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Preface

In September of 1995, Michael Grosser and Michael Kunzinger visited Lyon
to meet J. F. Colombeau. During that stay, on September 16th, they spent
some time in the Café de la Ficelle and discussed the possibility of obtaining
an inverse function theorem for Colombeau functions. After one hour, they
had arrived at two essential conclusions: First, the question certainly is not
an easy one; and second, for quite a number of reasons, it would definitely
be desirable to have such a theorem at one’s disposal.

In the following years, the task of developing analogues of the classical local
existence results (including the Inverse and Implicit Function Theorems)
was put on the agenda of the research group DIANA (DIfferential Algebras
and Nonlinear Analysis), among whose members are Michael Grosser and
Michael Kunzinger. Yet for some time, other topics being more urgent, this
question was not tackled.

The issue received a fresh impetus, however, from a completely independent
line of research, namely an application of generalised functions in general
relativity: In 1998, Roland Steinbauer (another member of DIANA) stud-
ied distributional descriptions of the geometry of impulsive gravitational
waves. In particular, he set out to give rigorous mathematical meaning to
the “discontinuous coordinate transformation” introduced by Roger Penrose
in [Pen68], which relates a continuous representation of the corresponding
metric to a discontinuous one. He and Michael Kunzinger succeeded (among
other things) in regularising the metric as well as the relevant geodesic equa-
tions, solving them in an appropriate Colombeau algebra and relating the
solutions to the associated distributions. The question to what extent the
regularised version of the transformation in fact represents an “invertible”
generalised function in the sense of Colombeau has already been addressed
by Roland Steinbauer in his doctoral thesis. Some aspects of it have also
been mentioned in his joint work with Michael Kunzinger (cp. Chapter 5 of
[GKOS01]). Yet these partial results cannot be said to give a complete and
formally satisfactory answer to the question of inversion, mainly due to the
lack of a notion resp. a theory of inversion of generalised functions.
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Taking a closer look at the difficulties arising in this context, we make the
following simple observation: Classically, inverting some function f : X → Y

in a (set-theoretic) category is at least conceptionally easy. As soon as some
subset U of X is found on which f is injective, then f |U : U → V := f(U)
has at least a set-theoretic inverse and f can be said to be “invertible on U”,
provided the required categorical properties of f(U) and the set-theoretic
inverse of f |U are guaranteed by appropriate theorems given those for U
and f |U . For generalised functions in the Colombeau setting, however, we
face a serious problem when trying to emulate the above approach: Precisely
at the innocently looking step V := f(U) we run into difficulties since, for
u ∈ G(U), all we have at hand is the family of image sets uε(U), which,
a priori, are not in any way related to each other, due to the generality of
the notion of moderate families (uε)ε. From a conceptional point of view
as well as from the point of view of important applications, it is clear that
a limitation to the case where uε(U) = V holds independently of ε would
be highly insufficient. Therefore, the task of finding a suitable substitute
for the notion of “image set” as well as corresponding proofs of existence of
such have to constitute a central part of any inversion theory of generalised
functions. The definitions of invertibility introduced in Chapter 3 of the
present work reflect this particular feature.

Of course, in autumn 2003, when I was turning to Michael Grosser for a
topic for my thesis, I did not know any of that. The members of the DIANA
research group invited me to join a seminar on the special Colombeau alge-
bra to give me an idea of (part of) their field of research. Sceptical at first,
since my diploma thesis was more of the algebraic and number theoretic per-
suasion, I soon discovered that I rather enjoyed entering the analytic world
of distributions and generalised functions. Michael Grosser, Michael Kun-
zinger and Roland Steinbauer then proposed that I undertake the business
of transferring the classical local existence results to a generalised setting,
with emphasis on developing an inversion theory for generalised functions
that is (hopefully) applicable to, and consistent with, the work already done
by Roland Steinbauer and Michael Kunzinger concerning the two descrip-
tions of impulsive gravitational waves in general relativity. Needless to say,
I accepted their offer.

This work is organised in the following way: In Chapter 1, we start with a de-
tailed review of four classical local existence results, namely the Inverse Func-
tion Theorem, the Implicit Function Theorem, the Existence and Unique-
ness Theorem for Ordinary Differential Equations and Frobenius’ Theorem,
studying especially their interrelations. Chapter 2 gives a condensed intro-
duction to the special Colombeau algebra, providing the basic vocabulary
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and tools for the following chapters. An inversion theory for generalised
functions is developed in the third chapter, including several notions of in-
vertibility and a number of generalised inverse function theorems. Chapter
4 is devoted to applying the previously obtained results to the generalised
functions modelling the “discontinuous coordinate transformation” outlined
above. Finally, in Chapter 5, we present several variants of an ODE theorem
in the Colombeau algebra as well as a generalised Frobenius theorem.

Many people contributed in one way or another to the success of this
work, and at this point I would like to thank them all. In particular they
are: First and foremost, my supervisor Michael Grosser, who expertly guided
my first steps as a researcher, teaching me the subtleties of scientific work.
His imagination, his intuition and his incredible insight into the workings
and deeper meanings of mathematics never cease to amaze me. I am most
grateful for the lot of time, effort and energy he devoted to this project.
Particularly, I want to thank him for providing me with such a detailed
history of the topic of my thesis, for keeping a cool head in the last stages
of the writing of this work, and last but not least, for the constant supply
of pastries during our working sessions.

The writing of this thesis has been made possible by the Austrian Science
Fund (FWF), projects P16742 (Geometric Theory of Generalized Functions)
and Y237 (Nonlinear Distributional Geometry). I want to express my grat-
itude to Michael Kunzinger, the project leader, who always had an open
ear to any—however detailed—mathematical question that I came up with,
and who was at all times willing to sit down with me and discuss problems
thoroughly. I also owe thanks to Roland Steinbauer for valuable input and
most helpful feedback, especially concerning the ODE theorems in Chapter
5 and the physics-related topics. Moreover, I wish to thank all the DIANA
members, especially the Vienna branch, who went (and still go) out of their
way to create such a pleasant working environment. I feel privileged be-
ing part of this diverse group of DIANA professors, post-docs, doctoral and
master students, who were always helpful and supportive. In particular, I
thank Michael Oberguggenberger, Stevan Pilipović and James Vickers for
inspiring discussions. I am grateful to James Grant for a last-minute proof-
reading of my thesis. Special thanks go to Clemens Hanel, my former office
mate, who soon became a friend. He always listened with great patience to
all my (as they seemed to me, most stupid) questions and wild mathematical
conjectures, often helping me to arrive at a better understanding of the prob-
lem at hand. It was also him who expertly solved many a LATEX-problem I
encountered while writing this thesis.

Furthermore, I am much obliged to Andreas Kriegl for the time he took
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helping me work out some of the details in Chapter 1.
Apart from my colleagues and friends at the faculty of mathematics, I am
indebted to Christine Brunner who was always there when I needed a friend.
Her friendship means more to me than words can say.
I fondly remember the movie sessions, girls’ nights, parties and the occa-
sional brunch with Edith Simmel, Elisabeth Mühlböck, Karoline Turner,
Dejana Petrović, Resi Knapp, Hannah Folian, Eva and Renate Pazourek
and Marianne Hackl. Girls, you are amazing!
Moreover, I would like to thank Stefan Götz, Erwin Neuwirth, Stefan Schmidt
and also my sister Veronika Erlacher for their words of encouragement.
I appreciate the interest my aunt and uncle, Ilse and Herbert Swittalek, have
taken in the progress of my thesis. And I really enjoyed spending those extra
days with them in Innsbruck.
Finally, I am deeply grateful to my parents, Michaela and Roman Erlacher,
for their support, advice and understanding over all those years. Their love
and unwavering confidence in my abilities kept me going all the way.

Vienna, May 2007 Evelina Erlacher
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Chapter 1

Classical local existence

results

In classical analysis, four important local existence results are proved: the
Inverse Function Theorem, the Implicit Function Theorem, the Existence
and Uniqueness Theorem for Ordinary Differential Equations and Frobenius’
Theorem. Since the aim of this work is to develop a theory capable of
reproducing corresponding results in the setting of generalised functions (cf.
Chapter 2), we will start by studying the aforesaid (classical) theorems. This
approach appears—and will turn out to actually be—all the more promising
taking into account that a generalised function is an equivalence class of nets
of smooth maps.

The main focus of this thesis being the development of an inversion
theory in the setting of the special Colombeau algebra, we will start in
Section 1.1 with the proof of a “quantified” version of the classical Inverse
Function Theorem (cp. [AMR83]). Section 1.2 is devoted to the study of
the fact that the four main local existence results mentioned above can be,
in turn, derived from each other if they are formulated for Banach spaces
and Ck-functions (k ≥ 2) acting on these. In the literature one frequently
finds one of the “big four” being used to prove another (cp. e.g. [Die85]
for a proof of Frobenius’ Theorem employing the Existence and Uniqueness
Theorem for ODEs, [KP02] for a presentation of several methods to obtain
the Implicit Function Theorem, or [Kri04] and [Tes04] for a proof of the
Existence and Uniqueness Theorem for ODEs using the Implicit Function
Theorem). However, it seems that a complete presentation of the whole
cycle of proofs does not exist so far. For this reason, and since we will take
a part of this cycle as a model for similar results in the generalised setting,
we will present the proofs of the equivalence of the four classical results in
full detail.
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1.1 The Inverse Function Theorem

In the proof the Inverse Function Theorem as stated below we will use the
following two lemmata.

1.1. Lemma: Let A be a Banach Algebra with unit e. Let a be an element

of A with ‖a‖ < 1. Then the series
∑∞

k=0 a
k converges and

∑∞
k=0 a

k ·(e−a) =
(e− a) ·

∑∞
k=0 a

k = e.

Proof: We know that ‖ak‖ ≤ ‖a‖k. Since ‖a‖ < 1, it follows that
∑∞

k=0 ‖ak‖
converges and, therefore,

∑∞
k=0 a

k converges. Then (
∑∞

k=0 a
k)(e − a) =∑∞

k=0 a
k − (

∑∞
k=0 a

k)a = e. �

1.2. Lemma: Let A be a Banach algebra with unit e. Let a, b ∈ A with a

invertible and b such that ‖a−1‖ ‖a− b‖ < 1. Then b is invertible and

‖b−1‖ ≤ ‖a−1‖
1− ‖a−1‖ ‖a− b‖

and ‖a−1 − b−1‖ ≤ ‖a−1‖2‖a− b‖
1− ‖a−1‖ ‖a− b‖

.

Proof: We write b as b = a − (a − b) = a(e − a−1(a − b)). Since ‖a−1(a −
b)‖ < 1, we know by Lemma 1.1 that e − a−1(a − b) is invertible with
inverse

∑∞
k=0(a−1(a − b))k. Therefore, b is invertible with inverse b−1 =∑∞

k=0(a−1(a− b))k · a−1. Then we have

‖b−1‖ ≤ ‖a−1‖ ·
∞∑
k=0

(‖a−1‖ ‖(a− b)‖)k‖ =
‖a−1‖

1− ‖a−1‖ ‖a− b‖
.

Observing a−1 − b−1 = b−1(b− a)a−1, we obtain

‖a−1 − b−1‖ ≤ ‖b−1‖ ‖b− a‖ ‖a−1‖ ≤ ‖a−1‖2‖a− b‖
1− ‖a−1‖ ‖a− b‖

.

�

1.3. Theorem (Inverse Function Theorem): Let X and Y be Banach

spaces and U an open subset of X. Let f ∈ Ck(U, Y ) for k ∈ N ∪ {∞} and

x0 ∈ U . If Df(x0) is invertible in L(X,Y ), then there exist open neighbour-

hoods W of x0 in U and V of y0 := f(x0) and a function g ∈ Ck(V,W ) such

that g is the inverse of f |W .

More precisely, let a := ‖Df(x0)−1‖. Let b > 0 with ab < 1 and r > 0
with Br(x0) ⊆ U such that

‖Df(x0)−Df(x)‖ ≤ b (1.1)

for all x ∈ Br(x0). Setting c := a
1−ab , the following hold:
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(1) |x1 − x2| ≤ c · |f(x1)− f(x2)| for all x1, x2 ∈ Br(x0).

(2) Df(x) is invertible and ‖Df(x)−1‖ ≤ c for all x ∈ Br(x0).

(3) V := f(Br(x0)) is open.

(4) f |W : W → V is a Ck-diffeomorphism for W := Br(x0).

(5) B r
c
(y0) ⊆ f(Br(x0)) and B r

c
(y0) ⊆ f(Br(x0)).

Proof: For the sake of clarity, we establish a number of claims.

Claim 1: For all x1, x2 ∈ Br(x0)

|(Df(x0)(x1)− f(x1))− (Df(x0)(x2)− f(x2))| ≤ b · |x1 − x2|

holds.

Proof: Let x1, x2 ∈ Br(x0). By the Mean Value Theorem, we have

|(Df(x0)(x1)− f(x1))− (Df(x0)(x2)− f(x2))| ≤

≤ sup
z∈Br(x0)

‖Df(x0)−Df(z)‖ · |x1 − x2|

≤ b · |x1 − x2|.

qed.

Let y ∈ Y . Define gy : Br(x0)→ Y by

gy(x) : = x+ Df(x0)−1
(
y − f(x)

)
= Df(x0)−1(y) + Df(x0)−1

(
Df(x0)(x)− f(x)

)
.

Claim 2: gy is a contraction with Lipschitz constant ab. (Note that, at
present, y is an arbitrary element of Y .)

Proof: Let x1, x2 ∈ Br(x0). Then, by Claim 1, we obtain

|gy(x1)− gy(x2)| ≤ ‖Df(x0)−1‖|(Df(x0)(x1)− f(x1))− (Df(x0)(x2)− f(x2))|
≤ ab · |x1 − x2|.

qed.

Claim 3: For y ∈ B r
c
(y0) the function gy maps Br(x0) into Br(x0).
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Proof: Let y ∈ B r
c
(y0) and x ∈ Br(x0). Then, by Claim 1, it follows that

|gy(x)− x0| ≤ ‖Df(x0)−1‖ · |y − f(x0)|+ ‖Df(x0)−1‖
· |(Df(x0)(x)− f(x))− (Df(x0)(x0)− f(x0))|

≤ a · r
c

+ a · b · |x− x0|

≤ ar · 1− ab
a

+ a · br

= r.

qed.

Claim 4: For all x1, x2 ∈ Br(x0)

|x1 − x2| ≤ c · |f(x1)− f(x2)|

holds.

Proof: Let x1, x2 ∈ Br(x0). By Claim 2, we obtain

ab · |x1 − x2| ≥ |gy(x1)− gy(x2)|
= |x1 − x2 −Df(x0)−1(f(x1)− f(x2))|
≥ |x1 − x2| − ‖Df(x0)−1‖ · |(f(x1)− f(x2))|
= |x1 − x2| − a · |(f(x1)− f(x2))|.

Therefore, it follows from

a · |f(x1)− f(x2)| ≥ (1− ab) · |x1 − x2|

that
|x1 − x2| ≤

a

1− ab
|f(x1)− f(x2)| = c · |f(x1)− f(x2)|.

qed.

Claim 5: f |
Br(x0)

: Br(x0)→ f(Br(x0)) is a homeomorphism.

Proof: The inequality of Claim 4 implies, in particular, that the restriction of
f to Br(x0) is injective. Hence, f |

Br(x0)
: Br(x0)→ f(Br(x0)) is a bijection.

From now on, we will denote f |
Br(x0)

−1 : f(Br(x0)) → Br(x0) simply by
f−1.
Let y1, y2 ∈ f(Br(x0)). Then f−1(y1) and f−1(y2) are in Br(x0), and Claim
4 yields

|f−1(y1)− f−1(y2)| ≤ c · |y1 − y2|.
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This shows f−1 to be continuous on f(Br(x0)). qed.

Claim 6: Df(x) is invertible and ‖Df(x)−1‖ ≤ c for all x ∈ Br(x0).

Proof: By assumption, Df(x0) is invertible. Let x ∈ Br(x0). Then

‖Df(x0)−1‖‖Df(x0)−Df(x)‖ ≤ ab < 1.

By Lemma 1.2, Df(x) is invertible. Moreover, Lemma 1.2 yields

‖Df(x)−1‖ ≤ ‖Df(x0)−1‖
1− ‖Df(x0)−1‖‖Df(x0)−Df(x)‖

≤ a

1− ab
= c.

qed.

Claim 7: B r
c
(y0) ⊆ f(Br(x0)). In particular, f(x0) = y0 is interior to f(U).

Proof: Writing gy as

gy(x) = x+ Df(x0)−1
(
y − f(x)

)
,

where y is an arbitrary element of B r
c
(y0), it is obvious that x is a fixed point

of gy if and only if y = f(x). We already showed that gy maps Br(x0) into
Br(x0) (Claim 3). We also proved that gy is a contraction with Lipschitz
constant ab (Claim 2). From Banach’s Fixed Point Theorem, it now follows
that for all y ∈ B r

c
(y0) there exists a unique x ∈ Br(x0) such that f(x) = y.

Therefore, B r
c
(y0) is contained in f(Br(x0)). qed.

Claim 8: f(Br(x0)) is open in Y .

Proof: Let x ∈ Br(x0). Choose η > 0 such that Bη(x) ⊆ Br(x0) and

‖Df(x)−Df(z)‖ ≤ 1
2c

for all z ∈ Bη(x). Note that, by Claim 6, Df(x)−1 exists and ‖Df(x)−1‖ ≤ c.
Now apply Claim 7 with Bη(x), f |Bη(x), x and η

2 replacing U , f , x0 and r,
respectively, to obtain that f(x) is in the interior of f(Bη(x)) and, hence, in
the interior of f(Br(x0)). qed.

Now let W := Br(x0) and V := f(Br(x0)). We define g : V → W by
g(y) := f−1(y).

Claim 9: g is differentiable and Dg(y) = Df(g(y))−1 for all y ∈ V .
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Proof: Let y, y1 ∈ V . Then x := g(y) and x1 := g(y1) are elements of Br(x0).
Using Claim 4 and Claim 6, we obtain

|g(y)− g(y1)−Df(g(y1))−1(y − y1)|
|y − y1|

≤

≤ ‖Df(g(y1))−1‖|y − y1 −Df(g(y1))(g(y)− g(y1))|
|y − y1|

≤ c · ‖Df(x1)−1‖ · |f(x)− f(x1)−Df(x1)(x− x1)|
|x− x1|

≤ c2 · |f(x)− f(x1)−Df(x1)(x− x1)|
|x− x1|

.

Since, by Claim 5, f |Br(x0) is a homeomorphism, x converges to x1 if and
only if y converges to y1. Hence, the last quotient tends to 0 for y converging
to y1, and the claim follows. qed.

Since Dg = inv ◦Df ◦ g (where inv : GL(X,Y ) → GL(Y,X), ϕ 7→ ϕ−1), it
follows by the chain rule and by induction that g is k times differetiable.

Claim 10: B r
c
(y0) ⊆ f(Br(x0)).

Proof: Let y ∈ B r
c
(y0). By Claim 4, we obtain

|g(y)− g(f(x0))| ≤ c · |y − f(x0)|

< c · r
c

= r.

Thus, g(y) ∈ Br(x0) and, hence, y = f(g(y)) ∈ f(Br(x0)). qed.
�

1.4. Remark: Given U , f , k, x0, a and b as in Theorem 1.3 then, by
continuity of Df , there always exists r > 0 satisfying (1.1). Furthermore,
note that all statements of Theorem 1.3 remain true if only ‖Df(x0)−1‖ ≤ a
is assumed to hold, and b and r are chosen accordingly.

The following proposition will come in handy in Chapter 3.

1.5. Proposition: In the situation of the Inverse Function Theorem 1.3

for X = Y = Rn the following also hold: Let 0 < β < 1 and y1 ∈ Rn such

that

|y0 − y1| ≤ (1− β)
r

c
.

Then gy maps Br(x0) into Br(x0) for all y ∈ Bβ r
c
(y1), and Bβ r

c
(y1) ⊆

f(Br(x0)).
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Proof: The assertions follow immediately from Claims 3 and 10 of the proof
of the Inverse Function Theorem 1.3 and the fact that Bβ r

c
(y1) is contained

in B r
c
(y0). �

1.2 The equivalence of four local existence results

In this section we will show that the Implicit Function Theorem, the Ex-
istence and Uniqueness Theorem for ODEs, Frobenius’ Theorem and the
Inverse Function Theorem (all as stated below) are equivalent in the sense
that each can be derived from any other. More precisely, we will prove the
following circle of implications:

Implicit Function Theorem
1.11
⇒ Existence and Uniqueness

Theorem for ODEs

⇑ 1.14 ⇓ 1.12

Inverse Function Theorem
1.13
⇐ Frobenius’ Theorem

Note that in order to obtain a completely closed circle of implications, all four
theorems are stated below for k times differentiable functions where k ≥ 2,
the reason being that, in the proofs of (2)⇒ (1) in Frobenius’ Theorem and
of the Inverse Function Theorem, second order derivatives occur. For a more
detailed discussion of the sufficiency of C1 we refer to Remark 1.15 at the
end of this section.

1.6. Theorem (Implicit Function Theorem): Let X, Y and Z be

Banach spaces and let U and V be open subsets of X resp. Y . Let F ∈
Ck(U × V,Z) for k ∈ (N\{1}) ∪ {∞} and (x0, y0) ∈ U × V . If ∂2F (x0, y0) ∈
L(Y, Z) is an isomorphism, then there exist an open neighbourhood U1×V1 ⊆
U×V of (x0, y0) (we may suppose U1 and V1 to be open balls with centres x0

resp. y0) and a unique function f : U1 → V1 such that F (x, f(x)) = F (x0, y0)
for all x ∈ U1. The map f is in Ck(U1, V1) and satisfies

Df(x) = −(∂2F (x, f(x)))−1 ◦ ∂1F (x, f(x)).

1.7. Theorem (Existence and Uniqueness Theorem for ODEs): Let

I be an open interval, U an open subset of a Banach space X and P an

open subset of another Banach space. Suppose F ∈ Ck(I × U × P,X) for

k ∈ (N\{1}) ∪ {∞} and (t0, x0, p0) ∈ I × U × P . Then the initial value

problem

x′(t) = F (t, x(t), p0), x(t0) = x0,



8 Chapter 1: Classical local existence results

has a k + 1 times differentiable solution x(t0, x0, p0) : I1 → U which is

unique in C1(I1, U), where I1 = [t0 − a, t0 + a] (a > 0) is contained in I.

Furthermore, there exist an interval J = [t0 − b, t0 + b] (b > 0) in I and an

open neighbourhood J1×U1×P1 ⊆ J×U×P of (t0, x0, p0) such that the map

(t1, x1, p1, t) 7→ x(t1, x1, p1)(t) is in Ck(J1 ×U1 × P1 × J, U) and x(t1, x1, p1)
is the unique solution of the corresponding initial value problem.

1.8. Theorem (Frobenius’ Theorem): Let X and Y be Banach spaces

and let U and V be open subsets of X resp. Y . Let F : U ×V → L(X,Y ) be

k times differentiable for k ∈ (N\{1}) ∪ {∞}. The following are equivalent:

(1) For all (x0, y0) ∈ U × V the initial value problem

Df(x) = F (x, f(x)), f(x0) = y0, (1.2)

has a k + 1 times differentiable solution f(x0, y0) : U(x0, y0)→ V which

is unique in C1(U(x0, y0), V ), where U(x0, y0) is an open neighbourhood

of x0 in U .

(2) The integrability condition for the solvability of (1.2) is satisfied, i.e.

DF (z)(v1, F (z) · v1) · v2

is symmetric in v1, v2 ∈ X for all z ∈ U × V .

If these equivalent conditions are satisfied, then we additionally have: For

fixed (x0, y0) ∈ U × V there exist an open subset W of U containing x0 and

an open neighbourhood W1×V1 ⊆W ×V of (x0, y0) such that the mapping

(x1, y1, x) 7→ f(x1, y1)(x) is in Ck(W1×V1×W,V ) and f(x1, y1) is the unique

solution of the corresponding initial value problem.

1.9. Theorem (Inverse Function Theorem): Let X and Y be Banach

spaces and U an open subset of X. Let f ∈ Ck(U, Y ) for k ∈ (N\{1})∪{∞}
and x0 ∈ U . If Df(x0) is invertible in L(X,Y ), then there exist open

neighbourhoods W of x0 in U and V of y0 := f(x0) and a function g ∈
Ck(V,W ) such that g is the inverse of f |W . Furthermore, the map g satisfies

Dg(x) = Df(g(x))−1.

We will start with the proof of the Implicit Function Theorem implying
the Existence and Uniqueness Theorem for ODEs. For this purpose we need
the following

1.10. Lemma: Let I be a compact interval, X and Y Banach spaces, U

an open subset of X and f ∈ Ck(U, Y ) where k ∈ N0 ∪ {∞}. Then the map

f∗ : C(I, U)→ C(I, Y ) defined by f∗(g) := f ◦ g is in Ck(C(I, U),C(I, Y )).
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Proof: We first show that f∗ is continuous: Let g0 ∈ C(I, U) and ε > 0.
The point g0(t) is an element of U for all t ∈ I. Since f is continuous, for
each t ∈ I there exists some δ(t) > 0 such that |f(x)− f(g0(t))| < ε

2 for all
x ∈ U with |x− g0(t)| < 2δ(t). The open balls Bδ(t)(g0(t)), t ∈ I, cover the
set g0(I). Since I is compact and g0 is continuous, the set g0(I) is compact.
Hence, there exists a finite subcover {Bδ(tj)(g0(tj)) | 1 ≤ j ≤ n} of g0(I).
Define δ := min1≤j≤n δ(tj) and let ‖g − g0‖∞ < δ. Observe that for each
t ∈ I there is a tj such that |g0(tj)− g0(t)| < δ(tj). Also note that

|g(t)− g0(tj)| ≤ |g(t)− g0(t)|+ |g0(t)− g0(tj)| < 2δ(tj).

Then we have

|f(g(t))− f(g0(t))| ≤ |f(g(t))− f(g0(tj))|+ |f(g0(tj))− f(g0(t))|

<
ε

2
+
ε

2
= ε.

Therefore,

‖f∗(g)− f∗(g0)‖∞ = sup
t∈I
|f(g(t))− f(g0(t))| ≤ ε,

which settles the case k = 0.
Next, we show that (for k > 0) f∗ is differentiable: Let g0 ∈ C(I, U) and

ε > 0. We claim that the derivative Df∗ : C(I, U)→ L(C(I,X),C(I, Y )) at
g0 is given by

(Df∗(g0)(h))(t) = Df(g0(t))(h(t)).

By assumption, Df is continuous, and we just showed that in this case (Df)∗
is continuous, too. Now choose δ > 0 such that ‖(Df)∗(h)− (Df)∗(g0)‖ < ε

for all h ∈ C(I, U) with ‖h − g0‖∞ < δ. Let ‖g − g0‖∞ < δ. Then, by the
Mean Value Theorem,

|f(g(t))− f(g0(t))−Df(g0(t))(g(t)− g0(t))| =

=
∣∣∣∣

1∫
0

Df
(
g0(t) + σ(g(t)− g0(t))

)
dσ · (g(t)− g0(t))

−Df(g0(t))(g(t)− g0(t))
∣∣∣∣

≤
1∫

0

|Df
(
g0(t) + σ(g(t)− g0(t))

)
−Df(g0(t))| dσ · |g(t)− g0(t)|.
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For all t ∈ I and σ ∈ [0, 1] we have

|g0(t) + σ(g(t)− g0(t))− g0(t)| ≤ |σ| |g(t)− g0(t)|
≤ ‖g − g0‖∞
< δ

and, therefore,

1∫
0

‖Df
(
g0(t) + σ(g(t)− g0(t))

)
−Df(g0(t))‖ dσ <

1∫
0

ε dσ = ε.

It follows that

‖f∗(g)− f∗(g0)−Df(g0(.))(g(.)− g0(.))‖∞
‖g − g0‖∞

=

=
supt∈I |f(g(t))− f(g0(t))−Df(g0(t))(g(t)− g0(t))|

‖g − g0‖∞

≤ ε · supt∈I |g(t)− g0(t)|
‖g − g0‖∞

= ε.

To conclude the case k = 1 it remains to be shown that Df∗ is con-
tinuous: Consider the linear map λ : C(I,L(X,Y )) → L(C(I,X),C(I, Y ))
defined by

(λ(T ) · g)(t) := T (t) · g(t).

For T ∈ C(I,L(X,Y )) and g ∈ C(I,X) we have

‖λ(T ) · g‖∞ = sup
t∈I
|T (t) · g(t)| ≤ sup

t∈I
|T (t)| · |g(t)| ≤ ‖T‖∞ · ‖g‖∞.

It follows that
‖λ‖ = sup

T 6=0
sup
g 6=0

‖λ(T ) · g‖∞
‖T‖∞ · ‖g‖∞

≤ 1

and, therefore, λ is continuous. Now, observing that Df∗ = λ ◦ (Df)∗, the
claim for k = 1 follows.

Finally, the general case k > 1 follows by induction. �

1.11. Proof that the Implicit Function Theorem 1.6 implies the
Existence and Uniqueness Theorem for ODEs 1.7.

We prove the theorem in four steps. The bulk of the work will be done in
the first step where we apply the Implicit Function Theorem 1.6.
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Step 1: For the time being, we assume that F is independent of t and
consider the initial value problem

x′(t) = F (x(t), p), x(0) = 0, (1.3)

for p ∈ P . Let p0 ∈ P . We claim the existence of an open neighbourhood
P1 ⊆ P of p0, an interval I1 = [−a, a] ⊆ I with a > 0 and for every p ∈ P1

a function x(p) ∈ Ck+1(I1, U) which is a solution (unique in C1(I1, U)) of
(1.3).
Existence: We introduce a second parameter η ∈ R and consider the initial
value problem

x′(t) = η F (x(t), p), x(0) = 0. (1.4)

For η = 0 the differential equation becomes trivial and we know the (unique)
C1-solution of (1.4) to be g0 : x 7→ 0. We now define

G : (P × R)× C1([−1, 1] , U) → C([−1, 1] , X)×X
(p, η; g) 7→ (g′ − η F∗(g, p), ev0(g))

,

where ev0 : C1([−1, 1] , U) → U ⊆ X, ev0(g) := g(0), is the evaluation at 0.
ev0 is smooth since it is linear and continuous. By Lemma 1.10, the function
G is k times differentiable. Obviously, finding solutions of (1.4) is equivalent
to finding zeros of G. For g0 : x 7→ 0 we have G(p0, 0; g0) = (0, 0) and
∂2G(p0, 0; g0) = (D, ev0) where Dg = g′, since both differentiation and the
evaluation ev0 are linear and continuous in g. By the Fundamental Theorem
of Calculus, ∂2G(p0, 0; g0) is an isomorphism in

L(C1([−1, 1] , X),C([−1, 1] , X)×X)

with inverse

(h, y0) 7→

t 7→ t∫
0

h(s)ds+ y0

 .

Applying the Implicit Function Theorem 1.6, we know there exist an open
neighbourhood (P1× (−η1, η1))×A ⊆ (P ×R)×C1([−1, 1] , U) of (p0, 0; g0)
and a function f ∈ Ck(P1 × (−η1, η1), A) such that

G(p, η; f(p, η)) = (0, 0) (1.5)

for all (p, η) ∈ P1 × (−η1, η1). We may assume that A is an open ball with
centre g0, i.e. that there exists some ε > 0 such that

A = {g ∈ C1([−1, 1], U) | max(‖g(t)‖∞, ‖g′(t)‖∞) < ε}.
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Equation (1.5) is equivalent to

f(p, η)′(t) = η F (f(p, η), p)(t), f(p, η)(0) = 0.

Hence, f(p, η) ∈ A ⊆ C1([−1, 1] , U) is a solution of (1.4). To derive from
that a solution of (1.3) we have to do some scaling. Fix some a ∈ (0, η1) and
set I1 := [−a, a]. For p ∈ P1 we define x(p) : I1 → U by

x(p)(t) := f(p, a)
(
t

a

)
.

Then
x(p)(0) = f(p, a)(0) = 0

and

x(p)′(t) =
∂

∂t

(
f(p, a)

(
t

a

))
= f(p, a)′

(
t

a

)
· 1
a

= aF

(
f(p, a)

(
t

a

)
, p

)
· 1
a

= F (x(p)(t), p).

So, for every p ∈ P1 we found a solution x(p) ∈ C1(I1, U) of (1.3). By
induction, it follows from the differential equation (1.3) that for fixed p ∈ P1

the solution x(p) is even k + 1 times differentiable.
Uniqueness: For p ∈ P1 let y(p) ∈ C1(I1, U) be another solution of (1.3).
We prove uniqueness in two steps. First, we show that there exists a neigh-
bourhood [−c, c] of 0 such that y(p) = x(p) on [−c, c]: Since x(p), y(p) and
F are continuous and I1 = [−a, a] is compact, there exists some c ∈ (0, a]
such that

‖x(p)‖∞,[−c,c] < ε,

‖y(p)‖∞,[−c,c] < ε,

c · ‖F (x(p)( . ), p)‖∞,I1 < ε,

c · ‖F (y(p)( . ), p)‖∞,I1 < ε. (1.6)

Setting fp(t) := x(p)(c t) and gp(t) := y(p)(c t), we obtain, by (1.6), that
fp and gp are elements of A. Moreover, both fp and gp are solutions of the
implicit equation

G(p, a; g) = (0, 0). (1.7)

By the Implicit Function Theorem 1.6, for every (p, c) ∈ P1 × (0, a] ⊆ P1 ×
(−η1, η1) there exists only one function in A such that the implicit equation
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(1.7) holds. Therefore, gp = fp and y(p)(t) = gp( tc) = fp( tc) = x(p)(t) for all
t ∈ [−c, c].
Now, suppose that there exists s ∈ I1 (w.l.o.g. s > 0) such that x(p)(s) 6=
y(p)(s). We set

t̃ := inf{t ∈ (0, a] |x(p)(t) 6= y(p)(t)} ∈ (0, a).

By the continuity of x(p) and y(p), we have z̃ := x(p)(t̃) = y(p)(t̃). Setting
x̃p(t) := x(p)(t+ t̃)− z̃ and ỹp(t) := y(p)(t+ t̃)− z̃, we obtain that both x̃p
and ỹp are solutions of the initial value problem

z′(t) = F (z(t) + z̃, p), z(0) = 0. (1.8)

However, we proved above that solutions of initial value problems like (1.8)
are unique on a neighbourhood of 0, yielding x̃p(t) = ỹp(t) for t close to 0.
Therefore, also x(p) and y(p) coincide on a neighbourhood of t̃ which is a
contradiction to the definition of t̃. Hence, x(p)(t) = y(p)(t) for all t ∈ I1.
Finally, note that, since a was an arbitrary value in (0, η1), the restriction
of x(p) to any interval Ĩ contained in I1 with 0 ∈ Ĩ◦ is the unique solution
of (1.3) in C1(Ĩ , U).

Step 2: We now claim that the mapping (p, t) 7→ x(p)(t) is in Ck(P1 ×
I1, U).
For |c| ≤ 1 we define c̄ : t 7→ c · t. Note that

G(p, c η; g ◦ c̄)(t) =
(
(g ◦ c̄)′(t)− c η F ((g ◦ c̄)(t), p), ev0(g ◦ c̄)

)
=
(
c g′(c t)− c η F (g(c t), p), g(c · 0)

)
= cG(p, η; g)(c t)

and, therefore,
f(p, η)(c t) = f(p, c η)(t),

by the uniqueness of solutions of (1.5). Hence,

x(p)(t) = f(p, a)
(
t

a

)
= f(p, t)(1) = (ev1 ◦ f)(p, t)

and, thus, (p, t) 7→ x(p)(t) is k times differentiable since ev1 ◦f has this prop-
erty.

