 0. From the first relation of (5. 1) and (i)
we easily deduce that Tz — x € L?([0,00),H), hence the function ¢ — ||T(z(t)) —
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z(t)||* belongs to L'([0,00)). Since 4 (1|7 (x(t)) — z(t)[|?) < 0 for almost every
t > 0, we obtain by applying Lemma 5.2 that lim;_, ||T(z(t)) — z(t)||> = 0, thus
(ii) holds. The rest of the proof can be done in the lines of case (a) considered

above. O

Remark 5.3 Let us specify that due to the fact that the equality in Definition
5.2(ii) holds almost everywhere, the conclusion in Theorem 5.1(iii) (which has been
obtained as a consequence of Theorem 5.1(ii)) has to be considered in the almost-
limit sense (see also [22, Definition 1, Chapter 6, Section 5]), which means that in
the classical definition of the limit, the required inequality holds almost everywhere.
Remark 5.4 Notice that the function Ai(t) = t—s%l’ for all ¢ > 0, verifies the
condition [;"° A\ (£)(1 — Ai(t))dt = +oo, while infi>oAi(f) > 0 is not fulfilled.
On the other hand, the function Ay(t) = 1, for all ¢ > 0, verifies the condition
infy>0 A2(t) > 0, while [5° A2(t)(1 — A2(t))dt = oo fails. This shows that the two
assumptions on A under which the conclusions of Theorem (5.1) are valid are inde-
pendent.

Remark 5.5 The explicit discretization of (5. 1) with respect to the time variable
t, with step size h,, > 0, yields for an initial point x( the following iterative scheme:

Tpt1 = Tn + WA (T — x,) Y > 0.
By taking h,, = 1 this becomes
Tps1 = Tp + (T, — ) Y1 > 0, (5. 5)

which is the classical Krasnosel’skii-Mann algorithm for finding the set of fixed
points of the nonexpansive operator T' (see [26, Theorem 5.14]). The convergence
of (5. 5) is guaranteed under the condition

D Al = Ap) = foo.

neN

Notice that in case A, = 1 for all n € N and for an initial point zy different from
0, the convergence of (5. 5) can fail, as it happens for instance for the operator
T = —1Id. In contrast to this, as pointed out in Theorem 5.1, the dynamical
system (5. 1) has a strong global solution and the convergence of the trajectory is
guaranteed also in case A(t) = 1 for all ¢ > 0.

An immediate consequence of Theorem 5.1 is the following corollary, where we
consider dynamical systems involving averaged operators.

Corollary 5.1 Let « € (0,1), R : H — H be a-averaged such that Fix R # 0,
A1 [0,400) — [0,1/a] a Lebesgue measurable function and xo € H. Suppose that
one of the following conditions is fulfilled:

/+OO A(t)(1 — a(t))dt = 400 or inf A(t) > 0.
0 >0

Let x : [0,4+00) — H be the unique strong global solution of the dynamical system

() = At) (R(x(t) — 2(t))
{ z(0) = xo. (5. 6)

Then the following statements are true:
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(i) the trajectory x is bounded and f0+°° l&(¢)||2dt < +o0;
(i) Ty 4o (R(2(1)) — (1)) = 0;
(111) limy_ 4o () = 0;
(i) x(t) converges weakly to a point in Fix R, as t — +o00.

Proof. Since R is a-averaged, there exists a nonexpansive operator T : H — H
such that R = (1 — a)Id+aT. The conclusion follows by taking into account that
(5. 6) is equivalent to

and Fix R = FixT. O

In the following we investigate the convergence rate of the trajectories of the
dynamical system (5. 1). This will be done in terms of the fixed point residual
function t — ||Tz(t)—x(t)| and of t — ||&(t)||. Notice that convergence rates for the
discrete iteratively generated algorithm (5. 5) have been investigated in [80,82,95].

Theorem 5.2 Let T : H — H be a nonexpansive mapping such that FixT # 0,
A:[0,400) = [0,1] a Lebesgue measurable function and xog € H. Suppose that

: < .
0< tlgg)\(t) < igg)\(t) <1

Let x : [0,400) — H be the unique strong global solution of (5. 1). Then for almost
every t > 0 we have

lE®I < @) — 2] < ‘“”C};‘T’

where T = inf;>9 A(¢)(1 — A(t)) > 0.

Proof. Take an arbitrary 2* € FixT and ¢ > 0. From (5. 3) we have for almost
every s > 0:

%le(S) =27+ A(s)(1 = ()T (a(s) — z(s))]* < 0. (5. 7)

By integrating we obtain
t
/O M)A = AT (x(s)) — a(s)|ds < ||lzo — &*||* — [|l2(t) — 2*|* < [Jwo — z*||*.

We have seen in the proof of Theorem 5.1 that ¢ — £||T(z(t)) — z(t)||? is decreasing,
thus the last inequality yields
tr|| T(z(t) — z(t)|* < [lzo — z*|%.
Since this inequality holds for an arbitrary =* € Fix T, we get for all ¢ > 0 :
VIZIT () - 2(0)]| < d(zo, Fix 7).

By taking also into account (5. 1), the conclusion follows. g

Next we show that the convergence rates of the fixed point residual function ¢ —

(|IT2z(t) — z(t)|| and of t — ||&(t)|| can be improved to o (%)
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Theorem 5.3 Let T : H — H be a nonexpansive mapping such that FixT # (),
A:[0,400) = [0,1] a Lebesgue measurable function and xog € H. Suppose that

inf < 1
0< t11_>10)\(t) < ilzlg)\(t) <

Let z : [0,+00) — H be the unique strong global solution of (5. 1). Then for almost
every t > 0 we have

tla ()] < T (x(t) — 2] < / A(s) (1= Ms)IT (x(s)) — = (s)|*ds,
where T = infi>o M) (1 — A(t)) > 0 and limy_ 4o ft/z AS)(1 = AT (z(s)) —
z(s)||?ds = 0.
Proof. Define the function f : [0, +o00) — [0, +00),

/A J(1 = M) IT(x(s)) — x(s) 2ds.

According to (5. 4) we have that lim; .~ f(t) € R.
Since t — £||T(x(t)) — (t)||? is decreasing (see the proof of Theorem 5.1), we
have for allt > 0:

1T (1)) — ()] / .

t t

A(s)(1 = A(s))ds S/ A(s) (L= AT (z(s)) — =(s)]*ds
t/2
=f(t) — f(t/2).

Taking into account the definition of 7, we easily derive

t
.
ST @) — 2O < /t/2 As) (1 = MDIT(x(s)) — x(s)l*ds,

and the conclusion follows by using again (5. 1). O

The remaining of the section is dedicated to the formulation and investigation
of a continuous version of the forward-backward algorithm.

We need the following technical result regarding the averaged parameter of the
composition of two averaged operators. We refer also to [26, Proposition 4.32] for
other results of this type.

Proposition 5.1 (see [111, Theorem 3(b)] and [77, Proposition 2.4]) Let T; : H —
H be a;-averaged, where o € (0,1), i = 1,2. Then the composition Ty o Ty is a-
averaged, where

o + ag — 201 a0

pu— 01-
a [~ € (0,1)

Theorem 5.4 Let A : H = H be a maximally monotone operator, B > 0 and
B : H — H be B-cocoercive such that zer(A + B) # 0. Let n € (0,28) and set
d=(4B—n)/(2B). Let A :[0,+00) — [0,0] be a Lebesgue measurable function and
xg € H. Suppose that one of the following conditions is fulfilled:

/+OO A(t)(6 — A(t))dt = +00 or inf A(£) > 0.
0

t>0

Let x : [0, 4+00) — H be the unique strong global solution of

{ (1) = A(t) [JnA (:c(t) - nB(m(t))) - w(t>] (5. 8)
x(0) = wo.

Then the following statements are true:
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(i) the trajectory x is bounded and f0+°° l|(t)]|2dt < +o00;

(id) limy s soc [ Jya (2(8) = nB(a(1)) - 2(0)] = 0;

(tii) limy_, 4 oo &(t) = 0;

(iv) z(t) converges weakly to a point in zer(A+ B), as t — +oo.
Suppose that infy>g A(t) > 0. Then the following hold:

(v) if y € zer(A+ B), then lim;_, o B(x(t)) = By and B is constant on zer(A +
B);

(vi) if A or B is uniformly monotone, then x(t) converges strongly to the unique
point in zer(A+ B), as t — +o00.

Proof. It is immediate that the dynamical system (5. 8) can be written in the form
() = A(t)(T(x(t)) — z(t))
(5. 9)
z(0) = wo,

where T' = Jy 4 o (Id —nB). According to [26, Corollary 23.8 and Remark 4.24(iii)],
Jya is 1/2-cocoercive. Moreover, by [26, Proposition 4.33], Id —nB is 1/(20)-
averaged. Combining this with Proposition 5.1, we derive that T is 1/§-averaged.
The statements (i)-(iv) follow now from Corollary 5.1 by noticing that FixT =
zer(A + B), see [26, Proposition 25.1(iv)].

We suppose in the following that inf;> A(¢) > 0.

(v) The fact that B is constant on zer(A+ B) follows from the cocoercivity of B
and the monotonicity of A. A proof of this statement when A is the subdifferential
of a proper, convex and lower semicontinuous function is given in [1, Lema 2.7].

We use the following inequality:

1Tz — Ty|* < |lz — yl|* = n(28 = n)|| Bz — By||* ¥(z,y) e Hx H, (5. 10)

which follows from the nonexpansiveness property of the resolvent and the cocoer-
civity of B:

|ITa = Tyl|* < |l — y — n(Bz — By)||?
= ||z =yl = 2 (z — y, Bx — By) + n*||Bx — By||*
< [lz = ylI* = n(28 — n)|[Bx — By|*.
Take an arbitrary z* € zer(A + B) = FixT. From the first part of the proof of
Theorem 5.1 and (5. 10) we get for almost every ¢t > 0
d . .
@) =22+ AO A = AT (2 (t) = (0) 1 + 2 ()]
= AT (x(t) — ™[> = A®) |2 (t) — 2*||?
—1(28 — mA@)||B(z(t)) — Bx*||.

Taking into account that inf;>o A(t) > 0 and 0 < n < 24, by integrating the
above inequality we obtain

IN

+oo
/ | B(z(t)) — Ba*|2dt < +oo.
0

Since B is 1/8-Lipschitz continuous (this follows from the S-cocoercivity of B by
applying the Cauchy-Schwarz inequality) and ||#(-)|| € L?([0,4+o0)), from Remark
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5.1(b) we derive that ¢t — 4 B(2(t)) € L?([0,00),H). From the Cauchy-Schwarz
inequality we obtain for all ¢ > 0

G (1B0) - B27I) = <C;iB(l’(t)),B($(t))Bz*>

< | Bt 2

Combining these considerations with Lemma 5.2, we conclude that B(z(t)) con-
verges strongly to Bx*, as t — 400.

(vi) Suppose that A is uniformly monotone and let z* be the unique point in
zer(A + B). According to (5. 8) and the definition of the resolvent, we have for
almost every t > 0

+1B(x(t)) — Ba*|*.

— i) e A <)\(1t)i(t) + x(t)) . (5. 11)

From —Bx* € Ax* we get for almost every ¢ > 0 the inequality

)

< </\(1t)5c(t) +a(t) — 2", —B(x(t)) —

ba (H H+alt) - o

1
nA(t)

where ¢4 : [0, +00) — [0, +00] is increasing and vanishes only at 0.
The monotonicity of B implies

() + B:E*> :

ba (H t)+z(t) — z* )
T(t)ni:(t)n? + 50 (0. ~Bla(0) + B’
+ (@(t) — 2", —B(2(t)) + Bz") — 77)\1(15) (@(t), 2(t) — )
= ‘,,A;(t) l2@)]1* + ﬁ (#(t), ~B(a(t) + Be") — s (&(t), 2(t) = 27).

The last inequality implies, by taking into consideration (iii), (iv) and (v), that

lim 6. (H t) + z(t) — 2* ) —0.

The properties of the function ¢ 4 allow to conclude that ﬁds(t)—!—x (t)—x* converges

strongly to 0, as ¢ — 400, hence from (iii) we obtain the conclusion.

Finally, suppose that B is uniformly monotone, with corresponding function
¢ : [0,4+00) — [0, +00], which is increasing and vanishes only at 0. The conclusion
follows by taking in the inequality

(x(t) — 2%, B(z(t)) = Bx") > op([|z(t) — =7[))
the limit as ¢t — +o00 and by using (i) and (v). O

Remark 5.6 We would like to emphasize the fact that the statements in Theorem
5.4 remain valid also for 1 := 2. Indeed, in this case the cocoercivity of B implies
that Id —nB is nonexpansive, hence the operator T' = J, 4 o (Id —nB) used in the
proof is nonexpansive, too, and so the statements in (i)-(iv) follow from Theorem
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5.1. Furthermore, for the proof of the statements (v) and (vi), the key observation
was that B(z(-)) — Bx* € L*([0,00),H), where z* € zer(A + B). Let us prove that
this is true also in this case. Indeed, from (5. 11), the relation —Bz* € Az* and
the monotonicity of A we have for almost every ¢ > 0 the inequality

0< <>\(1t):b(t) +a(t) — o, —Bla(t)) n;(t):b(t) + Bw*> .
The cocoercivity of B implies
0 <~ O + 55 (0. ~Bla(v) + Br)
+ {x(t) — ™, —B(x(t)) + Bx™) — 17)\1(t) (x(t), z(t) — z™)
< 5 (0. ~B(0) + Ba") = BIB(a(t) = Ba'|]* = s (#(0).2(0) ~x°)
< v [#O0IF + 51BGa(e) = B’ P
- BBl - B - e et oI

We derive that for almost every ¢ > 0 the following inequality holds:

BA)
2

1 d 1 %112 1 . 2
—— | Z]x(t) - < ——— ||t
L | 2170~ 1P| < sy la®

which in combination with (7), the assumption inf;>¢ A(¢) > 0 and A bounded above
delivers the desired conclusion.

1B(x(t)) — Ba™||* +

Remark 5.7 Let us mention that in case A = 0P, where ® : H — RU {400} is a
proper, convex and lower semicontinuous function defined on a real Hilbert space
H, and for A\(¢) =1 for all ¢ > 0, the dynamical system (5. 8) becomes

#(t) + z(t) = prox, (a:(t) — nB(:c(t)))
{ 2(0) = 70, ¢ (5. 12)

which has been studied in [1]. Notice that the weak convergence of the trajectories
of (5. 12) is obtained in [1, Theorem 5.2] for a constant step-size n € (0,40).

Remark 5.8 The explicit discretization of (5. 8) with respect to the time variable
t, with step size h,, > 0 and initial point xg, yields the following iterative scheme:

% — ), {JM(% _ ann) - xn} Yn > 0.

For h,, = 1 this becomes
Tntl = Tn + A {J,,A (xn — ann) — xn} Vn >0, (5. 13)

which is the classical forward-backward algorithm for finding the set of zeros of
A+ B. Let us mention that the convergence of (5. 13) is guaranteed in [26, Theorem
25.8] under the condition

D A8 = An) =+,
neN

where )
5’:min{1,§}+2. (5. 14)
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This is due to the fact that in the proof of [26, Theorem 25.8] one applies [26,
Proposition 4.32] in order to show that J, 4 o (Id —nB) is 1/6’-averaged. However, as
done in the proof above, one can apply [111, Theorem 3(b)] (see also [77, Proposition
2.4]) in order get a better parameter for the averaged operator J,a o (Id —nB),
namely 1/§ = (28)/(48 —n). Notice that under the hypothesis 0 < n < 25 one can
prove the following relation between the parameters mentioned above:

p Bl .1 _
0 —mm{l,n}—l—Q < (4B -n)/(28) =4. (5. 15)

Remark 5.9 As seen also in Section 3.2, the Douglas-Rachford algorithm for find-
ing the set of zeros of the sum of two maximally monotone operators follows from
the discrete version of the Krasnosel’skii-Mann numerical scheme, see also [26].
Following the approach presented above, one can formulate a dynamical system
of Douglas-Rachford-type, the existence and weak convergence of the trajectories
being a consequence of the main results presented here. The same can be done for
other iterative schemes which have their origins in the discrete Krasnosel’skii-Mann
algorithm, like are the generalized forward-backward splitting algorithm in [119] and
the forward-Douglas-Rachford splitting algorithm in [61].

