

INTCP 2009

GLOPTLAB a configurable framework for solving continuous, algebraic CSPs

> Ferenc Domes, Arnold Neumaier

Introduction Methods Features Demonstrati GLOPTLAB a configurable framework for solving continuous, algebraic CSPs

Ferenc Domes, Arnold Neumaier

University of Vienna

2009.09.20 Lisbon, Portugal

GLOPTLAB a configurable framework for solving continuous, algebraic CSPs

> Ferenc Domes, Arnold Neumaier

Introduction

Methods

Features

Demonstration

Conclusions

Basics

Problem Specification

GLOPTLAB a configurable framework for solving continuous, algebraic CSPs

> Ferenc Domes, Arnold Neumaier

Introduction Methods Features

Demonstration

Conclusions

Algebraic optimization problems

min
$$f(x)$$

s.t. $G(x) \in \mathbf{v}, x \in \mathbf{x}, G(x) \in \mathbf{G}(x)$

with uncertain constraint coefficients can be represented as the quadratic problem

min
$$A_{i:q}(\hat{x})$$

s.t. $Aq(\hat{x}) \in \mathbf{F}$ for some $A \in \mathbf{A}$,
 $\hat{x} \in \hat{\mathbf{x}}$,

by introducing intermediate variables. $q(x):=(x,\mathrm{vec}(xx^T))$ is a quadratic monomial vector.

 $\rm GLOPTLAB$ is designed to solve such problems, currently for the case when the objective function is constant (CSP).

GLOPTLAB a configurable framework for solving continuous, algebraic CSPs

> Ferenc Domes, Arnold Neumaier

Introduction

Methods

Features

Demonstration

Conclusions

Introduction

GLOPTLAB

GLOPTLAB a configurable framework for solving continuous, algebraic CSPs

> Ferenc Domes, Arnold Neumaier

Introduction

Methods

Features

Demonstration

- GLOPTLAB is an easy-to-use testing and development platform solving algebraic constraint satisfaction problems, written in Matlab.
- Various new and state-of-the-art algorithms implemented in GLOPTLAB are used to reduce the search space.
- All methods in GLOPTLAB are rigorous, hence it is guaranteed that no feasible point is lost.
- From the method repertoire custom made strategies can be built, with a user-friendly graphical interface.

GLOPTLAB a configurable framework for solving continuous, algebraic CSPs

> Ferenc Domes, Arnold Neumaier

Introduction

Methods Features

Demonstration

Conclusions

Methods

Verified Computing

GLOPTLAB a configurable framework for solving continuous, algebraic CSPs

> Ferenc Domes, Arnold Neumaier

Methods

Features

Demonstration

Conclusions

 $\operatorname{GLOPTLAB}$ uses various rigorous methods to bound the feasible domain.

Using the internal form, rigorous means that each method $\Gamma : (\mathbf{x}, \mathbf{F}) \to (\tilde{\mathbf{x}}, \tilde{\mathbf{F}})$ where $\tilde{\mathbf{x}} \subseteq \mathbf{x}$ and $\tilde{\mathbf{F}} \subseteq \mathbf{F}$ has the property

$$\{x \in \mathbf{x} \mid Aq(x) \in \mathbf{F}\} == \{x \in \tilde{\mathbf{x}} \mid Aq(x) \in \tilde{\mathbf{F}}\}.$$

- Rigorous methods reduce the search space while guarantee that no feasible points are lost.
- In the applications, serious safety problems could arise from losing feasible points (Gough platform).

Method Features

GLOPTLAB a configurable framework for solving continuous, algebraic CSPs

> Ferenc Domes, Arnold Neumaier

Introductio Methods

Features

Demonstration

- Rigorous methods estimate the error for each step in their algorithms and use directed rounding or interval arithmetic.
- Another way is to find approximate solutions and then verify the results.
- Rigorous computations slow down the solution process, and often require more theoretical work.
- But sometimes having a good approximative solution is not good enough (e.g. computer assisted proofs)!