Step 3: Now we consider the case where F is not independent of t, i.e.
we look for solutions of

x′(t) = F (t, x(t), p), x(0) = 0. (1.9)
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For F̃ := (1, F ) and x̃(s) := (t(s), x(s)) the time-independent initial value
problem

x̃′(s) = F̃ (x̃(s), p), x̃(0) = (0, 0), (1.10)

is equivalent to (1.9). By Step 1, there exist an open neighbourhood P1 ⊆ P
of p0, an interval I1 = [−a, a] ⊆ I with a > 0 and for every p ∈ P1 a
function x̃(p) ∈ Ck+1(I1, I × U) which is the unique solution of (1.10) in
C1(I1, I × U). From Step 2, it follows that the map (p, s) 7→ x̃(p)(s) is k
times differentiable. The first component of x̃(p) is the identity. Hence, to
obtain a solution x(p) ∈ Ck+1(I1, U) of (1.9), we define x(p) to be the second
component of x̃(p). Clearly, also, the mapping (p, s) 7→ x(p)(s) is k times
differentiable.
Uniqueness: Let Ĩ be an arbitrary interval contained in I1 with 0 ∈ Ĩ◦. For
p ∈ P1 let y(p) ∈ C1(Ĩ , U) be another solution of (1.9). Then the function
ỹp : Ĩ → I×U defined by ỹp(s) := (s, y(s)) is continuously differentiable and
a solution of (1.10). Since solutions of (1.10) are unique in C1(Ĩ , I × U), it
follows that ỹp(t) = x̃(p)(t) and, hence, y(p)(t) = x(p)(t) for all t ∈ Ĩ.

Step 4: Finally, we look at the initial value problem

x′(t) = F (t, x(t), p0), x(t0) = x0, (1.11)

for some (t0, x0, p0) ∈ I × U × P . Let α, β > 0 such that Bα(t0) ⊆ I and
Bβ(x0) ⊆ U . Choose λ ∈ (0, 1) and µ ∈ (0, β2 ) and set γ := β−µ. We reduce
(1.11) to a differential equation with initial condition x̃(0) = 0 by defining
F̃ : Bλα(0)×Bγ−µ(0)× (B(1−λ)α(t0)×Bµ(x0)× P )→ X by

F̃ (t, x, (t1, x1, p)) := F (t+ t1, x+ x1, p).

By Step 3, there exist an open neighbourhood J̃1×U1×P1 ⊆ B(1−λ)α(t0)×
Bµ(x0)×P of (t0, x0, p0), an interval J̃ = [−b̃, b̃] ⊆ (−λα, λα) with b̃ > 0 and
for every (t1, x1, p) ∈ J̃1×U1×P1 a function x̃(t1, x1, p) ∈ Ck+1(J̃ , Bγ−µ(0))
which is a solution (unique in C1(J̃ , Bγ−µ(0))) of the initial value problem

x̃′(t) = F̃ (t, x̃(t), (t1, x1, p)), x̃(0) = 0. (1.12)

Moreover, the mapping (t1, x1, p, t) 7→ x̃(t1, x1, p)(t) is k times differentiable.
Set b := b̃

2 and let b1 ≤ b such that Bb1(t0) ⊆ J̃1. Set J := [t0 − b, t0 + b]
and J1 := (t0 − b1, t0 + b1). Then J1 ×U1 × P1 is an open neighbourhood of
(t0, x0, p0) in J ×U ×P . Now define x : J1×U1×P1 → Ck+1(J,Bγ(x0)) by

x(t1, x1, p)(t) := x̃(t1, x1, p)(t− t1) + x1.
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The map is well-defined since for t ∈ J and t1 ∈ J1 we have t − t1 ∈ J̃ and
for x1 ∈ U1 ⊆ Bµ(x0) the inclusion

x̃(t1, x1, p)(J̃) + x1 ⊆ Bγ−µ(0) +Bµ(x0) = Bγ(x0)

holds. Moreover, x is k times differentiable and for (t1, x1, p) ∈ J1×U1×P1

we have

x(t1, x1, p)′(t) =
∂

∂t
(x̃(t1, x1, p)(t− t1) + x1)

= x̃(t1, x1, p)′(t− t1)

= F̃ (t− t1, x̃(t1, x1, p)(t− t1), (t1, x1, p))

= F (t− t1 + t1, x̃(t1, x1, p)(t− t1) + x1, p)

= F (t, x(t1, x1, p)(t), p)

and further

x(t1, x1, p)(t1) = x̃((t1, x1, p))(t1 − t1) + x1 = x1.

Thus, x(t1, x1, p) is a solution of

x′(t) = F (t, x(t), p), x(t1) = x1. (1.13)

Uniqueness: For (t1, x1, p) ∈ J1 × U1 × P1 let y(t1, x1, p) ∈ C1(J, U) be
another solution of (1.13). For better readability we will denote x(t1, x1, p),
x̃(t1, x1, p) and y(t1, x1, p) simply by x, x̃ resp. y. Again, we prove uniqueness
in two steps. First, we show that there exists a neighbourhood Ĩ of t1
such that y = x on Ĩ: By the continuity of y, there exists some c ∈ (0, b]
such that supt∈Ĩ |y(t) − x1| < γ − µ where Ĩ := Bc(t1). Then the function
ỹ : (Ĩ − t1) → Bγ−µ(0) defined by ỹ(t) := y(t + t1) − x1 is continuously
differentiable and a solution of (1.12). Since solutions of (1.12) are unique
in C1(J̃ , Bγ−µ(0)) and Ĩ − t1 is contained in J̃ , it follows that ỹ(t) = x̃(t)
for t ∈ Ĩ − t1 and, hence, y(t) = ỹ(t− t1) + x1 = x̃(t− t1) + x1 = x(t) for all
t ∈ Ĩ.

Finally, reasoning as at the end of Step 1, we conclude that x(t) = y(t) even
for all t ∈ J . �
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1.12. Proof that the Existence and Uniqueness Theorem for ODEs
1.7 implies Frobenius’ Theorem 1.8.

(1) ⇒ (2): Let (x0, y0) ∈ U × V and let f be the (unique) solution of
(1.2). Then Df = F ◦ (id, f) and f(x0) = y0. For v1, v2 ∈ X we obtain

D2f(x0)(v1, v2) = (D2f(x0) · v1) · v2

= evv2
(
D(Df)(x0) · v1

)
= evv2

(
D(F ◦ (id, f))(x0) · v1

)
= evv2

((
DF (x0, f(x0)) ◦ (id,Df(x0))

)
· v1

)
= evv2

(
DF
(
x0, f(x0)

)(
v1, F (x0, f(x0)) · v1

))
= DF (x0, y0)

(
v1, F (x0, y0) · v1

)
· v2.

The last expression is symmetric in v1 and v2 since, by Schwarz’s Theorem,
D2f(x0) has this property.

(2)⇒ (1): Fix (x0, y0) ∈ U × V .
Existence: The idea is to reduce the “total” differential equation to an “or-
dinary” one with parameter, in the sense of Theorem 1.7. Then we use
property (2) to show that we can construct a solution of the initial value
problem (1.2) out of the solutions of the ordinary one.
Let η > 0 such that Bη(x0) ⊆ U . Consider the initial value problem we get
by studying the behaviour along lines through x0:

g′(t) = F (x0 + tv, g(t)) · v, g(0) = y0, (1.14)

where |t| < η and v ∈ B1(0) ⊆ X. By the Existence and Uniqueness
Theorem for ODEs 1.7, there exist η1 ∈ (0, η) and an open neighbourhood
Bs(0) ⊆ B1(0) of 0 such that the map (v, t) 7→ g(v, t) is in Ck(Bs(0) ×
(−η1, η1), V ), where g(v, .) ∈ Ck+1((−η1, η1), V ) is a solution (unique in
C1((−η1, η1), V )) of (1.14) for v ∈ Bs(0). Now fix some a ∈ (0, η1) and set
U(x0, y0) := Bas(x0). Then define f(x0, y0) : U(x0, y0)→ V by

f(x0, y0)(x) := g

(
x− x0

a
, a

)
.

Clearly, f(x0, y0) is k times differentiable. In the following, we will denote
f(x0, y0) simply by f .
To prove that f is indeed a solution of (1.2), we will use the equality of
∂1g(v, t) · w and F (x0 + tv, g(v, t)) · (tw). Therefore, we will show first that
the map h : (−η1, η1)→ Y , defined by

h(t) := ∂1g(v, t) · w − F (x0 + tv, g(v, t)) · (tw),
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is the zero function for all (v, w) ∈ Bs(0) × X. Since v 7→ g(v, 0) = y0 is
constant and F maps to a space of linear functions, we have

h(0) = ∂1g(v, 0) · w − F (x0 + 0 · v, g(v, 0)) · (0 · w) = 0.

By Schwarz’s Theorem, the chain rule and the integrability condition (2),
we obtain

h′(t) =

=
∂

∂t

(
∂1g(v, t) · w − F (x0 + tv, g(v, t)) · (tw)

)
=

∂

∂v

( ∂

∂t
g(v, t)︸ ︷︷ ︸

=F (x0+tv,g(v,t))·v

)
· w

−
(
∂1F (z) · v · tw + ∂2F (z) ·

( ∂

∂t
g(v, t)︸ ︷︷ ︸

=F (z)·v

)
· tw + F (z) · w

)

=
∂

∂v

(
F (x0 + tv, g(v, t)) · v

)
· w −

(
DF (z) · (v, F (z) · v) · tw + F (z) · w

)
(2)
=
(
∂1F (z) · tw · v + ∂2F (z) · (∂1g(v, t) · w) · v + F (z) · w

)
−
(

DF (z) · (tw, F (z) · tw) · v + F (z) · w
)

= ∂1F (z) · tw · v + ∂2F (z) · (∂1g(v, t) · w) · v
− ∂1F (z) · tw · v − ∂2F (z) · (F (z) · tw) · v

= ∂2F (z) · (∂1g(v, t) · w − F (z) · tw) · v
= ∂2F (z) · k(t) · v

=
(

evv ◦∂2F (x0 + tv, g(v, t))
)
· h(t)

for all (v, w) ∈ Bs(0) × X, where z = (x0 + tv, g(v, t)). Therefore, h is
a solution of a linear differential equation (with nonconstant coefficients)
with initial condition h(0) = 0 and, thus, it follows that h = 0 for all
(v, w) ∈ Bs(0)×X. Observe that for v = 0 the initial value problem (1.14)
is reduced to

g′(t) = 0, g(0) = ỹ0.

Therefore, g(0, . ) is the constant function t 7→ ỹ0. Thus, by the definition
of f , we obtain

f(x0) = g
(1
a

(x0 − x0), a
)

= y0.
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Finally, we have

Df(x) · w =
∂

∂x

(
g
(x− x0

a
, a
))
· w

= ∂1g
(x− x0

a
, a
)
· 1
a
· w

= F
(
x0 + a · x− x0

a
, g
(x− x0

a
, a
))
· a1
a
w

= F (x, f(x)) · w

for all w ∈ X, which proves that f is a solution of (1.2). At last, by
induction, it follows from the differential equation (1.2) that f is even k + 1
times differentiable.
Uniqueness: Let f̃ ∈ C1(U(x0, y0), V ) be another solution of (1.2). Then
the function g̃v : (−a, a)→ V defined by g̃v(t) := f̃(x0 + tv) is continuously
differentiable and a solution of (1.14) for all v ∈ Bs(0). Since solutions
of (1.14) are unique in C1((−η1, η1), V ) and a < η1, it follows that g̃v =
g(v, . )|(−a,a) for all v ∈ Bs(0). Hence, f̃(x) = f̃(x0 + a · x−x0

a ) = g̃x−x0
a

(a) =

g
(
x−x0
a , a

)
= f(x) for all x ∈ U(x0, y0).

Proof of the last statement: By the Existence and Uniqueness Theorem
for ODEs 1.7, there exist δ > 0 and an open neighbourhood U1×V1×Bs(0) ⊆
U×V ×B1(0) of (x0, y0, 0) such that the map (x1, y1, v, t) 7→ g(x1, y1, v)(t) is
in Ck(U1×V1×Bs(0)× (−δ, δ), V ), where g(x1, y1, v) a the solution (unique
in C1((−δ, δ), V )) of the initial value problem

g′(t) = F (x1 + tv, g(t)) · v, g(0) = y1.

Fix a ∈ (0, δ) such that Bas(x0) ⊆ U1. Choose λ ∈ (1
2 , 1) and set W :=

Bλas(x0) and W1 := B(1−λ)as(x0). For (x1, y1) ∈W1×V1 we define f(x1, y1) :
W → V by

f(x1, y1)(x) := g

(
x1, y1,

x− x1

a

)
(a).

Then, by the same line of argument as above, f(x1, y1) is k + 1 times dif-
ferentiable and the unique solution of (1.2) in C1(W,V ). The mapping
(x1, y1, x) 7→ f(x1, y1)(x) is in Ck(W1 × V1 ×W,V ) since (x1, y1, v1, a) 7→
g(x1, y1, v1)(a) is in Ck(W1 × V1 ×Bs(0), V ). �

1.13. Proof that Frobenius’ Theorem 1.8 implies the Inverse Func-
tion Theorem 1.9.

The (k times differentiable) inverse g—if it exists—satisfies

f(g(x)) = x.
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Differentiation with respect to x yields

Df(g(x)) ◦Dg(x) = I,

where I denotes the identity matrix. Hence,

Dg(x) = Df(g(x))−1.

Therefore, g is a solution of above differential equation with initial condition
g(y0) = x0. Thus motivated, we choose α > 0 such that Df(x) ∈ L(X,Y ) is
an isomorphism and

‖Df(x)−A‖ ≤ 1
2‖A−1‖

(1.15)

for all x ∈ Bα(x0) where A := Df(x0). Now define

G : Y ×Bα(x0)→ L(Y,X)

by G(x, y) := Df(y)−1. By the assumption on f , the map G is k − 1 times
differentiable. Consider the initial value problem

Dg(x) = G(x, g(x)), g(y0) = x0. (1.16)

We now show that the integrability condition for the solvability of (1.16) is
satisfied. For (x, y) ∈ Y ×Bα(x0) and (v, w) ∈ Y ×X we have

DG(x, y) · (v, w) =
(
∂1G(x, y), ∂2G(x, y)

)
· (v, w)

= ∂2G(x, y) · w
= D(inv ◦Df)(y) · w
= D inv

(
Df(y)

)(
D2f(y) · w

)
= −Df(y)−1 ◦

(
D2f(y) · w

)
◦Df(y)−1

= −G(x, y) ◦
(
D2f(y) · w

)
◦G(x, y),

where inv : GL(X,Y ) → GL(Y,X), ϕ 7→ ϕ−1. Hence, we obtain, by the
bilinearity of D2f(y),

DG(x, y)(v1, G(x, y) · v1) · v2

=
(
−G(x, y) ◦

(
D2f(y) · (G(x, y) · v1)

)
◦G(x, y)

)
· v2

= −G(x, y)
((

D2f(y) · (G(x, y) · v1)
)
· (G(x, y) · v2)

)
= −G(x, y)

((
D2f(y) · (G(x, y) · v2)

)
· (G(x, y) · v1)

)
= DG(x, y)(v2, G(x, y) · v2) · v1
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for all v1, v2 ∈ Y . Therefore, by Frobenius’ Theorem, the initial value prob-
lem (1.16) has a k times differentiable solution g : Ṽ → Bα(x0) where Ṽ ⊆ Y
is an open neighbourhood of y0. Let β > 0 such that V := Bβ(y0) is con-
tained in Ṽ . Then, for t ∈ (−β, β) and v ∈ B1(0), we calculate

∂

∂t
(f ◦ g)(y0 + tv) =

(
Df
(
g(y0 + tv)

)
◦Dg(y0 + tv)

)
· v

=
(

Df
(
g(y0 + tv)

)
◦Df

(
g(y0 + tv)

)−1
)
· v

= v.

It follows that

(f◦g)(y0+tv) = f◦g(y0+0·v)+

t∫
0

∂

∂s
(f◦g)(y0+sv)ds = y0+v

t∫
0

1ds = y0+tv

for all t ∈ (−β, β) and v ∈ B1(0), establishing

f(g(y)) = y (1.17)

for all y ∈ V . Set W := Bα(0) ∩ f−1(V ). By the continuity of f , the
set f−1(V ) is open in the open set U and, therefore, open in X. As an
intersection of open sets W is also open.
We now show that f maps W onto V : Let y be an element of V . Then
g(y) ∈ Bα(x0) and, by (1.17), also g(y) ∈ f−1(V ). Hence, g(y) is an element
of W whose image under f is y.
Finally, we prove that f is injective on Bα(x0)—and, therefore, also on W :
Assume that there exist x1 6= x2 in Bα(x0) such that f(x1) = f(x2). Then,
by (1.15),

|A · (x1 − x2)| = |f(x1)− f(x2)−A · (x1 − x2)|

≤
1∫

0

‖Df(x2 + t(x1 − x2)︸ ︷︷ ︸
∈Bα(x0)

)−A‖ dt · |x1 − x2|

≤ 1
2‖A−1‖

· ‖A−1‖ · |A · (x1 − x2)|

=
1
2
· |A · (x1 − x2)|.

A being an isomorphism, the above inequality can be satisfied only if x1 = x2.
Summing up, f maps W bijectively to V and g is the (k times differentiable)
inverse of f |W . �
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1.14. Proof that the Inverse Function Theorem 1.9 implies the
Implicit Function Theorem 1.6.

Let Ũ×Ṽ ⊆ U×V be an open neighbourhood of (x0, y0) such that ∂2F (x, y)
is an isomorphism for all (x, y) ∈ Ũ × Ṽ . We define g : Ũ × Ṽ → X × Z by

g(x, y) := (x, F (x, y)).

Obviously, g is k times differentiable and its derivative at (x0, y0) is given by

Dg(x, y) =

(
id 0

∂1F (x0, y0) ∂2F (x0, y0)

)
.

By assumption, ∂2F (x0, y0) is invertible and, hence, also Dg(x0, y0) has an
inverse, namely

Dg(x, y)−1 =

(
id 0

−∂2F (x0, y0) ◦ ∂1F (x0, y0) ∂2F (x0, y0)−1

)
.

By the Inverse Function Theorem 1.9, there exist open neighbourhoods Ũ1 ⊆
Ũ of x0 and V1 ⊆ Ṽ of y0, an open neighbourhood W ⊆ X×Z of g(x0, y0) =
(x0, F (x0, y0)) and a k times differentiable function h = (h1, h2) : W →
Ũ1 × V1 such that h is the inverse of g|Ũ1×V1

. We may assume that V1 is
an open ball with centre y0. Now, set z0 := F (x0, y0) and choose an open
neighbourhood U1 of x0 (e.g. an open ball with centre x0) such that U1×{z0}
is contained in W . Let x ∈ U1. Since g maps Ũ1×V1 bijectively to W , there
exists a unique point (u, y) ∈ Ũ1 × V1 such that (u, F (u, y)) = g(u, y) =
(x, z0). Hence, we have u = x and, therefore, F (x, y) = z0. We denote the
map from U1 to V1 that assigns y to x by f and obtain

F (x, f(x)) = z0 = F (x0, y0)

for all x ∈ U1. Since g was a bijection from Ũ1 × V1 to W , the map f is the
only function from U1 to V1 to have this property. From

(x, f(x)) = g−1(x, z0) = h(x, z0) = (h1(x, z0), h2(x, z0))

for x ∈ U1, it follows that f is the map h2 restricted to U1 × {z0} and,
therefore, f is k times differentiable.

Differentiating F (x, f(x)) = F (x0, y0) with respect to x yields

∂1F (x, f(x)) + ∂2F (x, f(x)) ◦Df(x) = 0

and, thus, we obtain the differentiation rule

Df(x) = −∂2F (x, f(x))−1 ◦ ∂1F (x, f(x)).

for all x ∈ U1. �
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1.15. Remark: As to the question of C1 vs. C2, there are two more levels
of interest: Which of the theorems, on the one hand, in fact hold assuming
only C1, and what, on the other hand, the proofs given above actually do
show.

• The Implicit Function Theorem, the Existence and Uniqueness The-
orem for ODEs and the Inverse Function Theorem hold true also for
C1-functions. As to Frobenius’ Theorem, only (1) ⇒ (2) requires C2.
For (2) ⇒ (1) and the uniqueness statement, C1 is sufficient.

• Our proofs given in this section are capable of handling also the C1 case
as outlined above with the one exception of the proof of the Inverse
Function Theorem: Although we only require C1 in order to apply
the direction (2) ⇒ (1) of Frobenius’ Theorem, the checking of the
integrability condition for the relevant differential equation forces us
to use second derivatives of the function to be inverted.
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Chapter 2

The special Colombeau

algebra

In this chapter we will give a short description of the so-called special
Colombeau algebra (cf. Definition 2.1). For the convenience of the reader,
we state all the propositions and theorems we will use in the following chap-
ters. If not stated otherwise, they are taken from [GKOS01] (Chapter 1)
where proofs can also be found. However, in some exceptional cases explicit
proofs are provided in this chapter. We will do so if the respective results
are either slightly upgraded versions of already published theorems (in this
case there is a reference to the original theorem), or if they are entirely new
(auxiliary) theorems for later use.

In the following, Ck(U) resp. D′(U) denote the space of k-times continu-
ously differentiable functions (k ∈ N0∪{∞}) resp. of distributions on U with
values in K where K can be either R or C. For subsets A, B of a topological
space (X, T ), the relation A ⊂⊂ B is shorthand for the statement that A is
a compact subset of the interior of B.

2.1 Definition of G(U) and embedding of D′(U)

The theory of distributions was developed in order to handle singular (e.g.
delta-like) objects in linear partial differential equations, obeying rigorous
mathematical standards. However, the limitations of a purely linear theory
soon became apparent (cf. [Lew57]). Unfortunately, there is no way to de-
fine a “reasonable” product on all of D′ which still has values in D′. For
some examples on this subject consult [GKOS01]. Nonetheless, there exist
various approaches to defining a multiplication of distributions that avoid
these difficulties. They can be divided into two main categories (also cp.
[Obe92]):
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1. Intrinsic products: A product of distributions valued in D′ is defined
only for certain subsets of D′.

2. Extrinsic products: In this case the vector space of distributions is
embedded into an algebra.

We are interested in 2. More precisely, if U is an open subset of Rn, we are
looking for an associative and commutative algebra (A(U),+, ◦) satisfying
the following:

(i) D′(U) is linearly embedded into A(U) and f(x) ≡ 1 is the unit in A(U).

(ii) There exist derivation operators ∂i : A(U) → A(U) which are linear
and satisfy the Leibniz rule, for i = 1, . . . , n.

(iii) ∂i|D′(U) is the usual partial derivative.

(iv) ◦|
? × ?

is the usual product.

Condition (ii) is the statement that A(U) is a differential algebra. The
impossibility result of L. Schwartz (cf. [Sch54]) shows that there exists no
algebra satisfying (i)–(iv) if ? is set equal to C(U) in (iv). From a slight
variation of his proof, it follows that the same is true if ? is replaced by
Ck(U) for any k ∈ N. However, in the 1980s, J. F. Colombeau introduced
a method to construct associative, commutative differential algebras whose
product coincides with the pointwise product of smooth functions (i.e. ? =
C∞) and which contain the space of distributions. One of those is the special
Colombeau algebra which is defined as follows:

2.1. Definition: Let U be an open subset of Rn. Set

E(U) := C∞(U)(0,1],

EM (U) := {(uε)ε ∈ E(U) | ∀K ⊂⊂ U ∀α ∈ Nn
0 ∃N ∈ N :

sup
x∈K
|∂αuε(x)| = O(ε−N ) as ε→ 0},

N (U) := {(uε)ε ∈ E(U) | ∀K ⊂⊂ U ∀α ∈ Nn
0 ∀m ∈ N :

sup
x∈K
|∂αuε(x)| = O(εm) as ε→ 0}.

Elements of EM (U) resp. N (U) are called moderate resp. negligible func-
tions. EM is a subalgebra of E(U), N (U) is an ideal in EM (U). The special
Colombeau algebra on U is defined as

G(U) := EM (U)/N (U).
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Operations on EM (U), the algebra of all moderate nets of smooth func-
tions, are defined for each ε separately. Differentiation is carried out com-
ponentwise, i.e. ∂α(uε)ε := (∂αuε)ε. The set of all negligible nets of smooth
functions N (U) is a differential ideal of EM (U), turning G(U) into an asso-
ciative, commutative differential algebra. Throughout this work, the term
“generalised functions” refers to elements of the special Colombeau algebra.

If u = [(uε)ε] ∈ G(U) and V is an open subset of U , the restriction
u|V ∈ G(V ) is defined as (uε|V )ε + N (V ). We say that u vanishes on V if
u|V = 0 in G(V ). The support of u is defined as

suppu :=
(⋃
{V ⊆ U |V open, u|V = 0}

)c
.

The algebra C∞(U) can be embedded into G(U) via the obvious map
σ : f 7→ (f)ε +N (U). For the embedding of D′(U) we will use

2.2. Theorem: U 7→ G(U) is a fine sheaf of differential algebras on Rn.

The main idea for embedding D′(U) is to regularise the distributions
via convolution with a so-called mollifier:

2.3. Definition: The space of Schwartz functions on Rn is defined by

S(Rn) := {ϕ ∈ C∞(Rn) | ∀α ∈ Nn
0 ∀ p ∈ N0 : sup

x∈Rn
(1 + |x|)p ∂αϕ(x) <∞}.

A mollifier is an element ρ ∈ S(Rn) satisfying∫
ρ(x) dx = 1,∫

xαρ(x) dx = 0 ∀ |α| ≥ 1.

We always set

ρε(x) :=
1
εn
ρ
(x
ε

)
.

Since the convolution w ∗ ρε is not defined for arbitrary w ∈ D′(U), the
embedding is constructed in three steps. First, we restrict our attention to
compactly supported distributions for which the convolution with ρε is, in
fact, defined.

2.4. Proposition: For any open subset U of Rn the map

ι0 : E ′(U) → G(U)
w 7→ ((w ∗ ρε)|U )ε +N (U))

is a linear embedding.
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2.5. Remark: In the above convolution formula, as well as in all comparable
identities to follow, we tacitly assume that w is extended to all of Rn by
setting it equal to zero outside of U .

It can be shown that on D(U) the embedding ι0 coincides with σ:

2.6. Proposition: ι0|D(U) = σ. Consequently, ι0 is an injective homomor-

phism of algebras on D(U).

Next, we choose an open covering (Uλ)λ∈Λ of U such that each Uλ is a
compact subset of U , a family (ψλ)λ of elements of D(U) with ψλ ≡ 1 in some
neighbourhood of Uλ and a mollifier ρ ∈ S(Rn). Multiplying w ∈ D′(U) with
the cut-off function ψλ gives a distribution with compact support. Therefore,
for each λ ∈ Λ we may apply the previously constructed E ′-embedding.
Hence, for every λ ∈ Λ we define the partial embedding

ιλ : D′(U) → G(Uλ)

w 7→
((

(ψλw) ∗ ρε
)
|Uλ
)
ε

+N (Uλ).

Finally, the following proposition opens the way to the definition of the
embedding of D′(U).

2.7. Proposition: For any w ∈ D′(U), (ιλ(w))λ∈Λ is a coherent familiy, i.e.

ιλ(w)|Uλ∩Uµ = ιµ(w)|Uλ∩Uµ

for all λ, µ ∈ Λ.

Since G is a sheaf, for any w ∈ D′(U) there exists a unique u ∈ G(U)
with u|Uλ = ιλ(w) for all λ ∈ Λ. We will denote this u by ι(w). Then it is
easy to show

2.8. Theorem: The map ι : D′(U) ↪→ G(U) is a linear embedding.

Given a smooth partition of unity (χj)j∈N subordinate to (Uλ)λ (where
suppχj ⊆ Uλj ) we can even give an explicit formula for the embedding
ι : D′(U)→ G(U):

ι(w) =
( ∞∑
j=1

χj
(
(ψλjw) ∗ ρε

))
ε

+N (U). (2.1)

G(U) indeed satisfies properties (iii) and (iv) for ? = C∞(U):

2.9. Theorem: If α ∈ Nn
0 and w ∈ D′(U), then ∂α(ι(w)) = ι(∂αw).

2.10. Proposition: ι|C∞(U) = σ, turning C∞(U) into a subalgebra of G(U).
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The embedding ι is consistent with our previous construction of ι0:

2.11. Proposition: ι|E ′(U) = ι0.

The embedding ι depends on the choice of the mollifier ρ. However, it
does neither depend on the open covering of U nor on the family of cut-off
functions nor the partition of unity:

2.12. Theorem: The embedding ι : D′(U) ↪→ G(U) does not depend on the

particular choice of (Uλ)λ, (ψλ)λ and (χj)j .

We denote by ι̂ the entirety of all ι = ιU : D′(U) → G(U), U an open
subset of Rn. Then we may state

2.13. Proposition: ι̂ : D′ → G is a sheaf morphism (in the category of real

resp. complex vector spaces), i.e. for open sets V ⊆ U ⊆ Rn and w ∈ D′(U)
we have

ιU (w)|V = ιV (w|V ).

In short: ι̂ commutes with restrictions.

For certain types of functions and distributions a simpler embedding
formula holds.

2.14. Proposition: If f ∈ L1
loc(U) is polynomially bounded (i.e. if there

exist C > 0 and r ∈ N with |f(x)| ≤ C(1 + |x|)r a.e.), then

ι(f) =
(
(f ∗ ρε)|U

)
ε

+N (U)

holds.

For any open subeset U of Rn we set

S ′(U) := {w ∈ D′(U) | ∃ w̃ ∈ S ′(Rn) such that w̃|U = w in D′(U)}.

2.15. Proposition: Let w ∈ S ′(U) and take any extension w̃ ∈ S ′(Rn) of

w. Then ι(w) =
(
(w̃ ∗ ρε)|U

)
ε

+N (U).

2.16. Example: By Proposition 2.11, the image of the Dirac measure
(“delta function”) under the embedding ι is given by

ι(δ) = (ρε)ε +N (Rn).

According to Proposition 2.15, the Heaviside functionH embedded into G(R)
has the form

ι(H)(x) = (H ∗ ρε(x))ε +N (R) =
( x∫
−∞

ρε(y) dy
)
ε

+N (R).
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Finally, the following theorem provides a useful characterisation ofN (U)
as a subspace of EM (U). We will apply it quite often without referring to
the theorem in every instance.

2.17. Theorem: (uε)ε ∈ EM (U) is negligible if and only if the following

condition is satisfied:

∀K ⊂⊂ U ∀m ∈ N : sup
x∈K
|uε(x)| = O(εm) as ε→ 0.

2.2 Composition of generalised functions

Generalised functions can be composed with smooth classical functions pro-
vided they grow not “too fast”:

2.18. Definition: The space of slowly increasing smooth functions is given

by

OM (Kn) := {f ∈ C∞(Kn) | ∀α ∈ Nn
0 ∃N ∈ N0 ∃C > 0 :

|∂αf(x)| ≤ C(1 + |x|)N ∀x ∈ Kn}.

2.19. Proposition: If u = [(uε)ε] ∈ G(U)m and v ∈ OM (Km), then

v ◦ u := [(v ◦ uε)ε]

is a well-defined element of G(U), i.e. (v ◦ uε)ε is moderate and v ◦ u is

independent of the choice of the representative (uε)ε of u.

The composition of two arbitrary generalised functions is not defined.
For instance, consider the moderate nets (ex)ε and (1

ε )ε. Composing these
two componentwise gives

(
e

1
ε

)
ε
, a net that no longer satisfies the EM -esti-

mates. However, if, loosely speaking, the “image” of any compact subset K
of U under the first “function” (note that we rather have to deal with the
collection of all uε(K), ε ∈ (0, 1]) is always contained in a compact set, the
composition works out fine. We will call this property “compactly bounded”
or short “c-bounded”. Since, plainly, an invertible generalised function must
be capable of being composed with its inverse, the notion of c-boundedness
will play a crucial role in this work (cf. [GKOS01] resp. below). However,
there is a certain inconsistency in [GKOS01] as to the precise meaning of
“c-boundedness from Ω into Ω′” of moderate nets (uε)ε:

• Firstly, considering Ω and Ω′ simply as open subsets of Rn resp. Rm,
Definition 1.2.7 of [GKOS01] does not require that any uε actually
maps Ω into Ω′; only the corresponding compactness condition is stip-
ulated ((1.1) in [GKOS01]).
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• Alternatively, viewing Ω and Ω′ as smooth manifolds of dimensions n
resp. m in the natural way, Definition 3.2.45 of [GKOS01] can also be
applied requiring—this time—that, in addition, each uε maps Ω into
Ω′.

It seems not to be known, in general, whether these two definitions ([GKOS01]
1.2.7 resp. 3.2.50) lead to the same notion of c-bounded generalised functions
from Ω into Ω′. As an additional mishap, at both places in [GKOS01] the
resulting spaces of c-bounded generalised functions are denoted by Gs[Ω,Ω′].
Partial results on the equality of these notions have been obtained in un-
published work by M. Grosser and H. Vernaeve.
Since in the present work range spaces are focused upon in many places, we
will include the requirement uε(Ω) ⊆ Ω′ in our definition of c-boundedness.
Moreover, this leaves the door open for a “smooth” generalisation to the
manifold setting.

2.20. Definition: Let U and V be open subsets of Rn resp. Rm. An element

(uε)ε = (u1
ε, . . . , u

m
ε ) ∈ EM (U)m is called compactly bounded (c-bounded)

from U into V if

(1) ∃ ε0 ∈ (0, 1] such that ∀ ε ≤ ε0 : uε(U) ⊆ V and

(2) ∀K ⊂⊂ U ∃L ⊂⊂ V ∃ ε0 ∈ (0, 1] such that ∀ ε ≤ ε0 : uε(K) ⊆ L

are satisfied. The collection of c-bounded moderate functions from U into

V is denoted by EM [U, V ].
An element of G(U)m is called compactly bounded (c-bounded) if all rep-

resentatives satisfy (1) and (2). The space of c-bounded generalised functions

from U into V is denoted by G[U, V ].

2.21. Proposition: Let u ∈ G(U)m be c-bounded into V and let v ∈ G(V ),
with representatives (uε)ε resp. (vε)ε. Then the composition

v ◦ u := [(vε ◦ uε)ε]

is a well-defined generalised function in G(U).

2.3 Point values and generalised numbers

2.22. Definition: We set

EM := {(rε)ε ∈ K(0,1] | ∃N ∈ N : |rε| = O(ε−N ) as ε→ 0},

N := {(rε)ε ∈ K(0,1] | ∀m ∈ N : |rε| = O(εm) as ε→ 0}.
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K := EM/N is called the ring of generalised numbers. In case K = R resp.

K = C we set K = R resp. K = C.

K is embedded into every G(U) in the obvious way.

2.23. Definition: For u := [(uε)ε] ∈ G(U) and x0 ∈ U the point value of u
at x0 is defined as the class of (uε(x0))ε in K.

K is the ring of “constants” of G(U):

2.24. Proposition: Let U be a connected open subset of Rn and u ∈ G(U).
Then Du = 0 if and only if u ∈ K.

We now give a characterisation of the (multiplicatively) invertible ele-
ments of the ring K.

2.25. Definition: An element r ∈ K is called strictly non-zero if there exist

some representative (rε)ε of r and an N ∈ N with |rε| ≥ εN for ε sufficiently

small.

2.26. Theorem: Let r ∈ K. The following are equivalent:

(1) r is invertible.

(2) r is strictly non-zero.

In order to obtain a point value characterisation of generalised functions
the definition of point values has to be extended.

