
The Optimization Test Environment

Ferenc Domes1, Martin Fuchs2∗, Hermann Schichl1

1University of Vienna, Faculty of Mathematics, Vienna, Austria
2CERFACS, Parallel Algorithms Team, Toulouse, France

∗corresponding author: martin.fuchs81@gmail.com

July 26, 2010

Abstract. The Test Environment is an interface to efficiently test different optimiza-
tion solvers. It is designed as a tool for both developers of solver software and practitioners
who just look for the best solver for their specific problem class. It enables users to:

• Choose and compare diverse solver routines;

• Organize and solve large test problem sets;

• Select interactively subsets of test problem sets;

• Perform a statistical analysis of the results, automatically produced as LATEX, PDF,
and JPG output.

The Test Environment is free to use for research purposes.

Keywords. test environment, optimization, solver benchmarking, solver comparison

1

1 Introduction

Testing is a crucial part of software development in general, and hence also in optimization.
Unfortunately, it is often a time consuming and little exciting activity. This naturally
motivated us to increase the efficiency in testing solvers for optimization problems and to
automatize as much of the procedure as possible.

The procedure typically consists of three basic tasks: organize possibly large test problem
sets (also called test libraries); choose solvers and solve selected test problems with selected
solvers; analyze, check and compare the results. The Test Environment is a graphical
user interface (GUI) that enables to manage the first two tasks interactively, and the third
task automatically.

The Test Environment is particularly designed for users who seek to

1. adjust solver parameters, or

2. compare solvers on single problems, or

3. compare solvers on suitable test sets.

The first point concerns a situation in which the user wants to improve parameters of a
particular solver manually, see, e.g., [10]. The second point is interesting in many real-life
applications in which a good solution algorithm for a particular problem is sought, e.g., in
[5, 15, 24] (all for black box problems). The third point targets general benchmarks of solver
software. It often requires a selection of subsets of large test problem sets (based on common
characteristics, like similar problem size), and afterwards running all available solvers on
these subsets with problem class specific default parameters, e.g., timeout. Finally all tested
solvers are compared with respect to some performance measure.

In the literature, such comparisons typically exist for black box problems only, see, e.g.,
[25] for global optimization, or the large online collection [23], mainly for local optimization.
Since in most real-life applications models are given as black box functions (e.g., the three
examples we mentioned in the last paragraph) it is popular to focus comparisons on this
problem class. However, the popularity of modeling languages like AMPL and GAMS,
cf. [3, 14, 21], that formulate objectives and constraints algebraically, is increasing. Thus
first steps are made towards comparisons of global solvers using modeling languages, e.g.,
on the Gamsworld website [16], which offers test sets and tools for comparing solvers with
interface to GAMS.

One main difficulty of solver comparison is to determine a reasonable criterion to measure
the performance of a solver. Our concept of comparison is to count for each solver the
number of global numerical solutions found, and the number of wrong and correct claims

2

for the solutions. Here we consider the term global numerical solution as the best solution
found among all solvers. We also produce several more results and enable the creation of
performance profiles [6, 26].

Further rather technical difficulties come with duplicate test problems, the identification of
which is an open task for future versions of the Test Environment.

A severe showstopper of many current test environments is that it is uncomfortable to use
them, i.e., the library and solver management are not very user-friendly, and features like
automated LATEX table creation are missing. Test environments like CUTEr [18] provide a
test library, some kind of modeling language (in this case SIF) with associated interfaces to
the solvers to be tested. The unpleasant rest is up to the user. However, our interpretation
of the term test environment also requests to analyze and summarize the results automat-
ically in a way that it can be used easily as a basis for numerical experiments in scientific
publications. A similar approach is used in Libopt [17], available for Unix/Linux, but not
restricted to optimization problems. It provides test library management, library subset
selection, solve tasks, all as (more or less user-friendly) console commands only. Also it is
able to produce performance profiles from the results automatically. The main drawback
is the limited amount of supported solvers, restricted to black box optimization.

Our approach to developing the Test Environment is inspired by the experience made
during the comparisons reported in [28], in which the Coconut Environment benchmark
[32] is run on several different solvers. The goal is to create an easy-to-use library and solver
management tool, with an intuitive GUI, and an easy, multi-platform installation. Hence
the core part of the Test Environment is interactive. We have dedicated particular
effort to the interactive library subset selection, determined by criteria such as a minimum
number of constraints, or a maximum number of integer variables or similar. Also the solver
selection is done interactively.

The modular part of the Test Environment is mainly designed as scripts without
having fixed a scripting language, so it is possible to use Perl, Python, etc. according to the
preference of the user. The scripts are interfaces from the Test Environment to solvers.
They have a simple structure as their task is simply to call a solve command for selected
solvers, or simplify the solver output to a unified format for the Test Environment.
A collection of already existing scripts for several solvers, including setup instructions, is
available on the Test Environment website [9]. We explicitly encourage people who
have implemented a solve script or analyze script for the Test Environment to send it to
the authors who will add it to the website. By the use of scripts the modular part becomes
very flexible. For many users default scripts are convenient, but just a few modifications in a
script allow for non-default adjustment of solver parameters without the need to manipulate
code of the Test Environment. This may significantly improve the performance of a
solver.

As problem representation we use Directed Acyclic Graphs (DAGs) from the Coconut

3

Environment [19]. We have decided to choose this format as the Coconut Environment
already contains automatic conversion tools from many modeling languages to DAGs and
vice versa. The Test Environment is thus independent from any choice of a modeling
language. Nevertheless benchmark problem collections, e.g., given in AMPL such as COPS
[7], can be easily converted to DAGs. The analyzer of the COPS test set allows for solution
checks and iterative refinement of solver tolerances, cf. [8]. The DAG format enables
us to go in the same direction as we are also automatically performing a check of the
solutions. With the DAG format, the present version of the Test Environment excludes
test problems that are created in a black box fashion.

The summarizing part of the Test Environment is managing automated tasks which
have to be performed manually in many former test environments. These tasks include
the automatic check of solutions mentioned, and the generation of LATEX tables that can
be copied and pasted easily in numerical result sections of scientific publications. As men-
tioned we test especially whether global numerical solutions are obtained and correctly
claimed. The results of the Test Environment also allow for the automated creation of
performance profiles.

This paper is organized as follows. In Section 2 we give an overview of our notation for
optimization problem formulations. Section 3 can be regarded as a tutorial for the Test
Environment, while in Section 4 we present advanced features. Finally we demonstrate
the capabilities of the Test Environment with numerical tests in Section 5.

The last section includes a benchmark of eight solvers for constrained global optimization
and constraint satisfaction problems using three libraries with more than 1000 problems in
up to about 20000 variables, arising from the Coconut Environment benchmark [32]. The
test libraries and the results are also available online on the Test Environment website
[9]. This paper focuses on the presentation of the Test Environment software rather
than on the benchmark. However, we intend to collect benchmark results from the Test
Environment on our website, towards a complete comparison of solvers.

The tested solvers in alphabetical order are: BARON 8.1.5 [29, 33] (global solver), Cocos
[19] (global), COIN with Ipopt 3.6/Bonmin 1.0 [22] (local solver), CONOPT 3 [11, 12]
(local), KNITRO 5.1.2 [4] (local), Lindoglobal 6.0 [30] (global), MINOS 5.51 [27] (local),
Pathnlp 4.7 [13] (local). Counting the number of global optimal solutions found among
all solvers the best solver for global optimization is currently Baron. Among the local
solvers Coin performed best. Lindoglobal had the most correctly claimed global numerical
solutions, however, it made also the most mistakes claiming a global numerical solution.
More details can be found in Section 5.

4

2 Formulating optimization problems

We consider optimization problems that can be formulated as follows:

min f(x)

s.t. x ∈ x,

F (x) ∈ F,

xi ∈ Z for i ∈ I,

(2.1)

where x = [x, x] = {x ∈ Rn | x ≤ x ≤ x} is a box in Rn, f : x → R is the objective
function, F : x → Rm is a vector of constraint functions F1(x), . . . , Fm(x), F is a box
in Rm specifying the constraints on F (x), I ⊆ {1, . . . , n} is the index set defining the
integer components of x. Inequalities between vectors are interpreted componentwise.

Since x ∈ (R∪{−∞})n, x ∈ (R∪{∞})n, the definition of a box includes two-sided bounds,
one-sided bounds, and unbounded variables.

An optimization problem is called boundconstrained if m = 0 and is called uncon-
strained if in addition to this x = Rn.

There are several different classes of optimization problems that are special cases of (2.1),
differentiated by the properties of f , F , and I. If f = const, problem (2.1) is a so-called
constraint satisfaction problem (CSP). If f and F are linear and I = ∅ then we have
a linear programming problem (LP). If f or one component of F is nonlinear and I = ∅
we have a nonlinear programming problem (NLP). If I is not empty and I 6= {1, . . . , n}
one speaks of mixed-integer programming (MIP), MILP in the linear case, and MINLP
in the nonlinear case. If I = {1, . . . , n} we deal with integer programming.