Method Selection

GLOPTLAB a configurable framework for solving continuous, algebraic CSPs

> Ferenc Domes, Arnold Neumaier

Introduction Methods

Features

Demonstration

Conclusions

The following classes of methods are used to rigorously reduce the search space:

- Problem Transformation/Simplification
- Constraint Propagation
- Linear Methods
- Strict Convex Enclosure
- Conic Methods
- Branch and Bound
- Probing, Slicing.

Toolboxes

GLOPTLAB a configurable framework for solving continuous, algebraic CSPs

> Ferenc Domes, Arnold Neumaier

Introductio Methods

Demonstration

Conclusions

We make use of several **external toolboxes to compute approximative solutions** of linear, semidefinite or conic programs:

- The toolbox SeDuMi is an optimization tool over symmetric cones developed by Jos F. Sturm.
- Alternatively SDPT3 from Kim-Chuan Toh, Michael J. Todd, and Reha H. Tutuncu.
- Linear programs are solved with LPSolve by Michel Berkelaar.
- Projected BFGS and conjugate gradient methods from C. T. Kelley.

Toolboxes

GLOPTLAB a configurable framework for solving continuous, algebraic CSPs

> Ferenc Domes, Arnold Neumaier

Introduction Methods Features Demonstratio IntLab, by Siegfried Rump is used for **interval computation** while the AMPL **modeling language** by Robert Fourer, David Gay and Brian Kernighan is used for problem input.

Method References

GLOPTLAB a configurable framework for solving continuous, algebraic CSPs

> Ferenc Domes, Arnold Neumaier

Introduction Methods Features Demonstratio More details on the implemented methods as well as their mathematical background can be found in various papers on the official GLOPTLAB **homepage**:

http://www.mat.univie.ac.at/~dferi/gloptlab.html

GLOPTLAB a configurable framework for solving continuous, algebraic CSPs

> Ferenc Domes, Arnold Neumaier

Introduction Methods

Features

Demonstration

Conclusions

The Features of $\operatorname{GLOPTLAB}$

Summary of the features

GLOPTLAB a configurable framework for solving continuous, algebraic CSPs

> Ferenc Domes, Arnold Neumaier

Introduction Methods Features Demonstratio

- General and well structured input format
- Implemented in a completely modular way, allowing easy portability of individual methods
- Easy to use for prototyping and for development of new techniques in the context of other methods
- The strategy builder allows us to test different strategies for different problem classes

Summary of the features

GLOPTLAB a configurable framework for solving continuous, algebraic CSPs

> Ferenc Domes, Arnold Neumaier

Introduction Methods Features

Demonstration

- Interactive solution of a particular problem: stop the execution of the strategy, remove and add new tasks, then resume the solution process
- Contributors can add new methods with only minimal knowledge of the other parts of the software
- Graphical user interface for building strategies and visualization of the solution process
- Batch execution mode, Test Environment compatibility.

$G{\tt LOPT}L{\tt AB} \ {\rm Structure}$

GLOPTLAB a configurable framework for solving continuous, algebraic CSPs

> Ferenc Domes, Arnold Neumaier

Introduction Methods Features

Demonstration

Strategy building

GLOPTLAB a configurable framework for solving continuous, algebraic CSPs

> Ferenc Domes, Arnold Neumaier

Introduction Methods Features

Demonstration

Conclusions

In order to solve a problem or a list of problems we need a strategy.

• A strategy is a list of **tasks** used to solve a problem.

A task could be one of the methods listed above, or a control task.

Strategy building

GLOPTLAB a configurable framework for solving continuous, algebraic CSPs

> Ferenc Domes, Arnold Neumaier

Methods Features

Demonstration

Conclusions

The control tasks like loops, conditions and breaks extend the functionality and ensure the versatility of a strategy.

Strategies are built comfortably by using the graphical strategy builder.

New methods and solvers are automatically recognized by the strategy builder.