2.27. Definition: On

UM := {(xε)ε ∈ U (0,1] | ∃N ∈ N : |xε| = O(ε−N ) as ε→ 0}

we introduce an equivalence relation by

(xε)ε ∼ (yε)ε ⇔ ∀m ∈ N : |xε − yε| = O(εm) as ε→ 0

and denote by Ũ := UM/∼ the set of generalised points. The set of compactly
supported points is

Ũc := {x̃ = [(x̃ε)ε] ∈ Ũ | ∃K ⊂⊂ U ∃ ε0 ∈ (0, 1] such that ∀ ε ≤ ε0 : xε ∈ K}.

A point x̃ ∈ Ũc is called near-standard if there exists x ∈ U such that xε → x

as ε→ 0 for every representative (xε)ε of x.

For U = K we have K̃ = K. Thus, we have the canonical identification
K̃n = K̃n = Kn. For K̃c we write Kc.
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2.28. Proposition: Let U be an open subset of Rn, V an open subset of

Rm, u = [(uε)ε] ∈ G(U × V ) and ỹ = [(ỹε)ε] ∈ Ṽc. Then the net (uε( . , ỹε))ε
is in EM (U) and u( . , ỹ) := [(uε( . , ỹε))ε] is a well-defined element of G(U).

Proof: (uε( . , ỹε))ε is the composition of (uε)ε with the moderate and c-
bounded net (x 7→ (x, ỹε))ε. The proposition follows immediately from
Proposition 2.21. �

Obviously, for u ∈ G(U) and x̃ ∈ Ũc, u(x̃) is a generalised number, the
generalised point value of u at x̃. In Chapter 5 we will use the following

2.29. Corollary: If ṽ = [(ṽε)ε] ∈ R̃n
c , then the evaluation evṽ := [(evṽε))ε]

at ṽ given by evṽε : L(Rn,Rm) → Rm, evṽε(A) = A · vε, is a well-defined

element of G(Rnm)m.

Proof: Apply Proposition 2.28 to ev : L(Rn,Rm) × Rn → Rm, ev(A, v) :=
A · v, and ṽ. �

In [GKOS01], it is proved that two generalised functions are equal in
the Colombeau algebra if and only if their generalised point values coincide
(in the ring of generalised numbers) at all compactly supported points. S.
Konjik and M. Kunzinger improved this result by showing that it is sufficient
to check the values at all near-standard points (cf. [KK06]). We will need a
slightly extended result:

2.30. Proposition: Let u ∈ G(U × V ). Then

u = 0 in G(U × V ) ⇔ u( . , ỹ) = 0 in G(U) for all near-standard

points ỹ ∈ Ṽc.

Proof: (⇒) Let ỹ be a near-standard point in Ṽc and L ⊂⊂ V such that
ỹε ∈ L for all ε ≤ ε1 for some ε1 ∈ (0, 1]. Let K ⊂⊂ U . From

sup
x∈K
|uε(x, ỹε)| ≤ sup

x∈K,y∈L
|uε(x, y)| ≤ Cεm,

it follows that (uε( . , ỹε))ε is in N (U).
(⇐) If u 6= 0 in G(U × V ), then, by Theorem 2.17, we have

∃K ⊂⊂ U × V ∃m ∈ N ∀ η > 0 ∃ ε ∈ (0, η) : sup
(x,y)∈K

|uε(x, y)| > εm. (2.2)

Expression (2.2) yields the existence of sequences εk ↘ 0 and (xk, yk) ∈ K
such that |uεk(xk, yk)| ≥ εmk for all k ∈ N. Since K is compact, there exists a
subsequence (xkl , ykl)l∈N which converges to some (x, y) ∈ K. For ε > 0 we
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set (x̃ε, ỹε) := (xkl , ykl) for ε ∈ (εkl+1
, εkl ], l ∈ N. Then x̃ resp. ỹ is a near-

standard point in Ũc resp. Ṽc. Let α, β > 0 such that Bα(x)×Bβ(y) ⊆ U×V .
For sufficiently small ε the points (x̃ε, ỹε) are contained in Bα(x) × Bβ(y).
Therefore, we obtain

sup
x∈Bα(x)

|uε(x, ỹε)| ≥ |uε(x̃ε, ỹε)| ≥ εm,

implying u( . , ỹ) 6= 0 in G(U), contradiction. �

Finally, we prove some results that we will use in Chapters 3 and 5.
Before doing so, a remark on notation is in order: By Kmn we denote the
space of generalised (m × n)-matrices over K. G(U)mn denotes the algebra
of generalised functions u with point values in Kmn. Obviously, for any
u = [(uε)ε] ∈ G(U)m the derivative Du has (Duε)ε as representative and,
therefore, can be regarded as an element of G(U)mn.

2.31. Proposition: Let A be a square matrix in Kn2
such that det(A) is

strictly non-zero. Let (Aε)ε and (Āε)ε be two representatives of A. Then

(A−1
ε )ε is moderate, (‖A−1

ε ‖)ε is strictly non-zero and (A−1
ε − Ā−1

ε )ε is neg-

ligible.

Proof: Let aijε resp. bijε denote the entries of Aε resp. A−1
ε . Then

|bijε | =
1

|det(Aε)|
|Rij((arsε )r,s)|,

where Rij is a polynomial of degree n − 1 in n2 variables. Since det(A) is
strictly non-zero, and by the moderateness of the (aijε )ε, the net (bijε )ε, and
therefore (A−1

ε )ε, is moderate.

Next, we show that (A−1
ε )ε is strictly non-zero: By the moderateness of

(Aε)ε, there exist C > 0 and N ∈ N such that ‖Aε‖ ≤ Cε−N for ε sufficiently
small. Therefore,

1
C
εN ≤ 1

‖Aε‖
≤ ‖A−1

ε ‖

yields the desired estimate.

Finally, let (Nε)ε be an element of N n2
such that Āε = Aε+Nε. Choose

C1 > 0, N1 ∈ N and ε′ such that

‖A−1
ε ‖‖Aε − Āε‖ ≤ C1ε

−N1 · ‖Nε‖ < 1
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for all ε ≤ ε′. Applying Lemma 1.2, we obtain

‖A−1
ε − Ā−1

ε ‖ ≤
‖A−1

ε ‖2‖Aε − Āε‖
1− ‖A−1

ε ‖ ‖Aε − Āε‖

≤ C2
1ε
−2N1 · C2ε

m

1− C2
1ε
−2N1 · C2εm

≤ C3ε
m+2N1

for constants C2, C3 > 0, arbitrary m ∈ N and sufficiently small ε. This
establishes the negligibility of (A−1

ε − Ā−1
ε )ε. �

2.32. Proposition: Let U be an open subset of Rl and a = [(aε)ε] ∈
G(U)tm and b = [(bε)ε] ∈ G(U)mn. We define cε : U → L(Kn,Kt) by

cε(x) := aε(x) ◦ bε(x). Then the net (cε)ε is moderate and c := [(cε)ε] is a

well-defined element of G(U)tn.

Proof: The composition comp : L(Km,Kt) × L(Kn,Km) → L(Kn,Kt) de-
fined by comp(A,B) := A ◦ B is smooth and bilinear. Thus, comp is
an element of OM

(
Ktm ×Kmn

)tn. By Proposition 2.19, the composition
c = comp ◦ (a, b) is a well-defined element of G(U)tn. �

The next result presents an exponential law for generalised functions
with values in the space of generalised matrices over R.

2.33. Proposition: Let U be an open subset of Rl. If u := [(uε)ε] is in

G(U)mn, then û := [(ûε)ε] defined by ûε : U ×Rn → Rm, ûε(x, v) := uε(x) ·v
is in G(U × Rn)m. Conversely, if w ∈ G(U × Rn)m such that there exists a

representative (wε)ε with wε linear in the second component for all ε ∈ (0, 1],
then w̌ := [(w̌ε)ε] defined by w̌ε : U → Rmn, w̌ε(x) := wε(x, . ) is in G(U)mn.

Proof: Let u := [(uε)ε] be in G(U)mn. Define ũε : U × Rn → L(Rn,Rm),
ũε(x, v) := uε(x), and g : U × Rn → L(R,Rn), g(x, v) := v. By Proposition
2.32, it follows that û, given by ûε(x, v) = ũε(x, v) ◦ gε(x, v) = uε(x) · v, is a
well-defined element of G(U × Rn)m.

Conversely, let w ∈ G(U ×Rn)m such that there exists a representative
(wε)ε with wε linear in the second component for all ε ∈ (0, 1]. By the
classical exponential law, the functions w̌ε : U → Rmn, w̌ε(x) := wε(x, . ),
are smooth for all ε. Let K ⊂⊂ U . By the moderateness of (wε)ε, it follows
that

sup
x∈K
|∂αw̌ε(x)| = sup

x∈K
|∂α1wε(x, . )| = sup

x∈K
|v|≤1

|∂α1wε(x, v)| ≤ C · ε−N

for all α ∈ Nl
0. For any (nε)ε ∈ N (U × Rn)m that is linear in the second

component we also have (ňε)ε ∈ N (U)mn, so ǔ is well-defined. �
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2.4 Association

The terms “associated” and “distributional shadow” (to be defined below)
will be used in Chapter 4.

2.34. Definition: Two elements u and v of G(U) are called associated (de-

noted by u ≈ v) if

lim
ε→0

∫
U

(uε(x)− vε(x))ϕ(x) dx = 0 ∀ϕ ∈ D(U)

for some (and therefore all) representative(s) (uε)ε of u resp. (vε)ε of v.

Let u ∈ G(U) and w ∈ D′(U) and suppose that u ≈ ι(w). Then u is said

to admit w as associated distribution and w is called distributional shadow
of u. In this case we simply write u ≈ w.

The distributional shadow of u is uniquely determined (if it exists):

2.35. Proposition: If w ∈ D′(U) and ι(w) ≈ 0, then w = 0.

On K, the ring of constants in G(U), ≈ induces an equivalence relation
we also denote by ≈. We explicitly rephrase this in

2.36. Definition: Two elements r and s of K are called associated (de-

noted by r ≈ s) if (rε − sε) → 0 as ε → 0 for some (and therefore all)

representative(s) (rε)ε of r resp. (sε)ε of s.

If there exists some a ∈ K with r ≈ a, then a is called associated number
or shadow of r.

Finally, we study the relation between f ∈ Ck(U) and ι(f).

2.37. Definition: Let u ∈ G(U) and f ∈ Ck(U) for k ∈ N0 ∪ {∞}. The

generalised function u is called Ck-associated with f (denoted by u ≈k f)

if for all α ∈ Nn
0 with |α| ≤ k and one (hence any) representative (uε)ε of u

∂αuε → ∂αf

for ε→ 0 uniformly on compact subsets of U .

2.38. Lemma: Let g ∈ C(Rn) be bounded, ρ ∈ L1(Rn) with
∫

Rn ρ(x) dx =
1. Then, for ρε(x) := 1

εn ρ(xε ),

g ∗ ρε → g

for ε→ 0 uniformly on compact sets.
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Proof: Let K ⊂⊂ Rn and η > 0. Choose N such that∫
|z|>N

|ρ(z)| dz < η

4‖g‖∞
.

The function g is uniformly continuous on the compact set K + BN (0).
Hence, there exists some ε0 ∈ (0, 1] such that

|g(x− εz)− g(x)| < η

2‖ρ‖1

for all x ∈ K, z ∈ BN (0) and ε ≤ ε0. Then, for x ∈ K and substituting z
for y

ε , we obtain

|(g∗ρε)(x)− g(x)| ≤

≤
∫

Rn

|g(x− y)− g(x)||ρε(y)| dy

=
∫

|z|≤N

|g(x− εz)− g(x)|︸ ︷︷ ︸
≤ η

2‖ρ‖1

|ρ(z)| dz +
∫

|z|>N

|g(x− εz)− g(x)|︸ ︷︷ ︸
≤2 ‖g‖∞

|ρ(z)| dz

< η

for all ε ≤ ε0. �

2.39. Proposition: Let f ∈ Ck(U) for k ∈ N0 ∪ {∞}. Then ι(f) is Ck-

associated with f .

Proof: We will show the convergence for the representative occurring in
(2.1), i.e.

fε :=
∞∑
j=1

χj ·
(
(ψλjf) ∗ ρε

)
.

Let α ∈ Nn
0 with |α| ≤ k. The function ∂α(ψλjf) is defined on Rn and

continuous. Since ψλj has compact support, ∂α(ψλjf) is also bounded. From
Lemma 2.38, it follows that

∂α(ψλjf) ∗ ρε → ∂α(ψλjf)

for ε → 0 uniformly on compact sets. Now let K be a compact subset of
U . Then for only a finite number of values of j, say j = 1, . . . ,M , the
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intersection K ∩ suppχj is non-empty. Therefore, on K we have

∂αfε =
M∑
j=1

∂α
(
χj ·

(
(ψλjf) ∗ ρε

))

=
M∑
j=1

∑
|β|≤|α|

(
α

β

)
· ∂βχj ·

(
∂α−β(ψλjf) ∗ ρε

)

→
M∑
j=1

∑
|β|≤|α|

(
α

β

)
· ∂βχj · ∂α−β(ψλjf)

=
M∑
j=1

∂α
(
χjψλjf

)

= ∂α
(
f ·

M∑
j=1

χj

)
= ∂αf

as ε→ 0. This concludes the proof. �
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Chapter 3

Inversion of generalised

functions

In the setting of generalised functions the question of inversion of functions
has, so far, not been addressed. Part of the reason for this may be the consid-
erable technical problems caused by the lack of a reasonable notion of range
or image of a set under a generalised function. However, in certain applica-
tions “discontinuous coordinate transformations”—which can be modelled
by a generalised function—have already been employed successfully, though
on a rather informal level (see Chapter 4).
In this chapter we present and discuss several notions of invertibility of
generalised functions. In Section 3.1, we give definitions of left resp. right
invertibility, invertibility and strict invertibility, followed by a discussion of
the immediate implications. Motivated by several questions arising naturally
when trying to invert a net of smooth functions, we find several necessary
conditions for (left, right) invertibility (Section 3.2). In Section 3.3, we
analyse to which extent the properties “ca-injective” and “ca-surjective”
(“ca” being shorthand for “asymptotically on compact sets”) defined in the
preceding section are sufficient to guarantee the existence of a (left, right)
inverse of a generalised function. Finally, in Section 3.4, we prove some
generalised inverse function theorems and study their relation to the classical
Inverse Function Theorem 1.3 in Chapter 1.

At this point two remarks are in order: First, since generalised functions
are defined on open subsets of Rn and we are interested in inverting such
functions, we consider only generalised functions with (generalised) values
in R. Hence, more specifically than in Chapter 2, in this (and the following)
chapter(s) Ck(U) (for k ∈ N0 ∪ {∞}), EM (U), N (U) and G(U) denote the
spaces of functions, nets resp. generalised functions with (generalised) values
in R.
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Second, this chapter contains several graphics of nets of smooth functions.
To give an idea of the behaviour of a net (fε)ε each graphic consists of five
plots of fε for five different values of ε where the curves are shaded differently;
the plots of fε become darker for ε tending to 0.

3.1 Invertibility of generalised functions

We start right away with a definition of invertibility of a generalised function
on an open set.

3.1. Definition (Invertibility): Let U be an open subset of Rn and

u ∈ G(U)n. Let A be an open subset of U .

(LI) u is called left invertible on A if there exist some v ∈ G(V )n with V an

open subset of Rn and an open set B ⊆ V such that u|A is c-bounded into

B and v ◦ u|A = idA. Then v is called a left inverse of u on A. Notation: u

is left invertible (on A) with left inversion data [A, V, v,B].

(RI) u is called right invertible on A if there exist some v ∈ G(V )n with V

an open subset of Rn and an open set B ⊆ V such that v|B is c-bounded into

A and u ◦ v|B = idB. Then v is called a right inverse of u on A. Notation:

u is right invertible (on A) with right inversion data [A, V, v,B].

(I) u is called invertible on A if it is both right and left invertible on A with

right inversion data [A, V, v,Br] and left inversion data [A, V, v,Bl]. Then v

is called an inverse of u on A. Notation: u is invertible (on A) with inversion

data [A, V, v,Bl, Br].

(SI) u is called strictly invertible on A if it is invertible on A with inversion

data [A, V, v,B,B] for an open subset B of V . Then v is called a strict
inverse of u on A. Notation: u is strictly invertible (on A) with inversion

data [A, V, v,B].

Throughout this work we will also use the formulations “u is invertible
(on A) by [A, V, v,Bl, Br]” and “[A, V, v,Bl, Br] is an inverse of u (on A)”.
If we do not specify a set on which a given u ∈ G(U)n is invertible, we
always refer to invertibility on U , i.e. on its domain. The same rules of
language apply to the cases of “left invertible”, “right invertible” or “strictly
invertible”.
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3.2. Remark:

(1) Note that u need not to be a c-bounded function on U . Only the re-
striction to the set A where it is composed with a left inverse must have
this property.

(2) The notion of invertiblity of a generalised function u is more than the
combination of left and right invertibility with respect to the same v yet
possibly different sets Al (for left) and Ar (for right).

(3) If a smooth function f : U → V (with U and V open subsets of Rn) is
classically invertible with smooth inverse g : V → U , then, obviously,
σ(f) = ι(f) is strictly invertible on U with inversion data [U, V, σ(g), V ].

Since the discontinuity in the “discontinuous coordinate transforma-
tion” in Chapter 4 consists of a jump, one type of functions we are interested
in inverting are jump functions. Therefore, let us consider

3.3. Example: Let u := [(uε)ε] ∈ G(U) with U := (−α, α) for α > 0 be
defined by uε(x) := x + arctan x

ε (Figure 3.1). Then u models a function
with a jump of height π at 0.
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Figure 3.1: uε(x) = x+ arctan x
ε

We are interested in inverting u “around the jump”, i.e. we want to find an
inverse in the sense of Definition 3.1 (I) on an open set A ⊆ U containing 0.
For every ε the function uε is (classically) invertible by some C∞-map vε :
uε(U) = (uε(−α), uε(α))→ U . In the following, we will successively specify
sets V , A, Bl and Br, showing that, in fact, u is invertible in the sense of
Definition 3.1 (I).
To this end, first note that uε(x) ↗ x + π

2 for every x > 0. Setting x = α

and choosing β ∈ (0, α), we see that for ε small, say ε ≤ ε0, uε(U) contains
(−(β + π

2 ), β + π
2 ). So V := (−(β + π

2 ), β + π
2 ) is a suitable choice for a
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common domain for all vε (ε ≤ ε0). Defining A := (−α1, α1) for some fixed
α1 with 0 < α1 < β and using uε(α1) ↗ α1 + π

2 , we obtain that uε(A) =
uε((−α1, α1)) ⊆ [−(α1 + π

2 ), α1 + π
2 ] for ε small (say ε ≤ ε1 ≤ ε0). Therefore,

for Bl we may take any open subset of V containing [−(α1 + π
2 ), α1 + π

2 ],
e.g. Bl := (−(βl + π

2 ), βl + π
2 ) for βl ∈ (α1, β), guaranteeing that (uε)ε be

c-bounded from A into Bl. Finally, to have (vε)ε c-bounded on a suitable set
Br, pick βr with 0 < βr < α1 and set Br := (−(βr + π

2 ), βr + π
2 ) to complete

the inversion data set [A, V, v,Bl, Br] where v := [(vε)ε] (the moderateness
of (vε)ε will be obvious). Summing up, we have the following inequalities
and inclusions:

0 < βr < α1 < βl < β < α,

A ⊆ U,

Br ⊆ Bl ⊆ V.

In the preceding example the set Br is contained in Bl. The following
proposition shows that this is no coincidence.

3.4. Proposition: Let u ∈ G(U)n be invertible on A with inversion data

[A, V, v,Bl, Br]. Then Br ⊆ Bl.

Proof: Let x ∈ Br and let (uε)ε and (vε)ε be representatives of u resp.
v. Since v|Br is c-bounded into A, there exists some K ⊂⊂ A such that
vε(x) ⊆ K for small ε. By the c-boundedness of u|A into Bl, on the
other hand, there exists some K ′ ⊂⊂ Bl such that uε(K) ⊆ K ′ for small
ε. Therefore, uε ◦ vε(x) is an element of K ′. Since v is a right inverse
of u on A and x ∈ Br, there exists a negligible net (nε)ε on Br such that
uε◦vε(x) = x+nε(x), yielding x+nε(x)→ x for ε→ 0 where x+nε(x) ∈ K ′

for small ε. SinceK ′ is compact, the limit x is also inK ′ and, hence, in Bl. �

From the definition of invertibility and the preceding proposition, it
follows

3.5. Proposition:

(1) If u ∈ G(U)n is left resp. right invertible on A with left resp. right

inversion data [A, V, v,B], then v is right resp. left invertible on B with

right resp. left inversion data [B,U, u,A].

(2) If u ∈ G(U)n is invertible on A with inversion data [A, V, v,Bl, Br], then

v is left invertible on Br with left inversion data [Br, U, u,A] and right

invertible on Bl with right inversion data [Bl, U, u,A].

(3) The inverse is unique in the following sense: If u is invertible on A with

inversion data [A, V 1, v1, B1
l , B

1
r ] and [A, V 2, v2, B2

l , B
2
r ], then v1|Br =

v2|Br where Br := B1
r ∩B2

r .
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(4) If u ∈ G(U)n is strictly invertible on A with inversion data [A, V, v,B],
then v is strictly invertible on B with inversion data [B,U, u,A].

(5) The strict inverse is unique in the following sense: If u is strictly invert-

ible on A with inversion data [A, V 1, v1, B1] and [A, V 2, v2, B2], then

v1|B = v2|B where B := B1 ∩B2.

Proof: (1), (2) and (4) follow directly from the definition.
(3): By Proposition 3.4, we obtain

v1|Br = idA ◦v1|Br = (v2|B2
l
◦ u|A) ◦ v1|Br

= v2|B2
l
◦ (u|A ◦ v1|Br) = v2|B2

l
◦ idBr = v2|Br

since v1|Br is c-bounded into A and u|A is c-bounded into B2
r .

(5): This is a special case of (3). �

In the remainder of this section we will discuss various aspects of the
notions of invertibility introduced above.

In classical inversion theory we are used to the fact that if a function is
invertible (as a function) on some set A, this is still true for any subset of A.
Taking a closer look at the definition, it becomes obvious that in the case
of generalised functions we have to be more careful: For some left invertible
u ∈ G(U)n with left inversion data [A, V, v,Bl] everything turns out fine.
We can decrease the size of A without losing left invertibility. On the other
hand, if u is right invertible with right inversion data [A, V, v,Br], shrinking
A may not be possible, even (and here is the difference to the classical case)
if Br is shrunk as well. We illustrate this with an

3.6. Example: Consider v from Example 3.3. By Proposition 3.5 (1), it is
right invertible with right inversion data [Bl, U, u,A]. (When discussing the
right invertibility of v be careful to observe the reversed roles of U and V

resp. A and Bl compared to the (original) notation in Definition 3.1 (RI).)
Let B be an open subset of Bl. v is right invertible on B provided B contains
the closed interval [−π

2 ,
π
2 ] and A is shrunk accordingly (while still containing

0). If B fails to satisfy this condition, then no open subset A′ of A is small
enough such that (uε|A′)ε is c-bounded into B.

The example shows that right invertibility on some set is not a local
property in the usual sense. However, in the preceding example it is “local
around the jump”: The interval [−π

2 ,
π
2 ] that has to be contained in B is

exactly the “gap” in the image of the jump function modelled by u.
The issue of shrinking Bl resp. Br is settled by the symmetry of the relation
between the left resp. right invertible function and a left resp. right inverse
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(cf. Proposition 3.5 (1)). Anyway, there are situations where we can safely
reduce the size of Bl resp. Br as the following remark shows.

3.7. Remark: Let u ∈ G(U)n and A an open subset of U . For i = 1, 2 the
sets V i, Bi

l and Bi
r are open subsets of Rn with Bi

l , B
i
r ⊆ V i and vi ∈ G(V i)n.

(1) If u is left invertible on A with left inversion data both [A, V 1, v1, B1
l ]

and [A, V 2, v2, B2
l ], then u is also left invertible with left inversion data

[A, V i, vi, Bl] for i = 1, 2, where Bl := B1
l ∩ B2

l : Let K ⊂⊂ A. Then
there exists some Ki ⊂⊂ Bi

l such that uε(K) ⊆ Ki for small ε and
i = 1, 2 and, thus, uε(K) ⊆ K1 ∩K2 ⊂⊂ B1

l ∩ B2
l = Bl. Therefore, vi

together with [A, V i, vi, Bl] is a left inverse of u on A.

(2) If u is right invertible on A with right inversion data both [A, V 1, v1, B1
r ]

and [A, V 2, v2, B2
r ], then u is also right invertible with right inversion

data [A, V i, vi, Br] for i = 1, 2 where Br := B1
r ∩B2

r : Since vi restricted
to Bi

r composed with u gives the identity in G(Bi
r)
n and Br ⊆ Bi

r, also
u ◦ vi|Br = idBr holds. Hence, vi with [A, V i, vi, Br] is a right inverse of
u on A.

(3) Combining the two preceding results, we obtain: If u is invertible on
A with inversion data both [A, V 1, v1, B1

l , B
1
r ] and [A, V 2, v2, B2

l , B
2
r ],

then u is also invertible with inversion data [A, V i, vi, Bl, Br] for i = 1, 2
where Bl := B1

l ∩B2
l and Br := B1

r ∩B2
r .

Next, we address the question of enlarging sets. Obviously, for a left

invertible u ∈ G(U)n with left inversion data [A, V, v,Bl], enlarging A is not
possible without further information on u—as is the case in classical theory.
In contrast, let [A, V, v,Br] be a right inverse of u. Replacing A by a larger
set (that is still contained in U) poses no problem at all since (vε|Br)ε is
c-bounded into any superset of A.
Again, the question of modifying Bl resp. Br is answered by referring to
Proposition 3.5 (1).

Combining the preceding results for the left and right case, we conclude
that for an invertible u with inversion data [A, V, v,Bl, Br], without further
specific information, A may neither be enlarged nor shrinked; Br can safely
be made smaller, Bl larger.

As to strict invertibility, there is no tolerance left for changing the size
of either A or B.

These results reflect the fact that in the case of invertibility of u on A

the set A has a double role: It has to be big enough such that (vε|Br)ε is
c-bounded into it and at the same time it has to be small enough such that
the composition of (uε|A)ε with (vε|Bl)ε still gives the identity in G(A)n. So,
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the size of A has to be carefully balanced between the requirements of left
and right invertibility. Generally, such a balance might be hard to achieve.
Nevertheless, it turns out that it is possible in more cases than one might
expect.
At first sight, a convenient way to circumvent the difficulty of balancing the
size of A might consist in introducing a notion of “weak invertibility” using
“weak inversion data sets” [Al, Ar, V, v,Bl, Br]. This choice, however, would
make it difficult, if not impossible, to prove uniqueness of the inverse (cf.
Proposition 3.5 (3) and (5)).

The notion of strict invertibility is the one that comes closest to a gen-
eralised equivalent of classical invertibility. However, in most cases we are
interested in, it will be too much to ask for, as shall be demonstrated in the
following

3.8. Example: Consider again the u modelling a jump function from Ex-
ample 3.3. We attempt to find open sets A and B such that u is strictly
invertible with strict inversion data [A, V, v,B]. W.l.o.g. we may assume
that A and B are open intervals.
We already discussed in Example 3.6 that B has to contain the closed inter-
val [−π

2 ,
π
2 ]. Therefore, B := (−(γ + π

2 ), γ + π
2 ) for some γ > 0. For (vε|B)ε

to be c-bounded into A, the set A has to contain the closed interval [−γ, γ].
Let A := (−(γ + δ), γ + δ) for some δ > 0. For any 0 < η < δ we eventually
have B = (−(γ + π

2 ), γ + π
2 ) ⊆ uε([−(γ + η), γ + η]), thereby destroying any

hope for c-boundedness into B. Thus, u is not strictly invertible on any open
set A containing 0.

3.2 Necessary conditions for invertibility

In this section we will work out some aspects of what “being (left, right) in-
vertible” entails. To this end, we start with a few (rather heuristic) questions
that arise when attempting to invert a given u ∈ G(U)n.

Let (uε)ε be a representative of u. The obvious idea to invert u, of
course, is to invert uε for each ε separately. For this to be possible every uε
has to be injective. If this is not the case, we may ask

Question 1: If uε is not injective for every ε, is it possible for another rep-
resentative of u to have this property (so that an inverse of u still may be
found by inverting smooth functions)?

For now, let us assume that every uε is injective on U . By inverting every
uε, we obtain a net of inverses vε. This gives rise to
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Question 2: Does there exist an open set that is contained in all the—
possibly different!—domains of the inverses vε, so that we can indeed speak
of a net of functions on some fixed domain V ?

If the last question is answered affirmatively, we still have to determine if
the inverse net (vε)ε is moderate on this common domain. More precisely,

Question 3: Are all vε smooth? If yes, is (vε|V )ε in EM (V )n?

Concerning Question 1, we consider

3.9. Example: Let u := [(uε)ε] ∈ G(U) with U := (−α, α) for α > 0
be given by uε(x) := sin x

ε (Figure 3.2). No matter how small we choose a
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Figure 3.2: uε(x) = sin x
ε

subset of U , eventually uε becomes non-injective on this set.

Do we have to check other representatives of u in Example 3.9 for injec-
tivity (to construct a left inverse of u around 0)? The answer to that (and
hence to Question 1) is no. To see this we need the following proposition
and corollary.

3.10. Proposition: Let U be an open subset of Rn and f,m ∈ C1(U,Rn)
such that f = idU +m. Then f is injective on any compact convex subset

K of U for which maxx∈K ‖Dm(x)‖ < 1 is satisfied.

Proof: Let K ⊂⊂ U be as required in the proposition. Let x, y ∈ K and
set α := maxz∈K ‖Dm(z)‖ < 1. Then, by the Mean Value Theorem,

|f(x)− f(y)| = |x− y +m(x)−m(y)|
≥ |x− y| − sup

z∈K
‖Dm(z)‖ · |x− y|

≥ (1− α) · |x− y|,

yielding the injectivity of f on K. �

In the application of Proposition 3.10 to generalised functions, we want
to get rid of the convexity condition on the compact sets. To this end, we
will use the following lemma ([GKOS01], Lemma 3.2.47).
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3.11. Lemma: Let U be an open subset of Rn and f : U → Rm a con-

tinuously differentiable map. Let K ⊂⊂ U . Then there exists C > 0 such

that

|f(x)− f(y)| ≤ C|x− y|

for all x, y ∈ K.

C can be chosen as C1 · supz∈L(|f(z)| + ‖Df(z)‖), where L is any fixed

compact neighbourhood of K in U and C1 only depends on L.

3.12. Remark: If in Lemma 3.11, U and K are subsets of Rk × Rl = Rn,
x = (t, u) and y = (t, v) (for t ∈ Rk and u, v ∈ Rl), then an inspection
of the proof of [GKOS01], 3.2.47 shows that Df can be replaced by ∂2f

when estimating |f(t, u)− f(t, v)|. If, in addition, K has the form K1 ×K2

(K1 × K2 ⊂⊂ U), then L can be replaced by K1 × L2, where L2 is any
fixed compact neighbourhood of K2 with K1 × L2 ⊂⊂ U (we will meet this
situation twice in the proof of Theorem 5.2 in Chapter 5).

The following results from Proposition 3.10.

3.13. Corollary: Let U be an open subset of Rn. Then for every repre-

sentative (uε)ε of idU ∈ G(U)n and for every compact subset K of U there

exists some ε0 ∈ (0, 1] such that uε|K is injective for all ε ≤ ε0.

Proof: Let mε := idU −uε. Then (mε)ε is an element of N (U)n. By Lemma
3.11, for all ε there exists a constant Cε > 0 such that

|mε(x)−mε(y)| ≤ Cε · |x− y| (3.1)

for all x, y ∈ K. Since m is negligible and because of the form of the Cε, we
may find some ε0 such that Cε < 1 for all ε ≤ ε0. Now the assertion follows
as in the proof of Proposition 3.10 by applying (3.1) in place of the Mean
Value Theorem. �

If u is left invertible on A by [A, V, v,Bl], then, for every representative
(uε)ε of u and (vε)ε of v, the composition (vε ◦ uε|A)ε is a representative of
the identity in G(A)n. Therefore, vε ◦ uε and consequently uε is injective on
any compact subset of A for sufficiently small ε. In particular, this implies
that the generalised function in Example 3.9 has no chance of being left
invertible. This result motivates the following

3.14. Definition: A moderate net (uε)ε ∈ EM (U)n is called compactly
asymptotically injective (ca-injective) if for every compact subset K of U

there exists some ε0 ∈ (0, 1] such that uε|K is injective for all ε ≤ ε0.

An element u of G(U)n is called compactly asymptotically injective (ca-
injective) if all representatives have this property.
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3.15. Remark: Note that if one representative of a generalised function is
ca-injective, this is not necessarily true for every other: Consider nε(x) :=
e−

1
εx and ñε(x) := 0. (nε)ε is injective for all ε (even on R) while (ñε)ε is

not. Yet both they are representatives of the same generalised function.
However, in the next section we will prove that the ca-injectivity of one
representative implies ca-injectivity of all representatives provided det ◦Du is
strictly non-zero (a property to be defined later in this section) (cf. Corollary
3.36).

With the terminology of Definition 3.14 we have

3.16. Proposition: If u ∈ G(U)n is left invertible, then u is ca-injective.

Question 2, though only a matter of manipulating sets, is not as trivial
as it may seem. It can happen that the domains of the inverses vε shrink
to a point with decreasing ε, so that there is no common open domain on
which to define the inverse net. To illustrate this we consider the simple

3.17. Example: Let u := [(uε)ε] ∈ G(U) with U := (−1, 1) given by
uε(x) := εx (Figure 3.3). Of course, for each ε there exists a smooth inverse

-1 1

-1

1

Figure 3.3: uε(x) = εx

of uε—we denote it by vε. Since the image of the interval (−1, 1) under uε
gets ever smaller with decreasing ε, so do the domains of the inverses vε. So
the intersection of all these domains contains only one point, namely 0.

In the one-dimensional case, a property that guarantees a common do-
main for the inverses is the following: Let uε be injective on an open interval
U in R for all ε. Suppose that two different points x and y in U (w.l.o.g.
x < y) can be found such that uε(x) and uε(y) converge to different limits a
and b (w.l.o.g. a < b). Then the Intermediate Value Theorem ensures that
for all δ > 0 there exists some ε0 such that [a + δ, b− δ] ⊆ uε((x, y)) for all
ε ≤ ε0.
In Example 3.17, the values of uε at any given point converge to 0, so we
are lacking a and b as above. In contrast, the net of functions modelling a
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jump in Example 3.3 converges pointwise to an injective (if discontinuous)
function, thereby allowing for a non-empty common domain for the inverses.
Next, we want show a theorem that represents a generalisation of the previ-
ous observation to the n-dimensional case. The first idea for a proof would
be to try and apply the Intermediate Value Theorem coordinatewise. How-
ever, this leads to considerable trouble. So, to prove the “n-dimensional”
theorem, we will take another approach. To this end, we need a definitely
nontrivial topological result of Brouwer on injective continuous maps in Rn.
A proof can be found on page 52 of [MT97].

3.18. Theorem (Brouwer): Let U be an open subset of Rn and f : U →
Rn an injective continuous map. Then the image f(U) is open in Rn and f

maps U homeomorphically to f(U).

3.19. Remark: In the proof of the next theorem and at some places in the
next section we will do calculations involving the distances between sets. We
will use the following definition and (easy to prove) facts: Let A and B be
non-empty subsets of a normed space. The distance of A and B is defined
by

dist(A,B) := inf
x∈A, y∈B

|x− y|.