A solution of (2.1) is a point x̂ ∈ C := {x ∈ x | xI ∈ Z, F (x) ∈ F} with

f(x̂) = min
x∈C

f(x),

i.e., the solutions are the global minimizers of f over the feasible domain C. A local
minimizer satisfies f(x̂) ≤ f(x) only for all x ∈ C in a neighborhood of x̂. The problem
(2.1) is called infeasible if C = ∅.

A solver is a program that seeks an approximate global, local, or feasible solution of an op-
timization problem. Global solvers are designed to find global minimizers, local solvers
focus on finding local minimizers, rigorous solvers guarantee to include all global minimiz-
ers in their output set even in the presence of rounding errors. In the Test Environment
we declare the result xs, fs of a solver a numerically feasible solution if the solver claims
it to be feasible and we find that the result has a sufficiently small feasibility distance

dfeas,p(xs, fs) ≤ α (2.2)

5

for a small tolerance level α. As a default value for α we use 0. Intuitively the distance
to feasibility d : Rn → R of a point x could be defined as d(x) = miny∈C ‖x− y‖p, i.e., the
minimum distance of x from the feasible domain C in the p-norm. However, this definition
would not be appropriate for a computational check of feasibility, since it imposes a further
optimization problem.

Instead we introduce a componentwise violation of the constraints v and infer a feasibility
distance from v. To reduce the sensitivity of the feasibility distance to scaling issues we
first define the intervals

u = [−εmax(‖xs‖∞, κ), εmax(‖xs‖∞, κ)], (2.3)

xs = xs + u, (2.4)

with the parameters ε (set to 10−6 by default), and κ (set to 1 by default). The interval
u has the minimal width 2ε and becomes wider if xs is badly scaled. Then we compute
the objective violation vo(xs, fs) as follows. We add to f(xs) an interval with a width
that grows with the width of u and with the range of the gradient f ′ in the interval xs, cf.
Figure 2.1. If fs is contained in this interval, with respect to the tolerance α in (2.2), the
objective violation is deemed reasonably small. Thus we consider both a badly scaled xs
and f . We get

vo(xs, fs) := 〈f(xs) + f ′(xs)u− fs〉, (2.5)

where all operations are in interval arithmetics, and 〈x〉 denotes the mignitude of the
interval x, i.e.,

〈x〉 :=

{
min(|x|, |x|) if 0 /∈ [x, x],

0 otherwise ,
(2.6)

i.e., the smallest absolute value within the interval [x, x]. If x is multidimensional the
mignitude operates componentwise. Similar to the objective violation we get the con-
straint violations

vc(xs, fs) := 〈F (xs) + F ′(xs)u− F〉. (2.7)

Finally we define the box constraint violations by

vb(xs, fs) := 〈xs − x〉, (2.8)

and the complete componentwise violation is given by

v(xs, fs) = (vo(xs, fs), vc(xs, fs), vb(xs, fs))
T . (2.9)

We define the feasibility distance dfeas,p : Rn+1 → R by

6

 x_s+u

f(x_s)

 f_s

Figure 2.1: Illustration of (2.5). If fs is contained in the interval marked in red it passes
the objective violation check.

dfeas,p(xs, fs) := ‖v(xs, fs)‖p. (2.10)

Since dfeas,∞ ≤ dfeas,p for all p with 1 ≤ p ≤ ∞ we decided to choose p = ∞ in the
Test Environment to check for feasibility via (2.2). In the remainder of the paper the
feasibility check is also referred to as the solution check (see also Section 4.5).

Let Jfeas be the set of all solver results that have passed the solution check, i.e., Jfeas =
Jfeasx×Jfeasf , Jfeasx = {x1, . . . , xN}, Jfeasf = {f1, . . . , fN}, dfeas,p(xs, fs) ≤ α for all (xs, fs) ∈
Jfeas, and let Jinf = Jinfx×Jinff be the set of all solver results that did not pass the solution
check. We define the global numerical solution (xopt, fopt) as the best numerically
feasible solution found by all solvers used, i.e., (xopt, fopt) ∈ Jfeas and fopt ≤ fj for all

fj ∈ Jfeasf . Another feasible solution (x̃, f̃) ∈ Jfeas is also considered global if f̃ is sufficiently
close to fopt, i.e.,

f̃ ≤

{
fopt + β if |fopt| ≤ κ,

fopt + β |fopt| otherwise ,
(2.11)

with κ as above and with the tolerance β which is set to 10−6 by default. One can consider
κ as a threshold between the use of absolute and relative error. For the special case of
κ = 1 the condition reads

f̃ ≤ fopt + βmax(|fopt| , 1). (2.12)

7

We define a local numerical solution as a feasible, non-global solver result.

We define the best point found as

(xbest, fbest) =

{
(xopt, fopt) if Jfeas 6= ∅,
arg min(x,f)∈Jinf

dfeas,p(x, f) if Jfeas = ∅,
(2.13)

i.e., the global numerical solution if a feasible solution has been found, otherwise the solver
result with the minimal feasibility distance.

The best points of each problem of a test problem set are contained in the so-called Best
solvers list, cf. Section 4.6.

To assess the location of the global numerical solution we distinguish between hard and
easy locations. The best point is considered as a hard location if it could not be found
by a particular default local solver, otherwise it is considered to be an easy location.

The user who wishes to solve an optimization problem should become familiar with one of
the several existing modeling languages. A modeling language is an interface between
a solver software and the (user-provided) formal description of an optimization problem in
the fashion of (2.1). Prominent successful modeling languages are AMPL [14] and GAMS
[3], but there are many more such as AIMMS, LINGO, LPL, MPL, see [21].

The Test Environment provides an easy interface to set up arbitrary modeling languages
and solvers to manage and solve optimization problems.

3 Basic functionality

This section guides the reader through the installation and the basic functionality of the
Test Environment illustrated with simple examples how to add test problems, how to
configure a solver, and how to run the Test Environment on the given problems.

3.1 Installation

The installation of the Test Environment is straightforward:

Download. The Test Environment is available on-line at
http://www.mat.univie.ac.at/~dferi/testenv_download.html.

Install. In Windows run the installer and follow the instructions. In Linux unzip the
tar.gz file. Afterwards you can start the Test Environment at the unzip location via

8

http://www.mat.univie.ac.at/~dferi/testenv_download.html

java -jar TestEnvironment.jar.

Requirements. The graphical user interface (GUI) of the Test Environment is pro-
grammed in Java, hence Java JRE 6, Update 13 or later is required to be installed. This is
the only prerequisite needed.

Note that a folder that contains user specific files is created: for Windows the folder
TestEnvironment in the application data subdirectory of your home directory; for Linux
the folder testenvironment in your home directory. We refer to this directory as the
Test Environment working directory twd. All subdirectories of the twd are set as de-
fault paths in the Test Environment configuration which can be modified by the user,
cf. Section 4.1.2. The Test Environment configuration file (TestEnvironment.cfg),
however, remains in the twd.

The Test Environment does not include any solver software. Installation of a solver and
obtaining a valid license is independent of the Test Environment and up to the user.

3.2 Adding a new test library

After starting the Test Environment, the first step is to add a set of optimization
problems, what we call a test library. The problems are assumed to be given as .dag

files, an input format originating from the Coconut Environment [19]. In case you do
not have your problems given as .dag files, but as AMPL code, you need to convert your
AMPL model to .dag files first which is possible via the Coconut Environment or easily
via a converter script separately available on the Test Environment website [9]. Also
you can find a huge collection of test problem sets from the Coconut Benchmark [31]
given as .dag files on the Test Environment website.

Adding a new test library can be done in two ways: Either directly copy the .dag files
to the directory of your choice within the twd/libs directory before starting the Test
Environment. Or click the New button in the GUI as shown in Figure 3.1. This creates
a new directory in twd/libs with the entered name. Then copy the .dag files into the
directory created. There is also the possibility to use Browse path to select a directory
outside the twd.

To start we create a new library newlib. We click the New button and enter ’newlib’,
then we copy 3 simple test problems to twd/libs/newlib:

9

Figure 3.1: Click the New button to set up a new test problem library.

3.2.1 Simple example test library

t1.dag: The intersection of two unit circles around x = (±0.5, 0)T , cf. Figure 3.2. The
problem formulation is as follows:

min
x

x2

s.t. (x1 − 0.5)2 + x2
2 = 1,

(x1 + 0.5)2 + x2
2 = 1,

x1 ∈ [−3, 3], x2 ∈ [−3, 3].

(3.1)

The feasible points of (3.1) are x = (0,±
√

3/2)T . Minimizing x2 results in the optimal
solution x̂ = (0,−

√
3/2)T ≈ (0,−0.8660)T .

t2.dag: Two touching unit circles around x = (±1, 0)T , cf. Figure 3.3. The problem
formulation is as follows:

min
x

1

s.t. (x1 − 1)2 + x2
2 = 1,

(x1 + 1)2 + x2
2 = 1,

x1 ∈ [−3, 3], x2 ∈ [−3, 3].