Time rescaling arguments

The aim of this subsection is to show that, by using time rescaling arguments as
in [14], some of the asymptotic properties of the dynamical system (5. 1) can be
derived from the one of an autonomous dynamical system governed by a cocoercive
operator. Let us recall the following classical result, which can be deduced for
example from [1, Theorem 4.1] by taking ® = 0 as well as from Theorem 5.4 by
choosing Az =0 for all x € X and A(¢t) =1 for all ¢ > 0.

Theorem 5.5 Let B : H — H be a cocoercive operator such that zer B # () and
wg € H. Let w: [0,+00) — H be the unique strong global solution of the dynamical
system

[ sgezr=s o

Then the following statements are true:
(a) the trajectory w is bounded and fOJrOO [|air(t)|%dt < +o0;
(b) w(t) converges weakly to a point in zer B, as t — +00;

(¢) B(w(-)) converges strongly to 0, as t — +o0.

Let us consider again the dynamical system (5. 1), written in the form
z(t) + Mt)Id =T)(x(t)) =0 (5. 17)
:E(O) = Zg-

We recall that 7" is nonexpansive such that FixT # 0 and A : [0,00) — [0,1] is
Lebesgue measurable. By using a time rescaling argument as in [14, Lemma 4.1],
we can prove a connection between the dynamical system (5. 17) and the system

{ zgg))i (ij,iT)(W(t)) =0 (5. 18)

In the following we suppose that

+oo
/ A#)dt = +o0. (5. 19)
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Notice that the considerations which we make in the following remain valid also
when one requires for the function A an arbitrary positive upper bound. However,
we choose as upper bound 1 in order to remain in the setting presented in the
previous section.

Suppose that we have a solution w of (5. 18). By defining the function T; :
[0,00) — [0,00), T (t) = fg A(s)ds, one can easily see that w o T; is a solution of
(5. 17).

Conversely, if z is a solution of (5. 17), then xoT5 is a solution of (5. 18), where
Ty : [0,400) — [0,+00) is defined implicitly as fOTQ(t) A(s)ds = t (this is possible
due to the properties of the the function \).

In the arguments we used that

Ti(t) =At) Vt>0 (5. 20)

and
Ty()N(To(t)) = 1Vt > 0. (5. 21)

Further, since B := Id —T is 1/2-cocoercive (this follows from the nonexpansive-
ness of T'), for the dynamical system (5. 18) one can apply the convergence results
presented in Theorem 5.5. We would also like to notice that the existence of a
strong global solution of (5. 1) follows from the corresponding result for (5. 18),
while for the uniqueness property we have to make use of the considerations at the
beginning of Section 5.1.1.

In the following we deduce the convergence statements of Theorem 5.1 from the
one of Theorem 5.5 by using the time rescaling arguments presented above.

Let x be the unique strong global solution of (5. 1). Due to the uniqueness of
the solutions of (5. 1) and (5. 18), we have © = wo T}, where w is the unique strong
global solution of (5. 18).

(i) From Theorem 5.5(a) we know that w is bounded, hence z is bounded, too.
We have

“+o0 t
| la@iRas = im [ @) Pae) s
0 0

< Jim [ (73 () A s

: ) / 2
Jim [ () Pdu

< +00,

where we used Theorem 5.5(a) and the change of variables T (s) = u.
(ii) The statement follows from Theorem 5.5(c).

(iii) Is a direct consequence of the boundedness of A, (ii) and the way the dynamic
is defined.

(iv) From Theorem 5.5(b) it follows that z(t) = w(T1(t)) converges weakly to a
point in zer B = FixT as t — +oc.

Remark 5.10 In the light of the above considerations it follows that the conclusion
of Theorem 5.1 remains valid also when assuming that f0+°° A(t)dt = 400, which is
a weaker condition than asking that f0+°° A(t)(1— A(t))dt = 400 or infy> A(t) > 0.
A similar statement applies to Theorem 5.4, too. Notice also that the assumption
that A takes values in [0, 1], being strictly bounded away from the endpoints of this
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interval, was essential, in combination to the considerations made in the proof of
Theorem 5.1, for deriving convergence rates for the trajectories of (5. 1). Finally,
let us mention that, as pointed out in Remark 5.5, the assumption f0+oo A)(1 —
A(t))dt = +oo has a natural counterpart in the discrete case which guarantees
convergence for the sequence of generated iterates, while this is not the case for the
other two conditions on A considered above.

5.1.2 Converges rates for strongly monotone inclusions

In this subsection we investigate the convergence rates of the trajectories of the
continuous dynamical systems considered above in the strongly monotone case and
strongly convex case, respectively, the later concerning convex optimization prob-
lems. In both cases, we obtain exponential convergence rates for the orbits.

The following result can bee seen as the continuous counterpart of [26, Proposi-
tion 25.9], where it is shown that the sequence iteratively generated by the forward-
backward algorithm linearly converges to the unique solution of

find z* € H such that 0 € Az* + Bz*, (5. 22)

provided that one of the two involved operators is strongly monotone.

Theorem 5.6 Let A : H = H be a mazimally monotone operator, B : H — H
a monotone and %—Lipschitz continuous operator for B > 0 such that A+ B is
p-strongly monotone for p > 0 and x* be the unique point in zer(A + B). Let
A [0,400) — [0,+00) be a Lebesgue measurable function such that there exist real

numbers A and X fulfilling

0 <A <infA(t) <supA(t) < .
t20 t>0

Chose a > 0 and n > 0 such that
1
B

Ifxg € H and x : [0, +00) — H is the unique strong global solution of the dynamical
system (5. 8), then for every t € [0,+00) one has

lo(t) — 2% < [|lzwo — 27||* exp(=C1),

A
04<2p62A and -+ — < p+—.
2a n

2pA— 55
where C 1= —£22 > (.

20+

Proof. Notice that B is a maximally monotone operator (see [26, Corollary 20.25])
and, since B has full domain, A+ B is maximally monotone, too (see [26, Corollary
24.4]). Therefore, due to the strong monotonicity of A+ B, zer(A+ B) is a singleton
(see [26, Corollary 23.37]).

A direct consequence of (5. 8) and of the definition of the resolvent is the inclu-
sion

40 - Balo) + B (55500 +2(0) € (44 8) (55580 +200)
———&(t) — B(x — x — x )
nA(t) At) A(t)
which holds for almost every ¢ € [0, +00). Combining it with 0 € (A + B)(z*) and
the strong monotonicity of A + B, it yields for almost every ¢ € [0, +00)
2
<

1
dio

(50 +2(0) =~ —ilt) = B() + 8 (51530 +2(0)) ).

z(t) + x(t) — z*
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By using the notation h(t) = ||z (t)—a*||? for t € [0, +00), the Cauchy-Schwartz
inequality, the Lipschitz property of B and the fact that h(t) = (x(t) — 2*, &(t)), we
deduce that for almost every t € [0, +00)

2

p H)\(lt)i(t) +a(t) — o

<= a1 + 515 (40,8560 +20)) - Blalo))
- n%(t)h(t) + <x(t) ~2*, B <>\(1t)x'(t) + x(t)) - B(:c(t))>

< - RO + g O - i
+ a2l

< - O + e 16O — st
+ S0 + g 1HO1

As
= IO + Thh(e) + 2000,

p H)\(lt):i:(t) +a(t) — 2

we obtain for almost every t € [0, 4+00) the inequality

<,\2(€) + 77;(75)> h(t) + <2p - ﬁX(t)) h(t)+

(AQ(t) TR T BN 2a)\(t)> l(2)]1* < 0.

However, the way in which the involved parameters were chosen imply for almost
every t € [0,400) that

2p 1 . a
(A(t) + nA(t)> h(t) + (2,0 — W) h(t) <0 (5. 23)
r, equivalently,
or, equivalently. | Qp)\(t)_%
M)+ —5 1 M) <0

This further implies
h(t) 4+ Ch(t) <0

for almost every ¢ € [0,+00). By multiplying this inequality with exp(Ct) and
integrating from 0 to 7', where T" > 0, one easily obtains the conclusion. ]

Remark 5.11
(a) By time rescaling arguments one could consider A(¢) = 1 for every ¢ > 0 and,
consequently, investigate the asymptotic properties of the system

{ igg)):]\qi(’m(t)) =0 (5. 24)
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where M : H — M is defined by M = Id —Jya o (Id —nB). In the hypotheses of
Theorem 5.6 the operator M satisfies the following inequality for all x € H:

1 @ 1 1 1
(204 2 ) o =) 2 (= 55 ) o =o'+ (o4 3 = 5 = 5o ) IMalP

(5. 25)

This follows by using the same arguments as used in the proof of Theorem 5.6,

namely the definition of the resolvent operator, the inclusion 0 € (A + B)(z*)

and the strong monotonicity of A + B. Coming back to the system (5. 24), the

exponential convergence rate for the trajectory is further obtained by applying the

Gronwall Lemma in the inequality

(20 1) (0120 ) + (= 55 ) o) —a* P <0,

which is nothing else than relation (5. 23) in the proof of Theorem 5.6.
(b) Notice that by chosing the involved parameters as in Theorem 5.6, relation
(5. 25) yields the inequality

<2p—|— 71’) (Mz,x —x*) > (p - ;;2) |z — 2*||* Vo € H,

where Mz* = 0. Thus the operator M satisfies a strong monotone property in the
sense of Pazy (see relation (11.2) in Theorem 11.2 in [114]). However, the hypotheses
of Theorem 5.6 do not imply in general the strong monotonicity of the operator M
in the sense of (1. 31), thus the result presented in Theorem 5.6 does not fall into the
framework of the classical result concerning exponential convergence rates for the
semigroup generated by a strongly monotone operator as presented in [60, Theorem
3.9].

Further, we discuss some situations when the operator M is strongly monotone
in the classical sense (see (1. 31)). We start with two trivial cases. The first one
is Ax = 0 for all x € H and B is strongly monotone. The second one is Bx = 0
for all x € H and A is strongly monotone, in which case Jya is a contraction
(see [26, Proposition 23.11]), hence M = Id —J,4 is strongly monotone. Other
situations follow in the framework of [26, Proposition 25.9]: i) if A is strongly
monotone, B is B-cocoercive and n < 23; ii) if B is #-strongly monotone and 3!-
Lipschitz continuous, 88 < 1 and n < 2032.

We come now to the convex optimization problem

min f(z) +g(2), (5. 26)

where f : H — RU {400} is a proper, convex and lower semicontinuous function
and g : H — R is a convex and (Fréchet) differentiable function with Lipschitz
continuous gradient. Notice that, since

argmin(f + g) = zer(9(f + g)) = zer(df + Vg),

one can approach this set by means of the trajectories of the dynamical system
(5. 8) written for A = df and B = Vg. This being said, the dynamical system
(5. 8) becomes

{ #(t) = A(t) [prox, (2(t) = nVg(w (1)) — ()] (5. 27)
z(0) = zp.

The following result is a direct consequence of Theorem 5.6. Let us also notice that
in case f 4 g is p-strongly convex for p > 0, the operator d(f + g) = df + Vg is a
p-strongly monotone operator (see [26, Example 22.3(iv)].)
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Theorem 5.7 Let f : H — RU {400} be a proper, convex and lower semicontin-
wous function, g : H — R be a convex and (Fréchet) differentiable function with
%—Lipschitz continuous gradient for B > 0 such that f + g is p-strongly convex for
p >0 and x* be the unique minimizer of f+g over H. Let X : [0, +00) — [0, +00) be

a Lebesgque measurable function such that there exist real numbers A and X\ fulfilling

0 <A <infA(t) <supA(t) < .
t20 t>0

Chose a > 0 and 1 > 0 such that
1
B

Ifxog € H and x : [0,4+00) — H is the unique strong global solution of the dynamical
system (5. 27), then for every t € [0. 4+ co0) one has

A 1
+-<p+-—.
2a n

a < 2pB%\ and

() — 2% < [|lzwo — 27||* exp(=C1),

2pA— 2
._ P27 %
where C = prrms > 0.

In the last part of this section we approach the convex minimization problem

min g(z), (5. 28)

via the first order dynamical system

{ igé))iz(s.)vg(w(t)) =0 (5. 29)

The following result quantifies the rate of convergence of g to its minimum value
along the trajectories generated by (5. 29).

Theorem 5.8 Let g : H — R be a p-strongly convex and (Fréchet) differentiable
function with %—Lipschitz continuous gradient for p > 0 and B > 0 and x* be the
unique minimizer of g over H. Let A : [0,+00) — [0, +00) be a Lebesgue measurable
function such that \(-) € Li [0, +00) and there exists a real number A € R fulfilling

loc
0 < A <inf A(?).
t>0
Chose a > 0 such that
a< QAﬂpz.

Ifxg € H and x : [0, +00) — H is the unique strong global solution of the dynamical
system (5. 29), then for every t € [0,+00) one has

2
< g(z(t)) —g(z")
< (9(wo) — g(z7)) exp(—at)
< %on T Hzexp(fat)

Proof. The second inequality is a consequence of the strong convexity of the
function g. Further, by noticing that Vg(z*) = 0, from Lemma 1.4 we obtain

o(x(t)) - gla™) < %nx@) — . (5. 30)
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From here, the last inequality in the conclusion follows automatically.
Using the strong convexity of g we have for every t € [0, +00) that

plle(t) — 2z*|* < (2(t) — 2, Vg(x(t)) < |la(t) — 2*[|[|Vg(z®))],
thus
pllz(t) — 2| < [Vg(az(t))]- (5. 31)

Finally, from the first equation in (5. 29), (5. 30), (5. 31) and using the way in
which « was chosen, we obtain for almost every ¢ € [0, +00)

%(g@c(t)) — g(2")) + a(g(x(t)) — g(a)) = (#(£), Va(e(t)) + alg(x(t) — g(z™))
<= A Vg(a(t)]? + %nx(w — 2|2
< (—A(t) n ng) Vg
<0.

By multiplying this inequality with exp(at) and integrating from 0 to T, where
T > 0, one easily obtains also the third inequality. |

5.2 Second order dynamical systems

In this section we investigate the asymptotic behavior of the trajectories of second
order dynamical systems associated to monotone inclusion problems.

5.2.1 Second order dynamical systems for monotone inclu-
sion problems

Let us start with the study of existence and uniqueness of strong global solutions
of a second order dynamical system governed by Lipschitz continuous operators.

Let I' : H — H be an Lp-Lipschitz continuous operator, with Lr > 0, B : H —
‘H be Lp-Lipschitz continuous, with Ly > 0, A : [0,+00) — [0,400) a Lebesgue
measurable function, ug,vg € H and consider the dynamical system

(1) + (1) + At)B(x(t) =0
{ x(0) = up, (0) = wvo. (5. 32)

Definition 5.3 We say that « : [0,4+00) — H is a strong global solution of (5. 32)
if the following properties are satisfied:

(i) z,% : [0,400) — H are locally absolutely continuous, in other words, abso-
lutely continuous on each interval [0,b] for 0 < b < +o0;

(i) Z(t) + T'(2(t)) + A(#)B(z(t)) = 0 for almost every t € [0, +00);
(i) z(0) = ug and #(0) = vo.