Note that dist(A,B) = dist(A,B). If A ∩ B = ∅ and ∂A, ∂B 6= ∅, then
dist(A,B) = dist(∂A, ∂B). Furthermore, if Aγ ∩B = ∅ for Aγ := A+Bγ(0),
then dist(A,B) = dist(Aγ , B) + γ. In particular, dist(A,Acγ) = γ.

Now we may state the announced theorem. Roughly speaking, it estab-
lishes a kind of continuous dependence of connected parts f(A) of the image
set f(U) on the function f .

3.20. Theorem: Let U be an open subset of Rn, f, g ∈ C(U,Rn) both

injective and W a connected open subset of Rn with W ⊂⊂ f(U). Choose

an open ball Bδ(y) (y ∈ W , δ > 0) inside W such that the closure of

Wδ := W +Bδ(0) is still a subset of f(U), i.e. let δ > 0 such that Bδ(y) ⊆W
and Wδ ⊆ f(U). If, for A := f−1(Wδ),

‖g − f‖∞,A < δ

holds, then

W ⊆ g(A)◦.

Proof: By Theorem 3.18, both f(U) and g(U) are open and f and g map
U homeomorphically to f(U) resp. g(U). Clearly, W is the disjoint union of
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the three sets

G1 := W ∩ g(A)◦,

G2 := W ∩ ∂g(A),

G3 := W ∩ ext g(A).

We will show that G1 6= ∅ and G2 = ∅. By the connectedness of W , it follows
that W = G1 (note that G1 and G3 are open in the relative topology of W ),
that is

W ⊆ g(A)◦.

Observe that, by Theorem 3.18, we do not have to distinguish either between
intV C and C◦ = intRn C (for V = U, f(U), g(U) and C any subset of V ) or
between ∂V C and ∂C = ∂RnC (for V as before and C any compact subset
of V ; note that A, f(A) and g(A) are compact).

G1 6= ∅: Let x := f−1(y). Then x is an element of A. Since f and g are
homeomorphisms and y is an element of the interior of Wδ, it follows x ∈ A◦

and g(x) ∈ g(A)◦. By

|g(x)− y| = |g(x)− f(x)| ≤ ‖g − f‖∞,A < δ,

we obtain

g(x) ∈ Bδ(y) ∩ g(A)◦ ⊆W ∩ g(A)◦.

G2 = ∅: Assume that there exists a ∈ W ∩ ∂g(A). By ∂g(A) = g(∂A),
the point x := g−1(a) is an element of ∂A. Moreover, f(x) ∈ ∂f(A) = ∂Wδ.
On the one hand,

|a− f(x)| = |g(x)− f(x)| ≤ ‖g − f‖∞,A < δ. (3.2)

On the other hand, a being an element of W , we obtain

|a− f(x)| ≥ dist(W,∂Wδ) = dist(W,W c
δ ) = δ,

which is a contradiction to (3.2). Hence, W ∩ ∂g(A) = ∅. �

With respect to generalised functions the above theorem implies

3.21. Corollary: Let U be an open subset of Rn. Then for every repre-

sentative (uε)ε of idU ∈ G(U)n and for every compact subset K of U there

exist a compact subset L of U containing K and some ε0 ∈ (0, 1] such that

K ⊆ uε(L) for all ε ≤ ε0.
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Proof: We first prove the claim for connected U . Let K be a (non-empty)
compact subset of U .
In the first step, we construct a non-empty, open subset W of U with W ⊂⊂
U which contains K: For η1 := 1

2 dist(K,U c) we have K ⊆
⋃
x∈K Bη1(x).

By the compactness of K, there exist x0, . . . , xk ∈ K such that K ⊆⋃k
i=0Bη1(xi). Since U is connected, we can find k curves γ1, . . . , γk : [0, 1]→

U satisfying γi(0) = xi−1 and γi(1) = xi. Now, set

K ′ :=
( k⋃
i=0

Bη1(xi)
)
∪
( k⋃
i=1

γi([0, 1])
)
.

K ′ is a connected compact subset of U . For η2 = 1
2 dist(K ′, U c) we define

W := K ′+Bη2(0). Then W is a non-empty, open subset of U with W ⊂⊂ U
containing K.
In the second step, we prove the claim for connected U by means of Corollary
3.13 and Theorem 3.20: Let mε := idU −uε. Then (mε)ε is an element of
N (U)n. Let δ > 0 such that there exists some y ∈ W with Bδ(y) ⊆ W

and such that W2δ ⊆ U for W2δ := W + B2δ(0). By Corollary 3.13, there
exists some ε1 ∈ (0, 1] such that uε is injective on W2δ for all ε ≤ ε1. Choose
ε0 ≤ ε1 such that supx∈Wδ

|mε(x)| < δ for all ε ≤ ε0. Now apply Theorem
3.20 to W2δ, idW2δ

, uε|W2δ
, W and δ in place of U , f , g, W and δ for every

ε ≤ ε0 and set L := Wδ.
Now we prove the claim for arbitrary U . Let K be a compact subset of

U . We may write U =
⋃
i∈I Ui where the Ui denote the (open) connected

components of U and I is a suitable index set. By the compactness of K,
only finitely many of the Ui are needed to cover K, say K ⊆

⋃k
j=1 Uij . Set

Kj := K ∩ Uij for j = 1, . . . , k. From

Kj = K ∩ Uij = K\
( ⋃
i 6=ij

Ui
)

= K ∩
(
Rn\

( ⋃
i 6=ij

Ui
))
,

it follows that all of the Kj are closed and, hence, compact. Therefore,
K can be written as a union of compact sets K1, . . . ,Kk where each Kj is
contained in only one connected component. By the first part of the proof,
for every j there exist a compact subset Lj of U containing Kj and some
εj ∈ (0, 1] such that Kj ⊆ uε(Lj) for all ε ≤ εj . Let ε0 := min(ε1, . . . , εk)
and L :=

⋃k
j=1Kj . Then L is a compact subset of U containing K and

K ⊆ uε(L) for all ε ≤ ε0. �

For right invertible u ∈ G(U)n with right inversion data [A, V, v,Br],
Corollary 3.21 has the following meaning: For any representatives (uε)ε of
u and (vε)ε of v, the composition (uε ◦ vε|Br)ε is a representative of the
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identity in G(Br)n. Therefore, for every compact subset K of Br there
exists a compact subset L of Br with K ⊆ L such that K ⊆ uε ◦ vε(L) for ε
sufficiently small. Since (vε|Br)ε is c-bounded into A, there exists a compact
subset L′ of A such that vε(L) ⊆ L′ for small ε. This entails that K ⊆ uε(L′)
for ε small enough. This observation motivates the next

3.22. Definition: Let U and V be open subsets of Rn. A moderate net

(uε)ε ∈ EM (U)n is called compactly asymptotically surjective (ca-surjective)
onto V if for every compact subset K of V there exist a compact subset L

of U and some ε0 ∈ (0, 1] such that K ⊆ uε(L) for all ε ≤ ε0.

An element u of G(U)n is called compactly asymptotically surjective (ca-
surjective) onto V if all representatives have this property.

With the terminology of Definition 3.22 we have

3.23. Proposition: If u ∈ G(U)n is right invertible on A with right inver-

sion data [A, V, v,Br], then u is ca-surjective onto Br.

Finally, let us turn to Question 3. Given some u = [(uε)ε] ∈ G(U)n,
suppose that for every ε the function uε is invertible as a function on U

with inverse vε. Moreover, assume that there exists an open subset V of Rn

such that V is contained in all uε(U). Concerning the smoothness of vε, we
know that vε is C∞ if and only if the determinant of the differential of uε is
non-zero at all points of U .
But what if one (invertible) representative uε of u does not have this prop-
erty? Is it still possible for another representative of u to have invertible
differentials at all points of U and, thus, provide an inverse of u?

3.24. Example: Consider u = [(uε)ε] ∈ G(R) given by uε(x) := x3. uε is
invertible as a function on R for every ε but the inverses are not smooth. As
the following proposition will show, u cannot be inverted on any open set
containing 0.

3.25. Proposition: Let U be an open subset of Rn, A an open subset of

U and u ∈ G(U)n left invertible on A with left inversion data [A, V, v,Bl].
Then for every representative (uε)ε of u and for every compact subset K of

A, there exist C > 0, N ∈ N and ε0 ∈ (0, 1] such that

inf
x∈K
|det(Duε(x))| ≥ CεN (3.3)

for all ε ≤ ε0. In particular, det(Du(x)) is strictly non-zero for all x ∈ A.

Proof: Let (vε)ε be a representative of v. Since u is left invertible on A, we
have

vε ◦ uε|A = idA +nε (3.4)
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for some (nε)ε ∈ N (A)n. Differentiating (3.4) yields

Dvε(uε(x)) ◦Duε(x) = I + Dnε(x) (3.5)

for all x ∈ A, with I denoting the (n× n)-identity matrix. Since the deter-
minant of a square matrix is a continuous function, we have

det(I + Dnε(x))→ det(I) = 1

as ε → 0. Now choose ε1 ∈ (0, 1] such that supx∈K ‖Dnε(x)‖ is sufficiently
small to ensure that det(I+Dnε(x)) ≥ 1

2 for all x ∈ K and ε ≤ ε1. By (3.5),
it now follows that

| det(Duε(x))| ≥ 1
2 · | det(Dvε(uε(x)))|

(3.6)

for all x ∈ K and ε ≤ ε1. Since u is left invertible on A, it is c-bounded into
Bl. Therefore, there exist a compact subset L of Bl and some ε2 ≤ ε1 such
that

uε(K) ⊆ L (3.7)

for all ε ≤ ε2. The determinant being an element of OM (Rn), it follows from
Theorem 2.19 that (det ◦vε)ε is in EM (Br). Together with (3.7) we conclude
that there exist C1 > 0, N ∈ N and ε0 ≤ ε2 such that

sup
x∈K
| det(Dvε(uε(x)))| ≤ sup

y∈L
| det(Dvε(y))| ≤ C1ε

−N

for ε ≤ ε0. Plugging this inequality into (3.6) yields

|det(Duε(x))| ≥ 1
2C1

εN

for all ε ≤ ε0, as desired. �

It turns out that Proposition 3.25 also provides a necessary condition for
the moderateness of the inverse net (vε|V )ε, the lower bound in property (3.3)
being an immediate consequence of the moderateness of the representative
(vε)ε of the inverse v.

3.26. Definition: Let U be an open subset of Rn. A moderate net (uε)ε ∈
EM (U) is called strictly non-zero if for every compact subset K of U there

exist C > 0, a natural number N and some ε0 ∈ (0, 1] such that

inf
x∈K
|uε(x)| ≥ CεN (3.8)

for all ε ≤ ε0.

An element u of G(U) is called strictly non-zero if it possesses a repre-

sentative with this property.
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Clearly, if one representative satisfies (3.8), then so do all. With the
terminology of Definition 3.26, Proposition 3.25 now reads

3.27. Proposition: If u ∈ G(U)n is left invertible, then det ◦Du is strictly

non-zero.

To sum up, we have determined three properties that are necessary
for a given u ∈ G(U)n to be invertible on some open subset A of U by
[A, V, v,Bl, Br], namely:

1. u has to be ca-injective on A,

2. u|A has to be ca-surjective onto Br and

3. det ◦Duε has to be strictly non-zero on A.

In the next section we will prove that these three conditions are also sufficient
to guarantee at least local invertibility of a c-bounded u, in the following
sense:

3.28. Definition (Local invertibility): Let U be an open subset of Rn

and u ∈ G(U)n. We call u locally (left, right) invertible if for every point

z ∈ U there exists an open neighbourhood A of z in U such that u is (left,

right) invertible on A.

Obviously, (left, right) invertibility on some open set implies local (left,
right) invertibility on that very set but not vice versa.

Note that—contrary to the widespread usage of the term “local” and
the intuition based thereupon—for a generalised function u, which is locally
(left, right) invertible on some open set U , and some given x0 ∈ U , the
neighbourhood A of x0 on which u is (left, right) invertible cannot, in general,
be chosen either arbitrarily small or arbitrarily large (see also Section 3.1 and
cp. Remarks 4.18 and 4.20). Local invertibility only guarantees the existence

of such a neighbourhood, its (minimum resp. maximum) size depending on
the function u and the point x0 (cp. Example 3.6).

3.3 Sufficient conditions for invertibility

Our first aim in this section is to prove a partial converse to Proposition
3.16, i.e. that compact asymptotic injectivity (ca-injectivity) of a c-bounded
u ∈ G[U,Rn], with det ◦Du strictly non-zero, implies local left invertibility
of u. To this end, some preliminaries are necessary.
Let u ∈ G(U)n and assume that (uε)ε is a representative such that uε is
injective with inverse vε : uε(U)→ U , for every ε. If we are interested only in



3.3. Sufficient conditions for invertibility 53

left inverses of u, it is of no importance whether there is a common nontrivial
open set inside of all uε(U); rather, we need some open set containing all
uε(U) to serve as a common domain for the vε. So far, each vε is only
defined on uε(U). Therefore, we somehow have to extend the functions vε
(in a smooth way!) to a larger set without losing their property of being
(left) inverse to the uε on some open subset A of U , independent of ε and
possibly smaller than U . We will do this by means of two-member partitions
of unity (pε, 1−pε), where the plateau functions pε serve to retain the values
of vε on some Kε ⊂⊂ uε(U). New values for vε outside Kε can be chosen
from the convex hull of im vε (or some larger compact set).
We formulate the well-known existence result for plateau functions as a
lemma, including the proof as given in [DR84], Ch. I, §2. We will make
further use of the technicalities of this very proof in the sequel.

3.29. Lemma: Let U be an open subset of Rn and K compact in U . Then

there exists a plateau function p ∈ D(U) such that 0 ≤ p ≤ 1 and p|K = 1.

Proof: Let ρ̃ : R→ R be defined by

ρ̃(x) :=

{
e
− 1

(1−x)2(1+x)2 , x ∈ (−1, 1)
0, otherwise

and ρ : R→ R be defined by

ρ(x) :=
ρ̃(x)∫∞

−∞ ρ̃(t)dt
.

Then σ : R→ R,

σ(x) :=

x∫
−∞

2ρ(2t− 1)dt,

is a C∞-function that is zero for negative x, strictly monotonically increasing
for 0 ≤ x ≤ 1 and identically one for x > 1. Moreover, it is antisymmetric
around (1

2 ,
1
2). We define h : R→ R by

h(x) := σ(x+ 1)− σ(x).

The support of h is the closed interval [−1, 1], the function is symmetric
with respect to the y-axis and it is antisymmetric around (−1

2 ,
1
2) and (1

2 ,
1
2).

Therefore, we get
∞∑
j∈Z

h(x− j) = 1

(note that for every x the sum has at most two terms different from zero).
Choose a “grid size” η > 0 such that every n-dimensional cube with side
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length η having non-empty intersection with K is contained in U . For
(j1, . . . , jn) ∈ Zn we now define ϕ(j1,...,jn) : Rn → R by

ϕ(j1,...,jn)(x1, . . . , xn) :=
n∏
i=1

h

(
2xi
η
− ji

)
.

The support of ϕ(j1,...,jn) is exactly the closed n-dimensional cube with side
length η and centre η

2 (j1, . . . , jn). For j = (j1, . . . , jn) we have∑
j∈Zn

ϕj(x1, . . . , xn) =
∑
j1∈Z

. . .
∑
jn∈Z

ϕ(j1,...,jn)(x1, . . . , xn)

=
n∏
i=1

∑
ji∈Z

h

(
2xi
η
− ji

)
= 1.

Let J := {j ∈ Zn | suppϕj ∩K 6= ∅}. Since K is compact, J is finite. Now
define p : Rn → R by

p :=
∑
j∈J

ϕj .

The function p is C∞, maps Rn into [0, 1] and has compact support. By the
choice of η, the support of p is contained in U . Finally, since ϕj |K = 0 for
j ∈ Zn\J , we have

p|K =
∑
j∈J

ϕj |K =
∑
j∈Zn

ϕj |K =

∑
j∈Zn

ϕj

∣∣∣∣∣∣
K

= 1.

Restricting p to U yields a function in D(U) with the properties claimed. �

3.30. Proposition: Let Uε (for ε ∈ (0, ε0]) be an open subset of Rn and

Kε compact in Uε such that (dist(Kε, U
c
ε ))ε is strictly non-zero. Let U be

another open subset of Rn such that Uε ⊆ U for all ε. Then there exists a

net (pε)ε ∈ EM (U) of plateau functions such that pε|Kε = 1 and supp pε ⊆ Uε
for ε sufficiently small.

Proof: By assumption, there exist C > 0, N ∈ N and ε1 ∈ (0, ε0) with
dist(Kε, U

c
ε ) ≥ CεN for all ε ≤ ε1. Hence, we can choose ηε with CεN+1 ≤

ηε < dist(Kε, U
c
ε ) such that every n-dimensional cube with side length ηε

having non-empty intersection with Kε is contained in Uε, for all ε ≤ ε1.
From now on, we always let ε ≤ ε1. Construct plateau functions qε : Uε →
[0, 1] as in the proof of Lemma 3.29 with respect to Uε and Kε using grid
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size ηε. Let pε ∈ D(U) be the smooth extension by 0 of qε to U . Then,
conferring to the proof of Lemma 3.29, the plateau function pε is given by

pε =
( ∑

j∈Jε

ϕεj

)∣∣∣∣
U

,

where, for any j = (j1, . . . , jn) ∈ Zn, ϕεj maps from Rn to R and is given by

ϕεj(x1, . . . , xn) =
n∏
i=1

h

(
2xi
ηε
− ji

)
,

and Jε := {j ∈ Zn | suppϕεj ∩ Kε 6= ∅}. By our choice of (ηε)ε, we know

that 2|y|
ηε
≤ 2|y|

C ε−(N+1) for all y ∈ Rn and, thus, the net of mappings(
y 7→ 2y

ηε
− ji

)
ε

is moderate. The function h, having compact support, is

an element of OM (R). Hence, by Proposition 2.19, (ϕεj)ε is in EM (Rn). Let
ϕε0 := ϕε(0,...,0). Any ϕεj can be written as the composition of the translation
x 7→ x− ηε

2 j and ϕε0. Therefore, by the moderateness of (ϕε0)ε, it follows that
for all α ∈ Nn

0 there exist N1 ∈ N and C1 > 0 such that

sup
x∈suppϕεj

|∂αϕεj(x)| = sup
x∈suppϕε0

|∂αϕε0(x)| ≤ C1ε
−N1 (3.9)

for all j ∈ Zn. Now set Jxε := {j ∈ Jε |x ∈ (suppϕεj)
◦} for x ∈ Rn. Then

Jxε ⊆ Jε holds, and j /∈ Jxε entails ∂αϕεj(x) = 0 for arbitrary α ∈ Nn
0 . Hence,

∂αpε(x) =
∑
j∈Jxε

∂αϕεj(x) (3.10)

for all x ∈ Rn. Since the support of ϕεj is precisely the closed n-dimensional
cube with side length ηε and centre ηε

2 j, we obtain

|Jxε | ≤ 2n. (3.11)

Now we show the moderateness estimates for (pε)ε, even globally on U . Let
α ∈ Nn

0 . Then, by (3.10), (3.9) and (3.11), it follows for x ∈ U that

|∂αpε(x)| =
∣∣∣ ∑
j∈Jxε

∂αϕεj(x)
∣∣∣

≤
∑
j∈Jxε

sup
y∈suppϕεj

|∂αϕεj(y)|

≤
∑
j∈Jxε

C1ε
−N1

≤ 2n · C1ε
−N1

= C2ε
−N1 ,
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thereby concluding the proof of the proposition. �

Now that we have found a way to extend the inverses vε to a com-
mon domain, we turn to the question of moderateness. It turns out that if
(det ◦Duε)ε is strictly non-zero, this is already sufficient to guarantee the de-
sired result. The next proposition consists of two parts. Roughly speaking,
the first part deals with the “disposition to moderateness” of the inverse net
(vε)ε (recall, there is still no common domain for the vε) while in the second
part we take care of the smooth and moderate extension of the vε.

3.31. Proposition: Let U be an open subset of Rn containing open subsets

Wε for ε ∈ (0, ε0] such that Wε ⊆ K for some K ⊂⊂ U . Let (uε)ε ∈ EM (U)n.

For all ε let uε be injective on Wε with inverse vε : Vε → Wε where Vε :=
uε(Wε). Suppose that

inf
x∈Wε

|det(Duε(x))| ≥ C1ε
N1 (3.12)

for some C1 > 0 and N1 ∈ N0 and for all ε ≤ ε0. Then the following holds:

(1) The inverses vε are smooth, and for all α ∈ Nn
0 there exist C > 0, N ∈ N

and some ε1 ∈ (0, ε0] such that for all ε ≤ ε1 the estimate

sup
y∈Vε
|∂αvε(y)| ≤ Cε−N (3.13)

holds. In particular, if there exists a non-empty open subset V of Rn

such that V ⊆
⋂
ε∈(0,ε0] Vε, then (vε|V )ε is in EM (V )n and uniformly

bounded (the latter following from the inclusion Wε ⊆ K).

(2) Let Kε ⊂⊂ Vε for ε ∈ (0, ε0] and [(x̃ε)ε)] ∈ R̃n
c such that x̃ε ∈ L ⊂⊂ Rn

for all ε ≤ ε0. If there exist a constant C2 > 0 and a natural number N2

such that

dist(Kε, V
c
ε ) ≥ C2ε

N2 (3.14)

for all ε ≤ ε0, then there exist smooth functions ṽε defined on Rn such

that ṽε|Kε = vε|Kε and ṽε(x) = x̃ε for all x ∈ Rn\Vε and such that (ṽε)ε
is in EM (Rn)n. Furthermore, the net (ṽε)ε is uniformly bounded. In

particular, (ṽε)ε is c-bounded into any open subset of Rn containing the

convex hull of K ∪ L.

3.32. Remark:

(1) The compact superset K serves a twofold purpose: First, the EM -esti-
mates of (vε)ε (even if we would restrict them to compact subsets of Vε
which, anyway, we do not) are transformed to estimates of (uε)ε on K.
Second, the inclusion im vε ⊆ Wε ⊆ K is crucial for the c-boundedness
of (ṽε)ε.
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(2) We introduce the following terminology: A function f̃ : Rn → Rm is
called a (K, y0)-extension of f : U → Rm (where U ⊆ Rn open, K ⊂⊂ U
and y0 ∈ Rm) if f̃ |K = f |K and f̃(x) = y0 for all x ∈ Rn\U . In this
sense, ṽε in the proposition is a (Kε, x̃ε)-extension of vε.

Proof: (1): Since uε is smooth and det(Duε(x)) is non-zero for all x ∈Wε,
the inverse vε is also smooth for all ε. We note that, since differentiation is
done componentwise, we only have to consider ∂αv(i)

ε , where v(i)
ε denotes the

i-th component of vε. Let y ∈ Vε.

First, for α = 0 we have im vε = Wε ⊆ K ⊂⊂ U . Therefore, supy∈Vε |vε(y)|
is bounded independently of ε. Next, we consider the first partial derivatives
of v(i)

ε . Observe

∂v
(i)
ε (y)
∂yj

= [Dvε(y)]ij

=
[
Duε(vε(y))−1

]
ij

=
1

det(Duε(vε(y)))
·Ri;j

(∂u(r)
ε

∂xs
(vε(y))

)
r,s

 , (3.15)

where Ri;j is a polynomial of degree n − 1 in n2 variables and [Dvε(y)]ij
denotes the (i, j)-th entry of the Jacobian of vε at y. Using this equality,
assumption (3.12), the inclusions im vε ⊆Wε ⊆ K and our assumption that
(uε)ε is moderate, we obtain

sup
y∈Vε

∣∣∣∣∣∂v(i)
ε (y)
∂yj

∣∣∣∣∣ = sup
y∈Vε

∣∣∣∣∣∣ 1
det(Duε(vε(y)))

·Ri;j

(∂u(r)
ε

∂xs
(vε(y))

)
r,s

∣∣∣∣∣∣
≤ sup

x∈Wε

1
|det(Duε(x))|︸ ︷︷ ︸
≤ 1
C1
ε−N1

· sup
x∈K

∣∣∣∣∣∣Ri;j
(∂u(r)

ε

∂xs
(x)

)
r,s

∣∣∣∣∣∣︸ ︷︷ ︸
≤C·ε−N

≤ C

C1
· ε−(N1+N)

for some constant C, some fixed N ∈ N and ε sufficiently small. By the
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chain resp. the quotient rules, we find

∂2v
(i)
ε (y)

∂yk∂yj
=

=
∂

∂yk

 1
det(Duε(vε(y)))

·Ri;j

(∂u(r)
ε

∂xs
(vε(y))

)
r,s


=

1
det(Duε(vε(y)))2

· Si;j,k

(∂u(r)
ε

∂xs
(vε(y)),

∂2u
(r)
ε

∂xs∂xt
(vε(y)) · ∂v

(t)
ε

∂yk
(y)

)
r,s,t

,
where Si;j,k again is some polynomial. Estimating in a similar fashion to
above, we see that also the second partial derivatives of v(i)

ε do not grow
faster than some inverse power of ε. By induction, we also obtain the desired
estimates for higher partial derivatives of v(i)

ε , thus concluding the proof of
the first claim of the proposition.

(2): The idea to extend the vε is to use two-member partitions of unity
(pε, 1− pε) where the plateau functions pε serve to retain the values of vε on
Kε. Since dist(Kε, V

c
ε ) ≥ C2ε

N2 , it follows from Proposition 3.30 that there
exists a net (pε)ε ∈ EM (Rn) of plateau functions such that pε|Kε = 1 and
supp pε ⊆ Vε for all ε. Let ṽε : Rn → Rn be defined by

ṽε(x) :=

{
pε(x) vε(x) + (1− pε(x)) x̃ε, x ∈ Vε
x̃ε, otherwise

.

Since for every ε the function pε is in D(Vε), the functions ṽε are smooth.
By construction, ṽε(x) = x̃ε for all x ∈ Rn\Vε and, as pε|Kε = 1 for all
ε ∈ (0, ε0], then ṽε|Kε = vε|Kε also holds. To prove the moderateness of
(ṽε)ε we have to show that for given K ⊂⊂ Rn and α ∈ Nn

0 there exists some
N ∈ N with supy∈K |∂αṽε(y)| = O(ε−N ) as ε → 0. As before, it suffices to

consider ∂αṽ(i)
ε , where ṽ(i)

ε denotes the i-th component of ṽε. Let K ⊂⊂ Rn

and α ∈ Nn
0 . To obtain the EM -estimates, fix ε and split K into the sets

K\Vε and K∩Vε. Since K\Vε is a proper subset of the open set Rn\ supp pε
and ṽε restricted to this open set has the constant value x̃ε, it follows that
for all y ∈ K\Vε all derivatives of ṽε vanish. On K ∩ Vε we write ṽ(i)

ε (x) as
pε(x) vε(x)(i) + (1− pε(x)) x̃(i)

ε . By the Leibniz rule, we obtain

∂αṽ(i)
ε (x) = ∂α

(
pε(x) v(i)

ε (x) + (1− pε(x)) x̃(i)
ε

)
=
∑
β≤α

(
α

β

)
∂βpε(x) ∂α−βv(i)

ε (x)− ∂αpε(x) x̃(i)
ε

for x ∈ K ∩ Vε. By the moderateness of (pε)ε, the boundedness of (x̃ε)ε and
inequality (3.13) (established in the first part of this proof), it follows that
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∂αṽ
(i)
ε is bounded on K∩Vε by some inverse power of ε. Since all derivatives

of ṽ(i)
ε are constant (where all occurring values are contained in a compact

set) resp. zero on K\Vε, corresponding estimates also hold for all x ∈ K.
Finally, we show that (ṽε)ε is even uniformly bounded. By our assumption,
im vε ⊆ Wε ⊆ K. Since ṽε(x) = pε(x) vε(x) + (1 − pε(x)) x̃ε for all x ∈ Rn,
the image point ṽε(x) is either in K or at least lies on the line connecting
vε(x) (which is in K) and x̃ε (which is in L). Hence, im ṽε is contained in
the convex hull of K ∪ L. The c-boundedness of (vε)ε into any open subset
of Rn containing the convex hull of K ∪ L is a direct consequence. �

If in the above proposition the Wε are equal to some open W (⊆ K) for
all ε and the compact sets Kε are the images of a fixed compact subset of
W under uε, condition (3.14) in the second part is automatically satisfied.

To prove this we first need a lemma. In what follows we will denote by
xy the line segment {λx+ (1− λ)y | 0 ≤ λ ≤ 1} where x and y are elements
of some affine space.

3.33. Lemma: Let A ⊆ Rn and x ∈ A◦. Let y ∈ ∂A such that |x − y| =
dist(x, ∂A). Then the half-open line segment S = xy \ {y} is a subset of A◦.

Proof: Obviously, S is connected and splits into S∩A◦ and S∩ext(A) since
S ∩ ∂A = ∅ by assumption (every z ∈ S satisfies |x − z| < |x − y|). From
x ∈ S∩A◦, it follows that S∩ ext(A) is empty which establishes S ⊆ A◦. �

3.34. Proposition: Let U be an open subset of Rn, W a (non-empty)

open subset of U with W ⊂⊂ U and (uε)ε ∈ EM (U)n. For all ε ∈ (0, ε0]
let uε be injective on W with inverse vε : uε(W ) → W . Let [(x̃ε)ε] ∈ R̃n

c

with x̃ε ∈ K ′ ⊂⊂ Rn for all ε ≤ ε0, let K be a compact subset of W and

Kε := uε(K). If

inf
x∈W
| det(Duε(x))| ≥ C1ε

N1

for some C1 > 0, N1 ∈ N0 and for all ε ≤ ε0, then all vε are smooth and there

exist (Kε, x̃ε)-extensions ṽε of vε such that (ṽε)ε is in EM (Rn)n. Furthermore,

the net (ṽε)ε is uniformly bounded. In particular, (ṽε)ε is c-bounded into

any open subset of Rn that contains the convex hull of W ∪K ′.

Proof: Set Vε := uε(W ). All we have to do is to show that

dist(Kε, V
c
ε ) ≥ CεN

for some C > 0, a natural number N and sufficiently small ε. Applying
Proposition 3.31 (2) then yields the desired result.

By Theorem 3.18, Vε is open in Rn and uε maps W homeomorphi-
cally to Vε. Choose y1ε ∈ ∂Kε and y2ε ∈ ∂Vε such that dist(Kε, V

c
ε ) =
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dist(∂Kε, ∂Vε) = |y1ε − y2ε|. Set η := dist(K,W c) > 0 and let L :=
K+B η

2
(0). Then L is a compact subset of W and Lε := uε(L) is a compact

subset of Vε. Set δε := dist(Lε, V c
ε ) > 0. Since, by construction, Kε ⊆ L◦ε,

we have
δε ≤ dist(Kε, V

c
ε ) = |y1ε − y2ε|.

Choose some ỹ2ε on the open line segment between y1ε and y2ε with

|ỹ2ε − y2ε| < δε.

Since y2ε ∈ ∂Vε and dist(Lε, V c
ε ) = δε, it follows that ỹ2ε 6∈ Lε. By Lemma

3.33, y1εy2ε \ {y2ε} is a subset of Vε and, hence, ỹ2ε ∈ Vε\Lε. Let x1ε ∈ K
and x̃2ε ∈ W\L such that uε(x1ε) = y1ε resp. uε(x̃2ε) = ỹ2ε. Then, since
dist(K,Lc) = dist

(
K, (K +B η

2
(0))c

)
= η

2 and x̃2ε ∈W\L ⊆ Lc, we have

|x̃2ε − x1ε| ≥ dist(x̃2ε,K) ≥ η

2
.

Therefore,

dist(Kε, V
c
ε ) = |y1ε − y2ε| ≥ |y1ε − ỹ2ε| = |uε(x1ε)− uε(x̃2ε)|.

By the Mean Value Theorem (note that y1εỹ2ε ⊆ Vε by Lemma 3.33), we
obtain

η

2
≤ |x1ε − x̃2ε|

= |vε(uε(x1ε))− vε(uε(x̃2ε))|
≤ sup

y∈Vε
‖Dvε(y)‖ · |uε(x1ε)− uε(x̃2ε)|. (3.16)

By Proposition 3.31, there exist N ∈ N and C ′ > 0, both independent of ε,
and some ε1 ∈ (0, ε0] such that

sup
y∈Vε
‖Dvε(y)‖ ≤ C ′ε−N

for all ε ≤ ε1. Together with (3.16) this entails

|uε(x1ε)− uε(x̃2ε)| ≥ CεN

for C2 := η
2C′ and ε ≤ ε1 and we are done. �

Now it is easy to prove

3.35. Theorem: Let U be an open subset of Rn and u ∈ G[U,Rn]. If u is

ca-injective and det ◦Du is strictly non-zero, then u is left invertible on any

open subset W of U with W ⊂⊂ U .
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Proof: Let W and W ′ be two open subsets of U with W ⊂⊂W ′ ⊆W ′ ⊂⊂
U . By the ca-injectivity of u = [(uε)ε], there exists some ε0 ∈ (0, 1] such
that uε|W ′ is injective for all ε ≤ ε0. Let vε : uε(W ′) → W ′ be the inverse
of uε|W ′ . Now apply Proposition 3.34 to U , W ′, (uε)ε, (vε)ε, 0 ∈ {0}, W
and Kε := uε(W ). By the c-boundedness of u, there exists a compact set
K ⊆ Rn such that uε(W ) ⊆ K for sufficiently small ε. We obtain that u is
left invertible on W by [W,Rn, ṽ := [(ṽε)ε], Bl] where ṽε is a smooth (Kε, 0)-
extension of vε and Bl can be any open subset of Rn that contains K. �

Note that to construct the left inverse in Theorem 3.35 we used only
one representative that is ca-injective. However, by the discussion follow-
ing Corollary 3.13, we know that for left invertible generalised functions all

representatives have this property. Hence, Theorem 3.35 immediately yields

3.36. Corollary: Let U be an open subset of Rn, u ∈ G[U,Rn] and det ◦Du
strictly non-zero. If one representative of u is ca-injective, then all represen-

tatives have this property.

At this point the question arises if we may prove a theorem with respect
to ca-surjectivity and right invertibility corresponding to Theorem 3.35, i.e.
a partial converse to Proposition 3.23. A quick glance at the results from
which Theorem 3.35 was derived shows that matters turn out to be more
complex as to such a “dual” statement: Given ca-injectivity of (uε)ε we have
set-theoretic inverses (vε)ε on suitable open sets. These can be lifted to the
level of moderate c-bounded nets by Proposition 3.34, yielding a left inverse
for [(uε)ε]. Dually, given ca-surjectivity of (uε)ε, we fail when trying to
imitate this argument since we do not even obtain continuous right inverses,
in general.

However, we can show that local invertibility follows from the combina-
tion of ca-injectivity and ca-surjectivity and the assumption that det ◦Du is
strictly non-zero.

3.37. Theorem: Let U and B be open subsets of Rn and u ∈ G[U,Rn]. If

u is ca-injective and ca-surjective onto B and if det ◦Du is strictly non-zero,

then u is locally invertible on U .