(3.2)

10

−3 −2 −1 0 1 2 3

−1

−0.5

0

0.5

1

Figure 3.2: The feasible domain of (3.1) consists of the intersection points of two unit circles
around x = (±0.5, 0)T .

The only feasible point of (3.2) is x = (0, 0)T .

−3 −2 −1 0 1 2 3

−1

−0.5

0

0.5

1

Figure 3.3: The only feasible point of (3.2) is at x = (0, 0)T .

t3.dag: Two disjoint unit circles around x = (±2, 0)T , cf. Figure 3.4. The problem
formulation is as follows:

min
x

1

s.t. (x1 − 2)2 + x2
2 = 1,

(x1 + 2)2 + x2
2 = 1,

x1 ∈ [−3, 3], x2 ∈ [−3, 3].

(3.3)

There is no feasible solution for (3.3).

See Section 3.2.2 for the AMPL code of (3.1), (3.2), and (3.3), respectively. The AMPL
code is converted to .dag files via the converter script mentioned. Also see Section 4.3 for
some more details on conversion issues.

In our examples we actually know the results of the three problems. In this case the user
can optionally provide reference solutions as described in Section 4.2.

11

−3 −2 −1 0 1 2 3

−1

−0.5

0

0.5

1

Figure 3.4: Obviously there is no feasible point for (3.3).

The files t1.dag, t2.dag, and t3.dag have to be copied to twd/libs/newlib to finish the
creation of the ’newlib’ library. We also need to click Edit, and Generate Dag Infos
to create files containing information about the test problems, e.g., m, n. The Library
settings window shows the number of correct dag info files, and it can also be used to
view single problems from a test library and to check reference solutions, cf. Section 4.2.
To select ’newlib’ as one of the libraries that will be processed the user selects the ’newlib’
entry among the ’Available Test Libraries’ in the Test Environment and clicks Add.

3.2.2 AMPL code of the example problems

t1.mod: var x1 >=-3, <=3;
var x2 >=-3, <=3;

minimize obj: x2;

s.t. c1: (x1-0.5)^2+x2^2=1;
s.t. c2: (x1+0.5)^2+x2^2=1;

t2.mod: var x1 >=-3, <=3;
var x2 >=-3, <=3;

minimize obj: 1;

s.t. c1: (x1-1)^2+x2^2=1;
s.t. c2: (x1+1)^2+x2^2=1;

t3.mod: var x1 >=-3, <=3;
var x2 >=-3, <=3;

minimize obj: 1;

s.t. c1: (x1-2)^2+x2^2=1;
s.t. c2: (x1+2)^2+x2^2=1;

12

3.3 Adding a solver

To add a solver to the ’Available Solvers’ list we simply click the New button, cf. Figure
3.5. The ’Solver Configuration’ window pops up.

Figure 3.5: Add a solver by clicking New.

First we enter a name. We solve our example test library using a KNITRO Student Edition
with AMPL interface in its demo version (both are freely available on the internet), so we
enter ’knitro’. Afterwards we enter as ’Input File Extensions’ first ’mod’, then ’lst’. The
file extensions should consider the file types that are required in the different phases of the
testing. In our case the solve phase uses .mod files and the solver output comes as an .lst

file.

We use the predefined solver configuration for KNITRO from the Test Environment
website [9] which provides the solver configurations and installation guides for many well-
known solvers, also see Section 4.3. We download the configuration archive for KNITRO
and extract it to the twd/solvers/knitro directory. We only need to modify the path
names for the AMPL and KNITRO path, i.e., edit the fields ’Language path’ and ’Solver
path’, respectively, in the solver configuration window.

To commit the modifications one clicks Overwrite and uses Add to select the KNITRO
solver. Different configurations for the same solver can be managed by using the tab Save

13

& Load in the solver configuration.

Eventually, one has to add a criterion from the ’Available Criteria’. We add ’all’ (also see
Section 4.4), and we are ready to solve and analyze the ’newlib’ test problems.

3.4 Solve the test problems

Just hit the Select All Tasks button and press Start, cf. Figure 3.6.

Figure 3.6: Select All Tasks and Start.

The selected problems are solved by the selected solvers, the results are analyzed by
the Test Environment, the output files (in LATEX, pdf, and jpg) are written to the
twd/results folder, and a pdf file shows up that summarizes the results.

There are essentially three different kinds of generated output pdfs. The problems.pdf

analyzes the performance of the selected solvers on each problem from the selected test
libraries. The solvers.pdf summarizes the performances of each selected solver according
to each selected test library. The summary pdfs are similar to solvers.pdf, but they
additionally provide a solver summary concerning the whole test set that consists of all
selected test libraries.

14

Moreover, we also generate performance profiles saved as jpg files in the results folder and
plotted in the top right corner of the GUI, cf. Section 4.6.1.

4 Advanced functionality

Now we know the basic procedure of solving a set of optimization problems within the
Test Environment. Of course, there are plenty of things left that can be explored by
the advanced user as will be introduced in this section.

4.1 Configuration

To access the configuration of the Test Environment the user clicks on Config and
chooses the option he would like to configure.

4.1.1 Debug mode

For debugging purposes the user can tick the Debug mode. This increases the amount of
text output in the text box.

4.1.2 Default paths and other variables

To change the default path location of your libraries, result files etc. one clicks Config →
Variables. The menu opened enables the user to add variables and to modify variables,
cf. Figure 4.1.

Among these variables are the default paths for the criteria selection (CRITDIR), the test
libraries (LIBDIR), the log files (LOGDIR), the result files (RESDIR), the data directory
(DATADIR, typically the parent directory of the directories before), and the solver config-
urations (SOLVEDIR).

The user can set the values for the parameters ε, p, β, κ. The corresponding names in the
GUI are solcheckmaxerr, solchecknorm, globalmaxerr, solcheckerrthreshold.

Also a general timeout can be set as TIMEOUT (for more details on timeouts see Section
4.4).

15

Figure 4.1: Here you can change the default paths or add or modify further variables.

The variables ’SCRIPT <ext>’ define how scripts with the extension <ext> should be
called.

The variables ’PLOT’ adjust the setting of the plot in the top right corner of the GUI.

4.1.3 Text output options

To configure the automatically generated LATEX and pdf output click on Config→Text
Output. For choosing what should be shown in the output just tick the associated box.

4.1.4 Shekel test

Click Config→Rerun Shekel Test to rerun the Shekel test on your machine, i.e., to
determine the time it takes to evaluate the Shekel 5 function which could be used optionally
for some performance measures.

16

4.2 .res files and reference solutions

As mentioned in Section 3.2.1, a reference solution is a known solution for one of the test
problems in our test problem library. It can be provided simply as a .res file which has to
be put into the twd/libs/newlib sol folder. This folder is automatically generated upon
creation of the ’newlib’ entry.

The generic format of .res files within the Test Environment for our example problem
t1.dag reads as follows:

modelstatus = 0
x(1) = 0
x(2) = -0.8660254037844386
obj = -0.8660254037844386
infeas = 0.00
nonopt = 0.00

which we write to t1.res. There are several fields that can be entered in .res files. Table
4.1 gives a survey of all possible entries.

Table 4.1: Entries in .res files.

modelstatus solver model status, see Table 4.2
x(i) solver output for x̂i, i = 1, . . . , n
obj solver output for f(x̂)
infeas feasibility distance provided by the solver
nonopt 0 if x̂ claimed to be at least locally optimal, 1 otherwise
time used CPU time to solve the problem
splits number of splits made, e.g., in branching algorithms

Possible values for the model status in the .res file are shown in Table 4.2. The variables
x(1), . . . , x(n) correspond to the variables in the problem (.dag) file, enumerated in the
same sequence, but starting with index 1. Note that in case of rigorous solvers x̂ and
f(x̂) can also be interval enclosures of the solution, e.g., x(1) = [-1e-8,1e-8]. In the
current Test Environment version we focus on comparing non-rigorous solvers. Thus
the full functionality of solvers providing verified interval enclosures of solutions cannot be
assessed yet (e.g., by the size of the enclosures). If only an interval solution is given by a
rigorous solver we use the upper bound of obj for our comparisons. Since this could be
disadvantageous for rigorous solvers it is recommended to provide points for x̂ and f(x̂),
and provide interval information separately using the additional fields

xi(1) = [<value>,<value>]
xi(2) = [<value>,<value>]
...

17

xi(n) = [<value>,<value>]
obji = [<value>,<value>]

in the .res file, describing the interval hull of the feasible domain as well as an interval
enclosure of the objective function. In future versions of the Test Environment we
intend to use this information to compare rigorous solvers.

Table 4.2: Modelstatus values.