For proving the existence and uniqueness of strong global solutions of (5. 32)
we use the Cauchy-Lipschitz-Picard Theorem for absolutely continues trajectories
(see for example [90, Proposition 6.2.1], [125, Theorem 54]). The key observation
here is that one ca rewrite (5. 32) as a certain first order dynamical system in a
product space (see also [6]).
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Theorem 5.9 LetT': H — H be an Lr-Lipschitz continuous operator, B : H — H
a Lp-Lipschitz continuous operator and A : [0,4+00) — [0,400) a Lebesgue mea-
surable function such that A € Li ([0,400)) (that is A\ € L'([0,b]) for every

loc

0 < b < 4+c0). Then for each ug,vg € H there exists a unique strong global so-
lution of the dynamical system (5. 32).

Proof. The system (5. 32) can be equivalently written as a first order dynamical
system in the phase space H x H

Y(t) = F(t,Y(t))
{ Y(O) = (anUO)v (5. 33)

with
Y :[0,400) = H x H, Y(t) = (x(t),2(t))

and
F:[0,400) x HxH = H xH, F(t,u,v) = (v,—Tv— A(t)Bu).

We endow H x H with scalar product
((u,0), (@) 2 = (u, 1) + (v,7)
and corresponding norm
[[(w, )l = V/lull? + [[v]]>.

(a) For arbitrary u,w,v,7 € H, by using the Lipschitz continuity of the involved
operators, we obtain for all t > 0:

1E (8, u,0) = F(t,0,9) |uxn = Vo =0l + |7 — Do + A(t) (BT — Bu)||?

< /(L +2L3) o — B2 + 20322 (0)Ju — ]2

< /1202 4+ 2L 020 (w, ) — (0,9) et
< (14 V2Lr + V2LA®)) || (4, 1) = (0,9) |[xn-

As X € L ([0, +00)), the Lipschitz constant of F(t,-,-) is local integrable.

loc

(b) Next we show that
Yu,v € H, ¥b >0, F(-,u,v)€ L'([0,b],H x H). (5. 34)

For arbitrary u,v € H and b > 0 it holds

b b
| 1E )t = [T+ Fo+ A BulPa
0 0

b
S/ VIR +2(Tv][2 + 222(1)[| Bul[dt
0

b
< / (VIO =200l + V2x(®) | Bu ) dt

and from here (5. 34) follows, by using the assumptions made on A.

In the light of the statements (a) and (b), the existence and uniqueness of a
strong global solution for (5. 33) are consequences of the Cauchy-Lipschitz-Picard
Theorem for first order dynamical systems (see, for example, [90, Proposition 6.2.1],
[125, Theorem 54]). From here, due to the equivalence of (5. 32) and (5. 33), the
conclusion follows. O
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In the following we address the convergence properties of the trajectories gener-
ated by the dynamical system (5. 32) by assuming that B : H — H is a 8-cocoercive
operator for 5 > 0.

In order to prove the convergence of the trajectories of (5. 32), we make the
following assumptions on the operator I' and the relaxation function A, respectively:

(A1) T : H — H is a bounded self-adjoint linear operator, assumed to be elliptic,
that is, there exists v > 0 such that (Tu,u) > v||u||? for all u € H;

(A2) X\:[0,+00) = (0,400) is locally absolutely continuous and there exists § > 0
such that for almost every ¢ € [0, +00) we have

. Bry2
> <
A(t) > 0 and A(t)

. (5. 35)

Due to Definition 5.1 and Remark 5.1(a) A(t) exists for almost every ¢t > 0 and \is
Lebesgue integrable on each interval [0,b] for 0 < b < +oo. If A(t) > 0 for almost
every t > 0, then ) is monotonically increasing, thus, as A is assumed to take only
positive values, (A2) yields the existence of a lower bound A such that for almost
every t € [0,400) one has

By
0<A<A() < o
We would also like to point out that under the conditions considered in (A2)
the global version of the Picard-Lindel6f Theorem allows us to conclude that, for
ug,vo € H, there exists a unique trajectory x : [0, +00) — H which is a C? function
and which satisfies the relation (ii) in Definition 5.3 for every ¢ € [0,400). The
considerations we make in the following take into account this fact.

(5. 36)

Theorem 5.10 Let B : H — H be a [-cocoercive operator for f > 0 such that
zer B # 0, T : H — H be an operator fulfilling (A1), X : [0, +00) — (0,+00) be a
function fulfilling (A2) and ug,vg € H. Let x : [0,+00) — H be the unique strong
global solution of (5. 32). Then the following statements are true:

(i) the trajectory x is bounded and i, %, Bx € L*([0, +00); H);
(iii) x(t) converges weakly to an element in zer B as t — +o0.

Proof. Notice that the existence and uniqueness of the trajectory x follows from
Theorem 5.9, since B is 1/f-Lipschitz continuous, I' is ||T'||-Lipschitz continuous
and (A2) ensures A(-) € L ([0, +00)).

(i) Take an arbitrary z* € zer B and consider for every t € [0, +00) the function

We have

and
h(t) = &()|* + (2(t) — 2%, (1)) ,

for all t € [0,400). Taking into account (5. 32), we get for all ¢ € [0, +00)

h(t) +yh(t) + A(t) (z(t) — 2%, B(x(t)) + (2(t) — =", T(#(t)) — yi(t)) = [l2(2)]*.
(5. 37)
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Now we introduce the function p : [0, +00) — R,

p(t) = 5 (I =~y 1d) (z(t) — %), x(t) — 27). (5. 38)

M\H

Due to (Al), as ((I' = vId) u,u) > 0 for all u € H, it holds
p(t) >0 for all £ > 0. (5. 39)

Moreover,
p(t) = (' = ~1d) (&(2)), 2(t) — %),

which combined with (5. 37), the cocoercivity of B and the fact that Bx* = 0 yields
for all ¢ € [0, +00)

h(t) +~vh(t) + BA@) [ Ba())[I? +p(t) < [|a(0)]>.

Taking into account (5. 32) one obtains for all ¢ € [0, +00)

(t) + it + jt)nas(t) LT+ p(0) < [E)]°,
hence
() + () + A’fwumn? " f(f) (1), T((1)) + jﬂnr(@(t»n? T 5(t) < IE)]
(5. 40)
According to (Al) we have
Yl < Tl for all u € H, (5. 41)

which combined with (5. 40) yields for all ¢ € [0, +00)

b0 +hle) 450+ 50 S (0,000 )+ (=1 ) )P+ s 0 <0

By taking into account that for almost every ¢ € [0, +00)

1 d,,. . d 1 ' )\(t) . .
@%(@(t),r(x(t)») = ( o O F(x(t))>) + () (@(t), D(&(t))
>4 d <)\(1t) (x(t), F(x(t))>) +7/\)\2(;2)||£B(t)||2, (5. 42)

we obtain for all ¢ € [0, +00)
(t) A1) + (1)
.
55 (5 BO-TGON ) + (% + B3k - 1) I#0I + 35 I <0
(5. 43)

By using now assumption (A2) we obtain that the following inequality holds for
almost every t € [0, +00)

1

- (A(t <;‘p(t),I‘(x'(t))>> + 0l ()] +

R(t) + vh(t) + plt) + L ) L6

E()|* < 0.
(5. 44)
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This implies that the function ¢ — h(t) + vh(t) + p(t) + 505 (#(t), T(#(t))), which
is locally absolutely continuous, is monotonically decreasing. Hence there exists a
real number M such that for all ¢ € [0, +00)

BE) 4 1h(E) + 2(0) + 55 (600 T(@(e) < M. (5. 45)

which yields, together with (5. 39) and (A2), that for all ¢ € [0, +00)

h(t) + vh(t) < M.

By multiplying this inequality with e and then integrating from 0 to T, where
T > 0, one easily obtains

M
h(T) < h(0)e T + —(1 —e T,
gl
thus

h is bounded (5. 46)

and, consequently,
the trajectory x is bounded. (5. 47)

On the other hand, from (5. 45), by taking into account (5. 39), (A1) and (A2),
it follows that for all ¢ € [0, +00)

hence
(a(t) — a*,3(1)) + 1%"||a‘z<t>|\? <M.

This inequality, in combination with (5. 47), yields
& is bounded, (5. 48)

which further implies that )
h is bounded. (5. 49)

Integrating the inequality (5. 44) we obtain that there exists a real number
N € R such that for all ¢ € [0, +00)

; B

h(t)+7h(t)+p(t)+@<9'C(t)»1“(w'(t))>+9/0 ()] [2ds-+ -

+60 [t
5 [lpas < x

From here, via (5. 49), (5. 39) and (A1), we conclude that i(-),#(-) € L?([0, +00); H).
Finally, from (5. 32), (A1) and (A2) we deduce Bz € L?([0,4+00); H) and the proof
of (i) is complete.

(ii) For all ¢ € [0, 400) it holds

& (31601 ) = (0.0 < S10I + 1P

and Lemma 5.2 together with (i) lead to lim;—, o &(t) = 0.
Further, by taking into consideration Remark 5.1(b), for all ¢ € [0, +00) we have

d (1 d

& (31BEO)IP) = (B, §Be0)) < SIBGOIE + 5

TﬁQIILﬁ(t)Hz'
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By using again Lemma 5.2 and (i) we get lim;_, 1 oo B(x(t)) = 0, while the fact that
lim;—, 1 o0 Z(t) = 0 follows from (5. 32), (A1) and (A2).

(iii) As seen in the proof of part (i), the function t — A(t) + yh(t) + p(t) +
% (#(t),T'(2(t))) is monotonically decreasing, thus from (i), (ii), (5. 39), (A1) and
(A2) we deduce that lim;, o (Yh(t) + p(t)) exists and it is a real number.

In the following we consider the scalar product defined by ((z,y)) = %(Fm,y)

and the corresponding induced norm |||z|||? = %(I‘x,x). Taking into account the

definition of p, we have that limy_,; « |||2(t) —2*|||? exists and it is a real number.

Let T be a weak sequential cluster point of z, that is, there exists a sequence
t, — 400 (as n — 400) such that (z(t,))nen converges weakly to Z. Since B is
a maximally monotone operator (see for instance [26, Example 20.28]), its graph is
sequentially closed with respect to the weak-strong topology of the product space
‘H x H. By using also that lim,_, . B(z(t,)) = 0, we conclude that BT = 0, hence
T € zer B.

The conclusion follows by applying the Opial Lemma 1.1 in the Hilbert space
(H, ({(-,+)))), by noticing that a sequence (z,),>0 converges weakly to T € H in
(H, ({{-,-)))) if and only if (z,,)n>0 converges weakly to T in (H, ({-,-))). O

A standard instance of a cocoercive operator defined on a real Hilbert spaces is
the one that can be represented as B = Id —T, where T : H — H is a nonexpansive
operator. As it easily follows from the nonexpansiveness of T, B is in this case
1/2-cocoercive. For this particular choice of the operator B, the dynamical system
(5. 32) becomes

E(t) + T(&(t) + M) (2(t) — T(x(t))) =0
{ 2(0) = ug, #(0) = vo,( ) (5. 50)

while assumption (A2) reads

(A3) X :[0,+00) — (0,400) is locally absolutely continuous and there exists 6 > 0
such that for almost every ¢ € [0, +00) we have

. ’y2
M) 2 0 and AY) < 57 (5. 51)

Theorem 5.10 gives rise to the following result.

Corollary 5.2 Let T : H — H be a nonexpansive operator such that FixT = {u €
H:Tu=u}#0, T :H — H be an operator fulfilling (A1), X : [0,400) — (0, +0c0)
be a function fulfilling (A3) and ug,vg € H. Let x : [0,400) — H be the unique
strong global solution of (5. 50). Then the following statements are true:

(i) the trajectory x is bounded and i, %, (1d —T)x € L2([0,+00); H);
(iii) x(t) converges weakly to a point in FixT as t — +00.

Remark 5.12 In the particular case when I' = v1Id for v > 0 and A(¢) = 1 for all
t € [0, 400) the dynamical system (5. 50) becomes

E(t) + ya(t) + x(t) — T(x(t) =0
{ z(0) :fzoyi(o) = p. (5. 52)

The convergence of the trajectories generated by (5. 52) has been studied in [8,
Theorem 3.2] under the condition 42 > 2. In this case (A3) is obviously fulfilled for
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an arbitrary 0 < 0 < (y2 —2)/2. However, different to [8], we allow in Corollary 5.2
an anisotropic damping through the use of the elliptic operator I' and also a variable
relaxation function A depending on time (in [3] the anisotropic damping has been
considered as well in the context of minimizing of a smooth convex function via
second order dynamical systems).

We close the section by addressing an immediate consequence of the above corol-
lary applied to second order dynamical systems governed by averaged operators.
We consider the dynamical system

i(t) + T(&(t) + M) (z(t) — R(z(t)) =0
{ 2(0) = uo, (0) = vo ( ) (5. 53)

and formulate the assumption

(A4) X :[0,+00) = (0,400) is locally absolutely continuous and there exists § > 0
such that for almost every ¢ € [0, +00) we have

. 72

A(t) > 0 and A(t) < %070 (5. 54)

Corollary 5.3 Let R: H — H be an a-averaged operator for o € (0,1) such that
FixR#0, T : H — H be an operator fulfilling (A1), X : [0,400) = (0,+00) be a
function fulfilling (A4) and ug,vg € H. Let x : [0,4+00) — H be the unique strong
global solution of (5. 53). Then the following statements are true:

(i) the trajectory x is bounded and i, %, (Id —R)x € L?([0,+00); H);
(iii) x(t) converges weakly to a point in Fix R as t — +00.

Proof. Since R is a-averaged, there exists a nonexpansive operator T : H — H
such that R = (1 — «)Id +aT. The conclusion is a direct consequence of Corollary
5.2, by taking into account that (5. 53) is equivalent to

{ i)+ T(&(t) + aX(t) (x(t) — T(z(t)) =0
x(0) = ug, 2(0) = vy,

and Fix R = FixT. O

5.2.2 Second order dynamical systems of forward-backward
type

In this section we address the monotone inclusion problem
find * € H such that 0 € A(z*) + B(z"),

where A : H =% H is a maximally monotone operator and B : H — H is a (-
cocoercive operator for 8 > 0 via a second order forward-backward dynamical sys-
tem with anisotropic damping and variable relaxation parameter.

For nn > 0 we consider the dynamical system

{ B0+ TEH0) + MO [2(0) = Jya(2(0) = B @) | =0 (5. 55)

2(0) = g, (0) = vo.

We formulate the following assumption, where ¢ := (45 —n)/(28):
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(A5) A:[0,+00) = (0,400) is locally absolutely continuous and there exists § > 0
such that for almost every ¢ € [0, +00) we have

. 5y
At 2 0and A1) < 577

(5. 56)

Theorem 5.11 Let A : H = H be a mazimally monotone operator and B : H — H
be 3-cocoercive operator for 8 > 0 such that zer(A + B) # (0. Let n € (0,28) and
set § := (48 —n)/(28). Let T : H — H be an operator fulfilling (A1), A : [0,400) —
(0,400) be a function fulfilling (A5), ug,vo € H and x : [0,4+00) — H be the unique
strong global solution of (5. 55). Then the following statements are true:

(i) the trajectory x is bounded and &, &, (1d —Jya 0 (Id —nB))z € L*([0,400); H);
(it) Timy—, 4 oo ©(t) = limy_y 00 #(t) = limy— 4o (Id =Jya o (Id =9 B)) (z(t)) = 0;
(iii) x(t) converges weakly to a point in zer(A + B) ast — +oo;

(iv) if 2* € zer(A+ B), then B(x(-)) — Bz* € L*([0, +00); H), lim;_, 1 o B(x(t)) =
Bx* and B is constant on zer(A + B);

(v) if A or B is uniformly monotone, then x(t) converges strongly to the unique
point in zer(A + B) as t — +o0.

Proof. (i)-(iii) It is immediate that the dynamical system (5. 55) can be written
in the form

() + D((1)) + A1) (e(t) — R(x(1))) =0
{ x(0) = ug, £(0) = vo,( ) (5. 57)

where R = Jpa o (Id —nB). According to [26, Corollary 23.8 and Remark 4.24(iii)],
Jya is 1/2-cocoercive. Moreover, by [26, Proposition 4.33], Id —nB is 1/(20)-
averaged. Combining this with Proposition 5.1, we derive that R is 1/§-averaged.
The statements (i)-(iii) follow now from Corollary 5.3 by noticing that Fix R =
zer(A + B) (see [26, Proposition 25.1(iv)]).