More precisely, for every z ∈ U and every open subset Br of B with

Br ⊂⊂ B there exist an open neighbourhood A of z with A ⊂⊂ U , an open

relatively compact subset Bl of Rn containing Br, and some v ∈ G(Rn)n

such that u is invertible on A with inversion data [A,Rn, v, Bl, Br]. The

set A can be chosen to contain any given M ⊂⊂ U . Furthermore, there

exist representatives (uε)ε of u and (vε)ε of v such that vε ◦ uε|A = idA and

uε ◦ vε|Br = idBr for sufficiently small ε.
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Proof: Let z ∈ U , (uε)ε a representative of u and Br an open subset of B
with Br ⊂⊂ B. Let δ > 0 such that (Br)δ ⊂⊂ B for (Br)δ := Br + Bδ(0).
By the ca-surjectivity of u, there exists a compact subset K of U with
(Br)δ ⊆ uε(K) for ε sufficiently small. Choose a compact subset L of U
with K ∪ {z} ∪M ⊂⊂ L◦ for some given M ⊂⊂ U . Set A := L◦. Then
Br ⊆ uε(A) for small ε. Let η > 0 such that the closure of Aη := A+Bη(0) is
a compact subset of U . From the ca-injectivity of u, it follows that uε is in-
vertible (as a function) on Aη by, say, wε : uε(Aη)→ Aη for ε small enough.
Proposition 3.34 now yields the existence of smooth (uε(A), y)-extensions
vε of wε (for y ∈ Aη fixed arbitrarily) such that (vε)ε ∈ EM (Rn)n. Thus,
vε ◦ uε|A = idA and uε ◦ vε|Br = idBr . Since Br ⊆ uε(K) ⊆ uε(A), we have
vε(Br) = wε(Br) ⊆ K ⊂⊂ L◦ = A. Hence, vε|Br is c-bounded into A. By
the c-boundedness of u, we can find a compact subset K ′ of Rn such that
uε(A) ⊆ K ′ for ε small. Finally, let Bl be an open relatively compact subset
of Rn containing K ′. Then Br ⊆ uε(A) ⊆ Bl and, thus, u is invertible on A

with inversion data [A,Rn, v, Bl, Br]. �

3.38. Remark:

(1) By the preceding theorem, we do not obtain an inverse of u on arbitrarily
small open subsets of U (as was the case in Theorem 3.35). On the
contrary, the size of the neighbourhood A of z ∈ U depends on Br.
This does not constitute a deficiency of our proof, rather it originates
from the necessity of proving the c-boundedness of v|Br into A. As was
discussed earlier, A cannot be forced smaller, in general, by shrinking
Br (cf. Example 3.6).

(2) In the proof of Theorem 3.37 we construct, given some representative of
u, a net of smooth (classically) inverse functions vε. This means we can
find smooth inverse functions to any given representative of u. However,
the sets A and Bl depend on the chosen representative.

Finally, we demonstrate to what extent for an invertible u with inverse v
there exist representatives (uε)ε of u and (vε)ε of v such that the compositions
vε ◦ uε and uε ◦ vε classically are the identity (on suitable sets).

3.39. Theorem: Let U be an open subset of Rn, A an open subset of U and

u ∈ G(U)n invertible on A with inversion data [A, V, v,Bl, Br]. For every

representative (uε)ε of u and for every open subset W of Br with W ⊂⊂ Br
the following hold: There exist an open subset A′ of A with A′ ⊂⊂ A and a

moderate net of functions (wε)ε ∈ EM (Rn)n such that wε ◦ uε|A′ = idA′ and

uε ◦ wε|W = idW for sufficiently small ε. Moreover, u is invertible on A′ by
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[A′,Rn, w := [(wε)ε], Bl,W ] and w|W = v|W in G(W )n. The set A′ can be

chosen to contain any given M ⊂⊂ A.

Proof: Let (uε)ε be a representative of u, W an open subset of Br with
W ⊂⊂ Br, M a compact subset of A and z ∈ M . Let δ > 0 such that
Wδ ⊂⊂ Br where Wδ := W+Bδ(0). By Propositions 3.16 and 3.23, we know
that (uε)ε is ca-injective on A and ca-surjective on A onto Br. Furthermore,
Proposition 3.25 says that det ◦Du is strictly non-zero on A. Then it follows
from Theorem 3.37 (applied to A, Br and W in place of U , B and Br) that
there exist an open neighbourhood A′ of z in A with M ⊆ A′ ⊆ A′ ⊂⊂
A and some w ∈ G(Rn)n such that u is invertible on A′ with inversion
data [A′,Rn, w,Bl,W ]. Furthermore, by Remark 3.38 (2), there exists a
representative (wε)ε of w such that wε ◦ uε|A′ = idA′ and uε ◦ wε|W = idW
for ε sufficiently small. The equality w|W = v|W in G(W )n follows from
Proposition 3.5 (3). �

3.4 Generalised inverse function theorems

The classical Inverse Function Theorem says that, solely from the invert-
ibility of the derivative at a point x0 of a given function f , we may deduce
that on a suitable neighbourhood of x0 the function itself is C1-invertible.
Conversely, by the chain rule, if f is C1-invertible on some open set W , then
its derivative is invertible at every x ∈ W . In analogy to the latter state-
ment we proved in Section 3.2 that for every generalised function u ∈ G(U)n

invertible on A the determinant of the derivative is strictly non-zero at all
points of A. Contrary to the classical case, however, this latter property
at only one point is not sufficient to imply invertibility of u on some neigh-
bourhood. Certainly, it provides ε-wise smooth inverses of a representative,
but it says nothing about the sizes of the neighbourhoods on which those
inverses are defined. In the following series of examples, we consider gener-
alised functions defined on open subsets of R and examine their derivative
at 0 and their (non-)invertibility behaviour on certain neighbourhoods of 0.

3.40. Example: Let u := [(uε)ε] ∈ G(U) with U := (−α, α) for α > 0 be
defined by uε(x) := ε sinx (Figure 3.4). The derivative at 0 is Duε(0) = ε,
i.e. det ◦Du(0) is strictly non-zero. Nevertheless, u is not invertible on any
neighbourhood of 0 since it is not ca-surjective on (−α, α) onto any open
subset of R.

Even if we demand that Duε(x0) grows as 1
ε , or at least is bounded away

from 0, the situation does not get better.
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Figure 3.4: uε(x) = ε sinx

3.41. Example: Consider u := [(uε)ε] ∈ G(U) with U := (−α, α) for α > 0
given by uε(x) := ε sin x

ε (Figure 3.5). The derivative at 0 is Duε(0) = 1 for
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Figure 3.5: uε(x) = ε sin x
ε

all ε. Again, u is not invertible on any neighbourhood of 0 since it is not
ca-surjective on (−α, α) onto any open subset of R.

3.42. Example: Let u := [(uε)ε] ∈ G(U) with U := (−α, α) for α > 0
be given by uε(x) := ε sin x

ε2
(Figure 3.6). This time the derivative at 0
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Figure 3.6: uε(x) = ε sin x
ε2

is Duε(0) = 1
ε , i.e. growing as ε → 0. But still u is not invertible on any

neighbourhood of 0, for the same reasons as before.

Thus it becomes apparent that the invertibility of the derivative at one
point is not enough to ensure invertibility of u on any neighbourhood of that
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point. To stabilise the sizes of the sets on which the functions uε and their
inverses are defined, it seems inevitable that we must impose conditions on
u and/or its derivative even on some neighbourhood of x0.

In Section 1.1, we presented a proof of the classical Inverse Function
Theorem that keeps track of the minimum sizes of the neighbourhoods on
which the function is invertible. In what follows we will make good use of
those lower bounds in the proof of a generalised inverse function theorem.
To begin with, we pin down an estimate for the determinant of a square
matrix by its operator norm.

3.43. Proposition: Let A be a square matrix with entries in R. Then

|det(A)| ≤ C · ‖A‖n

holds, where C > 0 is some constant depending on the norms employed in

Rn.

Proof: By Hadamard’s Inequality (see e.g. [Fis02], page 298),

|det(A)| ≤
n∏
i=1

‖ai‖2 ≤
(

sup
i
‖ai‖2

)n
, (3.17)

where ai denotes the i-th row of A. Since N : A 7→ supi ‖ai‖2 defines a
norm on the finite dimensional vector space L(Rn,Rn), there exists a con-
stant C ′ > 0 such that N(A) ≤ C ′‖A‖ for all A ∈ L(Rn,Rn). Together with
(3.17) this yields the desired inequality. �

The quickest way to obtain an inverse function theorem for generalised
functions u (with representative (uε)ε) consists in assuming that the esti-
mates of Theorem 1.3 hold uniformly in ε for all uε. Then Proposition 3.34
takes care of the common domain and the moderateness of the inverses of
the uε. Recall that x̃ ≈ y (x̃ ∈ R̃n, y ∈ Rn) signifies that y is the shadow
of x̃, i.e. that for one (hence any) representative (x̃ε)ε of x the net (x̃ε)ε
converges to y as ε→ 0 (see Definition 2.36).

3.44. Theorem: Let U be an open subset of Rn, u ∈ G[U,Rn] and x0 ∈ U .

Let ε1 ∈ (0, 1], y0 ∈ Rn, a, b > 0 and r > 0 satisfying the following conditions:

(i) u(x0) ≈ y0.

(ii) ab < 1.

(iii) Br(x0) ⊆ U .

If there exists a representative (uε)ε of u such that for all ε ≤ ε1
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(1) det(Duε(x0)) 6= 0,

(2) ‖Duε(x0)−1‖ ≤ a,

(3) ‖Duε(x0)−Duε(x)‖ ≤ b for all x ∈ Br(x0),

then u is invertible on Bαr(x0) with inversion data[
Bαr(x0),Rn, v, B,B

β
(1−ab)
a

γr
(y0)

]
,

where α and β are arbitrary in (0, 1), γ is arbitrary in (0, α) and B ⊆ Rn is an

arbitrary open set containing
⋃
ε≤ε2 uε(Bαr(x0)) for some suitable ε2 ≤ ε1.

Furthermore, v(y0) ≈ x0. Also, there exists a representative (vε)ε of v

such that

vε|uε(Bαr(x0)) = uε|Bαr(x0)
−1

for all ε ≤ ε2.

Proof: Since the demonstration of this theorem would be but a slimmed-
down version of the proof of the next theorem, we omit it and refer to what
follows. �

The preceding theorem, however, is not capable of handling situations
such as jumps (cf. Example 3.3), which we consider as crucial due to their
appearance in applications (see Chapter 4). This shortcoming stems from
the assumption of uniform boundedness (with respect to ε) of the norms of
both Duε(x0)−Duε(x) and Duε(x0)−1: Typically, the former is violated by
(representatives of) jump functions and the latter by their inverses.

So we present a result much more flexible than Theorem 3.44 (but in-
cluding it): Essentially, we replace a by aεεN and b by bεε−N .

3.45. Theorem: Let U be an open subset of Rn, u ∈ G[U,Rn] and x0 ∈ U .

Let y0 ∈ Rn, ε1 ∈ (0, 1], aε, bε > 0 (ε ≤ ε1), N ∈ N0, d > 0 and r > 0
satisfying the following conditions:

(i) u(x0) ≈ y0.

(ii) s := sup{aε | 0 < ε ≤ ε1} is finite.

(iii) aεbε + dεN ≤ 1 for all ε ≤ ε1.

(iv) Br(x0) ⊆ U .

If there exists a representative (uε)ε of u such that for all ε ≤ ε1

(1) det(Duε(x0)) 6= 0,
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(2) ‖Duε(x0)−1‖ ≤ aεεN ,

(3) ‖Duε(x0)−Duε(x)‖ ≤ bεε−N for all x ∈ Br(x0),

then u is invertible on Bαr(x0) with inversion data[
Bαr(x0),Rn, v, B,Bβ d

s
γr(y0)

]
,

where α and β are arbitrary in (0, 1), γ is arbitrary in (0, α) and B ⊆ Rn is an

arbitrary open set containing
⋃
ε≤ε2 uε(Bαr(x0)) for some suitable ε2 ≤ ε1.

Furthermore, v(y0) ≈ x0. Also, there exists a representative (vε)ε of v

such that

vε|uε(Bαr(x0)) = uε|Bαr(x0)
−1

for all ε ≤ ε2.

Proof: We assume w.l.o.g. x0 = 0 (otherwise, replace U by U − x0 and
uε(x) by uε(x + x0)) and y0 = 0 (otherwise consider uε(x) − y0); therefore,
we have uε(0) ≈ 0.

Let ε ≤ ε1. Substituting a by aεε
N and b by bεε

−N in the Inverse
Function Theorem 1.3 shows that (by Remark 1.4) uε is smoothly invertible
on Br(0). Let wε : Vε → Br(0) denote the smooth inverse of uε|Br(0), where
Vε := uε(Br(0)) is open in Rn. By (iii),

aεε
N

1− aεbε
≤ aεε

N

d εN
≤ s

d

holds. Therefore, aεεN

1−aεbε being the value corresponding to c in Theorem 1.3,
we obtain

|Duε(x)−1| ≤ s

d

for all x ∈ Br(0). From Proposition 3.43, it follows that

| det(Duε(x))| =
∣∣∣∣ 1
det(Duε(x)−1)

∣∣∣∣ ≥ dn

Csn
(3.18)

for some constant C > 0 and for all x ∈ Br(0). Now let α ∈ (0, 1) and
Kε := uε(Bαr(0)). From (3.18), it immediately follows by Proposition 3.34
that there exist (Kε, 0)-extensions vε of wε such that (vε)ε is in EM (Rn)n. In
particular, vε ◦ uε|Bαr(0) = idBαr(0). Now let β ∈ (0, 1) and γ ∈ (0, α). Since
uε(0) converges to 0 for ε→ 0, there exists some ε2 ≤ ε1 such that

|uε(0)| ≤ (1− β)
d

s
γ r

for all ε ≤ ε2. Thus, by Proposition 1.5, Bβ d
s
γr(0) ⊆ uε(Bγr(0)) for all

ε ≤ ε2. From now on, we always let ε ≤ ε2. Since uε(Bγr(0)) ⊆ Kε, we
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have uε ◦ vε|B
β ds γr

(0) = idB
β ds γr

(0). Moreover, (vε|B
β ds γr

(0))ε is c-bounded into

Bαr(0) since vε(Bβ d
s
γr(0)) ⊆ Bγr(0) ⊆ Bαr(0). Furthermore, (uε|Bαr(0))ε is

c-bounded into any open set B ⊆ Rn that contains
⋃
ε≤ε2 uε(Bαr(0)) since

u is c-bounded into Rn.
par Finally, applying Theorem 1.3 (1) and due to the fact that vε|B

β ds γr
(0) =

wε|B
β ds γr

(0), we get

|vε(0)| = |vε(0)− vε(uε(0))| ≤ s

d
· |0− uε(0)|.

Since uε(0)→ 0, this also shows that vε(0)→ 0 as ε→ 0. �

3.46. Remark: Condition 3.45 (1) appears in the first place to make sure
that for every ε the inverse Duε(x0)−1 exists and, therefore, to give meaning
to 3.45 (2). However, it turns out that (2) actually implies a much stronger
condition on (det(Duε(x0)))ε than (1) does: By Proposition 3.43,

|det(Duε(x0))| =
∣∣∣∣ 1
det(Duε(x0)−1)

∣∣∣∣ ≥ 1
Canε

ε−nN ≥ 1
Csn

ε−nN (3.19)

for some constant C > 0 (cp. the preceding proof). This means that if
‖Duε(x0)−1‖ is bounded by some positive power of ε, then the determinant
of Duε(x0) can be estimated from below by a negative power of ε, as ε
tends to 0. In particular, det(Duε(x0)) is strictly non-zero, a property that
we already know to be satisfied by any invertible generalised function (cf.
Proposition 3.25).
On the other hand, for n ≥ 2 one cannot conclude from det(Duε(x0)) ≥
g(ε) with g(ε) → ∞ as ε → 0, that condition (2) is satisfied: Consider
[(uε)ε] ∈ G(R2)2 defined by uε(x, y) := (x, g(ε) y). Then, for any (x0, y0) ∈

R2, Duε(x0, y0) =

(
1 0
0 g(ε)

)
and det(Duε(x0, y0)) = g(ε)→∞ for ε→ 0.

However,

‖Duε(x0, y0)−1‖ =

∥∥∥∥∥
(

1 0
0 1

g(ε)

)∥∥∥∥∥ = max
(

1,
1
g(ε)

)
→ 1,

i.e. eventually ‖Duε(x0, y0)−1‖ is not decreasing with ε.

Including 3.45 (iii) guarantees that Banach’s Fixed Point Theorem can
be applied (implicitly via Theorem 1.3).

The convergence of (uε(x0))ε to some y0 in Theorem 3.45 ensures that
the images of the open ball Br(x0) under the uε are not scattered wildly all
over Rn but stay centred around y0. One may suspect that this condition
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is stronger than necessary. As a matter of fact, the theorem still holds
true if uε(x0) stays close enough to y0 in the following sense: In the proof,
convergence of (uε(x0))ε is needed in one place only, namely to obtain ε2

such that
|uε(x0)− y0| ≤ (1− β)

d

s
γ r (3.20)

holds for all ε ≤ ε2. Hence, u is invertible even if the convergence condition
is weakened to (3.20).

The next proposition shows that the conditions of Theorem 3.45, in
fact, are independent of the choice of the representative.

3.47. Proposition: If one representative of u ∈ G(U)n satisfies the condi-

tions of Theorem 3.45, then every representative does.

More precisely, if (uε)ε satisfies the conditions of the theorem with x0,

y0, ε1, aε, bε, s, N , d and r, then another given representative (ūε)ε of u

satisfies them with x0, y0, N , r and suitable values for ε̄1, āε, b̄ε, s̄ and

d̄ which can be chosen to satisfy ε̄1 ≤ ε1, āε ≥ aε and b̄ε ≥ bε (for all

ε ≤ ε̄1), s̄ ≥ s and d̄ ≤ d. Furthermore, we may suppose |aε − āε| → 0 and

|bε − b̄ε| → 0 for ε→ 0 and s̄↘ s and d̄↗ d for ε̄1 → 0.

Proof: Since the difference of (uε)ε and (ūε)ε is negligible, ūε(x0) converges
to y0 for ε → 0. By Remark 3.46, det(Duε(x0)) is strictly non-zero and,
therefore, also det(Dūε(x0)) has this property.

First, we show that w.l.o.g. we may assume that (bε)ε is moderate. On
the one hand, we have

‖Duε(x0)−Duε(x)‖ ≤ bεε−N . (3.21)

On the other hand, by the moderateness of Duε, there exist C > 0, N1 ∈ N
and ε2 ≤ ε1 such that

‖Duε(x0)−Duε(x)‖ ≤ Cε−N1 (3.22)

for all ε ≤ ε2. Inequalities (3.21) and (3.22) yield

‖Duε(x0)−Duε(x)‖ ≤ b′εε−N

for b′ε := min(bε, CεN−N1) > 0, a moderate net of positive numbers that still
satisfies all other conditions of the theorem.

In the following, let D > 0 and M ∈ N such that bε ≤ Dε−M for all
ε ≤ ε1. By Proposition 2.31, the difference (Duε(x0)−1 − Dūε(x0)−1)ε is
negligible. Therefore, we can choose ε2 ≤ ε1 such that

‖Dūε(x0)−1‖ ≤ ‖Duε(x0)−1‖+Aε2N+M+1 ≤ (aε +AεN+M+1)εN (3.23)
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for some A > 0 and

‖Dūε(x0)−Dūε(x)‖ ≤ ‖Duε(x0)−Duε(x)‖+B ε ≤ (bε+B εN+1)ε−N (3.24)

for all x ∈ Br(x0) for some B > 0. We set

āε := aε +AεN+M+1 and b̄ε := bε +B εN+1

for ε ≤ ε2. Hence, āε ≥ aε and b̄ε ≥ bε for all ε ≤ ε2. Since s = sup{aε | 0 <
ε ≤ ε1} is finite and AεN+M+1 converges monotonously to zero, it follows
that s̄ := sup{āε | 0 < ε ≤ ε1} is finite and greater or equal to s.

Finally, we check condition 3.45 (iii) for āε and b̄ε:

āεb̄ε = (aε +AεN+M+1)(bε +B εN+1)

= aεbε︸︷︷︸
≤1−dεN

+ aε︸︷︷︸
≤s

·B εN+1 + bε︸︷︷︸
≤D ε−M

·AεN+M+1 +AεN+M+1 ·B εN+1

≤ 1−
(
d− ε

(
sB +AD +AB εN+M+1

) )
εN .

Now let ε̄1 ≤ ε2 such that the expression in the brackets becomes positive
for all ε ≤ ε̄1. Set d̄ := d− ε̄1

(
sB +AD +AB ε̄ N+M+1

1

)
, then

āεb̄ε ≤ 1− d̄εN

holds for all ε ≤ ε̄1. The convergences |aε − āε| → 0 and |bε − b̄ε| → 0 for
ε→ 0 and s̄↘ s and d̄↗ d for ε̄1 → 0 follow from the definitions of āε, b̄ε,
s̄ and d̄. �

3.48. Remark: Theorem 3.44 being a special case of Theorem 3.45, it
is clear that the statement of Proposition 3.47 applies analogously to the
situation of Theorem 3.44.

The following example shows that the inversion issue of the jump func-
tion of Example 3.3 is settled affirmatively by Theorem 3.45.

3.49. Example: Let u ∈ G((−α, α)) (for α > 0) be the generalised function
modelling a jump with uε(x) = x+ arctan x

ε as a representative. We already
found in Example 3.3 that u is invertible on an open neighbourhood of 0.
Indeed, (uε)ε satisfies all conditions of Theorem 3.45 with x0 = 0, y0 = 0,
ε1 = 1, aε = 1

ε+1 (then s = 1), bε = 1, N = 1, 0 < d ≤ 1
2 and 0 < r < α.

The next example emphasises the role of 3.45 (iii): If this condition is
violated, we cannot expect u to be invertible.
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3.50. Example: Recall u from Example 3.9: A representative was given by
uε : (−α, α) → R, uε(x) = sin x

ε . Let x0 = 0. Then y0 = 0. No matter how
small we choose ε1 or r, we always end up with N = 1, aε = 1 and bε = 2.
Since the product of aε and bε is already greater than 1, no d > 0 can be
found consistent with condition 3.45 (iii). That is not surprising since we
have already noted that (uε) is not ca-injective on any neighbourhood of 0
and, thus, u cannot be left invertible.

Despite the lack of left invertibility there is still hope for u from Ex-
ample 3.50 to be right invertible since (uε)ε at least is ca-surjective onto
(−1, 1). Therefore, a theorem yielding right invertibility of generalised func-
tions similar to u from Example 3.50, assuming properties of u similar to
those of Theorem 3.45, might be desirable.

3.51. Theorem: Let U be an open subset of Rn, u ∈ G(U)n and x0 ∈ U .

Let y0 ∈ Rn, ε1 ∈ (0, 1], aε, bε > 0 (ε ≤ ε1), d > 0 and r > 0 satisfying

(i) u(x0) ≈ y0,

(ii) aε(bε + d) ≤ 1 for all ε ≤ ε1,

(iii) Br(x0) ⊆ U ,

and N ∈ N. If there exists a representative (uε)ε of u such that for all ε ≤ ε1

(1) det(Duε(x0)) 6= 0,

(2) ‖Duε(x0)−1‖ ≤ aεεN ,

(3) ‖Duε(x0)−Duε(x)‖ ≤ bεε−N for all x ∈ BrεN (x0),

then u is right invertible on BαrεN2
(x0) with right inversion data[

BαrεN2
(x0),Rn, v, Bβdγr(y0)

]
,

where α and β are arbitrary in (0, 1), γ is arbitrary in (0, α) and for some

suitable ε2 ≤ ε1.

Furthermore, v(y0) ≈ x0. Also, there exists a representative (vε)ε of v

such that

vε|uε(BαrεN (x0)) = uε|B
αrεN

(x0)
−1

for all ε ≤ ε2.

Proof: The main difference to Theorem 3.45 is the fact that the size of the
ball where uε is injective is shrinking with ε. Consequently, no left inverse
can be found without further conditions (cf. Examples 3.50 and 3.52). To
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prove the theorem just use (ii) instead of 3.45 (iii) to obtain an estimate for
aεεN

1−aεbε and replace s
d by εN

d and r by rεN in the proof of Theorem 3.45, while
omitting the part concerning the left inverse. �

Note that we do not require u to be c-bounded into Rn. This is due to
the fact that the c-boundedness of u is only necessary when composing with
a left inverse, whereas the aim of the theorem is to produce a right inverse.
Moreover, Condition 3.51 (ii) has a shape different from its equivalent in
Theorem 3.45, corresponding to the difference in the estimates due to the
replacement of r by rεN . Note that 3.51 (3) is weaker than 3.45 (3) and
that 3.51 (ii) implies 3.45 (ii). The actual shape of 3.51 (ii) seems to be
incomparable to the corresponding 3.45 (iii); it reflects the necessity of the
proof to employ 3.51 (3). Finally, the convergence condition can again be
exchanged for

|uε(x0)− y0| ≤ (1− β) d γ r

for all ε ≤ ε1.

3.52. Example: Checking uε(x) := sin x
ε for the conditions of Theorem

3.51, we easily see that (uε)ε satisfies all the requirements with respect to
x0 = 0, y0 = 0, ε1 = 1, 0 < r < π

2 , aε = 1, bε = 1−cos r, 0 < d < 1−cos r and
N = 1. Therefore, u = [(uε)ε] is right invertible on a suitable neighbourhood
of 0.

Again, the conditions in Theorem 3.51 hold true independently of the
choice of the represenative.

3.53. Proposition: If one representative of u ∈ G(U)n satisfies all condi-

tions of Theorem 3.51, then every representative does.

More precisely, if (uε)ε satisfies the conditions of the theorem with x0,

y0, ε1, aε, bε, N , d and r, then another given representative (ūε)ε of u satisfies

them with x0, y0, N , r and suitable values for ε̄1, āε, b̄ε and d̄ which can be

chosen to satisfy ε̄1 ≤ ε1, āε ≥ aε and b̄ε ≥ bε (for all ε ≤ ε̄1) and d̄ ≤ d.

Furthermore, we may suppose |aε − āε| → 0 and |bε − b̄ε| → 0 for ε→ 0 and

d̄↗ d for ε̄1 → 0.

Proof: The proof closely resembles the proof of Proposition 3.47.
The difference (uε)ε − (ūε)ε being negligible, ūε(x0) converges to y0 as

ε → 0. Moreover, det(ūε(x0)) is strictly non-zero since det(uε(x0)) has this
property. By Proposition 2.31, ‖Duε(x0)−1‖ is strictly non-zero and, hence,
so is (aε)ε. In the following, let D1 > 0 and M1 ∈ N such that aε ≥ D1ε

M1

for all ε ≤ ε1. Again, we may assume w.l.o.g. that (bε)ε is moderate. So let
D2 > 0 and M2 ∈ N such that bε ≤ D2 ε

−M2 for all ε ≤ ε1.
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As in the proof of Proposition 3.47, we can choose ε2 ≤ ε1 such that

‖Dūε(x0)−1‖ ≤ ‖Duε(x0)−1‖+AεN+M1+M2+1 ≤ (aε +AεM1+M2+1)εN

for some A > 0 and

‖Dūε(x0)−Dūε(x)‖ ≤ ‖Duε(x0)−Duε(x)‖+B ε−N+1 ≤ (bε +B ε)ε−N

for all x ∈ BrεN (x0) for some B > 0. The index ε2 and the constants A and
B are chosen according to the negligibility of (Duε(x0)−1−Dūε(x0)−1)ε and
(Duε −Dūε)ε over the compact set Br(x0). We set

āε := aε +AεM1+M2+1 and b̄ε := bε +B ε

for ε ≤ ε2. Hence, āε ≥ aε and b̄ε ≥ bε for all ε ≤ ε2. Consequently, also
āε ≥ D1ε

M1 holds. It only remains to check condition 3.51 (ii) for āε and b̄ε:

āεb̄ε = (aε +AεM1+M2+1)(bε +B ε)

= aεbε︸︷︷︸
≤1−aεd

=1−āεd+AεM1+M2+1d

+aε ·B ε+ bε ·AεM1+M2+1 +AεM1+M2+1 ·B ε

≤ 1− āεd+ āε ·

(
1
āε︸︷︷︸

≤ 1
D1

ε−M1

AεM1+M2+1d+B ε

+
1
āε︸︷︷︸

≤ 1
D1

ε−M1

bε︸︷︷︸
≤D2 ε−M2

·AεM1+M2+1 +
1
āε︸︷︷︸

≤ 1
D1

ε−M1

AεM1+M2+1 ·B ε

)

≤ 1− āε ·
(
d− ε

(
Ad

D1
εM2 +B +

AD2

D1
+
AB

D1
εM2+1

))
.

Now let ε̄1 ≤ ε2 such that the expression in the brackets becomes positive
for all ε ≤ ε̄1. Set d̄ := d− ε̄1

(
B + AD2

D1
+ AB

D1
ε̄M2+1

1

)
, then

āεb̄ε ≤ 1− āεd̄

holds for all ε ≤ ε̄1. The convergences |aε − āε| → 0 and |bε − b̄ε| → 0 for
ε→ 0 and d̄↗ d for ε̄1 → 0 follow from the definitions of āε, b̄ε and d̄. �

Now that we were successful in proving a “right inverse function the-
orem” the question arises if also a modification with respect to “only left
invertible” is possible. Typically, the generalised functions being only left
invertible are ca-injective on a fixed set but the interior of the intersection
of the images of this set under uε is empty. In addition, we know that the
inverse of any right invertible function is left invertible (cf. Proposition 3.5
(1)). So let us take a look at
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3.54. Example: Consider v ∈ G((−1, 1)) that has vε(x) := ε arcsinx as a
representative (Figure 3.7). This v is a right inverse to the function u we
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Figure 3.7: vε(x) = ε arcsinx

studied in Examples 3.50 and 3.52. Since Dvε(0) is the reciprocal value of
Duε(0), it is not surprising to discover that (vε)ε satisfies estimates similar
to 3.51 (2) and (3) with the sign of N reversed.

Indeed, reversing the sign of N in Theorem 3.45 (2) and (3) leads to
sufficient conditions for left invertibility.

3.55. Theorem: Let U be an open subset of Rn, u ∈ G[U,Rn] and x0 ∈ U .

Let ε1 ∈ (0, 1], aε, bε > 0 (ε ≤ ε1), N ∈ N0, d > 0 and r > 0 satisfying the

following conditions:

(i) s := sup{aε | 0 < ε ≤ ε1} is finite.

(ii) aεbε + dεN ≤ 1 for all ε ≤ ε1.

(iii) Br(x0) ⊆ U .

If there exists a representative (uε)ε of u such that for all ε ≤ ε1

(1) det(Duε(x0)) 6= 0,

(2) ‖Duε(x0)−1‖ ≤ aεε−N ,

(3) ‖Duε(x0)−Duε(x)‖ ≤ bεεN for all x ∈ Br(x0),

then u is left invertible on Bαr(x0) with left inversion data

[Bαr(x0),Rn, v, B]

where α is arbitrary in (0, 1) and B ⊆ Rn is an arbitrary open set containing⋃
ε≤ε1 uε(Bαr(x0)).
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Furthermore, there exists a representative (vε)ε of v such that

vε|uε(Bαr(x0)) = uε|Bαr(x0)
−1

for all ε ≤ ε2.

Proof: To prove the theorem just use (ii) as in Theorem 3.45 to obtain an
estimate for aεε−N

1−aεbε and replace aεεN by aεε
−N , bεε−N by bεε

N and d by
ε2N in the proof of Theorem 3.45, while omitting the part introducing the
constant β and the part concerning the convergence of vε(0) to 0. �

The preceding theorem lacks the convergence condition on (uε(x0))ε
corresponding to 3.45 (i) since for the construction of a left inverse we do
not care if the intersection of the images under uε still contains a non-empty
open set.

3.56. Example: Let v be the generalised function from Example 3.54. Then
(vε)ε satisfies the conditions of Theorem 3.55 with respect to x0 = 0, v1 =,
0 < r <

√
3

2 , aε = 1, bε = 1√
1−r2 − 1 < 1, N = 1 and 0 < d ≤ 2− 1√

1−r2 .

Once more we show independence of the choice of the representative in
Theorem 3.55.

3.57. Proposition: If one representative of u ∈ G(U)n satisfies all condi-

tions of Theorem 3.45, then every representative does.

More precisely, if (uε)ε satisfies the conditions of the theorem with x0,

ε1, aε, bε, s, N , d and r, then another given representative (ūε)ε of u satisfies

them with x0, N , r and suitable values for ε̄1, āε, b̄ε, s̄ and d̄ which can be

chosen to satisfy ε̄1 ≤ ε1, āε ≥ aε and b̄ε ≥ bε (for all ε ≤ ε̄1), s̄ ≥ s and

d̄ ≤ d. Furthermore, we may suppose |aε − āε| → 0 and |bε − b̄ε| → 0 for

ε→ 0 and s̄↘ s and d̄↗ d for ε̄1 → 0.

Proof: The proof is nearly the same as the one of Proposition 3.47. āε
and b̄ε, s̄, ε̄1 and d̄ are defined as before. Thus, they have the claimed
properties. There are only two differences to the proof of Proposition 3.47:
Again, we show that w.l.o.g. (bε)ε is moderate, only that this time b′ε :=
min

(
bε, Cε

−(N+N1)
)
. And then, in the equivalents of the estimates (3.23)

and (3.24), we find some ε2 ≤ ε1 such that the negligible part in the respec-
tive estimate is less than AεM+1 resp. Bε2N+1. �

In classical inversion theory there are several theorems concerning the
global injectivity of a given function (cf. [Par83]). One of them is from Gale
and Nikaido ([GN65]).
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3.58. Theorem (Gale-Nikaido): Let U be an open subset of Rn and

Ω a closed rectangular region of Rn with Ω ⊆ U . Let f : Ω → Rn be a

differentiable mapping. If every principal minor of Df(x) is positive for all

x ∈ Ω, then f is injective on Ω.

The region Ω is of the form {(x1, . . . , xn) | ai ≤ xi ≤ bi, i = 1, . . . , n}
where ai, bi ∈ R ∪ {±∞}, i.e. Ω need not to be bounded. For the notion of
differentiability on Ω see [GN65], page 84 or [Par83], page 17.

We use Theorem 3.58 to prove yet another “left inverse function theo-
rem” that will be used in Chapter 4.

3.59. Theorem: Let U be an open subset of Rn and u ∈ G[U,Rn]. If

det ◦Du is strictly non-zero and if there exist a represenative (uε)ε of u and

some ε0 ∈ (0, 1] such that every principal minor of Duε(x) is positive for all

x ∈ U and ε ≤ ε0, then u is left invertible on any open rectangular subset R

of U with R ⊂⊂ U .

Proof: Let R be an open rectangular subset of U with R ⊂⊂ U . Let δ > 0
such that Rδ ⊆ U where Rδ := R+{(x1, . . . , xn) ∈ Rn | |xi| < δ, i = 1, . . . , n}.
Then Rδ is a closed rectangular region and, by Theorem 3.58, every uε is
injective for all ε ≤ ε0. We define wε : uε(Rδ)→ Rδ by wε := uε|Rδ

−1. From
Proposition 3.34, it follows that there exist (uε(R), 0)-extensions vε of wε
such that (vε)ε is in EM (Rn)n. Since u is c-bounded into Rn, there exists a
compact subset K of Rn such that uε(R) ⊆ K for ε sufficiently small. Hence,
u is left invertible on R with left inversion data [R,Rn, v := [(vε)ε], Bl], where
Bl is an arbitrary open subset of Rn containing K. �

Finally, we take a look at the relation between the classical Inverse Func-
tion Theorem 1.3 and the generalised Inverse Function Theorem 3.45. On the
C∞ level we saw in Remark 3.2 (3) that if a smooth function f : U → V (with
U and V open subsets of Rn) is classically C∞-invertible on a neighbourhood
W of some point x0 ∈ U with smooth inverse g, then, obviously, σ(f) = ι(f)
is strictly invertible on W with inversion data [W, f(W ), σ(g), f(W )]. But
what is the situation if f is not C∞, i.e. if we cannot use the trivial em-
bedding σ? In the following, we will show that our notion of invertibility
and the generalised Inverse Function Theorem 3.45 are consistent with the
classical Inverse Function Theorem 1.3, the latter taken for the special case
X = Y = Rn and f a C1-function. First, we need the following

3.60. Proposition: Let U be an open subset of Rn, V an open subset

of Rm, f ∈ C(U, V ) and fε ∈ C(U,Rm) for ε ∈ (0, ε0]. Assume that for

all compact subsets K of U there exists some compact subset L of V such
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that fε(K) ⊆ L for sufficiently small ε. Furthermore, suppose that (fε)ε
converges to f uniformly on compact subsets of U as ε → 0. If g is a

continuous function on V , then (g ◦ fε|K)ε converges uniformly to g ◦ f |K
for all compact sets K in U .