0 Global numerical solution found
1 Local solution found
2 Unresolved problem
3 The problem was not accepted

-1 Timeout, local solution found
-2 Timeout, unresolved problem
-3 Problem has been found infeasible

For providing a reference solution, the entries time and splits are optional. For problem
t2.dag we provide a wrong solution in t2.res:

modelstatus = 0
x(1) = 1
x(2) = 2
obj = 0
infeas = 0.00
nonopt = 0.00

For problem t3.dag we do not provide any .res file.

To finish the setup of the ’newlib’ test library with the given reference solutions we click
Edit, and finally Check Solutions, cf. Figure 4.2. Note that the solution check for the
reference solution of t2.dag has failed as we provided a wrong solution.

If we compare a given reference solution with further solutions from different solvers, we
treat the reference solution like all the solver solution (xs, fs), cf. Section 2. This concerns
in particular the construction of Jfeas, xopt, and xbest.

4.3 Solver setup

The Test Environment website [9] offers a collection of predefined solver configurations
and instructions how to use them, such as the configuration we used to set up the KNITRO
solver with AMPL interface in Section 3.3.

18

Figure 4.2: Test library settings

In our example we use one command line string and two scripts. Note that for the Linux
version the quotation marks have to be omitted and \ has to be replaced by /. The first
command line string is in charge of the conversion of the problem .dag files to the AMPL
modeling language:

"%<EXTERNALDIR>%\dag2ampl" "%<SOURCEDIR>%\%<PROBLEM>%"...
..."%<TARGETDIR>%\%<PROB>%.%<OUTEXT>%

The solvescriptknitro.py script calls the solver. The Test Environment calls this
script as

%<SCRIPT_PY>% "%<SOURCEDIR>%\solvescriptknitro.py" "%<SOURCEDIR>%" "%<TARGETDIR>%"...
...%<PROBLIST>% "%<SOLVERPATH>%" "%<LANGUAGEPATH>%" %<TIMEOUT>%

which would be a command line string equivalent to entering only the script name in the
solver configuration (i.e., solvescriptknitro.py). Upon solving there is also a file Acpu

created containing CPU information of the current machine.

A solver is considered to be incompatible with the Test Environment if it does not
enable the user to set the maximal allowed time for the problem solution process, which is
used by the Test Environment to compare different solvers by setting the same value
%<TIMEOUT>% for each of them.

19

4.1 Remark. Some solvers tend to be imprecise in the interpretation of their timeout
parameter. This issue is not considered in the current version of the Test Environment,
but planned for future versions.

To be able to call a solver it is necessary to know the solver location, i.e., the %<SOLVERPATH>%
and/or the location of an associated modeling language, i.e., the %<LANGUAGEPATH>%. Hence
we pass all these variables together with the problem list %<PROBLIST>% to the solve script.
The solver path and the language path can be set in the corresponding boxes in the solver
configuration GUI which also allows to set environment variables if this is needed for some
solver.

All variables, e.g., %<PROBLIST>%, are also explained in the Help tab of the solver configu-
ration. If the available set of variables is not sufficient to satisfy the user’s needs there is
additionally the possibility to create user-defined variables as described in Section 4.1.2.

After calling the solver, the script analyzescriptknitro.py is used to generate the .res

files from the solver output. Help on the required fields in a .res file can be found by
pressing F1 or in Section 4.2. Analyze scripts (and convert scripts analogously) are called
by the Test Environment in the same way as solve scripts, i.e.,

%<SCRIPT_PY>% "%<SOURCEDIR>%\analyzescriptknitro.py" "%<SOURCEDIR>%" "%<TARGETDIR>%"...
...%<PROBLIST>% "%<SOLVERPATH>%" "%<LANGUAGEPATH>%" %<TIMEOUT>%

Note that complete .res files (cf. Section 4.2) must be produced even if no feasible solution
has been found or a timeout has been reached or similar. Writing the solve and analyze
scripts for solvers that are not available on the Test Environment website requires basic
knowledge about scripting string manipulations which is an easy task for advanced users
and especially for solver developers.

Also note that the original solver output is also kept and stored, i.e., in our example in
the directory twd/solvers/knitro/res/newlib <name> where <name> is an abbreviation
of the name of the computer.

We explicitly encourage people who have implemented a solve or analyze script for the
Test Environment to send it to the authors, who will add it to the Test Environment
website.

Some solvers can be called setting a command line flag in order to generate .res files
directly without the need of an analyze script.

4.4 Selection of criteria

The criteria selection is another core feature of the Test Environment. The criteria
editor can be accessed via the New button to create a custom criterion. The criteria

20

are used to specify subsets of test libraries. There are many possibilities to specify the
selection of test problems from the libraries by way of connected logical expressions, e.g.,
[variables<=10]and[int-vars<=5] restricts the selected test libraries to those problems
with n ≤ 10, |I| ≤ 5. A criterion is defined by such a connection of logical expressions. The
types of logical expressions that can be adjusted are shown in Table 4.3. The creation of
a criterion in the Test Environment GUI is straightforward using the ’Condition’ box
together with the ’Logicals’ box of the ’Criteria editor’.

Table 4.3: Types of logical expressions.

problem name string of the problem name
binary-vars number of binary variables
edges number of edges in the DAG
nodes number of nodes in the DAG
objective boolean statement
int-vars number of integer variables
constraints number of constraints
variables number of variables

solution status the modelstatus, cf. Table 4.2
check error dfeas,p in the solution check
solver input file missing boolean statement
solver output file missing boolean statement
res file missing boolean statement
chk file missing boolean statement

timeout maximum allowed CPU time

A click on the Preview button in the main Test Environment window shows all selected
criteria in correspondence to all selected problems that meet the criteria.

The Test Environment already includes a collection of predefined criteria in the ’Avail-
able criteria’ box, such as, e.g., few_vars to choose problems with only a few variables
setting a timeout of 2 minutes, or misssoloutput to choose problems for which a solver
output file is missing.

One important feature of criteria is their use in setting timeouts in connection with further
conditions like problem size. For example, to set up the timeout as in Table 5.3, we create
4 criteria:

size1: [variables>=1]and[variables<=9]and[timeout==180]

size2: [variables>=10]and[variables<=99]and[timeout==900]

size3: [variables>=100]and[variables<=999]and[timeout==1800]

size4: [variables>=1000]and[timeout==1800]

21

and add them to the selected criteria. Any task on the selected test library will now be
performed first on problems with 1 ≤ n ≤ 9 and timeout 180 s, then on problems with
10 ≤ n ≤ 99 and timeout 900 s, then problems with 100 ≤ n ≤ 999 and timeout 1800 s,
and eventually problems with n ≥ 1000 and timeout 1800 s.

4.5 Solution check: .chk files

The internal solution check of the Test Environment (cf. Section 2) is given by the
program solcheck which produces .chk files. Every .chk file contains 6 entries: the .dag

problem file name, an objective function upper and lower bound, the feasibility distance
of the solver solution dfeas,p(xs, fs) (where p is user-defined, default p =∞), the feasibility
distance with p = ∞, and finally the name of the constraint that determines the ∞-norm
in dfeas,∞(xs, fs).

4.6 Task buttons

There are 6 task buttons that can be found on the right side of the Test Environment
GUI: Convert, Solve, Analyze, Check, Best solvers, Compare. In our example we
executed all 6 tasks in a single run. By way of selecting or deselecting single tasks one
can also run them separately. Convert, Solve, and Analyze correspond to the tasks
configured in the solver setup described in Section 4.3. Check performs a solution check
(cf. Section 2).

Best solvers generates a plain text file in the twd/results/bestsolvers folder containing
the best points xbest for each problem solved (also see Section 2).

Compare identifies easy and hard locations using the local solver that is highlighted by
the * symbol in the ’Available solvers’ box. Afterwards the result tables are generated. If
for one problem the expression f̃ − fopt, cf. (2.11), is strictly negative the best solvers list
is not up to date and we throw a warning to recommend regeneration of the list. This may
happen if some results have been downloaded and compared to previous results before the
list was updated.

Apart from the result tables we also generate performance profiles that are displayed in the
top right corner of the GUI and also stored in the twd/results folder. The plots can be
saved separately, and additionally a mat file is generated to facilitate manipulation of the
plot. To modify colors in the plot the user can click the legend or specify colors and marker
style in the solver configuration.

22

4.6.1 Performance profiles

The concept of performance profiles is well-known since a few years, cf. [6]. A standard
choice of the performance measure is the time. However, since we are rather interested in the
global numerical solutions, we pick the objective function value as a performance measure.
Profiles comparing objective function values are already discussed, e.g., in [1, 2, 34]. The
fact that objective function values can be negative or zero imposes difficulties in the classical
framework of performance profiles. The solutions need to be normalized in some way. Thus
we define the performance measure m as follows.