(iv) The fact that B is constant on zer(A+ B) follows from the cocoercivity of B
and the monotonicity of A. A proof of this statement when A is the subdifferential
of a proper, convex and lower semicontinuous function is given for instance in [1,
Lemma 2.7].

Take an arbitrary 2* € zer(A+ B). From the definition of the resolvent we have
for every ¢ € [0, +00)

1

(1) — — T (@) € A (jé(t) + L rae)+ x(t)) ,

—B(xz(t)) — A(t) A(t)

—
.
ot
[0¢]

—

which combined with —Bxz* € Az* and the monotonicity of A leads to

0< <)\(1t)i(t) + ﬁF(:’r(t)) +at) — ", —B(a(t)) + Ba* — ——#(t) - 1)F(:'r(t))> .

nA(t) nA((
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After using the cocoercivity of B we obtain for every t € [0, +00)

BIB(a(0) - B (3500 + 55T, ~Blalt) + Ba)
- a0 + TEO)?
+ <ac(t) s _n%(t)w) - n;(t)r(g'c(t))>
< o5 || 50+ 3 TEO) "+ 2Bt - B
+ <:U(t) s _n%(t)j}(w - 77;(15)r(¢(t))> .

For evaluating the last term of the above inequality we use the functions h :
[0,4+00) — R,
1 .
h(t) = S ll(t) — 2"
and p : [0, +00) = R,
1
2

already used in the proof of Theorem 5.10. For every ¢ € [0, +00) we have

((t) —a*,i(t)) = h(t) - &)

p(t) = 5 (T =y 1d) (z(t) — %), x(t) — 2%),

() = (@(t) — 2", T(@(t)) — v (@(t) —a*,@(t)) = (2(t) — 2", D)) — vh(t),

_ _Lfg o i ___1 ' () — ||(t)||?
(ol6) = 2", = sb(0) = 0 ) = s (1) +900) 4500 - | (ét)IIG O)).
Consequently, for every ¢ € [0, 4+00) it holds .

SIB(e(0) ~ Bl < o | i) + 5 T0)

- n%(t) (i) +7h(t) + B(t) ~ 16@I2) . (5. 61)

By taking into account (A5) we obtain a lower bound A such that for every ¢ €
[0, 4+00) one has

o2
< < .
0< A A(t)_2(1+0)

By multiplying (5. 61) with A(t) we obtain for every t € [0, +00) that

B~ Ba* |+ % (he) + vh(e) + 5(0)) < 52 130) + TGN+ IO

After integration we obtain that for every T € [0, 4+00)
BA [T iz L ;
S | IBG) = BatPde + - (WT) = () +Ah(T) = 3h(0) +p(T) = p(0))
0
T

1. SZ + i)
S/0 (%A la(t) + T@O) + Sl )dt-
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By using that &, 2 € L*([0,+00); H), h(T') > 0,p(T’) > 0 for every T € [0, +00) and
limr_, o h(T) = 0, it follows that B(z(-)) — Ba* € L?([0,+00); H).
Further, by taking into consideration Remark 5.1(b), we have

& (31860 - B 12) = (Ba(t) - B, Bo(0)

< 51B((®) - Ba'I* + g ()P

and from here, in light of Lemma 5.2, it follows that lim;_, . B(z(t)) = Bz*.

(v) Let z* be the unique element of zer(A + B). For the beginning we suppose
that A is uniformly monotone with corresponding function ¢4 : [0, +00) — [0, +00],
which is increasing and vanishes only at 0.

By similar arguments as in the proof of statement (iv), for every ¢ € [0, +00) we

have
) <

L ! 3 * —B(x ¥ — 1 Z(t) — 1 T
(a0 + 3T + o0 = o ~Blale) + B — i) = D) )

ba (H %:ﬁ(t) + %F(:‘c(t)) + x(t) — z*

which combined with the inequality

(x(t) — 2", B(x(t)) — Bx*) > 0

yields
ba (H)\(lec(t) + % (#(t)) +z(t) — z* )
< (g0 + 5T, ~Bl() + B2 ) = o6+ TEO)P
+ <m(t) -z, fn)\l(t)i(t) - n)\l(t>F(z(t))>
< <)\(1t)j§(t) + % (#(8)), — B(a(t)) + Bx*>
+ <m(t) -y —n;(t)fc'(t) - n)\l(t)l“(x'(t))> .

As )\ is bounded by positive constants, by using (i)-(iv) it follows that the right-hand
side of the last inequality converges to 0 as t — +o0o. Hence
)-0

and the properties of the function ¢ 4 allow to conclude that ﬁx(t) + ﬁf(x(t)) +

t—+oo

lim ¢4 (H)\(lt)x(t) + %F(w(t)) +z(t) — 2"

z(t) — x* converges strongly to 0 as ¢ — 400. By using again the boundedness of A
and (ii) we obtain that x(t) converges strongly to z* as t — +oo.

Finally, suppose that B is uniformly monotone with corresponding function
¢p :[0,+00) — [0, 400], which is increasing and vanishes only at 0. The conclusion
follows by letting ¢ in the inequality

(z(t) — 2*, B(x(t)) — Bx") = ¢p(|lx(t) — x™|) Vt € [0, +00)

converge to +oo and by using that « is bounded and lim;_, oo (B(z(t) — Bz*) = 0.
(]
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Remark 5.13 We would like to emphasize the fact that the statements in Theorem
5.11 remain valid also for 17 := 2. Indeed, in this case the cocoercivity of B implies
that Id —nB is nonexpansive, hence the operator R = J,4 o (Id —nB) used in the
proof is nonexpansive, too, and so the statements in (i)-(iii) follow from Corollary
5.2. Furthermore, the proof of the statements (iv) and (v) can be repeated also for

n=20.

In the remaining of this section we turn our attention to optimization problems
of the form

min f(z) + g(z),
where f: H — RU {400} is a proper, convex and lower semicontinuous function
and g : H — R is a convex and (Fréchet) differentiable function with 1/8-Lipschitz
continuous gradient for 8 > 0.
In the following statement we approach the minimizers of f + g via the second
order dynamical system

{ (1) + D(#(0) + A1) [2(1) — prox, (2() = Vo)) =0 5o
z(0) = ug, 2(0) = vo.

Corollary 5.4 Let f: H — RU {400} by a proper, convex and lower semicontin-
uous function and g : H — R be a convex and (Fréchet) differentiable function with
1/B-Lipschitz continuous gradient for > 0 such that argming 4, {f(z)+g(z)} # 0.
Let n € (0,28] and set 6 := (48 —n)/(2B). Let T': H — H be an operator fulfill-
ing (A1), A : [0,400) — (0,+00) be a function fulfilling (A5), ug,vo € H and
x: [0,400) = H be the unique strong global solution of (5. 62). Then the following
statements are true:

(i) x(-) is bounded and &, i, (Id — prox, ; o(Id —nVg))x € L*([0,400); H);

(i) Ny, oo &(t) = limy_, oo &(t) = limy_, 1o (Id — prox, ; o(Id —nVg)) (x(t)) =
0;

(iii) x(t) converges weakly to a minimizer of f + g as t — +00;

(iv) if =* is a minimizer of f + g, then Vg(z(-)) — Vg(z*) € L*([0,+00); H),
limy, 1o Vg(z(t)) = Vg(z*) and Vg is constant on argming 4, { f(z)+g(x)};

(v) if f or g is uniformly convez, then x(t) converges strongly to the unique min-
imizer of f +¢g ast — +oo.

Proof. The statements are direct consequences of the corresponding ones from
Theorem 5.11 (see also Remark 5.13), by choosing A := df and B := Vg, by taking
into account that

zer(0f + Vg) = argmin{f(z) + g(2)}
TEH

and by making use of the Baillon-Haddad Theorem, which says that Vg is 1/4-
Lipschitz continuous if and only if Vg is S-cocoercive (see [26, Corollary 18.16]).
For statement (v) we also use the fact that if f is uniformly convex with modulus
¢, then df is uniformly monotone with modulus 2¢ (see [26, Example 22.3(iii)]). O

Remark 5.14 Consider again the setting in Remark 5.12, namely, when I" = v1d
for v > 0 and A(¢t) = 1 for every ¢ € [0,+00). Furthermore, for C' a nonempty,
convex, closed subset of H, let f = dc be the indicator function of C, which is
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defined as being equal to 0 for z € C' and to 400, else. The dynamical system
(5. 62) attached in this setting to the minimization of g over C' becomes
{ B(t) +yi(t) + a(t) — Po(a(t) — nVg(x(1))) =0 (5. 63)
x(0) = ugp, 2(0) = vy, '
where Po denotes the projection onto the set C.

The convergence of the trajectories of (5. 63) has been studied in [8, Theorem
3.1] under the conditions 72 > 2 and 0 < n < 23. In this case assumption (A5)
trivially holds by choosing @ such that 0 < 6 < (2 —2)/2 < (64% — 2)/2. Thus, in
order to verify (A5) in case A(t) = 1 for every t € [0, +00) one needs to equivalently
assume that 42 > 2/§. Since § > 1, this provides a slight improvement over [8,
Theorem 3.1] in what concerns the choice of v. We refer the reader also to [7] for

an analysis of the convergence rates of trajectories of the dynamical system (5. 63)
when g is endowed with supplementary properties.

For the two main convergence statements provided in this section it was essential
to choose the step size 7 in the interval (0, 25] (see Theorem 5.11, Remark 5.13 and
Corollary 5.4). This, because of the fact that in this way we were able to guarantee
for the generated trajectories the existence of the limit limy_, , o ||2(t) —2*||?, where
* denotes a solution of the problem under investigation. It is interesting to observe
that, when dealing with convex optimization problems, one can go also beyond this
classical restriction concerning the choice of the step size (a similar phenomenon has
been reported also in [1, Section 5.2]). This is pointed out in the following result,
which is valid under the assumption

(A6) X:[0,+00) — (0,400) is locally absolutely continuous and there exist a, 8, 6" >
0 such that for almost every t € [0, 4+00) we have

2

. 1 a B
> — (0 + =l —~I < <
1) 2 0 and 5 (# 4 5I0 =141} £ X0 < ST

(5. 64)

and for the proof of which we use instead of ||z(-)—z*||? a modified energy functional.

Corollary 5.5 Let f: H — RU{+o0c} by a proper, convex and lower semicontin-
uous function and g : H — R be a convex and (Fréchet) differentiable function with
1/B-Lipschitz continuous gradient for 3 > 0 such that argmin, 4, { f(z)+g(x)} # 0.
Let bep > 0, ' : H — H be an operator fulfilling (A1), A :[0,+00) — (0,400) be a
function fulfilling (A6), ug,vo € H and x : [0, +00) — H be the unique strong global
solution of (5. 62). Then the following statements are true:

(i) x(-) is bounded and &, i, (1d — prox, ; o(Id —nVg))x € L*([0,400); H);

(it) limy, 1o &(t) = limy, o &(t) = limy_, o (Id — prox, ; o(Id —nVg)) (z(t)) =
0;

(iii) x(t) converges weakly to a minimizer of f + g as t = +00;

(iv) if =* is a minimizer of f + g, then Vg(z(-)) — Vg(z*) € L*([0,+00); H),
lims—s 100 Vg(z(t)) = Vg(a*) and Vg is constant on argmin,c4,{ f(z) +g(x)};

(v) if f or g is uniformly convez, then z:(t) converges strongly to the unique min-
imizer of f + g ast — +oo.
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Proof. Consider an arbitrary element z* € argmin,c,{f(z) + g(z)} = zer(0f +
Vg). Similarly to the proof of Theorem 5.11(iv), we derive for every t € [0, 4+00)
(see the first inequality after (5. 59))

BlIVg(a(t)) — Vg(a™)|

< ﬁ ( (i(t), =Vg(x(t)) + Vg(z*)) + (T(i(t)), —Vg(z(t)) + Vg(z*)) )
- n%(t)”gj(t) +T(2(1)]]* + <x(t) —x*, _n%(zf)jj(t) _ n)\l(t) (x(t))> _
(5. 65)

In what follows we evaluate the right-hand side of the above inequality and
introduce to this end the function

q:[0,400) = R, q(t) = g(z(t)) — g(«") — (Vg(z"), z(t) — 27) .
Due to the convexity of g one has
q(t) >0Vt > 0.
Further, for every t € [0, +00)
q(t) = (@(t), Vg(z(t)) — Vg(z7)),

thus

(T(@(2), —Vg(x(t)) + Vg (™))
= —74(t) + (' = ~1d) (£(t)), =Vg(z(t)) + Vg(z7))

< —9d(t) + o IT = Y IO + 5T~ 14 V(e (t)) — Vo(a) 2. (5. 66)

On the other hand, for every ¢ € [0, +00)

i(0) = (), V(o) ~ Vala') + (a(0) G V0((0)).

hence

(#(t), =Vg(x(t)) + Vg(z™)) < =4(t) + %Ili(t)ll2« (5. 67)

Further, we have for every ¢ € [0, 4+00) (see also (5. 42) and (5. 41))

@) 0+ TGO = 5 1O + 55 G5 (0TGN + 55 TG
> sl + 4 (A(lt) <a'c<t>,r<a'c<t>>>)
P IO + TSP (5. 68)

Finally, by multiplying (5. 65) with A(¢) and by using (5. 66), (5. 67), (5. 68) and
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(5. 60) we obtain after rearranging the terms for every t € [0, 4+00) that

(83®) = ST =91 ) IVg(a(t) - Vo)

(Y g) e d (g
dt?2 \ n ¢ Tt 7 g

+ L+ L4 (.

PO E N

¢ (Gt~
EREPTANE

OLAL

<0.

and, further, via (A6)

IVg(e(e) - Vool + 5 (S a) +a5 (Shea) + 2ot

dt \n
+22 (50 GOTEER) + 0O + o lHOIP
0. (5. 69)
This implies that the function
(ot (;h ; q) )+ (71711 ; q) 0+ a0+ 1 (A(lt) <az:<t>,r<ac<t>>>) (5. 70)

is monotonically decreasing. Arguing as in the proof of Theorem 5.10, by taking
into account that A has positive upper and lower bounds, it follows that

1 .
—h + q, h7 q,7, j77 h, q are bounded,
n

i, and (Id — prox, ; o(Id —nVg))x € L*([0,400); 1) and limy_, o 4(t) = 0. Since
4 (1d — prox, ; o(Id —nVg))z € L*([0,400); H) (see Remark 5.1(b)), we derive
from Lemma 5.2 that limg_, (Id—proxnf o(Id—nVg))(x(t)) = 0. As i(t) =
—T(i&(t)) — A(t)(1d — prox, ; o(Id —nVg)) (x(t)) for every t € [0,400), we obtain
that lims—, 100 &(t) = 0. From (5. 69) it also follows that Vg(x(:)) — Vg(z*) €
L?([0,4+00); H) and, by applying again Lemma 5.2, it yields lim;_, o, Vg(x(t)) =
Vg(x*). In this way the statements (i), (ii) and (iv) are shown.

(iii) Since the function in (5. 70) is monotonically decreasing, from (i), (ii) and
(iv) it follows that the limit lim;— 400 (’y (%h + q) (t) + %p(t)) exists and it is a
real number.

Consider again the renorming of the space already used in the proof of Theorem
5.10(iii). As z* has been chosen as an arbitrary minimizer of f + g and taking
into account the definition of p and the new norm, we conclude that for all z* €
argming ¢4, {f(z) + g(z)} the limit lim;_, ;o E(t,2*) € R, exists, where

B(t,2") =

gl - o*||I* + g(a(t) — g(2*) — (Vg(a), 2(t) — 2™).