Proof: Let K ⊂⊂ U and let L ⊂⊂ V such that f(K), fε(K) ⊆ L for all
ε ≤ ε1 for some ε1 ≤ ε0. Let η > 0. Since g is continuous and L is compact,
g is uniformly continuous on L. Now choose δ > 0 such that for all y1, y2 ∈ L
with |y1 − y2| < δ

|g(y1)− g(y2)| < η

holds. Choose ε2 ≤ ε1 such that

|fε(x)− f(x)| < δ

for all ε ≤ ε2. Since fε(x), f(x) ∈ L for all x ∈ K and ε ≤ ε2, it follows that

sup
x∈K
|g(fε(x))− g(f(x))| < η

for all ε ≤ ε2. �

3.61. Theorem: Let U be an open subset of Rn, x0 in U and f in C1(U,Rn)
with det(Df(x0)) 6= 0. Then the following hold:

(1) ι(f) ∈ G(U)n satisfies the condition of Theorem 3.44 around x0 and,

therefore, is invertible on some neighbourhood of x0.

(2) Assume that g ∈ C1(V,W ) is the inverse of f |W around x0 ∈ W given

by the Inverse Function Theorem 1.3 and v ∈ G(Rn)n is the inverse of

ι(f) obtained by Theorem 3.44 with inversion data [Bs,Rn, v, Bl, Br].
Then for every representative (vε)ε of v, (vε)ε and (Dvε)ε converge to g

and Dg, respectively, uniformly on compact subsets of Br ∩ V .

Proof: (1): Let A be an open neighbourhood of x0 with A ⊂⊂ U . Since all
the conditions of Theorem 3.44 have to be satisfied only on an arbitrarily
small open ball with centre x0, it suffices to show that ι(f) has a represen-
tative (uε)ε such that the uε|A satisfy the conditions assumed in Theorem
3.44. We will even prove a (formally) stronger statement, namely that every
representative (vε)ε of ι(f)|A satisfies the conditions of Theorem 3.44. This,
in turn, will be established once we have shown that there exists at least
one representative (fε)ε of ι(f)|A satisfying the relevant conditions, due to
Remark 3.48.

Let ψ be an element of D(U) with ψ ≡ 1 in some neighbourhood of A.
Then ψf has compact support and can be embedded into G(U) by ι0. Using
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the formula of Chapter 2, we obtain that
(
((ψf) ∗ρε)|U

)
ε

is a representative
of ι0(ψf), and thus of ι(ψf) (Proposition 2.11). Restriction to A yields that
(fε)ε :=

(
((ψf) ∗ ρε)|A

)
ε

is a representative of ι(ψf)|A. Since ι̂ is a sheaf
morphism (Proposition 2.13), we have

ιU (ψf)|A = ιA(ψf |A) = ιA(f |A) = ιU (f)|A,

establishing (fε)ε as a representative of ιU (f)|A. In the following, we will
denote ι(f) = ιU (f) simply by ιf .
By Proposition 2.39, Djfε converges uniformly to Djf |A on compact subsets
of A as ε → 0 for j = 0, 1. Hence, (ιf)|A is c-bounded into Rn and (ιf)|A
satisfies condition 3.44 (i), i.e. (ιf)|A(x0) ≈ f(x0). Furthermore, we have

Dfε(x0)→ Df(x0) for ε→ 0. (3.25)

Since the determinant function det is continuous, this yields

det(Dfε(x0))→ det(Df(x0)) 6= 0 for ε→ 0.

Hence, det(Dfε(x0)) is non-zero and, thus, satisfies 3.44 (1) for ε sufficiently
small, say ε ≤ ε1.
Now let C := ‖Df(x0)−1‖. By (3.25), and since inversion on GLn(R),
i.e. ϕ 7→ ϕ−1, is continuous, we obtain Dfε(x0)−1 → Df(x0)−1, and thus
‖Dfε(x0)−1‖ → ‖Df(x0)−1‖ for ε → 0. Therefore, for fixed a > C there
exists ε2 ≤ ε1 such that ‖Dfε(x0)−1‖ ≤ a, showing that 3.44 (2) is satisfied.
Note that, by D(ιf) = ι(Df) (Theorem 2.9) and by ι(Df)|A = ι(ψ · Df)|A
(same line of argument as for ι(f)|A), we have

Dfε = ((ψ ·Df) ∗ ρε)|A +Nε

for some (Nε)ε ∈ N (A)n
2
. Setting g := ψ · Df and substituting z for y

ε , we
obtain

‖Dfε(x0)−Dfε(x)‖ ≤

≤ ‖g ∗ ρε (x0)− g ∗ ρε (x)‖+ ‖Mε(x)‖

=
∥∥∥∥ ∫

Rn

(
g(x0 − y)− g(x− y)

)
· ρε(y) dy

∥∥∥∥+ ‖Mε(x)‖

=
∥∥∥∥ ∫

Rn

(
g(x0 − εz)− g(x− εz)

)
· ρ(z) dz

∥∥∥∥+ ‖Mε(x)‖

≤ ‖g(x0 − εz)− g(x− εz)‖ ·
∫

Rn

|ρ(z)| dz + ‖Mε(x)‖ (3.26)
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where (Mε)ε ∈ N (A)n
2
. The function g is continuous and has compact

support. Hence, g is uniformly continuous on Rn. Let η > 0 with a · η ·
(
∫

Rn |ρ(z)| dz + 1) < 1 and set

b := η ·

 ∫
Rn

|ρ(z)| dz + 1


(yielding ab < 1 as required by 3.44 (ii)). Choose r > 0 according to the
uniform continuity of g such that Br(x0) ⊆ A (i.e. let r satisfy also 3.44 (iii)).
Now, for every x ∈ Br(x0), we have |(x0− εz)− (x− εz)| = |x0−x| ≤ r and,
hence,

‖g(x0 − εz)− g(x− εz)‖ ≤ η. (3.27)

Let ε3 ≤ ε2 such that
sup

x∈Br(x0)

‖Mε(x)‖ ≤ η. (3.28)

Estimating the last expression in (3.26) by (3.27) and (3.28), we finally
obtain

‖Dfε(x0)−Dfε(x)‖ ≤ η ·
∫

Rn

|ρ(z)| dz + η = b

for all ε ≤ ε3, showing that also 3.44 (3) is satisfied.
(2): Obviously, if the assertion holds for one representative of v, it is

true for every representative. By Theorem 3.44, there exist representatives
(uε)ε and (vε)ε of ι(f) resp. v such that uε ◦ vε|Br = idBr .
First, we establish that (f ◦vε)ε converges to the identity on Br∩V uniformly
on Br ∩ V : By the inclusion vε(Br ∩ V ) ⊆ Bs, we obtain

sup
x∈Br∩V

|f ◦ vε(x)− x| = sup
x∈Br∩V

|f(vε(x))− uε(vε(x))|

≤ sup
y∈Bs

|f(y)− uε(y)|.

By Proposition 2.39, the right hand side converges to 0 for ε→ 0 and, hence,
so does the left hand side.
Next, we show that for all K ⊂⊂ Br ∩ V there exists some L ⊂⊂ Br ∩ V
such that f ◦vε(K) ⊆ L for sufficiently small ε: Let K ⊂⊂ Br ∩V and δ > 0
such that K +Bδ(0) ⊂⊂ Br ∩V . By the uniform convergence of (f ◦ vε)ε to
idBr∩V , there exists some η ∈ (0, 1] such that

|f ◦ vε(x)− x| < δ

for all x ∈ K and ε ≤ η. Thus,

f ◦ vε(K) ⊆ K +Bδ(0) ⊂⊂ Br ∩ V
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for all ε ≤ η.
Finally, we apply Proposition 3.60 to idBr∩V , (f ◦ vε)ε and g to obtain that
(vε)ε converges to g uniformly on compact subsets of Br ∩ V .

To prove the uniform convergence of the derivatives on compact sets,
we first show that Df(vε( . )) ◦Dvε( . ) converges to the identity I uniformly
on Br ∩ V : By vε(Br ∩ V ) ⊆ Bs,

sup
x∈Br∩V

‖Df(vε(x)) ◦Dvε(x)− I‖

= sup
x∈Br∩V

‖Df(vε(x)) ◦Dvε(x)−Duε(vε(x)) ◦Dvε(x)‖

≤ sup
x∈Br∩V

∥∥(Df(vε(x))−Duε(vε(x))
)
◦Dvε(x)

∥∥
≤ sup

z∈Bs
‖Df(z)−Duε(z)‖ · ‖Duε(z)−1‖

holds. As shown in the proof of Theorem 3.44 (resp. Theorem 3.45),
(Duε( . )−1)ε is uniformly bounded on Bs with respect to ε. By Proposition
2.39, (Duε)ε converges to Df uniformly on the compact set Bs for ε → 0.
Hence,

sup
x∈Br∩V

‖Df(vε(x)) ◦Dvε(x)− I‖ → 0 as ε→ 0. (3.29)

Next, we apply Proposition 3.60 to g, (vε)ε and Df to obtain that

sup
x∈L
‖Df(g(x))−Df(vε(x))‖ → 0 as ε→ 0 (3.30)

for all compact subsets L of Br ∩ V .
Finally, let K ⊂⊂ Br ∩ V and x ∈ K. Then

‖Dvε(x)−Dg(x)‖ =

= ‖Df(vε(x))−1 ◦Df(vε(x)) ◦Dvε(x)−Df(vε(x))−1 ◦Df(vε(x)) ◦Dg(x)‖

≤ ‖Df(vε(x))−1 ◦Df(vε(x)) ◦Dvε(x)−Df(vε(x))−1 ◦Df(g(x)) ◦Dg(x)‖

+ ‖Df(vε(x))−1 ◦Df(g(x)) ◦Dg(x)−Df(vε(x))−1 ◦Df(vε(x)) ◦Dg(x)‖

≤ ‖Df(vε(x))−1‖ ·
(
‖Df(vε(x)) ◦Dvε(x)− I‖

+ ‖Df(g(x))−Df(vε(x))‖ · ‖Dg(x)‖
)

holds. Df(vε( . ))−1 (by vε(K) ⊆ Bs) and Dg are bounded on K, indepen-
dently of ε. By (3.29) and (3.30), the two expressions in the bracket converge
to 0 uniformly on K as ε→ 0, thereby concluding the proof. �



81

Chapter 4

A “discontinuous coordinate

transformation” in general

relativity

In this chapter, we will apply the notions and some of the results of the
inversion theory of generalised functions developed in the preceding chapter
to a problem in general relativity. This builds upon results of M. Kunzinger
and R. Steinbauer (cf. [Ste00], [Ste98], [KS99b] and [GKOS01]) which will be
reviewed here to the extent needed. We shall begin with a short introduction
to so-called impulsive pp-waves, whose description by two different spacetime
metrics (one distributional and one continuous) gives rise to a “discontinuous
coordinate transformation” (Section 4.1). Replacing the distributional form
of the metric by a generalised one leads to generalised geodesic equations
which we will study in Section 4.2. Using these generalised geodesics, we
obtain a generalised coordinate transformation modelling the discontinuous
one. In Section 4.3, we will show that this transformation is indeed locally
invertible in the sense of Chapter 3.

4.1 Impulsive pp-waves

The class of plane fronted gravitational waves with parallel rays or, for short,
pp-waves was first considered by Brinkmann ([Bri23]) already in 1923 and
rediscovered subsequently by several authors, among them Rosen ([Ros37]),
Robinson in 1956 (cf. [EK62], page 88), Hély ([Hél59]) and Peres ([Per59]).

The most common way to define pp-waves is as spacetimes admitting a
covariantly constant null vector field ka. It is possible to physically interpret
such a field as the rays of gravitational (or other null) waves. Introducing a
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null coordinate u by the condition ∂au = ka, the metric of a pp-wave may
be written in the form

ds2 = h(u, x, y) du2 − du dv + dx2 + dy2, (4.1)

where h, called the wave profile, is an arbitrary (smooth) function of its
arguments. Often (4.1) is referred to as the Brinkmann form of the pp-
wave metric. A pp-wave of the form h(u, x, y) = ρ(u)f(x, y) is called a
sandwich pp-wave ([BPR59]) if ρ is non-vanishing only in some finite region
u0 ≤ u ≤ u1 of spacetime. The gravitational field then is confined to that
region, with flat space in “front” of (u ≤ u0) resp. “behind” (u ≥ u1) the
wave. In [Pen68], Ch. 4, R. Penrose introduced impulsive pp-waves as an
idealisation (impulsive limit) of sandwich waves of infinitely short duration
(say u0, u1 → 0) but still producing a nontrivial effect in the sense that ρ
equals the Dirac-δ, i.e. the metric taking the form

ds2 = f(x, y) δ(u) du2 − du dv + dx2 + dy2. (4.2)

This spacetime is flat everywhere except for the null hyperplane u = 0 where
a δ-like impulse is located. The corresponding geodesic equations are given
by

u′′ = 0,

xi ′′ =
1
2
∂if u

′ 2 δ,

v′′ = f δ̇ u′ 2 + 2
2∑
i=1

∂if x
i ′ u′ δ,

where ′ denotes the derivative with respect to an affine parameter, δ̇ is the
derivative of the δ-distribution and (x1, x2) = (x, y). Since u′′ = 0, we may
use u as a new affine parameter (thereby excluding only trivial geodesics
parallel to the shock hypersurface), leading to

ẍi(u) =
1
2
∂if(x1(u), x2(u)) δ(u),

v̈(u) = f(x1(u), x2(u)) δ̇(u) + 2
2∑
i=1

∂if(x1(u), x2(u)) ẋi(u) δ(u), (4.3)

where the upper dot ˙ denotes the derivative with respect to u and we
have written out all the dependencies explicitly. Heuristically, we expect the
geodesics to be broken, possibly refracted straight lines. However, taking a
closer look at system (4.3), it turns out that the xi components (as second
antiderivatives of δ) have the shape of kink functions and, consequently, the
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right hand side of the equation for v involves the (in D′) ill-defined product
Hδ (“Heaviside times delta”). Nevertheless, attempts have been made to
solve this system not well-defined in D′ (cf. [FPV88] and [Bal97]) by simply
setting Hδ = 1

2δ (indeed, Hδ ≈ 1
2δ holds), leading to the “solutions”

xi(u) = xi0 + ẋi0 (1 + u) +
1
2
∂if(x1

0 + ẋ1
0, x

2
0 + ẋ2

0)u+,

v(u) = v0 + v̇0 (1 + u) + f(x1
0 + ẋ1

0, x
2
0 + ẋ2

0)H(u)

+
2∑
i=1

∂if(x1
0 + ẋ1

0, x
2
0 + ẋ2

0)
(
ẋi0 +

1
4
∂if(x1

0 + ẋ1
0, x

2
0 + ẋ2

0)
)
u+,

(4.4)

where u+ denotes the kink function u 7→ H(u)u. In [Ste98], [KS99b], [Ste00]
resp. [GKOS01], M. Kunzinger and R. Steinbauer justified that somewhat
ad-hoc approach by providing a mathematically rigorous method of treating
equations such as (4.3) and arriving at the same answer: They regularised
the given equations, solved them in a suitable Colombeau algebra and showed
that the solution indeed is associated to (4.4) (see the following section for
details).

In the literature impulsive pp-waves frequently have also been described
by a different spacetime metric which is actually continuous (see [Pen72],
[PV98] and, for the general case, [AB97]). The latter is derived from the
Rosen form (cf. [Ros37]) and is given by

ds2 = −du dV + (1 +
1
2
∂11f u+)2 dX2 + (1 +

1
2
∂22f u+)2 dY 2

+
1
2
∂12f ∆f u2

+ dX dY + 2u+ ∂12f dX dY +
1
4

(∂12f)2 u2
+ (dX2 + dY 2),

(4.5)

where for simplicity we have suppressed the dependence of the function f on
its arguments, i.e. f(X,Y ). This suggests to look for a change of coordinates
transforming (4.2) into (4.5). Of course, such a transformation cannot even
be continuous.

Comparing the metrics described by (4.2) and (4.5), it turns out that the
coordinate lines in (4.5) are exactly given by the “distributional geodesics”
of the metric (4.2) with vanishing initial speed in the x, y and v-directions,
giving rise to the “discontinuous coordinate transformation”

u = u,

xi = Xi +
1
2
∂if(Xk)u+,

v = V + f(Xk)H(u) +
1
4

2∑
i=1

∂if(Xk)2 u+, (4.6)
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where we write (Xk) for (X1, X2) = (X,Y ) and again (x1, x2) = (x, y).
Hence, from a physical point of view, the two approaches to impulsive pp-
waves are equivalent. However, besides changing the manifold structure, the
transformation once more involves products of distributions ill-defined in the
linear theory. M. Kunzinger and R. Steinbauer gave meaning to the term
“physically equivalent” by interpreting the discontinuous transformation as
the distributional shadow of a generalised transformation in G: After re-
placing the distributional spacetime metric (4.2) by a generalised one, they
applied a generalised change of coordinates modelling the distributional one.
Then they calculated the distributional shadow of the transformed gener-
alised metric to arrive precisely at the continuous form (4.5) (cf. [KS99a],
[Ste00] and [GKOS01]).
However, they did not arrive at a complete result in terms of inversion of
generalised functions as developed in the preceding chapter. In the following
section we will retrace—resp. complement and improve where necessary—the
construction of a generalised solution of the regularised geodesic equations
corresponding to (4.3). In Section 4.3, we will then show that the trans-
formation (4.6) can indeed be viewed as a generalised function and that
this function is locally invertible on some open set containing the half space
(−∞, 0]× R3 in the sense of Definition 3.28.

4.2 Description of the geodesics for impulsivse pp-

waves in G

In this section, we study the geodesic equations corresponding to the reg-
ularisation of the distributional metric (4.2), following the approach taken
in [Ste98], [Ste00] and [GKOS01]. While our presentation includes a lemma
and a theorem by M. Kunzinger and R. Steinbauer regarding the existence
and uniqueness of the generalised geodesics, we will study the solutions of
the geodesic equations in greater depth and, thus, provide a basis for the
constructions and discussions of the following section.

To carry out the programme indicated at the end of the preceding sec-
tion we first have to regularise the spacetime metric and, more importantly,
the geodesic equations (4.3). We will not employ some given embedding ι of
D′ into G; rather, we will use a fairly general approach for modelling delta,
following [GKOS01].

4.1. Definition: A strict delta net is a net (δε)ε ∈ D(Rn) satisfying

(a) supp(δε) ⊆ [−ε, ε],
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(b)
∫
δε(x) dx→ 1 for ε→ 0,

(c)
∫
|δε(x)| dx ≤ C for some C > 0 and small ε.

A strict delta function is a generalised function D = [(δε)ε] ∈ G(Rn) with

(δε)ε a strict delta net.

Note that condition (a) is chosen in order to avoid technicalities in the
following calculations which, however, remain valid if (a) is replaced by

(a′) supp(δε)→ {0} for ε→ 0.

We will base our considerations on the generalised metric ĝ on R4 given by

d̂s2 = f(x1, x2)D(u) du2 − du dv + (dx1)2 + (dx2)2, (4.7)

where D is a strict delta function. Therefore, the geodesic equations (4.3)
appear in the following regularised form:

ẍi(u) =
1
2
∂if(x1(u), x2(u))D(u),

v̈(u) = f(x1(u), x2(u)) Ḋ(u) + 2
2∑
i=1

∂if(x1(u), x2(u)) ẋi(u)D(u). (4.8)

The solution of this system, on the level of representatives and for fixed ε, is
obtained by means of the following lemma ([GKOS01], Lemma 5.3.1). The
initial conditions are chosen in u = −1, i.e. “long before the shock”.

4.2. Lemma: Let g : Rn → Rn and h : R → Rn be smooth and (δε)ε a

net of smooth functions satisfying conditions (a) and (c) as above. For any

x0, ẋ0 ∈ Rn and any ε ∈ (0, 1] consider the system

ẍε(t) = g(xε(t))δε(t) + h(t)

xε(−1) = x0

ẋε(−1) = ẋ0. (4.9)

Let b > 0, Q :=
∫ 1
−1

∫ s
−1 |h(r)|dr ds, I := {x ∈ Rn | |x − x0| ≤ b + |ẋ0| + Q}

and

α := min
(

b

C‖g‖∞,I + |ẋ0|
,

1
2LC

, 1
)
,

with L a Lipschitz constant for g on I. Then (4.9) has a smooth solution

xε on Jε := [−1, α − ε] which is unique in {xε ∈ C2(Jε,R) | |xε(t) − x0| ≤
b+ |ẋ0|+Q}. Furthermore, for ε sufficiently small (e.g. ε ≤ α

2 ) xε is globally

defined and both (xε)ε and (ẋε)ε are uniformly bounded on compact subsets

of R.
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For fixed initial values, the above lemma can be used to ensure the ex-
istence of a solution of the generalised geodesic equations (4.8) (as is done
in [Ste98], [Ste00] resp. [GKOS01]). However, in view of inverting the gener-
alised coordinate transformation induced by the generalised geodesics (with
vanishing initial speed in the x1, x2 and v-directions), we need to know more
about the dependence of the solution on the initial values. Therefore, before
presenting the theorem of M. Kunzinger and R. Steinbauer, we study the
solutions provided by Lemma 4.2 in more detail.

The sets I and Jε and the constants α and L depend on the initial
values x0 and ẋ0. Nevertheless, they can be chosen uniformly for (x0, ẋ0)
ranging over some compact set K ⊂⊂ R2n: For β(K) := supz∈pr2(K) |z|,
set I(K) := pr1(K) + Bb+β(K)+Q(0), L(K) := maxz∈I(K) ‖Dg(z)‖, α(K)
as in Lemma 4.2 (replacing I, |ẋ0|, L by I(K), β(K), L(K), respectively)
and, finally, Jε(K) := [−1, α(K) − ε]. Hence, for ε ≤ ε(K) := α(K)

2 and
(x0, ẋ0) ∈ K, the solutions xε(x0, ẋ0) are globally defined.

By the Existence and Uniqueness Theorem for ODEs 1.7, xε also de-
pends smoothly on the initial values, i.e. xε ∈ C∞(K◦ × R) for K ⊂⊂ R2n

and ε ≤ ε(K).
Our next task is to combine the (maximal) solutions obtained by Lemma

4.2 (keeping in mind that their domains depend on the initial values and on
ε) to a “solution” on Rn×Rn×R×(0, 1]. More precisely, we have to construct
a net (xε)ε ∈ C∞(Rn × Rn × R,Rn)(0,1] of smooth functions such that for
every K ⊂⊂ R2n there exists some εK ∈ (0, 1] such that xε(x0, ẋ0, . ) is the
global solution of (4.9) for all (x0, ẋ0) ∈ K and ε ≤ εK .

4.3. Proposition: There exists (xε)ε ∈ C∞(Rn×Rn×R,Rn)(0,1] such that

for every K ⊂⊂ R2n there exists some εK ∈ (0, 1] such that xε(x0, ẋ0, . ) is

the global solution of (4.9) for all (x0, ẋ0) ∈ K and ε ≤ εK .

Proof: Let (Km)m be an increasing sequence of compact subsets of R2n sat-
isfying Km ⊂⊂ K◦m+1 which exhausts R2n. Set Dm := (ε(Km+1), ε(Km)] ×
Km andD :=

⋃∞
m=1Dm. Now, we may define a function y : D → C∞(R,Rn),

(ε, x0, ẋ0) 7→ yε(x0, ẋ0, . ) such that yε(x0, ẋ0, . ) is the global solution of
(4.9). Let σm ∈ D(K◦m) such that 0 ≤ σm ≤ 1 and σm|Km−1 = 1. For
ε ∈ (ε(Km+1), ε(Km)] we define

xε(x0, ẋ0, t) :=

{
σm(x0, ẋ0) · yε(x0, ẋ0, t), (x0, ẋ0) ∈ K◦m
0, (x0, ẋ0) ∈ R2n \ suppσm

.

Then xε ∈ C∞(Rn × Rn × R,Rn) and xε|Km−1×R = yε|Km−1×R. Since for
ε ∈ (0, ε(Km)] and (x0, ẋ0) ∈ Km the function yε(x0, ẋ0, . ) is a global solu-
tion, xε(x0, ẋ0, . ) is a global solution for ε ∈ (0, ε(Km)] and (x0, ẋ0) ∈ Km−1.
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Finally, for every K ⊂⊂ R2n there exists some m ∈ N such that K ⊆ Km.
For εK := ε(Km+1) the function xε(x0, ẋ0, . ) is the global solution of (4.9)
for all (x0, ẋ0) ∈ K and ε ≤ εK . �

We will call a net as in Proposition 4.3 an asymptotic solution of the
system of differential equations (4.9). Note that the asypmtotic solution
(xε)ε is a net of functions depending on time and initial values.

Next, we show uniform boundedness of the asymptotic solution (xε)ε
on compact sets, a crucial ingredient for our proof of moderateness of the
generalised coordinate transformation in Section 4.3.

4.4. Proposition: The asymptotic solution (xε)ε ∈ C∞(Rn×Rn×R,Rn)(0,1]

is uniformly bounded on compact subsets of Rn × Rn × R.

Proof: Let K×L×J ⊂⊂ Rn×Rn×R and ε ≤ εK×L. Then, on K×L×R,
xε can be written as

xε(x0, ẋ0, t) =

x0 + ẋ0(t+ 1) +
∫ −1
t

∫ −1
s h(r)dr ds, t ∈ (−∞,−1]

x0 + ẋ0(t+ 1) +
∫ t
−ε
∫ s
−ε g(xε(x0, ẋ0, r))δε(r)dr ds

+
∫ t
−1

∫ s
−1 h(r)dr ds, t ∈ [−1, ε]

xε(x0, ẋ0, ε) + ẋε(x0, ẋ0, ε)(t− ε) +
∫ t
ε

∫ s
ε h(r)dr ds, t ∈ [ε,∞)

.

For (x0, ẋ0, t) ∈ K × L× (J ∩ (−∞,−1]) we have

|xε(x0,ẋ0, t)| ≤

≤ sup
x0∈K

|x0|+ sup
ẋ0∈L

|ẋ0| · (sup
t∈J
|t|+ 1) + sup

t∈J

−1∫
t

−1∫
s

|h(r)| dr ds

<∞.

Now, let (x0, ẋ0, t) ∈ K × L × (J ∩ [−1, ε]) ⊆ K × L × Jε({x0, ẋ0}). Then,
immediately by Lemma 4.2, |xε(x0, ẋ0, t)| is bounded by

|xε(x0, ẋ0, t)| ≤ sup
x0∈K

|x0|+ sup
ẋ0∈L

|ẋ0|+ b+Q.

Finally, let (x0, ẋ0, t) ∈ K × L× (J ∩ [ε,∞)). Observe that

ẋε(x0, ẋ0, ε) = ẋ0 +

ε∫
−ε

g(xε(x0, ẋ0, s)) δε(s) ds+

ε∫
−1

h(s) ds.
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Hence,

|xε(x0,ẋ0, t)| ≤

≤ |xε(x0, ẋ0, ε)|+ |ẋε(x0, ẋ0, ε)||t− ε|+
ε∫
ε

s∫
ε

|h(r)| dr ds

≤ ( sup
x0∈K

|x0|+ sup
ẋ0∈L

|ẋ0|+ b+Q)

+ ( sup
ẋ0∈L

|ẋ0|+ ‖g‖∞,I(K×L) · C + ‖h‖1,[−1,1]) · (sup
t∈J
|t|+ 1)

+ sup
t∈J

t∫
ε

s∫
ε

|h(r)| dr ds

<∞,

which concludes the proof of the proposition. �

We return to the results of M. Kunzinger and R. Steinbauer and cite
the theorem stating the existence and uniqueness of generalised geodesics
([GKOS01], Theorem 5.3.2).

4.5. Theorem: Let [(δε)ε] be a strict delta function, f ∈ C∞(R2,R) and

let x1
0, ẋ

1
0, x

2
0, ẋ

2
0, v0, v̇0 ∈ R. Then the system of generalised differential equa-

tions given (on the level of representatives) by

ẍiε(u) =
1
2
∂if(x1

ε(u), x2
ε(u)) δε(u)

v̈ε(u) = f(x1
ε(u), x2

ε(u)) δ̇ε(u) + 2
2∑
i=1

∂if(x1
ε(u), x2

ε(u)) ẋiε(u) δε(u) (4.10)

with initial conditions

xiε(−1) = xi0, ẋiε(−1) = ẋi0, vε(−1) = v0, v̇ε(−1) = v̇0

has a unique, c-bounded solution
(
[(x1

ε)ε], [(x
2
ε)ε], [(vε)ε]

)
∈ G(R)3. Hence,

γ : u 7→ ([(x1
ε)ε], [(x

2
ε)ε], [(vε)ε], u)(u) ∈ G[R,R4] is the unique solution to

the geodesic equation for the generalised metric (4.7). Furthermore, (xiε, vε)
solves (4.10) classically for ε sufficiently small.

Note that the asymptotic solution constructed in Proposition 4.3 is a
representative of the generalised solution of (4.10). Observe that the latter
actually deserves the name “solution”, despite all the subtleties of the glueing
process employed in Proposition 4.3: Due to the form of the ideal N , it is
sufficient for equations to hold in G if they are satisfied “only” for small ε
on compact sets on the level of representatives.
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Also note that the theorem claims the moderateness and c-boundedness of
the solution for fixed initial values only, i.e. as (generalised) functions de-
pending only on the real variable u. If we are to use the geodesics as coordi-
nate lines of a generalised coordinate transformation as indicated in the pre-
ceding section, we still have to show the moderateness (and c-boundedness)
of the solution depending also on the initial values. We will do this (for the
special case ẋi0 = 0 and v̇0 = 0) in the next section.

Finally, M. Kunzinger and R. Steinbauer proved that the distributional
shadow of the generalised geodesics obtained by Theorem 4.5 is indeed
the “solution” (4.4) obtained by [FPV88] and [Bal97] ([GKOS01], Theorem
5.3.3):

4.6. Theorem: The unique solution of the geodesic equation given by

(4.10) satisfies the following association relations:

xiε(u) ≈ xi0 + ẋi0 (1 + u) +
1
2
∂if(x1

0 + ẋ1
0, x

2
0 + ẋ2

0)u+

vε(u) ≈ v0 + v̇0 (1 + u) + f(x1
0 + ẋ1

0, x
2
0 + ẋ2

0)H(u)

+
2∑
i=1

∂if(x1
0 + ẋ1

0, x
2
0 + ẋ2

0)
(
ẋi0 +

1
4
∂if(x1

0 + ẋ1
0, x

2
0 + ẋ2

0)
)
u+.

The first line even holds in the sense of C0-association, i.e.

xiε → xi0 + ẋi0 (1 + u) +
1
2
∂if(x1

0 + ẋ1
0, x

2
0 + ẋ2

0)u+

as ε→ 0 uniformly on compact subsets of R.

Again, note that the (generalised) functions in the above theorem de-
pend only on u, whereas the initial conditions xi0, ẋi0, v0 and v̇0 are fixed.

4.3 Inversion of the generalised coordinate trans-

formation

In this section, we will prove that the generalised coordinate transformation
[(tε)ε] (to be defined below) is indeed locally invertible on some open set
containing the half space (−∞, 0]× R3 in the sense of Definition 3.28. Part
of the inversion problem was already solved by M. Kunzinger and R. Stein-
bauer in [KS99a], [Ste00] resp. [GKOS01]: They showed that on suitable
subsets of R4 the tε are diffeomorphisms for ε sufficiently small (we will give
a slightly modified proof suitable for our needs). However, neither did they
give an accurate definition of (tε)ε as a net in C∞(R4,R4)(0,1] (as can be de-
rived from Proposition 4.3) nor did they explicitly prove the moderateness



90 Chapter 4: A “discontinuous coordinate transformation” in GR

and c-boundedness of (tε)ε (as a net of functions with four real arguments).
Furthermore, lacking a notion of invertibility of generalised functions as de-
veloped in Chapter 3, the question of a common domain for the inverses of
the tε was not raised in [KS99a] resp. [GKOS01]. In [Ste00], the problem of
the common domain was addressed but not satisfactorily solved.

Frequently in this section we will have to consider only the first three
components of four-vectors resp. functions with four components. To ease
notation, we introduce the following general convention: For an element
x = (x1, . . . , xn) of Rn (n ≥ 2), set x̂ := (x1, . . . , xn−1) and for functions f
from some set into Rn, f = (f1, . . . , fn), set f̂ := (f1, . . . , fn−1). In addi-
tion, we will often meet the situation where, for a function f = (f1, . . . , fn)
of x = (x1, . . . , xn), only fn depends on xn. Here, we will not formally
distinguish between f̂ considered as a function of x (n variables) and of x̂
(n− 1 variables). The respective meaning will be clear from the context.

We start by defining a net (tε)ε of smooth functions modelling the “dis-
continuous coordinate transformation” (4.4). As discussed in Section 4.1,
the coordinate transformation is given by the equation for the geodesics
with vanishing initial speed in the x1, x2 and v-directions. Hence, we set

xiε(−1) = xi0, ẋiε(−1) = 0, vε(−1) = v0, v̇ε(−1) = 0. (4.11)

Let (xiε)ε be the asymptotic solution of the first line of (4.10) with ini-
tial conditions (4.11) obtained by Proposition 4.3. Using xiε in the second
line of (4.10) yields an asymptotic solution for the entire system of differ-
ential equations. Thus, we may define the net of transformations (tε)ε by
tε := (u, x1

ε, x
2
ε, vε) : R4 → R4,

tε :

 U

Xk

V

 7→
 U

xiε(X
k, U)

vε(Xk, V, U)

 ,

where (Xk) = (X1, X2) and xiε and vε are given implicitly (with (X1, X2)
in a compact subset of R2 and for sufficiently small ε) by

xiε(X
k, U) = Xi +

1
2

U∫
−ε

s∫
−ε

∂if(xjε(X
k, r)) δε(r) dr ds,
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vε(Xk, V, U) = V +

U∫
−ε

f(xjε(X
k, s)) δε(s) ds

+

U∫
−ε

s∫
−ε

2∑
i=1

∂if(xjε(X
k, r)) ẋiε(X

k, r) δε(r) dr ds.

The “discontinuous coordinate transformation” will then be denoted by
t := (u, x1, x2, v) : R4 → R4. It is given by

t :

 U

Xk

V

 7→
 u(U) = U

xi(Xk, U) = Xi + 1
2∂if(Xk)U+

v(Xk, V, U) = V + f(Xk)H(U) + 1
4

∑2
i=1 ∂if(Xk)2 U+

.