Let Np be the number of problems in a test library and (xs1, fs1), . . . , (xsNp , fsNp) the results
of solver s on that library. Let Jfeasi be the set containing solutions that have passed the
solution check for problem i, with respect to Section 2. Let

f
i

:= min
(xσi,fσi)∈Jfeasi

fσi, (4.1)

f i := max
(xσi,fσi)∈Jfeasi

fσi, (4.2)

wid :=

{
f i − f i if f i > f

i
,

1 otherwise.
(4.3)

For i = 1, . . . , Np we define the performance m of solver s on problem i as

msi :=

1 if Jfeasi = ∅ or (xsi, fsi) global w.r.t. (2.11),
fsi−f i

wid
+ 1 if (xsi, fsi) ∈ Jfeasi and not global,

failfac + 1 otherwise,

(4.4)

with the user-defined parameter failfac > 1 which is set to 1.5 by default.

The best performance among all solvers for problem i is given by

Ki = min
s
msi = 1. (4.5)

The performance profile of solver s is defined as the empirical cumulative distribution
function of the relative performances rsi := msi

Ki
, i.e.,

Profiles(t) =
1

Np

Np∑
i=1

χ{τ |rsi≤τ}(t) (4.6)

where χA(t) is the characteristic function of the set A. In our case the ratios r and the
performance measures m are identical since Ki = 1 for all i.

Figure 5.1 illustrates an example of a performance profile. The value of Profiles(1) shows
the fraction of problems for which solver s performed best. The value of Profiles(t) for

23

2 ≤ t < failfac + 1 is the number problems that could be solved by solver s and is typically
interpreted as the robustness of s. One particularity of our profiles are the steps at t = 2
that arise from the normalization in (4.4). The size of these steps corresponds to the fraction
of problems for which solver s performed worst without failing.

4.7 Action buttons

There are 5 action buttons on the right side of the Test Environment GUI: Start,
Stop, Skip Problem, Select All Tasks, Clear Results. Start and Stop concern the
tasks selected by the task buttons. Skip Problem skips the current problem viewed in
the progress bar. Select All Tasks eases the selection and deselection of all task buttons.
Clear Results deletes all files associated with the tasks selected by the task buttons.

4.8 Additional options

The 5 checkboxes on the right side of the Test Environment GUI are pretty much self
explanatory. If Delete old files is enabled and a task selected by the task buttons is
run, then all former results of the selected problems for all tasks below the selected task
are considered obsolete and deleted. The Test all results checkbox concerns the case
that a library was solved on several different computers. In our example the directory
twd/solvers/knitro/res/newlib <name> contains all res files produced on the computer
named <name>. To compare results from different computers, just copy these directories
on one computer to twd/solvers/knitro/res and click Check, Best solvers, and Test.
The Show summary will open the summary pdf (cf. Section 3.4) after the Test task if
enabled.

5 Numerical results

In this section we present two cases of test results produced with the Test Environment.
All LATEX tables containing the results are automatically generated. The first subsection
gives the results for the example of KNITRO on the test library ’newlib’, cf. Section 3.2.
The second subsection illustrates the strength of the Test Environment in benchmarking
solvers.

In the generated LATEX tables we use the legend given in Table 5.1.

24

Table 5.1: Legend.

TABLE LEGEND

General symbols:
all the number of problems given to the solver
acc problems accepted by the solver
wr number of wrong claims (the sum of W, G?, I?, L?, see below)
easy problems which have been classified as easy
hard problems which have been classified as hard
n number of variables
m number of constraints
fbest best objective function value found
obj objective function value
Solution status codes (st):
G the result claimed to be a global optimizer
L local solution found
I Solver found the problem infeasible
TL timeout reached and a local solution was found
U unresolved (no solution found or error message)
X model not accepted by the solver
TestEnvironment status codes (tst):
G+ the global numerical solution has been found
G- solution is not global
F+ a feasible solution was found
F- no feasible solution was found
W solution is wrong, i.e., [F+ and solution check failed and (G or L or TL)]
G! correctly claimed global numerical solution, i.e., [G and G+]
G? wrongly claimed global numerical solution, i.e., [G and G- and not W]
L? wrongly claimed local solution, i.e., [L and F-]
I! correctly claimed infeasibility, i.e., [I and F-]
I? wrongly claimed infeasibility, i.e., [I and F+]
aF+ accepted problem and a feasible solution was found, i.e., [acc and F+]

5.1 Results for newlib

The results for the example test library ’newlib’ are shown in Table 5.2. We see that
KNITRO has found correct solutions for t1 and t2 and could not resolve the infeasible
problem t3. The Test Environment treated the two feasible solutions for t1 and t2 as
global numerical solutions since no better solution was found by any other solver. The
problem t3 was treated as infeasible since no feasible solution was found among all solvers.
As KNITRO is a local solver it could not claim any solution as global or infeasible. The
global numerical solutions identified by the Test Environment are classified as easy
locations as they were found by the local reference solver.

25

Table 5.2: Results for ’newlib’.

knitro on Newlib

st all W easy hard
G+ G- G+ G- F+ F-

all 3 0 2 0 0 0 2 1
L 2 0 2 0 0 0 2 0
U 1 0 0 0 0 0 0 1

knitro summary statistics
library all acc wr G+ G! I! W G? L? I?
newlib 3 3 0 2 0 0 0 0 0 0

total 3 3 0 2 0 0 0 0 0 0

name n m fbest knitro
st tst

t1 2 2 -8.660e-01 L G+
t2 2 2 CSP L G+
t3 2 2 CSP U -

5.2 Solver benchmark

We have run the benchmark on the libraries Lib1, Lib2, and Lib3 of the Coconut
Environment benchmark [32], containing more than 1000 test problems. We have removed
some test problems from the 2003 benchmark that had incompatible DAG formats. Thus
we have ended up with in total 1286 test problems.

The tested solvers in alphabetical order are: BARON 8.1.5 [29, 33] (global solver), Cocos
[19] (global), COIN with Ipopt 3.6/Bonmin 1.0 [22] (local solver), CONOPT 3 [11, 12]
(local), KNITRO 5.1.2 [4] (local), Lindoglobal 6.0 [30] (global), MINOS 5.51 [27] (local),
Pathnlp 4.7 [13] (local). For the benchmark we run all solvers on the full set of test problems
with default options and fixed timeouts from the Coconut Environment benchmark, cf.
Table 5.3.

Additionally for solvers inside GAMS we used the GAMS options

decimals = 8, limrow = 0, limcol = 0, sysout = on, optca=1e-6, optcr=0

and for solvers inside AMPL we used the option

presolve 0 .

26

Table 5.3: Benchmark timeout settings depending on problem size.

size n timeout
1 1-9 3 min
2 10-99 15 min
3 100-999 30 min
4 ≥ 1000 30 min

The parameters inside the Test Environment described in Section 2 have been fixed
as follows: α = 0, ε = 10−4, β = 10−6, κ = 1. As default local solver we have chosen
KNITRO to distinguish between easy and hard locations. Hence in case of KNITRO the
Test Environment status G- never occurs for easy locations and G+ never occurs for
hard locations by definition.

We have run the benchmark on an Intel Core 2 Duo 3 GHz machine with 4 GB of RAM.
We should keep in mind that running the benchmark on faster computers will probably
improve the results of all solvers but the relative improvement may vary between different
solvers (cf., e.g., [20]).

The results are shown in Tables 5.4 to 5.10, automatically generated by the Test En-
vironment. The performance of every solver on Lib1 is given in Table 5.4 and Table
5.5. Table 5.6 and Table 5.7 summarize the performance of every solver on all the test
libraries. The tables can be found at the end of the paper. Moreover, we automatically
plot a performance profile comparing all solvers on all test problems, cf. Figure 5.1.

Cocos and KNITRO accepted (almost) all test problems. Also the other solvers accepted
the majority of the problems. Minos accepted the smallest number of problems, i.e., 81%
of the problems. A typical reason why some solvers reject a problem is that the constraints
of the objective function could not be evaluated at the starting point x = 0 because of the
occurrence of expressions like 1/x or log(x). Some solvers like Baron also reject problems
in which sin or cos occur in any expression.

The difference between global and local solvers is clearly visible in the reliability of claiming
global numerical solutions. Looking at the tables 5.4 and 5.5 the global solvers are obviously
superior in this respect, especially on hard locations.

Table 5.8 provides the reliability statistics of the solvers, showing the ratio of global numer-
ical solutions found over the number of accepted feasible problems, the ratio of correctly
claimed global numerical solutions over the number of global numerical solutions found,
and the ratio of wrong solutions found over the number of accepted problems.

Lindoglobal has the best score (79%) in the number of correctly claimed global numerical

27

−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

conopt
knitro
lindoglobal
cocos
pathnlp
minos
baron
coin

Figure 5.1: Performance profile comparing all solvers on all test problems (log2 scaled).

solutions among the global numerical solutions found. Cocos is second with 76%, and
Baron is third with 69%. But it should be remarked that Lindoglobal made 15% wrong
solution claims as opposed to Baron with 8%. Not surprisingly, the local solvers had only
very bad scores in claiming global numerical solutions, since they are not global solvers.
On the other hand, they had a low percentage of wrong solutions, between 3% and 8%
(except for KNITRO). The local solvers did not have zero score in claiming global numerical
solutions since for some LP problems they are able to claim globality of the solution.