In what follows we use a similar technique as in [31] (see, also, [1, Section 5.2]).
Since z(-) is bounded, it has at least one weak sequential cluster point.
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We prove first that each weak sequential cluster point of x(-) is a minimizer
of f+g. Let 2* € argmin,y{f(z) + g(x)} and t,, = 400 (as n — +00) be
such that (z(t,))nen converges weakly to . Since (x(ty), Vg(z(tn))) € gr(Vyg),
limy, 100 Vg(z(tn)) = Vg(z*) and gr(Vyg) is sequentially closed in the weak-strong
topology, we obtain Vg(Z) = Vg(x*).

From (5. 58) written for ¢t = ¢,,, A = df and B = Vg, by letting n converge to
+o0 and by using that gr(df) is sequentially closed in the weak-strong topology, we
obtain —Vg(z*) € df(x). This, combined with Vg(z) = Vg(z*) delivers —Vg(Z) €
O0f(Z), hence T € zer(0f + Vg) = argmin 4, {f(z) + g(x)}.

Next we show that x(-) has at most one weak sequential cluster point, which
will actually guarantee that it has exactly one weak sequential cluster point. This
will imply the weak convergence of the trajectory to a minimizer of f + g.

Let z7, 25 be two weak sequential cluster points of x(-). This means that there
exist ¢, — 400 (as n — +o0) and ¢/, — 400 (as n — +00) such that (z(t,))nen
converges weakly to z7 (as n — 400) and (z(t],))nen converges weakly to z3 (as
n — +00). Since z}, x5 € argmin, 4, {f(z) + g(x)}, we have lim;_, ;o E(t,27) € R
and lims, o0 E(t,23) € R, hence lim; oo (E(t, 27) — E(t,23)) € R. We obtain

3 lim (1<<x<t>,xs—xa*>>+<v9<x;>—v9<xf>,w<t>>) eR,

t——+o0 n

which, when expressed by means of the sequences (t,)nen and (t))nen, leads to
@t 23 —a7))+H(Vg(ay) — Vg(ap), o) = (25, 25 —21)) +(Vg(23) — Vg(a1), 23)
This is the same with

1 * * * * * *
ﬁm% — a3||]® 4+ (Vg(a}) — Vg(ai), 25 —2}) =0

and by the monotonicity of Vg we conclude that x] = z3.
(v) The proof of this statement follows in analogy to the one of the corresponding
statement of Theorem 5.11(v) written for A = 9f and B = Vg. O

Remark 5.15 When I' = ~1d for v > 0, in order to verify the left-hand side of
the second statement in assumption (A6) one can take 6’ := Sinf,> A(t). Thus,
(5. 64) amounts in this case to the existence of § > 0 such that

2

2
M) € ————.
t) < no+4+1
When one takes A(t) = 1 for every t € [0,+00), this is verified if and only if
2 > 2 + 1. In other words, (A6) allows in this particular setting a more relaxed
choice for the parameters v, and 3, beyond the standard assumptions 0 < 1 < 20
and 72 > 2 considered in [8].

In the following we provide a rate for the convergence of a convex and (Fréchet)
differentiable function with Lipschitz continuous gradient g : H — R along the
ergodic trajectory generated by

#(t) + T(&(t) + A(H)Vg(z(t) =0
{ x(0) = up, £(0) = vy ! (5. 71)

to the minimum value of g. To this end we make the following assumption

(A7) X:[0,+00) — (0,400) is locally absolutely continuous and there exists ¢ > 0
such that for almost every ¢ € [0, +00) we have

0< ¢ <AAE) — A). (5. 72)
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Let us mention that the following result is in the spirit of a convergence rate state-
ment given for the objective function values on a sequence iteratively generated by
an inertial-type algorithm recently obtained in [89, Theorem 1].

Theorem 5.12 Let g : H — R be a convex and (Fréchet) differentiable function
with 1/B-Lipschitz continuous gradient for f > 0 such that argmin,c,, g(x) # 0.
Let T' : H — H be an operator fulfilling (A1), A : [0,+00) — (0,400) a function
fulfilling (AT), ug,vo € H and z : [0,+00) = H be the unique strong global solution
of (5. 71).

Then for every minimizer x* of g and every T > 0 it holds

T
0<g (; / x(t)dt) ~ gla")
A(0)

1
< — 212 _ AW _ 22l
< 57 [||vo+7(uo ol +<7||F T+ 5 )HUO mn]

Proof. The existence and uniqueness of the trajectory of (5. 71) follow from The-
orem 5.9. Let be z* € argmin,cy, g(x), T > 0 and consider again the function
p:[0,+00) = R,

(T =~1d) ((t) — 2%), x(t) — ")

N =

p(t) =

which we defined in (5. 38). By using (5. 71), the formula for the derivative of
p, the positive semidefinitness of T' — v 1Id, the convexity of g and (A7) we get for
almost every t € [0, +00)

- (;nw) +(a(t) — 2P +p(t) A(t)g(x(t»)

We obtain after integration

SIT) + 4 (T) — 2P +3p(T) + A(T)g(a(T))
= (5H0) +2(0(0) = 2+ 70(0) + AO)g(a10)) )

T

+¢ ; (9(2(t)) — g(="))dt

< (MT) = M0)g(z™).

Be neglecting the nonnegative terms on the left-hand side of this inequality and by
using that g(x(T)) > g(z*), it yields

T
¢ [ (ata®) = gta))at < g+ (o = 2°)IF +99(0) + AO) o) ("))
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The conclusion follows by using

p(0) = 5 (T = 710) g — &) g — 2°)

1 *
ST = 1d g — 2,

IN

and
g(uo) — g(x*) < —=llug —

which is a consequence of the descent lemma (see Lemma 1.4 and notice that
Vg(x*) = 0), and the inequality

9<T / a:(t)dt)—g(x)sT | tate) — gt ar

which holds since g is convex. O

Remark 5.16 Under assumption (A7) on the relaxation function A, we obtain
in the above theorem (only) the convergence of the function g along the ergodic
trajectory to a global minimum value. If one is interested also in the (weak) con-
vergence of the trajectory to a minimizer of g, this follows via Theorem 5.10 when
A is assumed to fulfill (A2) (notice that if = converges weakly to a minimizer of g,
then from the Cesaro-Stolz Theorem one also obtains the weak convergence of the
ergodic trajectory T+ £ fOT x(t)dt to the same minimizer).
Take a >0, b > 1/(87?) and 0 < p < ~. Then

1

At) = ae=Pt +b

is an example of a relaxation function which verifies assumption (A2) (with 0 < § <
bB3y? — 1) and assumption (A7) (with 0 < ¢ < yb/(a + b)?).

5.2.3 Variable damping parameters

In this section we carry out a similar analysis as in the previous subsection, how-
ever, for second order dynamical systems having as damping coefficient a function
depending on time. We refer the reader to [13,65,66,126] for other works where sec-
ond order differential equations with time dependent damping have been considered
and investigated in connection with optimization problems.

As starting point for our investigations we consider the dynamical system

P(t) + v(0)a(t) + M) B(z(t)) = 0
{ (0) Juo,i:(()) = vy, (5. 73)

where B : H — H is a cocoercive operator, A, : [0, +00) — [0,+00) are Lebesgue
measurable functions and ug, vg € H.

The existence and uniqueness of strong global solutions of (5. 73) can be shown
by using the same techniques as in the proof of Theorem 5.9, provided that A(), () €
L .([0,400)). For the convergence of the trajectories we need the following assump-
tion

(A2) A,y :[0,400) — (0,+00) are locally absolutely continuous and there exists
6 > 0 such that for almost every t € [0, 400) we have

Y2 (t) _1+6

4(t) <0 < A(t) and Y0 > —

(5. 74)
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According to Definition 5.1 and Remark 5.1(a), A(t),%(t) exist for almost almost
every t € [0,400) and A,7 are Lebesgue integrable on each interval [0,b] for 0 <
b < 400. This combined with 4(t) < 0 < A(t), yields the existence of a positive
lower bound for A and for a positive upper bound for . Using further the second
assumption in (5. 74) provides also a positive upper bound for A and a positive
lower bound for . The couple of functions

A(t) = P and y(t) = d'e 7t + ¥,
where a,a’,p,p’ > 0 and b,b’ > 0 fulfill the inequality b2b > 1/3, verify the
conditions in assumption (A2’).

We state now the convergence result.

Theorem 5.13 Let B : H — H be a [-cocoercive operator for B > 0 such that
zer B # 0, A\,v : [0,4+00) — (0,+00) be functions fulfilling (A2’) and ug,vy € H.
Let x : [0,+00) — H be the unique strong global solution of (5. 73). Then the
following statements are true:

(i) the trajectory x is bounded and i, %, Bx € L*([0,+00); H);
(iii) x(t) converges weakly to an element in zer B as t — +oo.

Proof. With the notations in the proof of Theorem 5.10 and by appealing to similar
arguments one obtains for every ¢ € [0, +00)

h(t) +~(8)h(t) + /\i)ll i(t) + (a0 < [l2(t)]?

or, equivalently,

h Mi _ ()2 B ()12
i) + 200 + 58 & (el?) + (T 1) 1P + ol <o

Combining this inequality with

2L 1a0l) = 5 (R aof ) - LA 2O 3 2

A(t) dt A(t) A2(t)
and J J
A0 = Lm0 5@ = L m), (5. 75)
it yields for every ¢ € [0, +00)
7(t) 2
0 + om0+ 55 (1130)1?)
—H(BAE) + (A oz B
( 0 —1>||x<t>|| + 5ol
<0.

Now, assumption (A2’) delivers for almost every t € [0, 400) the inequality

ie) + GOm0 + 5 (R WOI ) + I + 75N <0
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This implies that the function t — h(t) + ~v(t)h(t) + 5%”10(15)”2 is monotonically
decreasing and from here one obtains the conclusion following the lines of the proof

of Theorem 5.10, by taking also into account that Ilim;—, 1 () € (0,400). O

When T : ‘H — H is a nonexpansive operator one obtains for the dynamical
system
B(0) + Y(D(E) + M) (a(t) ~ T(a(t))) = 0 5. 7
z(0) = ug, 2(0) = vo '

and by making the assumption

(A3) A,y : [0,400) — (0,400) are locally absolutely continuous and there exists
6 > 0 such that for almost every t € [0, 4+00) we have

. 2
4(t) <0 < A(t) and VA(%)

> 2(1 4 6) (5. 77)

the following result which can been seen as a counterpart to Corollary 5.2.

Corollary 5.6 Let T : H — H be a nonexpansive operator such that FixT # (),
Ay [0,400) = (0,400) be functions fulfilling (A3’) and wg,vo € H. Let x :
[0,+00) — H be the unique strong global solution of (5. 76). Then the following
statements are true:

(i) the trajectory x is bounded and i, %, (Id —=T)x € L*([0, +00); H);
(iii) x(t) converges weakly to a point in FixT as t — +00.

When R : H — H is an a-averaged operator for o € (0,1) one obtains for the
dynamical system

#(t) +~y()3(t) + M) (z(t) — R(x(t))) =0
{ x(0) = uo, 2(0) = vo, (5. 78)

and by making the assumption

(A4) A7y : [0,400) = (0,400) are locally absolutely continuous and there exists
6 > 0 such that for almost every t € [0, 4+00) we have

4(t) <0 < A(t) and f((t?

> 2a(1 +6) (5. 79)

the following result which can been seen as a counterpart to Corollary 5.3.

Corollary 5.7 Let R: H — H be an a-averaged operator for o € (0,1) such that
FixR # 0, \,v : [0,+00) — (0,400) be functions fulfilling (A4’) and ug,vo € H.
Let x : [0,+00) — H be the unique strong global solution of (5. 78). Then the
following statements are true:

(i) the trajectory x is bounded and i, %, (Id —R)x € L?([0,+00); H);

(iii) x(t) converges weakly to a point in Fix R as t — +oo0.
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We come now to the monotone inclusion problem
find 0 € A(z) + B(z),

where A : H =% H is a maximally monotone operator and B : H — H is a (-
cocoercive operator for § > 0 and assign to it the second order dynamical system

{ #(0) Y (Da(E) + A1) [2(6) — Jya (a(t) ~nB(x(1))] =0 5. 80)
x(0) = ug, 2(0) = vg.
and make the assumption

(A5) A,y : [0,400) = (0,400) are locally absolutely continuous and there exists
6 > 0 such that for almost every t € [0, 4+o00) we have

V() _ 2(1+9)
wd X 2
Theorem 5.14 Let A : H = H be a mazimally monotone operator and B : H — H
be [3-cocoercive operator for > 0 such that zer(A + B) # (. Let n € (0,283) and
set 6 := (48 —n)/(2B). Let A\,7v : [0,400) = (0,+00) be functions fulfilling (A5’),
ug,vg € H and x : [0,400) — H be the unique strong global solution of (5. 80).
Then the following statements are true:

(i) the trajectory x is bounded and &, &, (1d —Jya 0 (Id —nB))z € L*([0, +00); H);
(it) Timy 4 oo ©(t) = limy—y 100 #(t) = limy— 400 (Id —Jya o (Id =9 B)) (z(t)) = 0;
(iii) x(t) converges weakly to a point in zer(A + B) ast — +oo;

(iv) if * € zer(A+ B), then B(z(+)) — Bx* € L?([0,+00); H), lim;—, 4 o0 B(z(t)) =
Bx* and B is constant on zer(A + B);

A(t) <0 < A(t) . (5. 81)

(v) if A or B is uniformly monotone, then x(t) converges strongly to the unique
point in zer(A + B) as t — +oo.

Proof. The statements (i)-(iii) follow by using the same arguments as in the proof
of Theorem 5.11.

(iv) We use again the notations in the proof of Theorem 5.10. Let be an arbitrary
x* € zer(A+ B). From the definition of the resolvent we have for every t € [0, +00)

_Ba®) - —— i) - 2D iy e a ( Lo+ 1050 4 :v(t)) (5. 82)

nA(t) nA(t) A(t) At)
which combined with —Bx* € Az* and the monotonicity of A leads to
0< <)\(1t)i(t) + z\lggi:(t) +a(t) — 2%, —B(z(t) + Ba* — n%(ﬂjc’(t) - 77)\(2)56(15)> .
(5. 83)
The cocoercivity of B yields for every ¢ € [0, +00)
BB(0) ~ B < (51530 + 1 74(0),~Bla(0) + Ba")
~ g )+ 1O
DD SV (O I
" <m(t) T nA(®) ) nA(t) (t)>
2
< 5| 50+ K0 + 515 - B
* 1 Mz
" <I(t) BTG (t)>
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From
—z* _Lj} _ﬂjj _ L (1) — || (2)]|2
(at0) = 2", 35 (0) = 20 ) =~ s (50 + +(00h00) - 16(0))
(5. 84)
we obtain for every ¢ € [0, +00)
ﬁ/\(t) *)12 e 1 1 . . 2 1. 2
B ()B4 (h(0) +9(0H0)< 5t 1600 + 21 OGON )P

The conclusion follows in analogy to the proof of (iv) in Theorem 5.11 by using also
(5. 75).

(v) Let * be the unique element of zer(A+ B). When A is uniformly monotone
with corresponding function ¢4 : [0, +00) — [0, +00], which is increasing and van-
ishes only at 0, similarly to the proof of statement (v) in Theorem 5.11 the following
inequality can be derived for every t € [0, +00)

7(t) ) <

o (| 570+ 10 420 o
<>\(1t)ft(t) + 1856(“’ —B(x(t)) + Bx*> + <m(t) o _n%(t)m) - 77;3):&@» |

This yields limy_ +o0 ¢4 (H Sd(t) + (1) + x(t) - o
conclusion is immediate.

The case when B is uniformly monotone is to be addressed in analogy to corre-
sponding part of the proof of Theorem 5.11 (v). O

) = 0 and from here the

Remark 5.17 In the light of the arguments provided in Remark 5.13, one can see
that the statements in Theorem 5.14 remain valid also for n = 24.