Simple Sample Strategy

GLOPTLAB a configurable framework for solving continuous, algebraic CSPs

> Ferenc Domes, Arnold Neumaier

Introductio Methods

Features

Demonstration

- 1: Read Problem
- 2: Simplify
- 3: Feasibility
- 4: Begin Condition
- 5: Break
- 6: End Condition
- 7: Begin While
- 8: Propagate
- 9: Feasibility
- 10: Begin Condition
- 11: Break
- 12: End Condition
- 13: End While
- 14: Begin Split

- 15: Propagate
- 16: Feasibility
- 17: Begin Condition
- 18: Break
- 19: End Condition
- 20: End Split
- 21: Merge
- 22: Begin Postprocess
- 23: Merge
- 24: Feasibility
- 25: End Postprocess
- 26: Pause
- 27: Finish

1 .

Complex Sample Strategy

Dood Drohlom

GLOPTLAB a configurable framework for solving continuous, algebraic CSPs

> Ferenc Domes, Arnold Neumaier

Introduction Methods Features Demonstrati

Conclusions

1:	Read Problem
2:	Simplify
3:	Ehull
4:	Linear
5:	Feasibility
6:	Begin Condition
7:	Break
8:	End Condition
9:	Conic
10:	Begin While
11:	Propagate
12:	Linear
13:	Feasibility
14:	Begin Conditi
15:	Break
16:	End Condition
17:	End While
18:	Begin Split
19:	Propagate
20:	Linear

on

- 22: Begin Condition
- 23: Break
- 24: End Condition
- 25: End Split
- 26: Merge
- 27: Begin Split
- 28: Propagate
- 29: Linear
- 30: Feasibility
- 31: Begin Condition
- 32: Break
- 33: End Condition
- 34: End Split
- 35: Begin Postprocess
- 36: Merge
- 37: Feasibility
- 38: End Postprocess
- 39: Pause
 - 40: Finish

Problem solving

GLOPTLAB a configurable framework for solving continuous, algebraic CSPs

> Ferenc Domes, Arnold Neumaier

Introduction Methods Features Demonstratio

Conclusions

When a strategy has been built it can be used to solve a specific problem or a list of problems.

Solving can be started either by using the batch solution mode or directly in the **graphical user interface** of GLOPTLAB:

Graphical user interface

GLOPTLAB a configurable framework for solving continuous, algebraic CSPs

> Ferenc Domes, Arnold Neumaie

Introduction Methods Features Demonstrati

Graphical user interface

GLOPTLAB a configurable framework for solving continuous, algebraic CSPs

> Ferenc Domes, Arnold Neumaier

Introduction Methods Features Demonstration The graphical user interface consists of **areas for entering problems**, for **defining strategies**, for **displaying the solver progress** and for configuring GLOPTLAB.

The interactive solution of a particular problem in the graphical user interface: it is possible to **stop the execution** of the strategy, remove and **add new tasks** to it and then **resume** the solution process.

Manipulating the method parameters, **experimenting with different combinations of tasks** can greatly improve the solution results and lead to more knowledge about **building effective strategies**.

GLOPTLAB a configurable framework for solving continuous, algebraic CSPs

> Ferenc Domes, Arnold Neumaier

Introductio

Features

Demonstration

Conclusions

Demonstration

Test Conditions

GLOPTLAB a configurable framework for solving continuous, algebraic CSPs

> Ferenc Domes, Arnold Neumaier

Introduction Methods Features Demonstration Conclusions We used the $\ensuremath{\mathrm{TEST}}$ $\ensuremath{\mathrm{Environment}}$ to test and compare some $G_{\ensuremath{\mathrm{LOPTLAB}}}$ strategies.

Library LIB3 of the COCONUT Environment Testset containing **308 constraint satisfaction** problems has used, **63 of them was classified as hard** problems the other as easy ones.

The two sample strategies have been configured to accept only problems with less than 100 variables and used to solve the library.

The **maximal time allowed** for the solution of a single problem was **120 seconds**.