We also give an example of a detailed survey of problems in Table 5.9 and Table 5.10. It
shows the solver status and Test Environment status for each solver on each problem of
size 1 from Lib1. One can see, e.g., that for the first problem ’chance.dag’ all solvers have
found the global numerical solution except for Cocos and Pathnlp which did not resolve
the problem. BARON and Lindoglobal correctly claimed the global numerical solution. We
see how easily the Test Environment can be used to compare results on small or big
problem sizes. We could also study comparisons, e.g., only among MINLPs by using the
criteria selection, cf. Section 4.4.

Baron has found the most global numerical solutions among all accepted feasible problems.
The local solver Coin also performed very well in this respect, almost at the same level as the
global solver Lindoglobal. Hence Coin would be a strong local reference solver providing

28

a tougher definition of hard locations. The other solvers are not far behind, except for
KNITRO with 49%. However, it should be noted that for license reasons we used the quite
old KNITRO version 5.1.2 (this may also explain the high number of wrong solutions which
were often quite close to a correct solution – to avoid this an iterative refinement of solver
tolerances as in COPS is planned). New results with updated versions are continuously
uploaded to the Test Environment website [9].

Acknowledgments

Partial funding of the project is gratefully appreciated: Ferenc Domes was supported
through the research grant FS 506/003 of the University of Vienna. Hermann Schichl
was supported through the research grant P18704-N13 of the Austrian Science Foundation
(FWF).

Furthermore, we would like to acknowledge the help of Oleg Shcherbina in several solver and
test library issues. We thank Nick Sahinidis, Alexander Meeraus, and Michael Bussieck for
the support with several solver licenses. Thanks to Mihaly Markot who has resolved several
issues with Cocos. We also highly appreciate Arnold Neumaier’s ideas for improving the
Test Environment, and the comments by Yahia Lebbah.

References

[1] M.M. Ali, C. Khompatraporn, and Z.B. Zabinsky. A numerical evaluation of several
stochastic algorithms on selected continuous global optimization test problems. Journal
of Global Optimization, 31(4):635–672, 2005.

[2] C. Audet, C.K. Dang, and D. Orban. Software Automatic Tuning, From Concepts
to State-of-the-Art Results, chapter Algorithmic Parameter Optimization of the DFO
Method with the OPAL Framework. Springer, 2010. In press, preprint available on-line
at: http://www.gerad.ca/~orban/papers.html.

[3] A. Brooke, D. Kendrick, and A. Meeraus. GAMS: A User’s Guide. The Scientific
Press, 1988.

[4] R.H. Byrd, J. Nocedal, and R.A. Waltz. Large-Scale Nonlinear Optimization, chapter
KNITRO: An Integrated Package for Nonlinear Optimization, pp. 35–59. Springer,
2006.

[5] S.E. Cox, R.T. Haftka, C.A. Baker, B. Grossman, W.H. Mason, and L.T. Watson. A
comparison of global optimization methods for the design of a high-speed civil trans-
port. Journal of Global Optimization, 21(4):415–432, 2001.

29

http://www.gerad.ca/~orban/papers.html

[6] E.D. Dolan and J.J. Moré. Benchmarking optimization software with performance
profiles. Mathematical Programming, 91(2):201–213, 2002.

[7] E.D. Dolan, J.J. Moré, and T.S. Munson. Benchmarking optimization software with
COPS 3.0. Technical Report ANL/MCS-273, Mathematics and Computer Science
Division, Argonne National Laboratory, 2004.

[8] E.D. Dolan, J.J. Moré, and T.S. Munson. Optimality measures for performance profiles.
SIAM Journal on Optimization, 16(3):891–909, 2006.

[9] F. Domes. Test Environment website,
http://www.mat.univie.ac.at/~dferi/testenv.html, 2009.

[10] F. Domes. GloptLab - A configurable framework for the rigorous global solution of
quadratic constraint satisfaction problems. Optimization Methods and Software, 24
(4-5):727–747, 2009.

[11] A.S. Drud. CONOPT: A GRG code for large sparse dynamic nonlinear optimization
problems. Mathematical Programming, 31(2):153–191, 1985.

[12] A.S. Drud. CONOPT – a large-scale GRG code. ORSA Journal on Computing, 6(2):
207–216, 1994.

[13] M.C. Ferris and T.S. Munson. Interfaces to PATH 3.0: Design, implementation and
usage. Computational Optimization and Applications, 12(1):207–227, 1999.

[14] R. Fourer, D.M. Gay, and B.W. Kernighan. AMPL: A Modeling Language for Mathe-
matical Programming. Duxbury Press/Brooks/Cole Publishing Company, 2002.

[15] K.R. Fowler, J.P. Reese, C.E. Kees, J.E. Dennis, C.T. Kelley, C.T. Miller, C. Audet,
A.J. Booker, G. Couture, R.W. Darwin, M.W. Farthing, D.E. Finkel, J.M. Gablonsky,
G. Gray, and T.G. Kolda. Comparison of derivative-free optimization methods for
groundwater supply and hydraulic capture community problems. Advances in Water
Resources, 31(5):743–757, 2008.

[16] Gamsworld. Performance tools, http://gamsworld.org/performance/tools.htm,
2009.

[17] J.C. Gilbert and X. Jonsson. LIBOPT - An environment for testing solvers on hetero-
geneous collections of problems - The manual, version 2.1. Technical Report RT-331
revised, INRIA, 2009.

[18] N.I.M. Gould, D. Orban, and P.L. Toint. CUTEr and SifDec: A constrained and
unconstrained testing environment, revisited. ACM Transactions on Mathematical
Software, 29(4):373–394, 2003.

[19] H. Schichl et al. The COCONUT Environment, 2000–2010. Software. URL http:

//www.mat.univie.ac.at/coconut-environment.

30

http://www.mat.univie.ac.at/~dferi/testenv.html
http://gamsworld.org/performance/tools.htm
http://www.mat.univie.ac.at/coconut-environment
http://www.mat.univie.ac.at/coconut-environment

[20] D.S. Johnson. A theoreticians guide to the experimental analysis of algorithms. Amer-
ican Mathematical Society, 220(5-6):215–250, 2002.

[21] J. Kallrath. Modeling languages in mathematical optimization. Kluwer Academic Pub-
lishers, 2004.

[22] R. Lougee-Heimer. The Common Optimization INterface for Operations Research.
IBM Journal of Research and Development, 47(1):57–66, 2003.

[23] H. Mittelmann. Benchmarks, http://plato.asu.edu/sub/benchm.html, 2009.

[24] C.G. Moles, P. Mendes, and J.R. Banga. Parameter estimation in biochemical path-
ways: a comparison of global optimization methods. Genome Research, 13(11):2467–
2474, 2003.

[25] M. Mongeau, H. Karsenty, V. Rouze, and J.B. Hiriart-Urruty. Comparison of public-
domain software for black box global optimization. Optimization Methods and Soft-
ware, 13(3):203–226, 2000.

[26] J.J. Moré and S.M. Wild. Benchmarking derivative-free optimization algorithms. SIAM
Journal on Optimization, 20(1):172–191, 2009.

[27] B.A. Murtagh and M.A. Saunders. MINOS 5.5 user’s guide. Technical Report
SOL 83-20R, Systems Optimization Laboratory, Department of Operations Research,
Stanford University, Stanford, California, 1983. Available on-line at: http://www.

sbsi-sol-optimize.com/manuals/Minos%20Manual.pdf.

[28] A. Neumaier, O. Shcherbina, W. Huyer, and T. Vinko. A comparison of complete
global optimization solvers. Mathematical programming, 103(2):335–356, 2005.

[29] N.V. Sahinidis and M. Tawarmalani. BARON 7.2.5: Global optimization of mixed-
integer nonlinear programs. User’s Manual, 2005. Available on-line at: http://www.

gams.com/dd/docs/solvers/baron.pdf.

[30] L. Schrage. Optimization Modeling with LINGO. LINDO Systems, 2008.

[31] O. Shcherbina. COCONUT benchmark, http://www.mat.univie.ac.at/~neum/

glopt/coconut/Benchmark/Benchmark.html, 2009.

[32] O. Shcherbina, A. Neumaier, D. Sam-Haroud, X.H. Vu, and T.V. Nguyen. Global
Optimization and Constraint Satisfaction, chapter Benchmarking global optimization
and constraint satisfaction codes, pp. 211–222. Springer, 2003.

[33] M. Tawarmalani and N.V. Sahinidis. Global optimization of mixed-integer nonlinear
programs: A theoretical and computational study. Mathematical Programming, 99(3):
563–591, 2004.

[34] A.I.F. Vaz and L.N. Vicente. A particle swarm pattern search method for bound
constrained global optimization. Journal of Global Optimization, 39(2):197–219, 2007.