When particularizing this setting to the solving of the optimization problem

min f(x T

min f(z) + g(z),

where f : H — R U {400} is a proper, convex and lower semicontinuous function
and g : H — R is a convex and (Fréchet) differentiable function with 1/8-Lipschitz
continuous gradient for 8 > 0, via the second order dynamical system

{ E(t) +~y(8)a(t) + A(t) [x(t) — Prox,; (x(t) - an(x(t)))] =0 (5. 85)
(0) = ug, #(0) = vo,

Corollary 5.14 gives rise to the following result.

Corollary 5.8 Let f:H — RU {400} by a proper, convex and lower semicontin-
uous function and g : H — R be a convex and (Fréchet) differentiable function with
1/B-Lipschitz continuous gradient for § > 0 such that argming 4, {f(z)+g(z)} # 0.
Let n € (0,20] and set 6 := (468 —n)/(28). Let A,y : [0,400) — (0,+00) be func-
tions fulfilling (A5’), ug,v9 € H and x : [0,+00) — H be the unique strong global
solution of (5. 85). Then the following statements are true:

(i) x(-) is bounded and &, i, (1d — prox, ; o(Id —nVg))x € L*([0,400); H);

(1) iy s oo &(t) = limy_s o0 &(t) = limy_s o0 (Id —prox, ; o(Id —nVyg)) (x(t)) =
0;

(iii) x(t) converges weakly to a minimizer of f + g as t = +00;
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(iv) if x* is a minimizer of f + g, then Vg(x(-)) — Vg(z*) € L*([0,+o0);H),
limy—s o0 Vg(z(t)) = Vg(x*) and Vg is constant on argmin, c4,{ f(x) +g(x)};

(v) if f or g is uniformly convez, then z(t) converges strongly to the unique min-
imizer of f +g ast — +oo.

As it was also the case in the previous section, we can weaken the choice of the
step size in Corollary 5.8 through the following assumption

(A6’) A,y :[0,400) — (0,+00) are locally absolutely continuous and there exists
6 > 0 such that for almost every ¢t € [0, +00) we have

: ; () U
A(t) <0 < A(t) and ) > nd + 3 +1. (5. 86)

Corollary 5.9 Let f: H — RU{+oo} by a proper, convezx and lower semicontin-
uous function and g : H — R be a convex and (Fréchet) differentiable function with
1/B-Lipschitz continuous gradient for § > 0 such that argming 4, {f(z)+g(z)} # 0.
Let be n > 0, A,y :[0,+00) = (0,400) be functions fulfilling (A6’), ug,vo € H and
x: [0,400) — H be the unique strong global solution of (5. 85). Then the following
statements are true:

(i) x(-) is bounded and &, i, (1d — prox, ; o(Id —nVg))x € L*([0,400); H);

(i) iy s oo &(t) = limy_s o0 &(t) = limy_s o0 (Id —prox, ; o(Id —nVg)) (x(t)) =
0;

(iii) x(t) converges weakly to a minimizer of f + g as t — +00;

(iv) if * is a minimizer of f + g, then Vg(z(:)) — Vg(z*) € L*([0,+);H),
limy 400 Vg(z(t)) = Vg(a*) and Vg is constant on argmin,,, {f(z)+g(x)};

(v) if f or g is uniformly convez, then x(t) converges strongly to the unique min-
imizer of f +g ast — +oo.

Proof. The proof follows in the lines of the one given for Corollary 5.5 and relies
on the following key inequality, which holds for every t € [0, +00),

BXOIVo(a(0) — Vol )? +355 (Th+a) +45 (206 (3h+0)

n dt
P, AOMO A 1 1)
y <n/\(t) w6 77) 0l
Lo (3310 ) + Sl
<0

where z* denotes a minimizer of f + g. This relation gives rise via (A6’) to

BAOIVa(e(t) - ot 5z (5ho+a) +5; (20 (30+a))
1 d ’Y(t) . 2 . 2 1 . 2
+ 12 (M el ) + ool + = lao)

<0

)

which can be seen as the counterpart to relation (5. 69). g
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Finally, we address the convergence rate of a convex and (Fréchet) differentiable
function with Lipschitz continuous gradient g : H — R along the ergodic trajectory
generated by

z(0) = ug, #(0) = vy (5. 87)

to its global minimum value, when making the following assumption

{ E(t) + (1)) + At)Vg(z(t)) = 0

(A7) A : [0,4+00) — (0,400) is locally absolutely continuous, v : [0,4+00) —
(0, +00) is twice differentiable and there exists ¢ > 0 such that for almost
every t € [0,+00) we have

0< ¢ <YL = A®M), 4(t) <0 and 25(t)y(t) —5() <0. (5. 88)

Theorem 5.15 Let g : H — R be a convex and (Fréchet) differentiable function
with 1/B-Lipschitz continuous gradient for 8 > 0 such that argmin, ¢y, g(x) # 0. Let
A,y 1 [0, 4+00) — (0, +00) be functions fulfilling (A7) ug,vo € H and z : [0, +00) —
H be the unique strong global solution of (5. 87).

Then for every minimizer x* of g and every T > 0 it holds

0<g (; / x(t)dt> — g(z*)
A0)

< 2@% {vo +7(0)(uo — =*)||* + (5 - 7(0)> o = x*ﬂ '

Proof. Let 2* € argmin 4, g(x) and T > 0. By using (5. 87), the convexity of g
and (A7) we get for almost every t € [0, +00)

% (5150 + 900 - 212 + Aottt - 2 oto) - 1)
= (E(E) + () @(0) — ) + (00, 5(0) + (O a(t) — )
= o) — 012 40) 60, 2(0) — ) + AW (D) + MO (310), Vg(a(1))
= (DA (Volal0), (1) — o) + A 0) + (3070 — 1) ) a2
2
< (M) (Tgla0), 2(0) — 27) + AD)g((0)

< (A1) = vOAND)(g((t)) — g(z")) + A(t)g(z")
< —C(g(x(1)) — g(z")) + At)g(z").

We obtain after integration

L) + AT () — )2 + AD(T) ~ D (1) - o

— S1(0) +4(0)((0) — ") ~ A©)g(0)) + 12 e(0) — 2|

T
+¢ [ (alate)) — gta)ya
0
< (AMT) = A0))g(z").
The conclusion follows from here as in the proof of Theorem 5.12. |

Remark 5.18 A similar comment as in Remark 5.16 can be made also in this
context. For a,a’,p,p’ > 0 and b,0’ > 0 fulfilling the inequalities S 1/8 and
0 < p < I one can prove that the functions

A(t) = and v(t) = d’'e Pt + 1,

ae=Pt 4+ b
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verify assumption (A2’) in Theorem 5.13 (with 0 < 6 < ¥2b3 — 1) and assump-
tion (A7) in Theorem 5.15 (with 0 < ¢ < bb'/(a + b)?). Hence, for this choice of
the relaxation and damping function, one has convergence of the objective func-
tion g along the ergodic trajectory to its global minimum value as well as (weak)
convergence of the trajectory to a minimizer of g.

5.2.4 Converges rates for strongly monotone inclusions

The starting point of the investigations we go through in this subsection is again the
monotone inclusion problem (5. 22), however, this time approached via the second
order dynamical system (5. 80).

The following result will be useful when deriving the convergence rates.

Lemma 5.4 Let h,v,b1,ba,bs,u: [0,4+00) — R be given functions such that h,~y,ba,u
are locally absolutely continuous and h is locally absolutely continuous, too. Assume
that

h(t),ba(t), u(t) > 0 Vt € [0, +00)

and that there exists v > 1 such that
y(t) >~y >1Vte[0,+00).

Further, assume that for almost every t € [0,4+00) one has

Y(t) + () < bi(t) +1, (5. 89)
ba(t) + ba(t) < bs(t) (5. 90)

and
h(t) +~y()h(t) + by (t)h(t) + ba(t)u(t) + ba(t)u(t) < 0. (5. 91)

Then there exists M > 0 such that the following statements hold:

(i) if 1 < <2, then for almost every t € [0, +00)

0 < h(t) < (h(O) + Q_MW> exp(—(y — Dt);

(ii) if 2 < v, then for almost every t € [0, +00)

0 < h(t) < h(0) exp(=(y = 1)) + — exp(~t)

< (h(O) + 7M2) exp(—t);

(iii) if v = 2, then for almost every t € [0, 400)
0 < h(t) < (h(0) + Mt) exp(—1).

Proof. We multiply the inequality (5. 91) with exp(t) and use the identities

exp(1)(t) =& (exp(t)h(1)) — exp(t)h(r)
exp(1)i(t) = (exp(t)u(t)) — exp(t)u)

d

exp(t)i(t) = (exp(t)h(1)) — exp(t)h(t)
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in order to derive for almost every ¢ € [0, +00) the inequality

@ (exp(t)h(1) + (1(1) — 1) (exp(t)h(D)) + exp(t)h(t)(bi (1) + 1 — (1)
(1) - (explt)ult)) + (bs(1) — ba(1)) exp(t)u(r)
<0.

By using also

we obtain for almost every ¢ € [0, +00)

T (exp®h(®) + L () = 1) xph1)) + & (t) exp(tyut) +
(b1 (6) + 1= 9(2) —5(0)) exp()A(D) + (bs(8) — balt) — bo(1)) exp(tyu)

<0.

The hypotheses regarding the parameters involved imply that the function

t — exp(t)h(t) + (7(t) — 1) exp(¢)h(t) + b2 (t) exp(t)u(t)

is monotonically decreasing, hence there exists M > 0 such that

exp(t)h(t) + (7(t) — 1) exp()h(t) + ba(£) exp(t)u(t) < M.
Since u(t), ba(t) > 0 we get
h(t) + (v(t) = Dh(t) < M exp(~t),
hence
h(t) + (y = 1)h(t) < M exp(—t)
for every ¢ € [0, +00). This implies that
2 (expl(3 ~ D) < Mexp((y —2)1),

for every t € [0, 400), from which the conclusion follows easily by integration. [

We come now to the first main result of this section.

Theorem 5.16 Let A : H = H be a mazimally monotone operator, B : H — H
a monotone and %-Lipschitz continuous operator for § > 0 such that A+ B is
p-strongly monotone for p > 0 and x* be the unique point in zer(A + B). Chose
a,d € (0,1) and n > 0 such that §8p < 1 and%: (%+W%a)%fp>0.

Let X : [0,+00) — [0,4+00) be a locally absolutely continuous function fulfilling
for every t € [0,400)

1 1 1
) p+ (E + 4p52a> 5

6(t) = A(t) T

1 1
5T Tp7a
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and such that there exists a real number A with the property that
0 < A <inf \(t)
t>0
and

1 1 1
5 P+(E+W)3
2<0:=A .
SUTATSS

1 1
5T 5

Further, let v : [0,400) — [0,+00) be a locally absolutely continuous function
fulfilling

1+ /114601
2

2p(1 — )
ot (5 + ) 5

< () <1+X(1) for everyt € [0,400) (5. 92)

and

(W(t)) < 0 for almost every t € [0, +00). (5. 93)

4(t) <0 and 4 D)

dt

Let ug,vg € H and x : [0,+00) — H be the unique strong global solution of the
dynamical system (5. 80).

Then (t) > v = 448 V21HG > 2 for every t € [0,+00) and there exists M > 0
such that for every t € [0,+00)

0 < fla(t) — 2| < fluo — &*[|* exp(—(y — 1)) +

M2 exp(—t)

M
< S Ap— —1).
< (1o =P+ 25 ) exn(n

Proof. From the definition of the resolvent we have for almost every ¢ € [0, +00)

B (Mlt)jf(t) + zggi(t) + x(t)) ~ B(a(t)) - n%(t)i(t) - 771(2):1’:(15)
€ (A+B) (Aa)gﬁ(t) + ;\Yggj:(t) —|—x(t)>. (5. 94)

We combine this with 0 € (A4 B)z*, the strong monotonicity of A+ B, the Lipschitz
continuity of B and, by also using the Cauchy-Schwartz inequality, we get for almost
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every t € [0, +00)

o (0 + (OO + 22 (a(0) = 2 0) +2(03(0) + platt) — a°

. H>\(1t)i(t) + zg;ds(t) +a(t) —a

p
Lj& Mm z(t) —x* x ﬂx T — B(x
S<A(1t) O+ xp O+ ’B()\(t) O+ 3+ (t)) B( (t))>
)

N
- </\(1t)9'é(t) + Kg;@@) a(t) — o, — () + Wi(t)>

2

nA(t) nA(

= 5 (#0 #1010, B (Mlt)i(t) + Kgm) Falt)) - B(az(t))>
2(t) — 2", B (}\(lt)jﬁ(t) + zg;w) + x(t)) ~ Ba(t))

- g 10 + 00 n%@) (a(t) — o, 5(t) + 1 (D))

+

Sﬁ/\Q(t)le(Hv() a(t)]* - )/\2()\\ i(t) +~(6)a(t)]*

_|_

1 . e .
Yo (w(t) — 2™, B(t) + (1) (t)) -
Using again the notation h(t) = 3||lz(t) —z*||?, we have for almost every ¢ € [0, 400)
() + (O @)]* = [ZD17 +~* @)D + 7(15)%(”53(0\\2) (5. 95)
and

(@(t) — 2*, &(t) +y(0)i(t)) = h(t) +(0)h(t) — [t

Therefore, we obtain for almost every t € [0, 4+00)

P 1 B 1 _ 1 5 )
(AQ(t) TR T BN 4p52a/\2(t)) 12 ()1l

+ 20 (5 + 7 ~ 7 ~ ) at (HOT)

2p 1 . 2p 1 . Cw
(A( 5 + G )) h(t) +~(t) <)\(t)+77)\(t)) h(t) +2p(1 — a)h(t)
0.

, p 1 1 1 2 17,
* {” () (m) e T BN 4pﬁ2av<t)> XD ] @l
d

N+

The hypotheses imply that

p 1 1 1 _ 1 1 1 1 0
() TNt T BN(D) | 4pFRadE(t) | A2(t) (” B 4p62a> g

hence the first term in the left hand side of the above inequality can be neglected
and we obtain for almost every t € [0, +00) that

h(t) +~y(8)(t) + by (£)A(t) + ba(t )% (IISE( W) +bs@®)]la@)]* <0, (5. 96)
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where
2p(1 —
may:xwli—éﬁ>m
2p+ =
n
P 11 1 i1 1
b (£) o T e T e Ea@m YO PT L T F T
2(t) == (1) 2p 1 Y0 2+ 1 >0
IYORENO) PEy
and
2
70) (7 + 7w — 7m0 ~ D) ~ 5~ no
bg(t) = 2 1 .

NOIRENG)

This shows that (5. 91) in Lemma 5.4 for u := ||4(-)||? is fulfilled. In order to apply
Lemma 5.4, we have only to prove that (5. 89) and (5. 90) are satisfied, as every
other assumption in this statement is obviously guaranteed.
A simple calculation shows that
2p_ 4 1
ba(t) > ba(t) <= 72(t) — () > — SO0 — ),
2@ T e T OBR®  1pFan ()

(5. 97)
which is true according to (5. 92), thus b3(t) > ba(t) for every ¢ € [0, +00). On the
other hand (see (5. 93)),

bg(t) <0

for almost every ¢ € [0, +00), from which (5. 90) follows.
Further, again by using (5. 92), observe that

2p(1 — )

1+bi(t) =1+ \t)
P+<%+@%%)%

> 7(t)

for every ¢ € [0, +00), which, combined with
Y(t) <0

for almost every t € [0, +00), shows that (5. 89) is also fulfilled.
The conclusion follows from Lemma 5.4(ii), by noticing that v > 2, as 6 > 2. O

Remark 5.19 One can notice that when §(t) < 0 for almost every t € [0, +00),
the second assumption in (5. 93) is fulfilled provided that A(¢) > 0 for almost every
t €[0,+00).