At this point, let us briefly outline the strategy of this section from
a more technical point of view: In a first step we show the moderateness
and c-boundedness of (tε)ε, together with the boundedness of some of its
derivatives, where the full dependency on all four real arguments is taken
into account. A crucial feature for the invertibility of T := [(tε)ε] consists
in the injectivity of tε and the property of det ◦Dtε being strictly non-zero
on sufficiently large sets, for small ε. Essentially, this is achieved by the
above mentioned result of M. Kunzinger and R. Steinbauer. We quote this
as Proposition 4.8, at the same time correcting some minor flaws as to the
shapes of the sets of injectivity and their dependence on the relevant param-
eters. The main difficulty in establishing the local invertibility of T consists
in proving that there exist open sets P such that, for ε small, the intersection
of the tε(P ) has non-empty interior (we even show that the sets P contain
arbitrarily large (bounded) parts of the left half space U ≤ 0). Technically,
we accomplish this by a twofold application of Theorem 4.16, a slight variant
of Theorem 3.20. To do so, we need two ingredients:

• Uniform convergence: Since t is discontinuous, we have to cut out the
discontinuous term from the last component, thereby defining an aux-
iliary continuous transformation s. Constructing sε in an analogous
manner out of tε, we establish, in several steps, the uniform conver-
gence of sε to s.

• Injectivity: For tε resp. sε, this is provided by Proposition 4.8. As to
s, injectivity (on some open superset of the half space U ≤ 0) follows
from Lemma 4.10.

Now Theorem 4.16 can be applied, first to s and sε0 and then to sε0 and
tε (for some ε0 and ε ≤ ε0), carrying over the property of having nontrivial
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interior independent of ε from s(P ), via sε0(P ), to tε(P ).

Now, as announced, we start by showing that T := [(tε)ε] is a c-bounded
generalised function in G[R4,R4].

4.7. Proposition: T = [(tε)ε] is an element of G[R4,R4]. Furthermore,(
∂a

∂(X1)a
∂b

∂(X2)b
xiε
)
ε

and
(

∂a

∂(X1)a
∂b

∂(X2)b
∂
∂U x

i
ε

)
ε

are c-bounded from R3 into R
for a, b ∈ N0 and i = 1, 2.

Proof: In this proof, ∂
∂U and ∂

∂Xj will be denoted by ∂U resp. ∂Xj . Moreover,
by ∂αXx

i
ε for α = (α1, α2) ∈ N2

0 we will denote ∂α1

X1∂
α2

X2x
i
ε.

First, we show the moderateness of (xiε)ε. Let K × I ⊂⊂ R3. By
Proposition 4.4, (xiε)ε is uniformly bounded on compact subsets of R4. The
first partial derivative with respect to U on K × L can be estimated by

|∂Uxiε(Xk, U)| ≤ 1
2

U∫
−ε

|∂if(xjε(X
k, s))|︸ ︷︷ ︸

bounded

|δε(s)| ds ≤
1
2
C1C,

where C1 > 0. The EM -estimates of the higher partial derivatives of xiε with
respect to U follow inductively from

∂2
Ux

i
ε(X

k, U) =
1
2
∂if(xjε(X

k, U)) δε(U).

Next, we consider partial derivatives with respect to X1 resp. X2. For
|α| = 1, we have to find estimates for

∂Xjxiε(X
k, U) = δij +

1
2

U∫
−ε

s∫
−ε

2∑
m=1

∂m∂if(xlε(X
k, r)) ∂Xjxmε (Xk, r) δε(r) drds.

(4.12)
For some compact set L ⊂⊂ R2, u0 ∈ [−1,∞) and ε small, let

CL,u0 := sup
(Xk,U)∈L×[−1,u0]

i,j∈{1,2}

∣∣∂i∂jf(xlε(X
k, U))

∣∣ <∞
and

gε(L, u0) := sup
(Xk,U)∈L×[−1,u0]

j∈{1,2}

2∑
i=1

∣∣∂Xjxiε(X
k, U)

∣∣.
By (4.12), we obtain

|gε(L, u0)| ≤ 1 + C CL,u0

u0∫
−ε

|gε(L, s)| ds.
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From Gronwall’s Lemma, it follows that

|gε(L, u0)| ≤ e|C CL,u0

R u0
−ε 1 ds| ≤ eC CL,u0

(u0+1),

implying that for small ε also ∂Xjxiε remains uniformly bounded on compact
subsets of R3 with respect to ε (note that ∂Xjxiε(X

k, U) = δij for U ≤ −ε).
The higher order derivatives we obtain by induction: Let α ∈ N2

0 with |α| ≥ 2
and assume that (∂βXx

i
ε)ε is c-bounded from R3 into R for |β| ≤ |α|. Since

∂Xj∂αXx
i
ε(X

k, U) =

=
1
2

U∫
−ε

s∫
−ε

δε(r) · Pj,α
((
∂β∂if(xlε(X

k, r))
)
|β|≤|α|,

(
∂βXx

m
ε (Xk, r)

)
|β|≤|α|,m=1,2

)
dr ds

+
1
2

U∫
−ε

s∫
−ε

δε(r)
(2,2)∑

(m,n)=(1,1)

∂n∂m∂if(xlε(X
k, r)) · ∂Xjxnε (Xk, r)

· ∂αXxmε (Xk, r) dr ds

+
1
2

U∫
−ε

s∫
−ε

δε(r)
2∑

m=1

∂m∂if(xlε(X
k, r)) · ∂Xj∂αXx

m
ε (Xk, r) dr ds,

where Pj,α is a polynomial, we obtain for (Xk, U) ∈ K × I and sufficiently
small values of ε

|∂Xj∂αXx
i
ε(X

k, U)| ≤ C1 +
1
2
C2

U∫
−ε

s∫
−ε

|δε(r)|
2∑

m=1

|∂Xj∂αXx
m
ε (Xk, r)| dr ds,

where C1, C2 > 0. Estimating in the same way as in the case |α| = 1 yields
that also

(
∂Xj∂αXx

i
ε

)
ε

is c-bounded from R3 into R.
Now, consider ∂αX∂Ux

i
ε for α ∈ N2

0. Observe that

∂αX∂Ux
i
ε(X

k, U) =
1
2

U∫
−ε

∂αX
(
∂if(xjε(X

k, s))
)︸ ︷︷ ︸

(∗)

δε(s) ds. (4.13)

By the chain rule, (∗) is a polynomial in ∂β∂if(xjε(Xk, s)) and ∂βXx
i
ε(X

k, s)
for |β| ≤ |α| and i = 1, 2, which are all c-bounded from R3 into R. Thus,
condition (c) on (δε)ε yields the c-boundedness of

(
∂αX∂Ux

i
ε

)
ε
.

Finally, the EM -estimates for ∂αX∂
m
U x

i
ε for α ∈ N2

0 and m ≥ 2 follow induc-
tively by differentiating equation (4.13).
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The moderateness and c-boundedness of (vε)ε follow immediately from
the moderateness of (xiε)ε resp. the c-boundedness of (xiε)ε and (∂Uxiε)ε and
condition (c) on (δε)ε. �

In [KS99a], [Ste00] resp. [GKOS01] (Theorem 5.3.6), M. Kunzinger and
R. Steinbauer claim that for sufficiently small ε the functions tε are diffeo-
morphisms on a suitable open subset Ω of R4 containing the shock hyper-
plane U = 0. To show this they employ Theorem 3.58 (Gale and Nikaido).
However, a closer look at their proof reveals that the condition of Theorem
3.58 (requiring every principal minor of Dtε(x) for x ∈ Ω to be positive) is
established only on sets of the form (−∞, η ] ×K × R for sufficiently small
ε, say ε ≤ ε0, where K is a compact subset of R2 and η and ε0 both depend
on K. Furthermore, they use the uniform boundedness of (xiε)ε on compact
subsets of R4 (Proposition 4.4) which they prove only for compact subsets
of R for fixed initial values xi0 and ẋi0 (Lemma 4.2 resp. [GKOS01], Lemma
5.3.1).
For the convenience of the reader, we restate Theorem 5.3.6 of [GKOS01],
claiming only that which is explicitly shown in [KS99a], [Ste00] resp.
[GKOS01], and prove it in full detail to make all dependencies clear.

4.8. Proposition: For every K ⊂⊂ R2 and δ > 0 there exist η > 0
and ε0 ∈ (0, 1] such that every principal minor of Dtε(U,Xi, V ) stays in

(1− δ, 1 + δ) for all (U,Xi, V ) ∈ (−∞, η ]×K ×R and ε ≤ ε0. In particular,

det ◦DT is strictly non-zero on (−∞, η ]×K ×R and every principal minor

of Dtε(U,Xi, V ) is positive for (U,Xi, V ) ∈ (−∞, η ]×K × R and ε ≤ ε0.

Proof: Since

Dtε =
∂(u, x1

ε, x
2
ε, vε)

∂(U,X1, X2, V )
=

∣∣∣∣∣∣∣∣∣
1 0 0 0
∂x1
ε

∂U
∂x1
ε

∂X1
∂x1
ε

∂X2 0
∂x2
ε

∂U
∂x2
ε

∂X1
∂x2
ε

∂X2 0
∂vε
∂U

∂vε
∂X1

∂vε
∂X2 1

∣∣∣∣∣∣∣∣∣ ,
we have to find estimates for

∂xiε
∂Xj

(Xk, U) = δij +
1
2

U∫
−ε

s∫
−ε

2∑
m=1

∂m∂if(xlε(X
k, r))

∂xmε
∂Xj

(Xk, r) δε(r) drds.

(4.14)
By Proposition 4.7,

( ∂xiε
∂Xj

)
ε

is c-bounded from R3 into R. In particular, there
exists C1 > 0 such that for small ε

sup
(Xk,U)∈K×[−1,1]

i,j∈{1,2}

∣∣∣ ∂xiε
∂Xj

(Xk, U)
∣∣∣ ≤ C1.
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Hence, (4.14) yields∣∣∣∣ ∂xiε∂Xj
(Xk, U)− δij

∣∣∣∣ ≤ C CK,1C1 (U + ε)+

for (Xk, U) ∈ K × (−∞, 1] and sufficiently small ε (note that ∂xiε
∂Xj (Xk, U) =

δij for U ≤ −ε; CK,1 has the same meaning as in the proof of Proposition
4.7). Thus,

sup
(Xk,U)∈K×(−∞,η]

∣∣∣∣ ∂xiε∂Xj
(Xk, U)− δij

∣∣∣∣
stays arbitrarily close to 0 for all ε ≤ ε0 if η > 0 and ε0 ∈ (0, 1] are chosen
accordingly. �

We will say a smooth net (uε)ε : (−a, b)×Rn×R→ (−a, b)×Rn×R (for
a, b ∈ R+∪{∞}) has property (E) if for every compact subset K of Rn there
exist α ∈ (0, b) and ε0 ∈ (0, 1] such that uε is injective on (−a, α]×K×R for
all ε ≤ ε0. The net (uε)ε has property (E+) if for every compact subset K of
Rn there exist α ∈ (0, b) and ε0 ∈ (0, 1] such that uε is injective on (−a, α]×
K×R and (det ◦Duε)ε is strictly non-zero, uniformly on (−a, α]×K×R for
all ε ≤ ε0, i.e. an estimate as (3.8) holds for all (U,X, V ) ∈ (−a, α]×K×R.

Combining the preceding proposition and Theorem 3.58 of Gale and
Nikaido (as was the intention all along), it follows at once that (tε)ε has
property (E+).

For T to be left invertible (on suitable subsets of R4) it suffices that (tε)ε
possesses property (E+): By applying Theorem 3.59 to (tε)ε, we immediately
obtain

4.9. Corollary: For every open relatively compact subset W of R2 there

exists some α > 0 such that for all β > 0 and for all bounded open intervals

I the generalised function T is left invertible on (−β, α)×W × I.

As a further (rather plausible) ingredient for the proof of local invert-
ibility of T we will need the fact that the first three components of the “dis-
continuous transformation” t modelled by T constitute an injective function
on some open set containing the half space (−∞, 0]×R2. This is established
by the following lemma, setting g = 1

2Df . Two examples will then show that
in the special case f(X,Y ) = X2−Y 2 considered by Penrose in [Pen68] such
a neighbourhood is given by (−∞, 1)× R2, whereas for general (smooth) f
a rectangular set of injectivity, i.e. one of the form (α, β) × R2, does not
necessarily exist.
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4.10. Lemma: Let

F : (−a, b)× Rn → (−a, b)× Rn

(
U

X

)
7→

(
U

X + g(X)U+

)
.

where a, b ∈ R+∪{∞} and g ∈ C1(Rn,R). Then there exists an open set W

containing (−a, 0]× Rn such that F |W is injective.

Proof: For X ∈ Rn let

h(X) := sup
z∈B|X|(0)

‖Dg(z)‖.

The function h is continuous, nonnegative and non-decreasing with |X|. Now
set

W :=
{

(U,X) ∈ (−a, b)× Rn
∣∣∣ − a < U < min

(
b,

1
h(X)

)}
(here we use the convention 1

0 := ∞). Let (U1, X1), (U2, X2) ∈ W and
F (U1, X1) = F (U2, X2). Then U1 = U2 =: U and U < 1

h(Xi)
for i = 1, 2.

For U ≤ 0, we immediately obtain X1 = X2. Now let U > 0 and assume
X1 6= X2 with |X1| ≥ |X2|, w.l.o.g. From

X1 + g(X1)U = X2 + g(X2)U,

it follows, noting that U · h(X1) < 1, that

|X1 −X2| = U · |g(X2)− g(X1)|
≤ U · sup

z∈B|X1|(0)

‖Dg(z)‖ · |X2 −X1|

< |X2 −X1|,

concluding the proof by contradiction. �

In the following two examples, we consider F as in Lemma 4.10, where
g is given by 1

2 Df for certain functions f : R2 → R. The map F = t̂ then
represents the first three components of t for the function f at hand.

4.11. Example: Let f : R2 → R, f(X,Y ) := X2 − Y 2. This special case
was considered by R. Penrose in [Pen68] (cp. also [GKOS01], components
1,2,4 of (5.45) on page 463). In this case, an easy computation shows that t̂
is injective even on (−∞, 1)×R2. The value 1 is maximal since t̂(1, X, Y1) =
(1, 2X, 0) = t̂(1, X, Y2) for all X,Y1, Y2 ∈ R.
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4.12. Example: Let f : R2 → R, f(X,Y ) := −1
2(X4 + Y 4). For every

η > 0 the function t̂ is non-injective on {η} ×R2 since (η, 0, 0) = t̂(η, 0, 0) =
t̂(η, 1√

η ,
1√
η ) = t̂(η,− 1√

η ,−
1√
η ). Hence, on every set of the form (−α, β)×R2

(α, β > 0), t̂ is non-injective. However, t̂ is injective on W = {(U,X, Y ) |U <
1
3(X2 + Y 2)−1}.

So far, we ensured the invertibility of the functions tε and t̂ on certain
subsets of R4 resp. R3. To invert the generalised function T , however, we
also have to consider the sets on which the inverses of the tε are defined.
The next step will be to prove that the images of certain sets under the tε
intersect with non-empty interior, the main idea being that if tε stays close
enough to t, then also the image of some set W under tε stays close to t(W ).
Therefore, we will need convergence of (tε)ε to t as ε → 0 in the appro-
priate sense. Theorem 4.6 only tells us that (xiε( . , X

1, X2, V ))ε converges
to xi( . , X1, X2, V ) (ε → 0) uniformly on compact subsets of R for fixed
(X1, X2, V ) ∈ R3. We will show that we even have uniform convergence of
(xiε)ε to xi on arbitrary compact subsets of R4. Obviously, this is impossible
for vε since v is discontinuous. However, dropping the part of vε converging
(pointwise for U 6= 0) to the term involving the Heaviside function, we again
can prove uniform convergence on arbitrary compact sets. To this end, we
define

w(Xk, V, U) := V +
1
4

2∑
i=1

∂if(Xk)2 U+

and

wε(Xk, V, U) := V +

U∫
−ε

s∫
−ε

2∑
i=1

∂if(xjε(X
k, r)) ẋiε(X

k, r) δε(r) dr ds.

Furthermore, let

s := (u, x1, x2, w)

and

sε := (u, x1
ε, x

2
ε, wε).

Obviously, t̂ = ŝ, implying that also ŝ is injective on some open set containing
the half space (−∞, 0]×R2. Moreover, since all principal minors of Dtε are
independent of the derivatives of vε, Proposition 4.8 also holds for (sε)ε.
Therefore, also (sε)ε has property (E+).

In a first step, we will show that ṫε → ṫ uniformly on compact subsets



98 Chapter 4: A “discontinuous coordinate transformation” in GR

of (R\{0})× R3 for ε→ 0. Differentiating t with respect to U yields

u̇(U) = 1,

ẋi(Xk, U) =
1
2
∂if(Xk)H(U),

v̇(Xk, V, U) = f(Xk) δ(U) +
1
4

2∑
i=1

∂if(Xk)2H(U),

and ṫε is given by

u̇(U) = 1,

ẋiε(X
k, U) =

1
2

U∫
−ε

∂if(xjε(X
k, s)) δε(s) ds,

v̇ε(Xk, V, U) = f(xjε(X
k, U)) δε(U)

+

U∫
−ε

2∑
i=1

∂if(xjε(X
k, s)) ẋiε(X

k, s) δε(s) ds.

4.13. Lemma: ṫε → ṫ as ε→ 0, uniformly on compact subsets of (R\{0})×
R3.

Proof: First, we show that

M i
ε(K1,K2) := sup

(Xk,U)∈K1×K2

|∂if(xjε(X
k, εU))− ∂if(Xk)| → 0

for ε → 0 (i = 1, 2), where K1 × K2 ⊂⊂ R2 × R: By the boundedness
properties of xiε established in Proposition 4.7 and by condition (c), we have

sup
(Xk,U)∈K1×K2

∣∣∣xiε(Xk, εU)−Xk
∣∣∣ ≤

≤ 1
2

sup
(Xk,U)∈K1×K2

εU∫
−ε

s∫
−ε

∣∣∣∂if(xjε(X
k, r))

∣∣∣ ∣∣∣δε(r)∣∣∣ dr ds
≤ 1

2
sup

(Xk)∈K1

r∈[−1,supU∈K2
|U |]

∣∣∣∂if(xjε(X
k, r))

∣∣∣ · sup
U∈K2

∣∣∣∣
εU∫
−ε

C ds

∣∣∣∣
≤ ε · C

2
sup

(Xk)∈K1

r∈[−1,supU∈K2
|U |]

∣∣∣∂if(xjε(X
k, r))

∣∣∣ · sup
U∈K2

∣∣∣U + 1
∣∣∣

︸ ︷︷ ︸
bounded

,
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which vanishes in the limit for ε→ 0. Therefore, M i
ε(K1,K2)→ 0 as ε→ 0.

Also, note that supU∈L |
∫ U
−ε δε(s) ds − H(U)| → 0 as ε → 0 for any

compact set L ⊂⊂ R\{0}, by conditions (a) and (b).
Now, let L ×K ×M ⊂⊂ (R\{0}) × R2 × R. Since both ṫε and ṫ are,

in fact, independent of V , we only have to take estimates on L×K. By the
properties of the strict delta net and the above considerations,

sup
(Xk,U)∈K×L

∣∣∣ẋiε(Xk, U)− ẋi(Xk, U)
∣∣∣ =

= sup
(Xk,U)∈K×L

∣∣∣∣12
U∫
−ε

∂if(xjε(X
k, s))δε(s) ds−

1
2
∂if(Xk)H(U)

∣∣∣∣
≤ 1

2
sup

(Xk)∈K

ε∫
−ε

∣∣∣∂if(xjε(X
k, s))− ∂if(Xk)

∣∣∣ ∣∣∣δε(s)∣∣∣ ds
+

1
2

sup
(Xk)∈K

∣∣∣∂if(Xk)
∣∣∣ · sup

U∈L

∣∣∣∣
U∫
−ε

δε(s) ds−H(U)
∣∣∣∣

≤ 1
2
· sup
|s|≤1

∣∣∣∂if(xjε(X
k, εs))− ∂if(Xk)

∣∣∣︸ ︷︷ ︸
=M i

ε(K,|s|≤1)→ 0

·
ε∫
−ε

∣∣∣δε(s)∣∣∣ ds
︸ ︷︷ ︸

≤C

+
1
2

sup
(Xk)∈K

∣∣∣∂if(Xk)
∣∣∣︸ ︷︷ ︸

bounded

· sup
U∈L

∣∣∣∣
U∫
−ε

δε(s) ds−H(U)
∣∣∣∣︸ ︷︷ ︸

→ 0

→ 0

for ε→ 0. Hence, the claim follows for ẋiε. Concerning v̇ε, we have

sup
(U,Xk,V )∈L×K×M

∣∣∣v̇ε(U,Xk, V )− v̇(U,Xk, V )
∣∣∣ ≤

≤ sup
(Xk,U)∈K×L

∣∣∣f(xjε(X
k, U)) δε(u)− 0

∣∣∣
+ sup

(Xk,U)∈K×L

2∑
i=1

∣∣∣∣
U∫
−ε

∂if(xjε(X
k, s)) ẋiε(X

k, s) δε(s) ds

− 1
4
∂if(Xk)2H(u)︸ ︷︷ ︸

(∗)

∣∣∣∣
since 0 /∈ L and δ(U) = 0 for U 6= 0. The first term above vanishes in the



100 Chapter 4: A “discontinuous coordinate transformation” in GR

limit ε→ 0 due to condition (a). Concerning the last term, we write out

(∗) =

U∫
−ε

∂if(xjε(X
k, s)) δε(s)

1
2

s∫
−ε

∂if(xjε(X
k, r)) δε(r) dr ds

− 1
4
∂if(Xj)2H(u)

=
1
2

U∫
−ε

∂if(xjε(X
k, s))δε(s)

s∫
−ε

(
∂if(xjε(X

k, r))− ∂if(Xk)
)
δε(r) dr ds

+
1
2

U∫
−ε

(
∂if(xjε(X

k, s))− ∂if(Xk)
)
δε(s)

s∫
−ε

∂if(Xk) δε(r) dr ds

+
1
2
∂if(Xk)2

( U∫
−ε

δε(s)

s∫
−ε

δε(r) dr ds−
1
2
H(u)

)
.

Integrating
∫ U
−ε δε(s)

∫ s
−ε δε(r) dr ds by parts gives 1

2

(∫ U
−ε δε(s)ds

)2
. Now,

due to the boundedness properties of xiε and condition (c), we may estimate

sup
(Xk,U)∈K×L

|(∗)| ≤

≤ 1
2
·M i

ε(K, |r| ≤ 1)︸ ︷︷ ︸
→ 0

· sup
(Xk)∈K
|r|≤1

∣∣∣∂if(xjε(X
k, r))

∣∣∣
︸ ︷︷ ︸

bounded

·
ε∫
−ε

|δε(s)|
s∫
−ε

|δε(r)| dr ds

︸ ︷︷ ︸
≤C2

+
1
2
·M i

ε(K, |s| ≤ 1)︸ ︷︷ ︸
→ 0

· sup
(Xk)∈K

∣∣∣∂if(Xk)
∣∣∣︸ ︷︷ ︸

bounded

·
ε∫
−ε

|δε(s)|
s∫
−ε

|δε(r)| dr ds

︸ ︷︷ ︸
≤C2

+
1
2
· sup

(Xk)∈K

∣∣∣∂if(Xk)2
∣∣∣︸ ︷︷ ︸

bounded

·
∣∣∣∣ 1

2

( U∫
−ε

δε(s)ds
)2

− 1
2
H(u)

∣∣∣∣︸ ︷︷ ︸
→ 0

→ 0 (ε→ 0),

thereby concluding the proof of the lemma. �

An inspection of the proof of the above lemma shows that also ṡε → ṡ

for ε→ 0 uniformly on compact subsets of (R\{0})× R3.

4.14. Lemma: Let fε, f ∈ C(Rn,R) (for ε ∈ (0, 1]). Suppose that ∂nfε(x, t)
and ∂nf(x, t) exist for all (x, t) ∈ Rn−1 × (R\{0}) and that ∂nfε(x, . ) and
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∂nf(x, . ) are piecewise continuous (with one-sided limits existing) for all

x ∈ Rn−1. Let c ∈ R with c < 0. If

(1) fε → f for ε→ 0 uniformly on K × {c} for all K ⊂⊂ Rn−1,

(2) ∂nfε → ∂nf for ε → 0 uniformly on compact subsets of Rn−1 ×
(R\{0}), and

(3) ‖∂nfε−∂nf‖∞,K×([−d,d]\{0}) is uniformly bounded for any compact set

K ⊂⊂ Rn−1 and some d > 0,

then fε → f for ε→ 0 uniformly on arbitrary compact subsets of Rn.

Proof: It suffices to show the uniform convergence on compact sets of the
form L = K × [−a, a] ⊂⊂ Rn−1 × R with a > c.

Let η > 0. Fix some 0 < b < min(a, d, |c|) such that

‖∂nfε − ∂nf‖∞,K×([−b,b]\{0}) <
η

6b
.

Now, choose ε0 ∈ (0, 1] such that

sup
x∈L
|fε(x, c)− f(x, c)| < η

3
and ‖∂nfε − ∂nf‖∞,Q <

η

6(a− b)

for all ε ≤ ε0, where Q := K× ([−a,−b]∪ [b, a]). Then, by the Fundamental
Theorem of Calculus, we have

sup
(x,t)∈L
t≥b

|fε(x, t)− f(x, t)| ≤

≤ sup
x∈K
|fε(x, c)− f(x, c)|+ sup

(x,t)∈L

t∫
c

|∂nfε(x, s)− ∂nf(x, s)| ds

<
η

3
+ sup
x∈K

−b∫
c

|∂nfε(x, s)− ∂nf(x, s)| ds

+ sup
x∈K

b∫
−b

|∂nfε(x, s)− ∂nf(x, s)| ds

+ sup
x∈K

a∫
b

|∂nfε(x, s)− ∂nf(x, s)| ds

≤ η

3
+ 2(a− b) · ‖∂nfε − ∂nf‖∞,Q + 2b · ‖∂nfε − ∂nf‖∞,K×([−b,b]\{0})

<
η

3
+ 2(a− b) · η

6(a− b)
+ 2b · η

6b

= η.
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For −a ≤ t ≤ b, the estimate is similar (even easier), involving less terms.
Hence, the claim follows. �

Now we are ready to prove

4.15. Lemma: sε → s for ε→ 0 uniformly on compact subsets of R4.

Proof: We show that for each component function of sε the conditions of
Lemma 4.14 are satisfied with respect to s. The symbol ∂n in Lemma 4.14,
if applied to xiε resp. wε, is understood to denote the derivatives of xiε resp.
wε with respect to U .

ẋiε resp. ẇε are smooth on R3 resp. R4, xi and w are smooth on R2 ×
(R\{0}) resp. R3 × (R\{0}). ẋi(X1, X2, . ) and ẇ(X1, X2, V, . ) are piece-
wise continuous for all (X1, X2) ∈ R2 resp. (X1, X2, V ) ∈ R3. For U = −1
the integral terms of xiε( . , . , U) and wε( . , . , . , U) vanish and xiε = xi and
wε = w. Hence, condition (1) is satisfied. By Lemma 4.13, ẋiε → ẋi and
ẇε → ẇ for ε → 0 uniformly on compact subsets of R2 × (R\{0}) resp.
R3 × (R\{0}), i.e. they satisfy condition (2). Finally, by Theorem 4.5, ẋiε is
uniformly bounded on compact sets and, therefore, this is also true for ẇε.
Since both ẋi and ẇ are bounded on any bounded subset of R2 × (R\{0})
resp. R3 × (R\{0}), also condition (3) is satisfied and the claim follows. �

Recall that for vectors x ∈ Rn resp. Rn-valued functions f , the notation
x̂ resp. f̂ indicates that the last component is to be dropped.

In the sequel, we will often have to make use of cylinders rather than
balls. Therefore, for x = (x̂, xn) ∈ Rn, let BZ

δ,η(x) denote the cylinder
Bδ(x̂)× (xn − η, xn + η).

We will employ a slightly modified form of Theorem 3.20 where the balls
Bδ(0) are replaced by cylinders BZ

δ,η(0). We leave it to the reader to adapt
the proof of 3.20 to the case of cylinders.

4.16. Theorem: Let U be an open subset of Rn, f, g ∈ C(U,Rn) both

injective and W a connected open subset of Rn with W ⊂⊂ f(U). Choose

y ∈ W and δ, η > 0 with y + BZ
δ,η(0) ⊆ W such that the closure of Wδ,η :=

W +BZ
δ,η(0) is still a subset of f(U). If, for A := f−1(Wδ,η) and f = (f̂ , fn)

resp. g = (ĝ, gn), both

‖ĝ − f̂‖∞,A < δ and ‖gn − fn‖∞,A < η

hold, then

W ⊆ g(A)◦.



4.3. Inversion of the generalised coordinate transformation 103

Now we are ready to prove that the domains of suitable inverses of the tε
intersect with non-empty interior. The following theorem yields the desired
result for an entire class of c-bounded nets (also denoted by (tε)ε) of smooth
functions of which our particular (tε)ε at hand is only a special case.

4.17. Theorem: Let a, b ∈ R+ ∪ {∞}. Let the functions tε, sε (for every

ε ∈ (0, 1]) and s satisfy the following assumptions:

(1) tε : (−a, b)× Rn × R → (−a, b)× Rn × R U

X

V

 7→
 u(U) := U

xε(U,X)
vε(U,X, V ) := V + gε(U,X) + hε(U,X)

,
where xε ∈ C∞((−a, b) × Rn,Rn) and gε, hε ∈ C∞((−a, b) × Rn,R).
Assume that (tε)ε has property (E), i.e. that for every compact subset

K of Rn there exist α ∈ (0, b) and ε′ ∈ (0, 1] such that tε is injective

on (−a, α] × K × R for all ε ≤ ε′. Furthermore, suppose that (hε)ε is

uniformly bounded on compact subsets of (−a, b)× Rn.

(2) sε : (−a, b)× Rn × R → (−a, b)× Rn × R U

X

V

 7→
 u(U) = U

xε(U,X)
wε(U,X, V ) := V + gε(U,X)

.
By (1), sε is smooth. Suppose that also (sε)ε has property (E).

(3) s : (−a, b)× Rn × R → (−a, b)× Rn × R U

X

V

 7→
 u(U) = U

x(U,X)
w(U,X, V ) := V + g(U,X)

,
where x ∈ C((−a, b) × Rn,Rn) and g, h ∈ C((−a, b) × Rn,R). Assume

that for ŝ := (u, x) : (−a, b)×Rn → (−a, b)×Rn, there exists some open

set W containing (−a, 0]× Rn such that ŝ|W is injective.

Finally, suppose sε → s for ε→ 0 uniformly on compact sets.

Then the following holds: For every p on the hyperplane U = 0 there

exist open neighbourhoods P of p with P ⊆W ×R and Q of q := s(q) with

Q ⊆ s(W × R), and some ε0 ∈ (0, 1] such that

Q ⊆ tε(P )

for all ε ≤ ε0.
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Proof: Since, by assumption, ŝ is injective on W , it follows from Theorem
3.18 that ŝ(W ) is open in Rn+1 and ŝ|W : W → ŝ(W ) is a homeomorphism.
Note that with ŝ|W , also s|W×R is a homeomorphism and that s(W × R)
equals the open set ŝ(W ) × R. We will simply write ŝ and s in place of
ŝ|W resp. s|W×R. Analogously to ŝ, we define t̂ε := ŝε := (u, xε). Then
t̂ε = ŝε → ŝ uniformly on compact sets for ε→ 0.

Let p = (0, xp, vp) be a point of the hyperplane U = 0, q := s(p) =
(0, xq, vq), p̂ = (0, xp) and q̂ = ŝ(p̂) = (0, xq). Let R ⊆ Rn be an open
bounded cuboid (or, more generally, a bounded open set satisfying R ◦ = R)
containing xp. Since (−a, 0] × Rn ⊆ W and W is open, there exist α ∈
(0,min(a, b)) and λ > 0 such that

(−a, α]×Rλ ⊆W,

where Rλ := R+Bλ(0). Then s is injective on (−a, α]×Rλ×R. By property
(E), we can assume w.l.o.g. (making α smaller if necessary) that there exists
ε1 ∈ (0, 1] such that also (tε)ε and (sε)ε are injective on (−a, α]×Rλ×R for
all ε ≤ ε1. Defining

G := (−a, α)×Rλ × R,

we have, in particular, that s, tε and sε (for ε ≤ ε1) are injective on G.
Fix γ ∈ (0, α) and β ∈ [γ, a). Since ŝ(W ) is open and ŝ−1 is continuous,

there exists some δ > 0 with ŝ−1(B3δ(q̂)) ⊆ (−β, γ) × R, i.e. B3δ(q̂) ⊆
ŝ((−β, γ)×R). Let µ ∈ (β, a). Choose η ≥ δ and ε2 ≤ ε1 such that

‖vε − wε‖∞,[−µ,α]×Rλ×R = ‖hε‖∞,[−µ,α]×Rλ < η (4.15)

for all ε ≤ ε2. Since s(W × R) = ŝ(W ) × R, it follows that BZ
3δ,2η+δ(q) =

B3δ(q̂)× [vq − (2η+ δ), vq + (2η+ δ)] is a compact subset of s(W ×R). Now
let I be a bounded open interval in R such that

s−1
(
BZ

3δ,2η+δ(q)
)
⊆ (−β, γ)×R× I =: P

which is possible since only the last component of s is dependent on V and
this dependence is a linear one. Applying s to both sides of this inclusion
yields

BZ
3δ,2η+δ(q) ⊆ s(P ). (4.16)

Observe that p ∈ P ⊆ P ⊂⊂ G and q ∈ s(P ). Choose ε0 ≤ ε2 such that

‖ŝε − ŝ‖∞,P <
δ

2
(4.17)

and
‖wε − w‖∞,P <

δ

2
(4.18)
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for all ε ≤ ε0 (note that in (4.17) we consider ŝε and ŝ as functions with
the same arguments as sε resp. s, yet being independent of the last (real)
argument). The set s(P ) is open since s|W×R is a homeomorphism, and
bounded because s(P ) is compact. Consequently,

Q′0 := s(P )\(∂s(P ) +BZ
δ,δ(0))

is open and bounded. By (4.16) and by definition of Q′0,

BZ
2δ,2η(q) ⊆ Q

′
0 (4.19)

holds. Now let Q′ be the connected component of Q′0 containing q, hence
also containing the (connected) set BZ

2δ,2η(q). Obviously, Q′ is open, bounded
and connected.

Now the plan is to apply Theorem 4.16 with G, s, sε0 , Q′, q, δ and δ in
place of U , f , g, W , y, δ and η. For this, we have to verify the respective
list of assumptions:

• s and sε0 are continuous and injective on the open set G. This is
satisfied due to our construction.

• Q′ is open and connected (see above). Q′ is a compact subset of the
(open) set s(G): Noting that s(P ) is compact, this follows from

s(P ) ⊆ s(P ) = s(P ) ⊂⊂ s(G).

• BZ
δ,δ(q) ⊆ Q′, due to δ ≤ η and (4.19).

• Q′ +BZ
δ,δ(0) ⊆ s(G): We even show Q′0 +BZ

δ,δ(0) ⊆ s(G). For this, it

suffices to prove Q′0 +BZ
δ,δ(0) ⊆ s(P ), implying Q′0 +BZ

δ,δ(0) ⊆ s(P ) ⊆
s(G) (for the last inclusion see above). By way of contradiction, we
assume that z = (ẑ, τ) ∈ Q′0, y = (ŷ, σ) ∈ BZ

δ,δ(0), yet z + y = (ẑ +
ŷ, τ + σ) 6∈ s(P ). Since z ∈ s(P ), there exists a point z + νy on the
line segment connecting z and z+y, with 0 < ν ≤ 1 due to s(P ) being
open. From z = (z + νy) − νy, it follows that z ∈ ∂s(P ) + BZ

δ,δ(0),
contradicting z ∈ Q′0.