31

http://plato.asu.edu/sub/benchm.html
http://www.sbsi-sol-optimize.com/manuals/Minos%20Manual.pdf
http://www.sbsi-sol-optimize.com/manuals/Minos%20Manual.pdf
http://www.gams.com/dd/docs/solvers/baron.pdf
http://www.gams.com/dd/docs/solvers/baron.pdf
http://www.mat.univie.ac.at/~neum/glopt/coconut/Benchmark/Benchmark.html
http://www.mat.univie.ac.at/~neum/glopt/coconut/Benchmark/Benchmark.html

Table 5.4: Performance of each solver on Lib1.

baron on Lib1

st all W easy hard
G+ G- G+ G- F+ F-

all 264 34 57 33 89 74 253 11
G 104 20 38 17 44 4 103 1
L 103 12 19 6 45 33 103 0
I 3 2 0 0 0 2 2 1
X 36 0 0 7 0 22 29 7
U 18 0 0 3 0 13 16 2

cocos on Lib1

st all W easy hard
G+ G- G+ G- F+ F-

all 264 27 68 22 72 91 253 11
G 150 22 53 5 53 35 146 4
I 6 3 0 2 0 2 4 2

TL 32 2 10 0 19 3 32 0
U 76 0 5 15 0 51 71 5

coin on Lib1

st all W easy hard
G+ G- G+ G- F+ F-

all 264 6 68 22 70 93 253 11
G 3 1 2 0 0 1 3 0
L 215 5 66 18 70 61 215 0
X 25 0 0 4 0 14 18 7
U 21 0 0 0 0 17 17 4

conopt on Lib1

st all W easy hard
G+ G- G+ G- F+ F-

all 264 17 67 23 50 113 253 11
G 3 1 2 0 0 1 3 0
L 191 16 65 11 50 65 191 0
X 25 0 0 4 0 14 18 7
U 45 0 0 8 0 33 41 4

32

Table 5.5: Performance of each solver on Lib1 ctd.

knitro on Lib1

st all W easy hard
G+ G- G+ G- F+ F-

all 264 43 90 0 0 163 253 11
L 214 43 88 0 0 124 212 2
X 4 0 0 0 0 4 4 0

TU 13 0 0 0 0 12 12 1
U 33 0 2 0 0 23 25 8

lindoglobal on Lib1

st all W easy hard
G+ G- G+ G- F+ F-

all 264 27 67 23 80 83 253 11
G 114 9 49 7 45 13 114 0
L 62 4 14 1 33 14 62 0
I 18 14 0 5 0 12 17 1
X 25 0 0 4 0 14 18 7
U 45 0 4 6 2 30 42 3

minos on Lib1

st all W easy hard
G+ G- G+ G- F+ F-

all 264 2 63 27 44 119 253 11
G 3 1 2 0 0 1 3 0
L 180 1 61 12 43 64 180 0
X 30 0 0 9 0 14 23 7
U 51 0 0 6 1 40 47 4

pathnlp on Lib1

st all W easy hard
G+ G- G+ G- F+ F-

all 264 2 61 29 54 109 253 11
G 3 1 2 0 0 1 3 0
L 182 1 59 16 53 54 182 0
X 31 0 0 10 0 14 24 7
U 48 0 0 3 1 40 44 4

33

Table 5.6: Performance summary of every solver on the test libraries.

baron summary statistics
library all acc wr G+ G! I! W G? L? I?
Lib1 264 228 38 146 82 1 34 2 0 2
Lib2 715 635 43 414 232 2 23 16 1 3
Lib3 307 274 11 252 252 5 8 0 0 3

total 1286 1137 92 812 566 8 65 18 1 8

cocos summary statistics
library all acc wr G+ G! I! W G? L? I?
Lib1 264 264 53 140 106 2 27 22 0 4
Lib2 715 715 83 336 228 2 31 45 0 7
Lib3 307 307 28 273 239 3 22 1 0 5

total 1286 1286 164 749 573 7 80 68 0 16

coin summary statistics
library all acc wr G+ G! I! W G? L? I?
Lib1 264 239 6 138 2 0 6 0 0 0
Lib2 715 674 46 439 20 0 35 5 6 0
Lib3 307 298 3 215 3 0 2 0 1 0

total 1286 1211 55 792 25 0 43 5 7 0

conopt summary statistics
library all acc wr G+ G! I! W G? L? I?
Lib1 264 239 17 117 2 0 17 0 0 0
Lib2 715 678 86 377 21 0 77 4 5 0
Lib3 307 291 2 173 4 0 1 0 1 0

total 1286 1208 105 667 27 0 95 4 6 0

34

Table 5.7: Performance summary of every solver on the test libraries ctd.

knitro summary statistics
library all acc wr G+ G! I! W G? L? I?
Lib1 264 260 45 90 0 0 43 0 2 0
Lib2 715 703 179 337 0 0 171 0 8 0
Lib3 307 306 44 178 0 0 42 0 2 0

total 1286 1269 268 605 0 0 256 0 12 0

lindoglobal summary statistics
library all acc wr G+ G! I! W G? L? I?
Lib1 264 239 55 147 94 1 27 11 0 17
Lib2 715 686 118 386 274 4 55 43 1 19
Lib3 307 298 11 273 273 4 7 1 0 3

total 1286 1223 184 806 641 9 89 55 1 39

minos summary statistics
library all acc wr G+ G! I! W G? L? I?
Lib1 264 234 2 107 2 0 2 0 0 0
Lib2 715 510 29 298 22 0 21 2 6 0
Lib3 307 297 1 194 4 0 1 0 0 0

total 1286 1041 32 599 28 0 24 2 6 0

pathnlp summary statistics
library all acc wr G+ G! I! W G? L? I?
Lib1 264 233 2 115 2 0 2 0 0 0
Lib2 715 683 42 371 17 0 33 3 6 0
Lib3 307 297 0 201 4 0 0 0 0 0

total 1286 1213 44 687 23 0 35 3 6 0

35

Table 5.8: Reliability analysis. Percentage of global numerical solutions found/number
of accepted feasible problems (G+/aF+), percentage of correctly claimed global numeri-
cal solutions/number of global numerical solutions found (G!/G+), percentage of wrong
solutions/number of accepted problems (wr/acc).

Reliability analysis
solver G+/aF+ G!/G+ wr/acc
baron 73% 69% 8%
cocos 60% 76% 12%
coin 66% 3% 4%
conopt 56% 4% 8%
knitro 49% 0% 21%
lindoglobal 67% 79% 15%
minos 58% 4% 3%
pathnlp 57% 3% 3%

36

Table 5.9: Status of each solver on problems of size 1 of Lib1.

name n m fbest baron cocos coin conopt knitro lindoglobal minos pathnlp
st tst st tst st tst st tst st tst st tst st tst st tst

chance 4 3 2.989e+01 G G! U - L G+ L G+ L G+ G G! L G+ U -
circle 3 10 4.574e+00 G G! G G! L G+ U - L W I I? U - U -

dispatch 4 2 3.155e+03 G G! G G! L G+ L G+ L G+ G G! L G+ L G+
ex14-1-1 3 4 -1.400e-07 G G! G G! L G+ L G+ L G+ G G! L G+ L G+
ex14-1-2 6 9 -9.920e-09 G G! G G! L G+ L G+ L F+ G G! L G+ L G+
ex14-1-3 3 4 -9.964e-09 G G! G G! L G+ L G+ L G+ G G! L G+ L F+
ex14-1-4 3 4 -9.987e-09 X - G G! L G+ L G+ L G+ G G! L G+ L G+
ex14-1-5 6 6 -9.982e-09 G G! G G! L G+ L G+ L G+ G G! L G+ L G+
ex14-1-6 9 15 -9.870e-09 G G! G G! L F+ L F+ L F+ G G! L F+ L F+
ex14-1-8 3 4 0 G G! G G? L F+ L F+ L F+ G G! L F+ L F+
ex14-1-9 2 2 -9.965e-09 G G! G G! L G+ L G+ L G+ G G! L G+ L G+
ex14-2-1 5 7 -1.000e-08 G G! G G! L G+ L G+ L F+ G G! L G+ L G+
ex14-2-2 4 5 -9.994e-09 G G! G G! L G+ L G+ L G+ G G! L G+ L G+
ex14-2-3 6 9 -9.998e-09 G G! G G! L G+ L G+ L F+ G G! L G+ L G+
ex14-2-4 5 7 -9.999e-09 G G! G G! L G+ L G+ L F+ G G! L G+ L G+
ex14-2-5 4 5 -1.000e-08 G G! G G! L G+ L G+ L F+ G G! L G+ L G+
ex14-2-6 5 7 -1.000e-08 G G! G G! L G+ L G+ L G+ G G! L G+ L G+
ex14-2-7 6 9 -1.000e-08 G G! G G! L G+ L G+ L F+ G G! L G+ L G+
ex14-2-8 4 5 -1.000e-08 G G! G G! L G+ L G+ L F+ G G! L G+ L G+
ex14-2-9 4 5 -9.999e-09 G G! G G! L G+ L G+ L G+ G G! L G+ L G+
ex2-1-1 5 1 -1.700e+01 G G! G G! L F+ L F+ L F+ G G! L F+ L F+
ex2-1-2 6 2 -2.130e+02 G G! G G! L G+ L G+ L G+ G G! L G+ L G+
ex2-1-4 6 4 -1.100e+01 L W G G! L G+ L G+ L G+ G G! L G+ L G+
ex3-1-1 8 6 7.049e+03 G W G G! L G+ L G+ L G+ G G! L G+ L G+
ex3-1-2 5 6 -3.067e+04 G W G G! L F+ L W L G+ G G? L F+ L F+
ex3-1-3 6 5 -310 G G! G W L F+ L F+ L F+ G G! L F+ L F+
ex3-1-4 3 3 -4.000e+00 G W G G! L G+ L G+ L G+ I I? L G+ L G+
ex4-1-1 1 0 -7.487e+00 G W G G! L F+ L W L F+ G G! L F+ L F+
ex4-1-2 1 0 -6.635e+02 G W G G! L G+ L W L G+ G G! L G+ L G+
ex4-1-3 1 0 -4.437e+02 G W G G! L G+ L F+ L G+ I I? L F+ L F+
ex4-1-4 1 0 0 G G! G G! L G+ L G+ L G+ G G! L G+ L G+
ex4-1-5 2 0 0 L G+ G G! L G+ L G+ L G+ G G! L G+ L G+
ex4-1-6 1 0 7 G G! G G! L F+ L F+ L F+ I I? L F+ L F+
ex4-1-7 1 0 -7.500e+00 G G! I I? L G+ L G+ L G+ G G! L G+ L F+
ex4-1-8 2 1 -1.674e+01 G G! G G! L G+ L G+ L G+ G G! L G+ L G+
ex4-1-9 2 2 -5.508e+00 G G! G G! L F+ L F+ L F+ I I? L F+ L G+