Further, we would like to point out that one can obviously chose A(t) = A and
~(t) = v for every t € [0, +00), where

1 1 1
) p+(E+4p62a)5
1-9

2<0:=) T 1
5T Tp7a

2p(1 — @)

1 1 1
P+(3+@E%)s

422 2p(1 — @)
ot (3 + ) 5

<A

and

1+\/1+49<
2 =7= = 1 1 1
PH\s T 5pa) s
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When considering the convex optimization problem (5. 26), the second order
dynamical system (5. 80) written for A = df and B = Vg becomes

{‘uw+%wﬂﬂ+kw[Mﬂ—mmm<ﬂﬂ_nvﬂﬂﬂﬁ]_0 (5. 98)

x(0) = g, ©(0) = vo.
Theorem 5.16 gives rise to the following result.

Theorem 5.17 Let f : H — R U {400} be a proper, convex and lower semicon-
tinuous function, g : H — R be a conver and (Fréchet) differentiable function with
1 -

5 Lipschitz continuous gradient for 8 > 0 such that f + g is p-strongly convex for

p > 0 and z* be the unique minimizer of f + g over H. Chose «,d € (0,1) and
1_ (1 1 1
1n > 0 such that 68p < 1 and;— (3+W)5_p>0‘
Let X : [0,+00) — [0,4+00) be a locally absolutely continuous function fulfilling
for every t € [0,400)

1 1 1
) p+ (E + 4p52a> 5

1-0 %4—4/3/;2&
2
2p(1 — 2p(1 —
) f( ? —+ (1) f( ? 1
P+(B+aﬁa)s P+(5+aﬁa)s

and such that there exists a real number A\ with the property that

0<A<infA(t)
t>0

and

2< 0= o o+ (3 )
=at .

1 1
B + 4pB2a

Further, let vy : [0,400) — [0,+00) be a locally absolutely continuous function
fulfilling (5. 92) and (5. 93), ug,vg € H and x : [0,400) — H be the unique strong
global solution of the dynamical system (5. 98).

Then y(t) > v 1= Lin/iidd Vzl“‘e > 2 for every t € [0,+00) and there exists M > 0
such that for every t € [0, 400)

0 < [|l2(t) = 2"|1* < [luo — 2" ||* exp(=(y = 1)#) + —— exp(~t)

M
< — P+ — —1).
< (o= a2+ =25 Y expl-0)

Finally, we approach the convex minimization problem (5. 28) via the second
order dynamical system

#(t) +v()a(t) + Mt Vg(z(t)) =0
{ z(0) :Zlo,fi(()) =g ! (5. 99)

and provide an exponential rate of convergence of ¢ to its minimum value along
the generated trajectories. The following result can be seen as the continuous
counterpart of [89, Theorem 4], where recently a linear rate of convergence for the
values of ¢ on a sequence iteratively generated by an inertial-type algorithm has
been obtained.
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Theorem 5.18 Let g : H — R be a p-strongly convex and (Fréchet) differentiable
function with %—Lipschz’tz continuous gradient for p > 0 and B > 0 and x* be the
unique minimizer of g over H.

Let o : [0,400) — R be a Lebesgue measurable function such that there exists
a > 1 with

2

i > = .

%gg a(t) > max {a, 52,7 1} (5. 100)
and X : [0,+00) = [0,+00) be a locally absolutely continuous function fulfilling for
every t € [0, 4+00)

at) _ B

B2 S <A(t) < §(a(t) + a?(t)). (5. 101)

Further, let v : [0,4+00) — [0,400) be a locally absolutely continuous function ful-
filling
1+ /14820
— <A(t) <1+ aft) for every t € [0, +00) (5. 102)

and (5. 93).
Let up,vg € H and z : [0,+00) — H be the unique strong global solution of the
dynamical system (5. 99).

14148 57
Then y(t) > v := f" > 2 and there exists M > 0 such that for every
t €[0,+00)

0< gllx(t) —a*|” < g(a(t)) — g(=")

< (g(ug) — gla")) exp(—(3 — 1)+~ exp(~1)
< <g(uO) 1 >eXp
< (;ﬂnuo ) e
Proof. One has for almost every ¢ € [0, +00)
< o(r(t)) = (#(1), Vola(0))
and (see Remark 5.1(b))
d? .. ) d .. 1. 9
S9((0) = (50, Tala(0) + (3(0), 5 Va(a(0) ) < GO, Tata(0) + (0]

Further, by using (5. 30), (5. 31) and the first equation in (5. 99), we derive for
almost every ¢ € [0, +00)

0 (®) ~ 9() +1(0) 5 (90(t)) — 9(a)) + ale) (9(x(t)) — 9(a*))

< AOITSEO)IP + S5 Vo) + 502
At
2

l2() + v (a0 — =~ Vg(=(®)]*

1
2\(1)
o(t)

* 95,2

IVg(z(®)]* + %Iliﬂ(t)llz-
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Taking into account (5. 95) we obtain for almost every ¢ € [0, +00)

IN(E) dt OB
+ a0+ (25 = 550 I9ata(o)?

According to the choice of the parameters involved, we have

AlM) ()

>0
2 28p* 77

thus, for almost every t € [0, +00),

L (0w (0) ~ 9(a") +710) % (o(a(t) — o(a")) + a(t) o(a(t)) ~ 9(a"))
() d RO R
+ O + (38 - ) 1

<0.

This shows that (5. 91) in Lemma 5.4 for u := ||(-)]|?,
bi(t) := a(t),

ba(t) == ==

and 21
t 1
b3 (t) = i - —=
2M(t) B
is fulfilled. By combining (5. 102) and the first condition in (5. 93) one obtains
(5. 89), while, by combining (5. 102) and the second condition in (5. 93) one obtains
(5. 90).
Furthermore, by taking into account the Lipschitz property of Vg and the strong
convexity of g, it yields

pB < 1.
From (5. 101), (5. 100) and a > 1 we obtain

At)

1
—= >a—— > 1 for every t € [0, +00),
5= vl
which combined with (5. 102) leads to v > 2.

The conclusion follows from Lemma 5.4(ii), the strong convexity of g and (5. 30).
(]

Remark 5.20 In Theorem 5.18 one can obviously chose «a(t) = «, where o =
# —1,if Bp < 1, or @ = 1 + ¢, with € > 0, otherwise, A\(t) = A and 7(t) = v for
every t € [0,400), where

B

<A<

ﬁLpQ 72( +a2)

and
1+ 1+8%

5 <~v<1l+a.



164 CHAPTER 5. Dynamical systems



Bibliography

1]

B. Abbas, H. Attouch, Dynamical systems and forward-backward algorithms
associated with the sum of a convex subdifferential and a monotone cocoercive
operator, Optimization 64(10), 2223-2252, 2015

B. Abbas, H. Attouch, B.F. Svaiter, Newton-like dynamics and forward-
backward methods for structured monotone inclusions in Hilbert spaces, Jour-
nal of Optimization Theory and its Applications 161(2), 331-360, 2014

F. Alvarez, On the minimizing property of a second order dissipative system in
Hilbert spaces, STAM Journal on Control and Optimization 38(4), 1102-1119,
2000

F. Alvarez, Weak convergence of a relaxed and inertial hybrid projection-
prozimal point algorithm for mazimal monotone operators in Hilbert space,

SIAM Journal on Optimization 14(3), 773-782, 2004

F. Alvarez, H. Attouch, An inertial proximal method for maximal monotone
operators via discretization of a nonlinear oscillator with damping, Set-Valued
Analysis 9, 3—-11, 2001

F. Alvarez, H. Attouch, J. Bolte, P. Redont, A second-order gradient-like dis-
sipative dynamical system with Hessian-driven damping. Application to opti-

mization and mechanics, Journal de Mathématiques Pures et Appliquées (9)
81(8), 747-779, 2002

A.S. Antipin, Minimization of convex functions on convex sets by means of dif-
ferential equations, (Russian) Differentsial’'nye Uravneniya 30(9), 1475-1486,
1994; translation in Differential Equations 30(9), 13651375, 1994

H. Attouch, F. Alvarez, The heavy ball with friction dynamical system for con-
vex constrained minimization problems, in: Optimization (Namur, 1998), 25—
35, in: Lecture Notes in Economics and Mathematical Systems 481, Springer,
Berlin, 2000

H. Attouch, J. Bolte, On the convergence of the proximal algorithm for
nonsmooth functions involving analytic features, Mathematical Programming
116(1-2) Series B, 5-16, 2009

H. Attouch, J. Bolte, P. Redont, A. Soubeyran, Proximal alternating mini-
mization and projection methods for nonconvex problems: an approach based
on the Kurdyka-Lojasiewicz inequality, Mathematics of Operations Research
35(2), 438-457, 2010

H. Attouch, J. Bolte, B.F. Svaiter, Convergence of descent methods for semi-
algebraic and tame problems: proximal algorithms, forward-backward splitting,
and reqularized Gauss-Seidel methods, Mathematical Programming 137(1-2)
Series A, 91-129, 2013

165



166

[12]

[18]

[19]

[20]

[23]

[24]

[25]

BIBLIOGRAPHY

H. Attouch, L.M. Briceno-Arias, P.L. Combettes, A parallel splitting method
for coupled monotone inclusions, STAM Journal on Control and Optimization
48(5), 3246-3270, 2010

H. Attouch, Z. Chbani, Fast inertial dynamics and FISTA algorithms in con-
vex optimization. Perturbation aspects, arXiv:1507.01367, 2015

H. Attouch, M.-O. Czarnecki, Asymptotic behavior of coupled dynamical sys-
tems with multiscale aspects, Journal of Differential Equations 248(6), 1315-
1344, 2010

H. Attouch, M.-O. Czarnecki, J. Peypouquet, Proz-penalization and splitting
methods for constrained variational problems, SIAM Journal on Optimization
21(1), 149-173, 2011

H. Attouch, M.-O. Czarnecki, J. Peypouquet, Coupling forward-backward with
penalty schemes and parallel splitting for constrained variational inequalities,

SIAM Journal on Optimization 21(4), 1251-1274, 2011

H. Attouch, X. Goudou, P. Redont, The heavy ball with friction method. I.
The continuous dynamical system: global exploration of the local minima of a
real-valued function by asymptotic analysis of a dissipative dynamical system,
Communications in Contemporary Mathematics 2(1), 1-34, 2000

H. Attouch, M. Marques Alves, B.F. Svaiter, A dynamic approach to a
prozimal-Newton method for monotone inclusions in Hilbert spaces, with com-
plezity O(1/n?), Journal of Convex Analysis 23(1), 139-180, 2016

H. Attouch, J. Peypouquet, P. Redont, A dynamical approach to an iner-
tial forward-backward algorithm for convexr minimization, SIAM Journal on
Optimization 24(1), 232-256, 2014

H. Attouch, B.F. Svaiter, A continuous dynamical Newton-like approach to
solving monotone inclusions, SIAM Journal on Control and Optimization
49(2), 574-598, 2011

H. Attouch, M. Théra, A general duality principle for the sum of two opera-
tors, Journal of Convex Analysis 3, 1-24, 1996

J.-P. Aubin, A. Cellina, Differential inclusions. Set-valued maps and viabil-
ity theory, Grundlehren der Mathematischen Wissenschaften [Fundamental
Principles of Mathematical Sciences| 264, Springer-Verlag, Berlin, 1984

J.B. Baillon, H. Brézis, Une remarque sur le comportement asymptotique des
semigroupes non linéaires, Houston Journal of Mathematics 2(1), 5-7, 1976

S. Banert, R.I. Bot, Backward penalty schemes for monotone inclusion prob-
lems, Journal of Optimization Theory and Applications 166(3), 930-948, 2015

S. Banert, R.I. Bot, A forward-backward-forward differential equation and its
asymptotic properties, arXiv:1503.07728, 2015

H.H. Bauschke, P.L.. Combettes, Convex Analysis and Monotone Operator
Theory in Hilbert Spaces, CMS Books in Mathematics, Springer, New York,
2011

H.H. Bauschke, D.A. McLaren, H.S. Sendov, Fitzpatrick functions: inequali-
ties, examples and remarks on a problem by S. Fitzpatrick, Journal of Convex
Analysis 13(3-4), 499-523, 2006



BIBLIOGRAPHY 167

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[41]

A. Beck and M. Teboulle, A fast iterative shrinkage-tresholding algorithm for
linear inverse problems, STAM J. Imaging Sci. 2(1), 183-202, 2009

S.R. Becker, P.L. Combettes, An algorithm for splitting parallel sums of lin-
early composed monotone operators with applications to signal recovery, Jour-
nal of Nonlinear and Convex Analysis 15(1), 137-159, 2014

D.P. Bertsekas, Nonlinear Programming, 2nd ed., Athena Scientific, Cam-
bridge, MA, 1999

J. Bolte, Continuous gradient projection method in Hilbert spaces, Journal of
Optimization Theory and its Applications 119(2), 235-259, 2003

J. Bolte, A. Daniilidis, A. Lewis, The Lojasiewicz inequality for nonsmooth
subanalytic functions with applications to subgradient dynamical systems,
SIAM Journal on Optimization 17(4), 1205-1223, 2006

J. Bolte, A. Daniilidis, A. Lewis, M. Shota, Clarke subgradients of stratifiable
functions, SIAM Journal on Optimization 18(2), 556-572, 2007

J. Bolte, A. Daniilidis, O. Ley, L. Mazet, Characterizations of Lojasiewicz in-
equalities: subgradient flows, talweg, convexity, Transactions of the American
Mathematical Society 362(6), 3319-3363, 2010

J. Bolte, S. Sabach, M. Teboulle, Prozimal alternating linearized minimization
for nonconvex and nonsmooth problems, Mathematical Programming Series
A (146)(1-2), 459-494, 2014

J.M. Borwein, Mazimal monotonicity via convezr analysis, Journal of Convex
Analysis 13(3-4), 561-586, 2006

J.M. Borwein and J.D. Vanderwerft, Convex Functions: Constructions, Char-
acterizations and Counterexamples, Cambridge University Press, Cambridge,
2010

R.I. Bot, Conjugate Duality in Convex Optimization, Lecture Notes in Eco-
nomics and Mathematical Systems, Vol. 637, Springer, Berlin Heidelberg,
2010

R.I. Bot, E.R. Csetnek, An application of the bivariate inf-convolution formula
to enlargements of monotone operators, Set-Valued Analysis 16(7-8), 983-997,
2008

R.I. Bot, E.R. Csetnek, Regularity conditions via generalized interiority no-
tions in convex optimization: new achievements and their relation to some
classical statements, Optimization 61(1), 35-65, 2012

R.I. Bot, E.R. Csetnek, Forward-backward and Tseng’s type penalty schemes
for monotone inclusion problems, Set-Valued and Variational Analysis 22,
313-331, 2014

R.I. Bot, E.R. Csetnek, A Tseng’s type penalty scheme for solving inclusion
problems involving linearly composed and parallel-sum type monotone opera-
tors, Vietnam Journal of Mathematics 42(4), 451-465, 2014

R.I. Bot, E.R. Csetnek, On the convergence rate of a forward-backward type
primal-dual splitting algorithm for convex optimization problems, Optimiza-
tion 64(1), 5-23, 2015



168

[44]

[45]

[46]

[49]

[50]

[51]

[52]

[53]

BIBLIOGRAPHY

R.I. Bot, E.R. Csetnek, An inertial forward-backward-forward primal-dual
splitting algorithm for solving monotone inclusion problems, Numerical Al-
gorithms 71, 519-540, 2016

R.I. Bot, E.R. Csetnek, An inertial alternating direction method of multipliers,
Minimax Theory and its Applications 1(1), 29-49, 2016

R.I. Bot, E.R. Csetnek, A hybrid proximal-extragradient algorithm with iner-
tial effects, Numerical Functional Analysis and Optimization 36(8), 951-963,
2015