Test Results of the Simple Sample Strategy

GLOPTLAB a configurable framework for solving continuous, algebraic CSPs

> Ferenc Domes, Arnold Neumaier

Introductio

methods

Features

Demonstration

GloptLab on Lib3 (Simple Sample Strategy)														
st	at	â	all	wr	e	easy loc.				hard loc.				
					+G		-G	I	+	G	-G		Ι	
all		30)8	0	121		124	0	1	4	29	2	20	
G		12	25	0	111		0	0	1	4	0		0	
Х		7	'6	0	0		57	0		0	8]	L1	
ΤU		g	95	0	8		59	0		0	21		7	
U		1	.2	0	2		8	0		0	0		2	
	GloptLab summary statistics											1		
	li	lib		all	accep	t	+G	i (<u>]</u>	G	?	1?		
	Lil	b3	3	30	232	2	135	5 1	25		0	0	1	

Test Results of the Complex Sample Strategy

GLOPTLAB a configurable framework for solving continuous, algebraic CSPs

> Ferenc Domes, Arnold Neumaier

Introductio

Methods

Features

Demonstration

GloptLab on Lib3 (Complex Sample Strategy)												
st	at	a	all	wr	eas	hard loc.						
					+G	-G	I	+	G	-G		Ι
а	II	30)8	0	130	115	0	1	9	24	2	20
G		13	39	0	120	0	0	1	9	0		0
Х		7	'6	0	0	57	0		0	8	1	1
ΤU		8	35	0	10	52	0		0	16		7
U			8	0	0	6	0		0	0		2
	GloptLab summary statistics											
	lib		all	accept	+G	(5!	G	?	?	1	
	Lib3 3		38	232	149	1	39		0	0	1	

Evaluation of the Test Results

GLOPTLAB a configurable framework for solving continuous, algebraic CSPs

> Ferenc Domes, Arnold Neumaier

Introduction Methods Features Demonstration Conclusions **135** correct solutions found (125 of them was claimed as correct) by using the **first strategy**

149 correct solutions (139 of them was claimed as correct) by using the second **second strategy**

Within the same allowed solution time we solved approximately 10 percent more problems with the second strategy than with the first one.

35 percent more hard problems was solved by using the second strategy!

The significant difference was caused by the more sophisticated methods and the clever structure of the second strategy.

GLOPTLAB a configurable framework for solving continuous, algebraic CSPs

> Ferenc Domes, Arnold Neumaier

Introduction Methods Features

Demonstration

Conclusions

Perspectives and Conclusions

Perspectives

GLOPTLAB a configurable framework for solving continuous, algebraic CSPs

> Ferenc Domes, Arnold Neumaier

Introduction Methods Features Demonstratio

- Integrating the non algebraic, univariate functions.
- Testing and improving the optimization part.
- Enhancing the existing methods and developing new ones.
- Implementing promising methods in the COCONUT Environment.
- Comparison with other solvers (ICOS, Realpaver, Baron, GlobSol, etc.)
- Automatic, intelligent strategy selection.

Conclusions

GLOPTLAB a configurable framework for solving continuous, algebraic CSPs

- Ferenc Domes, Arnold Neumaier
- Introduction Methods Features Demonstratio

External contributors are welcome to join the project by implementing and testing their own user-defined methods. User-defined methods submitted to us will be permanently added to the method repertoire of future versions of GLOPTLAB if they are promising enough.

I would like to thank Arnold Neumaier for his help and support.

This research was founded by the grant FSP 506/003 of the University of Vienna.

Conclusions

GLOPTLAB a configurable framework for solving continuous, algebraic CSPs

> Ferenc Domes, Arnold Neumaier

Introduction Methods Features Demonstratio Conclusions

Thank You for your attention!

If you have question about GLOPTLAB please contact me during the CP2009 Conference or send me an e-mail to: ferenc.domes@univie.ac.at

You are welcome to **test and play** with the current version of GLOPTLAB, downloadable from: http://www.mat.univie.ac.at/~dferi/gloptlab.html