ex5-2-2-case1 9 6 -4.000e+02 G G! G G! L F+ L F+ L G+ G G! L F+ L F+
ex5-2-2-case2 9 6 -600 G G! U - L F+ L F+ L F+ G G! L F+ L G+
ex5-2-2-case3 9 6 -7.500e+02 G G! G G! L F+ L F+ L G+ G G! L F+ L F+

ex5-2-4 7 6 -4.500e+02 G G! G G? L F+ L F+ L F+ G G? L F+ L F+
ex5-4-2 8 6 7.512e+03 G G! G G! L G+ L G+ L G+ G G! L G+ L G+
ex6-1-1 8 6 -2.020e-02 L W G G! L F+ L F+ L F+ L G+ U - L F+
ex6-1-2 4 3 -3.246e-02 L G+ G G! L G+ L G+ L F+ G G! L F+ L G+
ex6-1-4 6 4 -2.945e-01 L G+ U - L F+ L F+ L F+ G G? L F+ L F+
ex6-2-10 6 3 -3.052e+00 L G+ G G! L F+ L G+ L F+ L G+ L G+ L F+
ex6-2-11 3 1 -2.670e-06 L G+ I I? L F+ L F+ L F+ L G+ L F+ L F+
ex6-2-12 4 2 2.892e-01 G G! G G! L F+ L F+ L F+ L G+ L F+ L G+
ex6-2-13 6 3 -2.162e-01 L G+ U - L G+ L G+ L G+ L G+ L G+ L G+
ex6-2-14 4 2 -6.954e-01 L G+ G G! L F+ L F+ L F+ I I? L G+ L G+
ex6-2-5 9 3 -7.075e+01 L G+ G G? L F+ L F+ L F+ L G+ L G+ L F+
ex6-2-6 3 1 -2.600e-06 L G+ U - L F+ L G+ L F+ L F+ L F+ L F+

37

Table 5.10: Status of each solver on problems of size 1 of Lib1 ctd.

name n m fbest baron cocos coin conopt knitro lindoglobal minos pathnlp
st tst st tst st tst st tst st tst st tst st tst st tst

ex6-2-7 9 3 -1.608e-01 L G+ TL G+ L F+ L F+ L F+ L G+ L G+ L F+
ex6-2-8 3 1 -2.701e-02 L G+ TL G+ L F+ L W L F+ L G+ L G+ L F+
ex6-2-9 4 2 -3.407e-02 L G+ G G! L F+ L F+ L F+ L G+ L F+ L F+
ex7-2-1 7 14 1.227e+03 G W G G! L G+ L G+ L G+ G G! L G+ L G+
ex7-2-2 6 5 -3.888e-01 L W G W L G+ L G+ L G+ G G! L G+ L F+
ex7-2-3 8 6 7.049e+03 L W G G? L F+ L F+ L F+ L F+ L G+ L F+
ex7-2-4 8 4 3.918e+00 G W G G! L G+ L G+ L G+ L G+ L F+ L F+
ex7-2-5 5 6 1.012e+04 G W G G! L G+ L G+ L G+ G G! L G+ L G+
ex7-2-6 3 1 -8.325e+01 G W G G! L G+ L G+ L G+ L G+ L G+ L G+
ex7-2-7 4 2 -5.740e+00 G W G G! L G+ L G+ L G+ G G! L G+ L G+
ex7-2-8 8 4 -6.082e+00 G W G G! L F+ L F+ L G+ L G+ L F+ L F+
ex7-3-1 4 7 3.417e-01 L G+ G G! L G+ L G+ L F+ G G! L F+ L G+
ex7-3-2 4 7 1.090e+00 G G! U - L G+ L G+ L F+ I I? L G+ L G+
ex7-3-3 5 8 8.175e-01 G G! G G! L F+ L F+ L W I I? L F+ L F+
ex7-3-6 1 2 CSP G G? I I! U - U - U - I I! U - U -
ex8-1-1 2 0 -2.022e+00 X - G G! L G+ L G+ L G+ G G! L G+ L F+
ex8-1-2 1 0 -1.071e+00 X - G G! L F+ L F+ L F+ G G! L F+ L F+
ex8-1-3 2 0 3 L G+ G G? L F+ L F+ L F+ L G+ L F+ L F+
ex8-1-4 2 0 0 L G+ G G! L G+ L G+ L G+ G G! L G+ L G+
ex8-1-5 2 0 -1.032e+00 L W G G! L F+ L F+ L F+ G G! L F+ L F+
ex8-1-6 2 0 -1.009e+01 L W U - L F+ L W L F+ G G! L F+ L F+
ex8-1-7 5 5 2.931e-02 L G+ G G! L G+ U - L G+ I I? L G+ L G+
ex8-1-8 6 5 -3.888e-01 L W G W L G+ L G+ L G+ G G! L G+ L F+
ex8-5-1 6 5 -4.075e-07 X - TL G+ X - X - L F+ X - X - X -
ex8-5-2 6 4 -6.129e-06 X - TL G+ X - X - L F+ X - X - X -
ex8-5-3 5 5 -4.135e-03 X - G G! X - X - U - X - X - X -
ex8-5-4 5 4 -4.251e-04 X - TL G+ X - X - U - X - X - X -
ex8-5-5 5 4 -5.256e-03 X - TL G+ X - X - U - X - X - X -
ex8-5-6 6 4 1.000e+30 X - TL G+ X - X - U - X - X - X -
ex9-2-4 8 7 5.000e-01 G G! G G! L G+ L G+ L W G G! L G+ L G+
ex9-2-5 8 7 5.000e+00 G G! G G! U - L F+ L W G G! L G+ L F+
ex9-2-8 3 2 1.500e+00 G G! G G! G G! G G! L G+ G G! G G! G G!

himmel11 9 3 -3.067e+04 G W G G! L F+ L W L G+ G G? L F+ L F+
house 8 8 -4.500e+03 G G! G G! L G+ L G+ L W L W L G+ L G+
least 3 0 2.306e+04 L W G G! U - L F+ U - L F+ L W L W
like 9 3 1.138e+03 X - TL G+ X - X - U - X - X - X -

meanvar 7 2 5.243e+00 G G! U - L G+ L G+ L G+ G G! L G+ L G+
mhw4d 5 3 2.931e-02 L W G G! L G+ L G+ L G+ L G+ L G+ L G+

nemhaus 5 0 CSP G W G G! G W G W X - G W G W G W
rbrock 2 0 0 G G! G G! L G+ L G+ L G+ G G! L G+ L G+
sample 4 2 7.267e+02 G W G G? L F+ L F+ L F+ G G? L G+ L F+
wall 6 6 -1.000e+00 X - G G! X - X - U - X - X - X -

38

	Introduction
	Formulating optimization problems
	Basic functionality
	Installation
	Adding a new test library
	Simple example test library
	AMPL code of the example problems

	Adding a solver
	Solve the test problems

	Advanced functionality
	Configuration
	Debug mode
	Default paths and other variables
	Text output options
	Shekel test

	.res files and reference solutions
	Solver setup
	Selection of criteria
	Solution check: .chk files
	Task buttons
	Performance profiles

	Action buttons
	Additional options

	Numerical results
	Results for newlib
	Solver benchmark