R.I. Bot, E.R. Csetnek, An inertial Tseng’s type proximal algorithm for nons-
mooth and nonconvex optimization problems, Journal of Optimization Theory
and Applications, DOI 10.1007/s10957-015-0730-z

R.I. Bot, E.R. Csetnek, A dynamical system associated with the fized points set
of a nonexrpansive operator, Journal of Dynamics and Differential Equations,
DOI: 10.1007/s10884-015-9438-x, 2015

R.I. Bot, E.R. Csetnek, Approaching the solving of constrained variational in-
equalities via penalty term-based dynamical systems, Journal of Mathematical

Analysis and Applications 435(2), 1688-1700, 2016

R.I. Bot, E.R. Csetnek, Second order forward-backward dynamical systems for
monotone inclusion problems, arXiv:1503.04652, 2015

R.I. Bot, E.R. Csetnek, Convergence rates for forward-backward dynamical
systems associated with strongly monotone inclusions, arXiv:1504.01863, 2015

R.I. Bot, E.R. Csetnek, A. Heinrich, A primal-dual splitting algorithm for
finding zeros of sums of maximal monotone operators, STAM Journal on Op-
timization 23(4), 2011-2036, 2013

R.I. Bot, E.R. Csetnek, A. Heinrich, C. Hendrich, On the convergence rate im-
provement of a primal-dual splitting algorithm for solving monotone inclusion
problems, Mathematical Programming 150(2), 251-279, 2015

R.I. Bot, E.R. Csetnek, C. Hendrich, Recent developments on primal-dual
splitting methods with applications to convexr minimization, in: P.M. Pardalos,
T.M. Rassias (Eds.), ”Mathematics Without Boundaries: Surveys in Interdis-
ciplinary Research”, Springer-Verlag, New York, 2014

R.I. Bot, E.R. Csetnek, C. Hendrich, Inertial Douglas-Rachford splitting for
monotone inclusion problems, Applied Mathematics and Computation 256,
472-487, 2015

R.I. Bot, E.R. Csetnek, S. Laszlé, An inertial forward-backward algorithm for
the minimization of the sum of two nonconvex functions, EURO Journal on
Computational Optimization 4, 3-25, 2016

R.I. Bot, C. Hendrich, Solving monotone inclusions involving parallel sums of
linearly composed mazimally monotone operators, arXiv:1306.3191v2, 2013

R.I. Bot, C. Hendrich, Convergence analysis for a primal-dual monotone +
skew splitting algorithm with applications to total variation minimization,
Journal of Mathematical Imaging and Vision 49(3), 551-568, 2014

R.I. Bot, C. Hendrich, A Douglas-Rachford type primal-dual method for solv-
ing inclusions with mixtures of composite and parallel-sum type monotone
operators, STAM Journal on Optimization 23(4), 2541-2565, 2013



BIBLIOGRAPHY 169

[60]

[61]

[62]

[65]

[66]

[70]

[71]

H. Brézis, Opérateurs mazximauz monotones et semi-groupes de contractions
dans les espaces de Hilbert, North-Holland Mathematics Studies No. 5, Notas
de Matemadtica (50), North-Holland/Elsevier, New York, 1973

L.M. Briceno-Arias, Forward-Douglas-Rachford splitting and forward-partial
inverse method for solving monotone inclusions, Optimization 64(5), 1239-
1261, 2015

L.M. Briceno-Arias, P.L. Combettes, A monotone + skew splitting model for
composite monotone inclusions in duality, STAM Journal on Optimization
21(4), 1230-1250, 2011

R.E. Bruck, Jr., Asymptotic convergence of nonlinear contraction semigroups
in Hilbert space, Journal of Functional Analysis 18, 15-26, 1975

R.S. Burachik, B.F. Svaiter, Mazimal monotone operators, convex functions
and a special family of enlargements, Set-Valued Analysis 10(4), 297-316,
2002

A. Cabot, H. Engler, S. Gadat, On the long time behavior of second order
differential equations with asymptotically small dissipation, Transactions of
the American Mathematical Society 361(11), 5983-6017, 2009

A. Cabot, H. Engler, S. Gadat, Second-order differential equations with
asymptotically small dissipation and piecewise flat potentials, Proceedings of
the Seventh Mississippi StateUAB Conference on Differential Equations and
Computational Simulations, 33—-38, Electronic Journal of Differential Equa-
tions Conference 17, 2009

A. Cabot, P. Frankel, Asymptotics for some proximal-like method involving
inertia and memory aspects, Set-Valued and Variational Analysis 19, 59-74,
2011

A. Chambolle, An algorithm for total variation minimization and applications,
Journal of Mathematical Imaging and Vision, 20(1-2), 89-97, 2004

A. Chambolle, T. Pock, A first-order primal-dual algorithm for convex prob-
lems with applications to imaging, Journal of Mathematical Imaging and Vi-
sion 40(1), 120-145, 2011

R.H. Chan, S. MA, J. Yang, Inertial primal-dual algorithms for structured
convex optimization, arXiv:1409.2992v1, 2014

C. Chen, S. MA, J. Yang, A general inertial proximal point method for mized
variational inequality problem, SIAM Journal on Optimization 25(4), 2120-
2142, 2015

Y. Chen, G. Lan, Y. Ouyang, Optimal primal-dual methods for a class of
saddle point problems, STAM Journal on Optimization 24(4), 1779-1814, 2014

E.C. Chi, K. Lange, Splitting methods for convex clustering, arXiv:1304.0499
[stat.ML], 2013

E. Chouzenoux, J.-C. Pesquet, A. Repetti, Variable metric forward-backward
algorithm for minimizing the sum of a differentiable function and a convex
function, Journal of Optimization Theory and its Applications 162(1), 107-
132, 2014



170
[75]

[76]

[77]

[88]

[89]

[90]

BIBLIOGRAPHY

P.L. Combettes, Solving monotone inclusions via compositions of nonexpan-
siwe averaged operators, Optimization 53(5-6), 475-504, 2004

P.L. Combettes, J.-C. Pesquet, Primal-dual splitting algorithm for solving in-
clusions with mixtures of composite, Lipschitzian, and parallel-sum type mono-
tone operators, Set-Valued and Variational Analysis 20(2), 307-330, 2012

P.L. Combettes, I. Yamada, Compositions and convexr combinations of aver-
aged nonexpansive operators, Journal of Mathematical Analysis and Applica-
tions 425(1), 55-70, 2015

P.L. Combettes, V.R. Wajs, Signal recovery by prozimal forward-backward
splitting, Multiscale Modeling and Simulation 4(4), 1168-1200, 2005

L. Condat, A primal-dual splitting method for convex optimization involving
Lipschitzian, proximable and linear composite terms, Journal of Optimization
Theory and Applications 158(2), 460-479, 2013

E. Corman, X. Yuan, A Generalized proximal point algorithm and its conver-
gence rate, STAM Journal on Optimization, 24(4), 1614-1638, 2014

D. Davis, Convergence rate analysis of primal-dual splitting schemes, SITAM
Journal on Optimization 25(3), 1912-1943, 2015

D. Davis, W. Yin, Convergence rate analysis of several splitting schemes,
arXiv: 1406.4834v3, 2015

J. Douglas, H.H. Rachford, On the numerical solution of the heat conduction
problem in 2 and 3 space variables, Transactions of the American Mathemat-
ical Society 82, 421-439, 1956

J. Eckstein, D.P. Bertsekas, On the Douglas-Rachford splitting method and
the proximal point algorithm for maximal monotone operators, Mathematical
Programming 55, 293-318, 1992

1. Ekeland, R. Temam, Convexr Analysis and Variational Problems, North-
Holland Publishing Company, Amsterdam, 1976

E. Esser, X. Zhang, T.F. Chan, A general framework for a class of first or-
der primal-dual algorithms for convex optimization in imaging science, STAM
Journal on Imaging Sciences 3(4), 1015-1046, 2010

S. Fitzpatrick, Representing monotone operators by convex functions, in:
Workshop/Miniconference on Functional Analysis and Optimization (Can-
berra, 1988), Proceedings of the Centre for Mathematical Analysis 20, Aus-
tralian National University, Canberra, 5965, 1988

P. Frankel, G. Garrigos, J. Peypouquet, Splitting methods with variable metric
for Kurdyka-Lojasiewicz functions and general convergence rates, Journal of
Optimization Theory and its Applications 165(3), 874-900, 2015

E. Ghadimi, H.R. Feyzmahdavian, M. Johansson, Global convergence of the
Heavy-ball method for convex optimization, arXiv:1412.7457, 2014

A. Haraux, Systémes Dynamiques Dissipatifs et Applications, Recherches en
Mathé- matiques Appliquées 17, Masson, Paris, 1991

R. Hesse, D.R. Luke, S. Sabach, M.K. Tam, Proximal heterogeneous block
input-output method and application to blind ptychographic diffraction imag-
ing, STAM Journal on Imaging Sciences 8(1), 426-457, 2015



BIBLIOGRAPHY 171

[92]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

108

T. Hocking, J. Vert, F. Bach, A. Joulin, Clusterpath: an algorithm for clus-
tering using convez fusion penalties, In: Proceedings of the 28th International
Conference on Machine Learning, Bellevue, 2011

N.V. Krylov, Some properties of monotone mappings, (Russian) Litovsk. Mat.
Sh. 22(2), 80-87, 1982

K. Kurdyka, On gradients of functions definable in o-minimal structures, An-
nales de linstitut Fourier (Grenoble) 48(3), 769-783, 1998

J. Liang, J. Fadili, G. Peyré, Convergence rates with inexact nonerpansive
operators, arXiv:1404.4837, 2014

F. Lindsten, H. Ohlsson, L. Ljung, Just relax and come clustering! A con-
vezication of k-means clustering, Technical report from Automatic Control,
Link6pings Universitet, Report no.: LiTH-ISY-R-2992, 2011

P.L. Lions, B. Mercier, Splitting algorithms for the sum of two nonlinear op-
erators, STAM Journal on Numerical Analysis 16(6), 964-979, 1979

S. Lojasiewicz, Une propriété topologique des sous-ensembles analytiques réels,
Les Equations aux Dérivées Partielles, Editions du Centre National de la
Recherche Scientifique Paris, 87-89, 1963

P.-E. Maingé, Convergence theorems for inertial KM-type algorithms, Journal
of Computational and Applied Mathematics 219, 223236, 2008

P.-E. Maingé, A. Moudafi, Convergence of new inertial proximal methods for
de programming, STAM Journal on Optimization 19(1), 397-413, 2008

B. Mordukhovich, Variational Analysis and Generalized Differentiation, I:
Basic Theory, II: Applications, Springer-Verlag, Berlin, 2006

B.S. Mordukhovich, N.M. Nam and J. Salinas, Solving a generalized Heron
problem by means of conver analysis, American Mathematical Monthly
119(2), 87-99, 2012

B.S. Mordukhovich, N.M. Nam and J. Salinas, Applications of variational
analysis to a generalized Heron problem, Applicable Analysis 91(10), 1915
1942, 2012

A. Moudafi, M. Oliny, Convergence of a splitting inertial proximal method
for monotone operators, Journal of Computational and Applied Mathematics
155, 447-454, 2003

Y. Nesterov, A method for unconstrained convex minimization problem with
the rate of convergence O(1/k?), Doklady AN SSSR (translated as Soviet
Math. Docl.), 269, 543-547, 1983

Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic Course,
Kluwer Academic Publishers, Dordrecht, 2004

Y. Nesterov, Smooth minimization of non-smooth functions, Mathematical
Programming 103(1), 127-152, 2005

D. Noll, Convergence of non-smooth descent methods using the Kurdyka-
Lojasiewicz inequality, Journal of Optimization Theory and Applications
160(2), 553-572, 2014



172

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]
[125]

BIBLIOGRAPHY

N. Noun, J. Peypouquet, Forward-backward penalty scheme for constrained
conver minimization without inf-compactness, Journal of Optimization The-
ory and Applications, 158(3), 787-795, 2013

P. Ochs, Y. Chen, T. Brox, T. Pock, iPiano: Inertial proximal algorithm for
non-convex optimization, STAM Journal of Imaging Sciences 7(2), 1388-1419,
2014

N. Ogura, I. Yamada, Non-strictly convex minimization over the fixed point set
of an asymptotically shrinking nonexpansive mapping, Numerical Functional
Analysis and Optimization 23(1-2), 113-137, 2002

Opial, Z., Weak convergence of the sequence of successive approximations for
nonexpansive mappings, Bulletin of the American Mathematical Society 73,
591-597, 1967

Passty, G., Ergodic convergence to a zero of the sum of monotone operators in
Hilbert space, Journal of Mathematical Analysis and Applications 72, 383-390,
1979

A. Pazy, Semigroups of nonlinear contractions and their asymptotic behaviour,
in Nonlinear analysis and mechanics: Heriot-Watt Symposium, Vol. IIT
(Heriot-Watt Univ., Edinburgh), R.J. Knops (ed.), pp. 36-134, Res. Notes
in Math., 30, Pitman, Boston, Mass.-London, 1979

J. Peypouquet, Coupling the gradient method with a general exterior penal-
ization scheme for convex minimization, Journal of Optimization Theory and
Applications 153(1), 123-138, 2012

J.-C. Pesquet, N. Pustelnik, A parallel inertial proximal optimization method,
Pacific Journal of Optimization 8(2), 273-305, 2012

J. Peypouquet, S. Sorin, Evolution equations for mazimal monotone opera-
tors: asymptotic analysis in continuous and discrete time, Journal of Convex
Analysis 17(3-4), 11131163, 2010

B.T. Polyak, Introduction to Optimization, (Translated from the Russian)
Translations Series in Mathematics and Engineering, Optimization Software,
Inc., Publications Division, New York, 1987

H. Raguet, J. Fadili, G. Peyré, A generalized forward-backward splitting, STAM
Journal on Imaging Sciences 6(3), 1199-1226, 2013

R.T. Rockafellar, On the mazimal monotonicity of subdifferential mappings,
Pacific Journal of Mathematics 33(1), 209-216, 1970

R.T. Rockafellar, On the mazimality of sums of nonlinear monotone operators,
Transactions of the American Mathematical Society 149, 75-88, 1970

R.T. Rockafellar, Monotone operators and the proximal point algorithm, STAM
Journal on Control and Optimization 14(5), 877-898, 1976

R.T. Rockafellar, R.J.-B. Wets, Variational Analysis, Fundamental Principles
of Mathematical Sciences 317, Springer-Verlag, Berlin, 1998

S. Simons, From Hahn-Banach to Monotonicity, Springer, Berlin, 2008

E.D. Sontag, Mathematical control theory. Deterministic finite-dimensional
systems, Second edition, Texts in Applied Mathematics 6, Springer-Verlag,
New York, 1998



BIBLIOGRAPHY 173

[126]

[127]

[12]

[129]

[130]

[131]

[132]

W. Su, S. Boyd, E.J. Candes, A differential equation for modeling Nesterov’s
accelerated gradient method: theory and insights, arXiv:1503.01243, 2015

B.F. Svaiter, On weak convergence of the Douglas-Rachford method, STAM
Journal on Control and Optimization 49(1), 280-287, 2011

P. Tseng. Applications of a splitting algorithm to decomposition in convex
programming and variational inequalities, STAM Journal on Control and Op-
timization 29(1), 119-138, 1991

P. Tseng, A modified forward-backward splitting method for maximal mono-
tone mappings, STAM Journal on Control and Optimization 38(2), 431446,
2000

B.C. Vu, A splitting algorithm for dual monotone inclusions involving coco-
ercive operators, Advances in Computational Mathematics 38(3), 667681,
2013

C. Zalinescu, Convex Analysis in General Vector Spaces, World Scientific,
Singapore, 2002

M. Zhu, T. Chan, An efficient primal-dual hybrid gradient algorithm for total
variation image restoration, Cam Reports 08-34 UCLA, Center for Applied
Mathematics, 2008