• For M ′ := s−1(Q′ +BZ
δ,δ(0)), (4.17) and (4.18) yield

‖ŝε − ŝ‖∞,M ′ < δ and ‖wε − w‖∞,M ′ < δ,

where we have taken into account that

M ′ = s−1(Q′ +BZ
δ,δ(0)) ⊆ s−1(s(P )) ⊆ s−1(s(P )) = P .
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Having thus checked that all assumptions are satisfied, we obtain from The-
orem 4.16

Q′ ⊆ sε0(M ′)◦ ⊆ sε0(P )◦. (4.20)

Now we set out to apply Theorem 4.16 once more to derive an analogous
statement with respect to tε. Similarly to above, set

Q0 := Q′\(∂Q′ +BZ
δ,η(0)). (4.21)

Again, Q0 is open and bounded. By (4.19) and the definitions of Q′ and Q0,

BZ
δ,η(q) ⊆ Q0

holds. With Q denoting the connected component of Q0 containing q, we
even have

BZ
δ,η(q) ⊆ Q. (4.22)

As before, we check the list of assumptions in Theorem 4.16, this time with
respect to G, sε0 , tε (for fixed ε ≤ ε0), Q, q, δ and η in place of U , f , g, W ,
y, δ and η:

• sε0 and tε are continuous and injective on the open set G due to our
construction.

• Q is open and connected. By (4.20) and the definition of Q, we have

Q ⊆ Q′ ⊆ sε0(P ) ⊆ sε0(G),

showing that Q is a compact subset of sε0(G).

• BZ
δ,η(q) ⊆ Q, due to (4.22).

• Q+BZ
δ,η(0) ⊆ sε0(G): Again, it suffices to show Q0 + BZ

δ,η(0) ⊆ Q′.
This, in turn, is derived by an analogous line of argument as in the
checklist for the first application of Theorem 4.16.

• Set M := s−1
ε0 (Q+BZ

δ,η(0)). By Q+BZ
δ,η(0) ⊆ Q′ ⊆ sε0(P ) (see

(4.20)), we have M ⊆ P ⊆ [−µ, α]×Rλ × R. Therefore, (4.15) imme-
diately yields

‖vε − wε‖∞,M < η.

By t̂ε = ŝε and (4.17), we obtain

‖t̂ε − ŝε0‖∞,M ≤ ‖ŝε − ŝ‖∞,P + ‖ŝ− ŝε0‖∞,P <
δ

2
+
δ

2
= δ.
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Now, Theorem 4.16 yields

Q ⊆ tε(M)◦ ⊆ tε(P ),

and hence, tε being a homeomorphism on G and R
◦ = R,

Q ⊆ tε(P )

for all ε ≤ ε0. �

4.18. Remark: As to sizes and shapes of P resp. Q, an inspection of the
preceding proof reveals the following:

(1) P can be chosen as having the form (−β, γ) × R × I where −β < 0 is
arbitrarily close to −a, R and I are arbitrarily large, yet bounded open
sets (I being of a certain minimum size, depending on ‖hε‖∞ on compact
sets for small ε) and γ has to be sufficiently small, depending (via α)
on R and the injectivity behaviour of s, (tε)ε and (sε)ε for U > 0.
G = (−a, α) × Rλ × R is an open superset of P , serving as common
domain of injectivity for s, sε0 and tε when applying Theorem 4.16.

(2) Q results from s(P ) by twofold application of the operation “remove the
outermost strip of width δ (resp. η for the last coordinate in step 2)
and keep only the connected component containing q”. The maximum
size of δ, in turn, essentially depends on s(P ) around U = 0 and has to
satisfy δ ≤ γ

3 . However, δ can be chosen arbitrarily small.

(3) In the case of x(U,X) = X + f0(X)U+ (occurring in our study of pp-
waves), the maximal size of δ, for small γ, is about γ

3 since ŝ((−β, γ)×R)
approaches (−β, γ)×R for U → 0+ (cp. Examples 4.11 and 4.12).

Finally, we show that if the nets of smooth functions in Theorem 4.17
are representatives of generalised functions T and S which additionally sat-
isfy property (E+), then T is invertible around any point on the shock
hyperplane.

4.19. Theorem: Let (tε)ε, (sε)ε and s be as in Theorem 4.17. If, in

addition, (tε)ε has property (E+) and

T := [(tε)ε] ∈ G[(−a, b)× Rn × R, (−a, b)× Rn × R]

and

S := [(sε)ε] ∈ G[(−a, b)× Rn × R, (−a, b)× Rn × R],

then, for every p on the hyperplane U = 0, there exists an open neighbour-

hood A of p in (−a, b)×Rn×R such that T is invertible on A with inversion

data [A,Rn+2, T �, B,Q] where T � ∈ G[Rn+2, D] and B, Q and D are suitable

bounded open subsets of (−a, b)× Rn × R with Q ⊆ B and A ⊆ D.
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Proof: Let α, Rλ, G = (−a, α) × Rλ × R, P , Q and ε0 be as in the proof
of Theorem 4.17. Recall that then, among other things, the following holds
(for all ε ≤ ε0):

• p ∈ P ⊆ P ⊂⊂ G.

• tε is injective on G.

• Q ⊆ tε(P ). (4.23)

Assume that α was chosen according to property (E+), i.e. we have in ad-
dition:

• There exist ε′ ≤ ε0, C ′ > 0 and N ′ ∈ N such that

inf
(U,X,V )∈G

| det(Dtε(U,X, V ))| ≥ C ′εN ′

for all ε ≤ ε′.

Let A and D1 be open subsets of G such that

P ⊂⊂ A ⊆ A ⊂⊂ D1 ⊆ D1 ⊂⊂ G.

Then p ∈ A and Kε := tε(A) is compact for all ε ≤ ε0. By property (E+)
and D1 ⊆ G, we have

inf
(U,X,V )∈D1

|det(Dtε(U,X, V ))| ≥ C ′εN ′

for all ε ≤ ε′. Hence, Proposition 3.34 applied to (−a, b) × Rn × R, D1,
(tε)ε, (tε|D1

−1)ε, p, {p}, A and Kε in place of U , W , (uε)ε, (vε)ε, [(x̃ε)ε],
K ′, K and Kε yields the existence of (Kε, p)-extensions t�ε of tε|D1

−1 such
that (t�ε)ε ∈ EM (Rn+2)n+2. The net (t�ε)ε is c-bounded into any (bounded)
open subset D of Rn+2 that contains the convex hull of D1 ∪ {p} = D1. Set
T � := [(t�ε)ε] ∈ G[Rn+2, D]. On the one hand, by (4.23), we have

Q ⊆ tε(P ) ⊆ tε(A) ⊆ Kε

and, therefore, t�ε(Q) = tε|D1

−1(Q) ⊆ P ⊆ P ⊂⊂ A, implying that (t�ε|Q)ε is
c-bounded into A. Moreover,

tε ◦ t�ε|Q = tε ◦ t−1
ε |Q = idQ,

establishing [A,Rn+2, T �, Q] as a right inverse of T on A. On the other hand,
since tε(A) ⊆ Kε, we have

t�ε ◦ tε|A = t�ε|Kε ◦ tε|A = t−1
ε |Kε ◦ tε|A = idA .
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By the c-boundedness of (tε)ε, there exists some K ′ ⊂⊂ (−a, b) × Rn × R
with tε(A) ⊆ K ′ for sufficiently small ε. Hence, (tε|A)ε is c-bounded into
any (bounded) open set B containing K ′. It follows that [A,Rn+2, T �, B]
is a left inverse of T on A. Combining these results, we obtain that T is
invertible on A with inversion data [A,Rn+2, T �, B,Q]. �

4.20. Remark: Again we comment on sizes and shapes of the sets involved
in the proof of the preceding theorem.

(1) Concerning Rλ resp. R, α, G, P and Q see Remark 4.18.

(2) Both A and D1 are bounded open sets with their (compact) closures
nested in between P and G, where D1 and A play the roles of W resp.
K in Proposition 3.34.

(3) B and D are introduced as supersets of tε(A) resp. the convex hull of
D1 and serve as target sets for the c-boundedness.

Finally, we apply Theorem 4.19 to the special case of T = [(tε)ε] and t as
occurring in our study of pp-waves. Thus, we assume that n = 2, a = b =∞
and (tε)ε, (sε)ε and s are of the form

tε :

 U

Xk

V

 7→
 U

xiε(X
k, U)

vε(Xk, V, U)

 ,

sε :

 U

Xk

V

 7→
 U

xiε(X
k, U)

wε(Xk, V, U)

 ,

s :

 U

Xk

V

 7→
 u(U) = U

xi(Xk, U) = Xi + 1
2∂if(Xk)U+

v(Xk, V, U) = V + 1
4

∑2
i=1 ∂if(Xk)2 U+.

 ,

where

xiε(X
k, U) = Xi +

1
2

U∫
−ε

s∫
−ε

∂if(xjε(X
k, r)) δε(r) dr ds,
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vε(Xk, V, U) = V +

U∫
−ε

f(xjε(X
k, s)) δε(s) ds

+

U∫
−ε

s∫
−ε

2∑
i=1

∂if(xjε(X
k, r)) ẋiε(X

k, r) δε(r) dr ds,

wε(Xk, V, U) = V +

U∫
−ε

s∫
−ε

2∑
i=1

∂if(xjε(X
k, r)) ẋiε(X

k, r) δε(r) dr ds.

Having collected the necessary tools, we can now establish the main result of
this section concerning the invertibility of the generalised coordinate trans-
formation T .

4.21. Theorem: The generalised coordinate transformation T = [(tε)ε]
is locally invertible (in the sense of Definition 3.28) on some open set Ω
containing the half space (−∞, 0]× R3.

Proof: By Proposition 4.8, (tε)ε as well as (sε)ε possess property (E+).
Moreover, ŝ is injective on some open set W containing (−∞, 0] × R2 by
Lemma 4.10. Then, by Theorem 4.19, for every p on the hyperplane U = 0
there exists an open neighbourhood A(p) ⊆ R4 such that T is invertible
on A(p). Recall that each A(p) contains some set P = (−β, γ) × R × I

as discussed in Remark 4.18. In particular, all of β > 0, R and I (both
bounded) can be chosen arbitrarily large. Forming the union Ω of a family
of A(p) with the corresponding sets P covering the left half space, we obtain
that the generalised function T is locally invertible on Ω, constituting an
open set containing (−∞, 0]× R3. �
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Chapter 5

Differential equations in

generalised functions

Since J. F. Colombeau introduced his method of embedding D′ into a differ-
ential algebra whose product coincides with the pointwise product of smooth
functions, different types of differential equations in generalised functions
have been studied. There are those describing the geodesics of impulsive
gravitational waves (pp-waves) (see Chapter 4 or cf. [Ste98], [Ste99], and, for
solutions of the geodesic equations in the full Colombeau algebra, [KS99b]).
In [Lig96], J. Ligȩza considers linear differential equations, while in [Lig97]
and [Lig98] he finds periodic solutions of linear ODEs of first and second
order. M. Oberguggenberger and R. Hermann presented several results re-
garding the (global) solvability of differential equations given by tempered
generalised functions (cf. [HO99] and [GKOS01]). In [KOSV04], generalised
flows and (globally defined) singular ODEs on differentiable manifolds are
studied. However, there exists no local theory of differential equations over
the special Colombeau algebra so far. The aim of this chapter is to lay
the foundations to such an approach. We will present generalised versions
of the Existence and Uniqueness Theorem for ODEs 1.7 (Section 5.1) and
Frobenius’ Theorem 1.8 (Section 5.2).

5.1 Ordinary differential equations in generalised

functions

Let I be an open interval in R, U an open subset of Rn, F ∈ G(I × U)n,
t0 ∈ I and x̃0 ∈ Ũc. We are interested in finding solutions u in G(J)n of the
initial value problem

u′(t) = F (t, u(t)), u(t0) = x̃0, (5.1)
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where J ⊆ I is an interval in R with t0 ∈ J . Note that in order to be able to
compose F with u the generalised function u has to be c-bounded. Therefore,
the requirement for x̃0 to be compactly supported does not constitute a
restriction on possible initial value problems, but stems from the fact that
any point value of u is a compactly supported generalised point.
We will give sufficient conditions to guarantee a (unique) solution to (5.1).
For the proof we need a result of Weissinger. The proof of the following
theorem (for Banach spaces) can be found in [Heu89] (page 138f, 12.1).

5.1. Theorem (Weissinger’s Fixed Point Theorem): Let A be a closed

subset of a metric space (M,d),
∑∞

k=1 αk a convergent series of positive

numbers and T : A→ A a map satisfying

d(T ku, T kv) ≤ αk · d(u, v)

for all u, v ∈ A and k ∈ N. Then T possesses a unique fixed point u ∈ A.

This fixed point is the limit of the iterative sequence (T ku0)k∈N, where u0 is

an arbitrary initial value in A. Furthermore, the error estimate

d(uk, u) ≤

( ∞∑
i=k

αi

)
· d(u0, u1)

holds.

5.2. Theorem: Let I be an open interval in R, U an open subset of Rn,

t̃0 a near-standard point in Ĩc with t̃0 ≈ t0 ∈ I, x̃0 = [(x̃0ε)ε] ∈ Ũc and

F = [(Fε)ε] ∈ G(I × U)n. Let ε0 ∈ (0, 1] and L a compact subset of U such

that x̃0ε ∈ L for all ε ≤ ε0. Let α, β > 0 such that

Q := Bα(t0)× Lβ ⊆ I × U,

where Lβ := L+Bβ(0). If there exists some a > 0 such that

sup
(t,x)∈Q

|Fε(t, x)| ≤ a (5.2)

for all ε ≤ ε0, then for fixed h ∈
(

0,min
(
α, βa

))
there exists u ∈ G[J, Lβ]

that is a solution of the initial value problem

u′(t) = F (t, u(t)), u(t̃0) = x̃0, (5.3)

where J := [t0 − h, t0 + h].
Furthermore, there exist representatives (uε)ε, (t̃0ε)ε, (x̃0ε)ε of u, t̃0, x̃0,

respectively, such that

u ′ε(t) = Fε(t, uε(t)), uε(t0) = x̃0ε,
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holds for all t ∈ J and ε sufficiently small.

The solution is unique in G[J, Lβ] if, in addition,

sup
(t,x)∈Q

|∂2Fε(t, x)| = O(| log ε|) (5.4)

holds.

Proof: We consider the differential equation on the level of representatives.
For each ε we follow the proof of the classical Existence and Uniqueness
Theorem for ODEs as can be found in [Heu89] (page 139ff, 12.2). However,
in order to obtain a net of solutions defined on a common interval, we have
to keep track of the constants depending on ε. Thus, we give the proof in
full detail.

Existence: Let (t̃0ε)ε be a representative of t̃0. Set c := min
(
α, βa

)
and

choose some h ∈ (0, c). Let ε1 ≤ ε0 such that |t̃0ε − t0| < 1
2(c − h) for all

ε ≤ ε1. Now fix some ε ≤ ε1. Observe that for t ∈ J

|t̃0ε − t| ≤ |t̃0ε − t0|+ |t0 − t| ≤
(

1
2

(c− h) + h

)
=

1
2

(c+ h) < c (5.5)

holds. The function uε is a solution of the initial value problem

u ′ε(t) = Fε(t, uε(t)), uε(t̃0ε) = x̃0ε, (5.6)

if and only if it solves

uε(t) = x̃0ε +

t∫
t̃0ε

Fε(s, uε(s))ds. (5.7)

The idea of the proof is to find a fixed point (by Weissinger’s Fixed Point
Theorem 5.1) of the integral operator defined by the right hand side of (5.7).
To this end, we set

A := {f ∈ C(J,Rn) | im f ⊆ Lβ}.

A is non-empty and a closed subset of the Banach space C(J,Rn). We define
Tε : A→ C(J,Rn) by

(Tεf)(t) := x̃0ε +

t∫
t̃0ε

Fε(s, f(s))ds.

Tε maps A into A since, by (5.5),∣∣∣∣
t∫

t̃0ε

Fε(s, f(s)) ds
∣∣∣∣ ≤ ∣∣∣∣

t∫
t̃0ε

a ds

∣∣∣∣ ≤ |t̃0ε − t| · a ≤ 1
2

(c+ h) · a < c · a ≤ β (5.8)
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and, hence,

(Tεf)(t) = x̃0ε +

t∫
t̃0ε

Fε(s, f(s))ds ∈ L+Bβ(0) ⊆ Lβ

for all t ∈ J . By Lemma 3.11 and Remark 3.12, there exists a constant
CK > 0 such that for all (t, x), (t, y) ∈ Bα(t0)× Lβ the estimate

|Fε(t, x)− Fε(t, y)| ≤ CK sup
z∈K

(|Fε(t, z)|+ |∂2Fε(t, z)|) · |x− y|

≤ CK sup
(t,z)∈Bα(t0)×K

(|Fε(t, z)|+ |∂2Fε(t, z)|)︸ ︷︷ ︸
Cε:=

·|x− y|

holds, where CK only depends on K, a compact subset of U with Lβ ⊆ K◦.
By induction, we prove that

∣∣(T kε f)(t)− (T kε g)(t)
∣∣ ≤ |t− t̃0ε|k

k!
Ckε ‖f − g‖∞ (5.9)

holds for all t ∈ J : For k = 0 the inequality is trivially satisfied. Now let us
assume that (5.9) holds for some k. Then∣∣(T k+1

ε f)(t)− (T k+1
ε g)(t)

∣∣ =
∣∣(Tε(T kε f)

)
(t)−

(
Tε(T kε g)

)
(t)
∣∣

≤
∣∣∣∣

t∫
t̃0ε

∣∣Fε(s, (T kε f)(s)
)
− Fε

(
s, (T kε g)(s)

)∣∣ds∣∣∣∣
≤ Cε

∣∣∣∣
t∫

t̃0ε

|s− t̃0ε|k

k!
· Ckε · ‖f − g‖∞ds

∣∣∣∣
≤ |t− t̃0ε|

k+1

(k + 1)!
Ck+1
ε ‖f − g‖∞,

and, thus, (5.9) holds for all k ∈ N. From (5.9), it follows immediately that

‖T kε f − T kε g‖∞ ≤
(cCε)k

k!
‖f − g‖∞.

Since
∑∞

k=0
(cCε)k

k! = ecCε < ∞, it follows from Weissinger’s Fixed Point
Theorem 5.1 that for every ε ≤ ε0 there exists a unique element uε ∈ A

which satisfies Tεuε = uε, and which is therefore a solution of (5.6).
We still have to show the moderateness and c-boundedness of (uε)ε: By
(5.8), the image of uε is contained in L + Ba

2
(c+h)(0) for all ε ≤ ε0 and,

hence, by our choice of h, the net (uε)ε is c-bounded into Lβ. By an even
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more straightforward estimate using (5.2), the first derivative of (uε)ε is also
uniformly bounded. By the chain rule and the uniform boundedness of (uε)ε
and its derivative, we have

|u′′ε(t)| ≤ |∂1Fε(t, uε(t))|+ |∂2Fε(t, uε(t))| · |uε′(t)| ≤ Cε−N

for C > 0 and some fixed N ∈ N. The higher-order derivatives of uε are now
estimated inductively by differentiating the equation

u′′ε(t) = ∂1Fε(t, uε(t)) + ∂2Fε(t, uε(t)) · uε′(t).

Uniqueness: Let v = [(vε)ε] ∈ G[J, Lβ] be another solution of (5.3) and
ỹ0ε := vε(t̃0ε). Then v ′ε(t) = Fε(t, vε(t)) + nε(t) for (nε)ε ∈ N (J)n and
ỹ0ε = x̃0ε + ñε for (ñε)ε ∈ N n. Since J is compact and both (uε)ε and (vε)ε
are c-bounded into Lβ, there exists a compact subset K of Lβ such that
uε(J) ⊆ K and vε(J) ⊆ K for sufficiently small ε. Observe that, by Lemma
3.11 and Remark 3.12, there exist K ′ ⊂⊂ Lβ with K ⊆ (K ′)◦ and a constant
CK′ > 0 such that for all (t, x), (t, y) ∈ J ×K the estimate

|Fε(t, x)− Fε(t, y)| ≤ CK′ sup
(t,z)∈J×K′

(|Fε(t, z)|︸ ︷︷ ︸
≤a

+ |∂2Fε(t, z)|︸ ︷︷ ︸
≤C1| log ε|

) · |x− y|

holds, where C1 > 0 and CK′ only depends on K ′. Therefore, for t ∈ J it
follows that

|vε(t)− uε(t)| ≤

≤ |ỹ0ε − x̃0ε|+
∣∣∣∣

t∫
t̃0ε

(|Fε(s, vε(s)︸ ︷︷ ︸
∈K

)− Fε(s, uε(s)︸ ︷︷ ︸
∈K

)|+ |nε(s)|)ds
∣∣∣∣

= |ñε|+
∣∣∣∣

t∫
t̃0ε

|nε(s)|ds
∣∣∣∣+ CK2(a+ C1| log ε|) ·

∣∣∣∣
t∫

t̃0ε

|vε(s)− uε(s)| ds
∣∣∣∣

≤ C2 ε
m + (C3 + C4| log ε|) ·

∣∣∣∣
t∫

t̃0ε

|vε(s)− uε(s)|ds
∣∣∣∣

for suitable constants C2, C3, C4 > 0 and arbitrary m ∈ N. By Gronwall’s
Lemma, we obtain

sup
t∈J
|vε(t)− uε(t)| ≤ C2 ε

m · e(C3+C4| log ε|)·|
R t
t̃0ε

1 ds| ≤ Cεm−cC4

for some constant C > 0. This concludes the proof of the theorem. �



116 Chapter 5: Differential equations in generalised functions

5.3. Remark: Let W be an open subset of U containing Lβ. Inspecting
the proof of uniqueness, we note that if for all compact subsets K of W

sup
(t,x)∈Bα(t0)×K

|∂2Fε(t, x)| = O(| log ε|)

holds, then the solution constructed in the proof is unique even in G[J,W ].

What happens if the generalised function F does not have property
(5.2)? We consider three examples.

5.4. Example: Let F = [(Fε)ε] ∈ G(R× R) be given by the representative
Fε(t, x) := 1

ε

(
2− 1

1+x2

)
, t0 = 0 and x0 = 0. Since x 7→ 2− 1

1+x2 is (globally)
bounded, we have

sup
x∈[−β,β]

|Fε(t, x)| = 1
ε

(
2− 1

1 + x2

)
→∞ (ε→ 0)

for any β > 0, i.e. F fails to satisfy condition (5.2) on any neighbourhood of
(t0, x0). Nevertheless, there exists a unique global solution for every ε: Inte-
grating the differential equation u ′ε(t) = Fε(t, uε(t)) and taking into account
the initial condition uε(0) = 0, we obtain

x

2
+

1
2
√

2
arctan(

√
2x)︸ ︷︷ ︸

f(x):=

=
1
ε
t.

The function f is independent of ε, strictly monotonic increasing and maps
R onto R. Therefore, f is smoothly invertible and we denote the inverse
function by f−1. Since f−1 is a slowly increasing function, the composition
with t 7→ 1

ε t, by Proposition 2.19, is well-defined and yields a moderate net
(uε)ε ∈ EM (R) where uε(t) := f−1(1

ε t). However, f−1 being unbounded,
(uε)ε is not c-bounded. Hence, uε solves the differential equation for every ε
but the generalised function [(uε)ε] is not a solution of the generalised initial
value problem.

5.5. Example: Consider F = [(Fε)ε] ∈ G(R × R) that has Fε(t, x) := x
ε as

a representative, t0 = 0 and x0 = 1. F does not satisfy condition (5.2) since

sup
x∈[−β,β]

|Fε(t, x)| = x

ε
→∞ (ε→ 0)

for any β > 0. For each ε, there exists a unique (even global) solution
uε(t) = e

t
ε . However, (uε)ε is not moderate on any neighbourhood of 0.
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5.6. Example: Let F = [(Fε)ε] ∈ G
(
R × (R\{−1})

)
be defined by the

representative Fε(t, x) := − t
x+1 · g(ε) where g : (0, 1] → R is a smooth map

satisfying g(ε)→∞ for ε→ 0. Let t0 = 0 and x0 = 0. Then

sup
(t,x)∈[−α,α]×[−β,β]

|Fε(t, x)| = α

1− β
· g(ε)→∞ (ε→ 0)

for any α > 0 and β ∈ (0, 1). For every ε we obtain (unique) solutions

uε(t) =
√

1− g(ε) t2 − 1

that are defined, at most, on the open interval
(
− 1√

g(ε)
, 1√

g(ε)

)
. Hence,

there is not even a common domain on which to check the net (uε)ε for
moderateness.

In the last example, F failing to satisfy condition (5.2) leads to shrinking
of the solutions’ domains as ε→ 0. Note that this result is not a consequence
of the rate of growth of |Fε(t, x)| on any compact set; rather the only factor
that matters is that |Fε(t, x)| does increase infinitely (as ε→ 0). So, Example
5.6 suggests that a relaxation of condition (5.2) (e.g. ε-dependence of the
bound) without more detailed knowledge of the structure of F is not possible.
Unfortunately, this means that e.g. the (in G[R,R] solvable) initial value
problem

u′(t) = (ιδ)(t), u(0) = 0, (5.10)

is not covered by Theorem 5.2. Actually, specific types of ODEs containing
δ-like objects have already been treated (e.g. see Chapter 4 or cf. [GKOS01],
Sections 1.5 and 5.3, and [Ste98]). The proof of existence always relies on
the particular characteristics of the ODE concerned—quite in contrast to a
general F being given. Nevertheless, Theorem 5.2 can handle jumps as the
following example will show.

5.7. Example: Let I be an open interval in R and U an open subset of Rn.
Consider the initial value problem

u′(t) = f(t, u(t)) · (ιH)(t) + g(t, u(t)), u(t0) = x0, (5.11)

where ιH denotes the embedding of the Heaviside function H into the
Colombeau algebra, the mappings f and g are in C∞(I ×U,Rn) and t0 ∈ I,
x0 ∈ U . Let ρ ∈ S(Rn) be a mollifier. Then, for Hε(t) =

∫ t
−∞ ρε(s) ds (cf.

Example 2.16),

|Hε(t)| ≤
t∫

−∞

|ρε(s)| ds =

t∫
−∞

1
εn

∣∣∣ρ(s
ε

)∣∣∣ ds =

t
ε∫

−∞

|ρ(s)| ds ≤ ‖ρ‖L1(Rn)
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holds for all t and for all ε. Fix some α > 0 such that Bα(t0) is still contained
in I and choose an open subset W of U with x0 ∈ W ⊆ W ⊂⊂ U . f and g

being continuous, there exist constants a1, a2 > 0 such that

sup
(t,x)∈Bα(t0)×W

|f(t, x) ·Hε(t) + g(t, x)| ≤ a1‖ρ‖L1(Rn) + a2

for all ε. Hence, the initial value problem (5.11) possesses a solution u in
G[J,W ] where J := [t0 − h, t0 + h] and h < min

(
α, dist(x0,W c)

a1‖ρ‖L1(Rn)+a2

)
. Since

sup
(t,x)∈Bα(t0)×W

|∂2f(t, x) ·Hε(t) + ∂2g(t, x)|

is also uniformly bounded with respect to ε, the solution is unique in G[J,W ].

Next, we turn our attention to generalised ODEs which are dependent
on a parameter. Taking into account that we aim at proving a generalised
Frobenius theorem using a generalised ODE theorem, we want the solution
to be G-dependent on the parameter. It turns out that if conditions (5.2)
and (5.4) in Theorem 5.2 are only slightly modified to include the parameter,
they are sufficient to guarantee the desired result.

5.8. Theorem: Let I be an open interval in R, U an open subset of Rn,

P an open subset of Rl, t̃0 a near-standard point in Ĩc with t̃0 ≈ t0 ∈ I,

x̃0 = [(x̃0ε)ε] ∈ Ũc and F = [(Fε)ε] ∈ G(I ×U × P )n. Let ε0 ∈ (0, 1] and L a

compact subset of U such that x̃0ε ∈ L for all ε ≤ ε0. Let α, β > 0 such that

Q := Bα(t0)× Lβ ⊆ I × U,

where Lβ := L+Bβ(0). If there exists some a > 0 such that

sup
(t,x,p)∈Q×P

|Fε(t, x, p)| ≤ a

for all ε ≤ ε0 and if for all compact subsets K of P

sup
(t,x,p)∈Q×K

|∂2Fε(t, x, p)| = O(| log ε|) (5.12)

holds, then for fixed h ∈
(

0,min
(
α, βa

))
there exists u ∈ G[P × J, Lβ] such

that for all p̃ ∈ P̃c the map u(p̃, .) ∈ G[J, Lβ] is a solution of the initial value

problem

u′(t) = F (t, u(t), p̃), u(t̃0) = x̃0,

where J := [t0 − h, t0 + h]. The solution u is unique in G[P × J, Lβ].
Furthermore, there exist represenatives (uε)ε, (t̃0ε)ε, (x̃0ε)ε of u, t̃0, x̃0,

respectively, such that

u ′ε(p, t) = Fε(t, uε(p, t), p), uε(p, t̃0ε) = x̃0ε,

holds for all (p, t) ∈ P × J and ε sufficiently small.
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Proof: Existence: Let (t̃0ε)ε be a representative of t̃0. Set c := min
(
α, βa

)
and choose some h ∈ (0, c). Let ε1 ≤ ε0 such that |t̃0ε − t0| < 1

2(c − h)
for all ε ≤ ε1. From now on, we always let ε ≤ ε1. As before, we have
|t− t̃0ε| < c. Since the upper bound a is independent of p, we obtain—as in
the proof of Theorem 5.2—for all p̃ = [(p̃ε)ε] ∈ P̃c nets of classical solutions
uε(p̃ε, .) : J → Lβ of the initial value problem

u ′ε(t) = Fε(t, uε(t), p̃ε), uε(t̃0ε) = x̃0ε. (5.13)

By the classical Existence and Uniqueness Theorem for ODEs 1.7, for all ε
the mapping (p, t) 7→ uε(p, t) is C∞ since Fε is smooth.
The moderateness of (uε)ε will be shown in three steps: First we consider
derivatives with respect to t, then only derivatives with respect to p and,
finally, mixed derivatives.
The EM -estimates for uε(p, t), ∂2uε(p, t) and all its higher-order derivatives
with respect to t are obtained in the same way as in the proof of Theorem
5.2.
Next, we consider the derivatives with respect to p. The initial value problem
(5.13) with p̃ε = p is equivalent to the integral equation

uε(p, t) = x̃0ε +

t∫
t̃0ε

Fε
(
s, uε(p, s), p

)
ds. (5.14)

Differentiating equation (5.14) with respect to p yields

∂1uε(p, t) =

t∫
t̃0ε

(
∂2Fε

(
s, uε(p, s), p

)
· ∂1uε(p, s) + ∂3Fε

(
s, uε(p, s), p

))
ds.

(5.15)
Let K1 ×K2 ⊂⊂ P × J and (p, t) ∈ K1 ×K2. Since uε(p, .) maps into the
compact set Lβ for all p ∈ P and by the additional assumption on (∂2Fε)ε,
we obtain

|∂1uε(p, t)| ≤

≤
∣∣∣∣

t∫
t̃0ε

∂3Fε
(
s, uε(p, s), p

)
ds

∣∣∣∣+
∣∣∣∣

t∫
t̃0ε

∣∣∂2Fε
(
s, uε(p, s), p

)∣∣ · ∣∣∂1uε(p, s)
∣∣ds∣∣∣∣

≤ cC1ε
−N1 +

∣∣∣∣
t∫

t̃0ε

C2| log ε| · |∂1uε(p, s)|ds
∣∣∣∣
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for constants C1, C2 > 0 and some fixed N ∈ N. By Gronwall’s Lemma, it
follows that

|∂1uε(p, t)| ≤ cC1ε
−N1 · e|

R t
t̃0ε

C2| log ε|ds| ≤ (cC1) ε−(N1+cC2).

Differentiating (5.15) i− 1 times with respect to p (i ∈ N) gives an integral
formula for ∂i1uε(p, t). Observe that in this formula ∂i1uε(p, t) itself appears
on the right hand side only once, namely with ∂2Fε(s, uε(p, s), p) as coeffi-
cient, and that the remaining terms contain only ∂1-derivatives of uε of order
less than i. Thus, we may estimate the higher-order derivatives with respect
to p inductively by differentiating equation (5.15) and applying Gronwall’s
Lemma.
Finally, it only remains to show that the EM -estimates are also satisfied for
the mixed derivatives. For arbitrary i ∈ N we have

∂i1∂2 uε(p, t) =
∂i

∂pi
∂

∂t

x̃0ε +

t∫
t̃0ε

Fε
(
s, uε(p, s), p

)
ds

 =
∂i

∂pi
Fε
(
t, uε(p, t), p

)
.

(5.16)
By carrying out the i-fold differentiation on the right hand side of equa-
tion (5.16), we obtain a polynomial expression in ∂k2Fε

(
t, uε(p, t), p

)
,

∂k3Fε
(
t, uε(p, t), p

)
and ∂k1uε(p, t) for 1 ≤ k ≤ i all of which satisfy the

EM -estimates. The estimates for ∂i1∂
j
2 uε(p, t) with j ≥ 2 are now obtained

inductively by differentiating equation (5.16) with respect to t.
Uniqueness: By Proposition 2.30, it suffices to show that for every near-

standard point p̃ ∈ P̃c the solution u(p̃, . ) is unique in G[J, Lβ]. For a
fixed near-standard point p̃ = [(p̃ε)ε] ∈ P̃c, condition (5.12) implies the
condition for uniqueness (5.4) in Theorem 5.2 with respect to (Fε( . , . , p̃ε))ε.
Therefore, u(p̃, . ) is unique in G[J, Lβ] for all near-standard points p̃ ∈ P̃c.

�

5.9. Remark: Again, let W be an open subset of U containing Lβ. As
before, the solution u is unique even in G[P ×J,W ] if for all compact subsets
K1 of W and K2 of P

sup
(t,x,p)∈Bα(t0)×K1×K2

|∂2Fε(t, x, p)| = O(| log ε|)

holds.

If we restrict the generalised point values in the initial condition to
near-standard points, we can also prove G-dependence of the solution on the
initial value.
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5.10. Theorem: Let I be an open interval in R, U an open subset of Rn,

P an open subset of Rl, t̃0 a near-standard point in Ĩc with t̃0 ≈ t0 ∈ I, x̃0 a

near-standard point in Ũc with x̃0 ≈ x0 ∈ U and F = [(Fε)ε] ∈ G(I×U×P )n.

Let α, β > 0 such that

Q := Bα(t0)×Bβ(x0) ⊆ I × U.

If there exist a > 0 and ε0 ∈ (0, 1] such that

sup
(t,x,p)∈Q×P

|Fε(t, x, p)| ≤ a (5.17)

for all ε ≤ ε0 and if for all compact subsets K of P

sup
(t,x,p)∈Q×K

|∂2Fε(t, x, p)| = O(| log ε|)

holds, then for fixed h ∈
(

0,min
(
α, βa

))
there exist neighbourhoods J1 of

t0 in J := [t0 − h, t0 + h] and U1 of x0 in U and a generalised function

u ∈ G[J1 × U1 × P × J,Bγ(x0)], where γ ∈ (0, β) with β − γ > 0 sufficiently

small, such that for all (t̃1, x̃1, p̃) ∈ J̃1c × Ũ1c × P̃c the map u(t̃1, x̃1, p̃, .) ∈
G[J,Bγ(x0)] is a solution of the initial value problem

u′(t) = F (t, u(t), p̃), u(t̃1) = x̃1. (5.18)

The solution u is unique in G[J1 × U1 × P × J,Bγ(x0)].
Furthermore, there exists a represenative (uε)ε of u such that

u ′ε(t1, x1, p, t) = Fε(t, uε(t1, x1, p, t), p), uε(t1, x1, p, t1) = x1,

holds for all (t1, x1, p, t) ∈ J1 × U1 × P × J and ε sufficiently small.

Proof: Existence: The basic strategy of the proof is to consider (t̃0, x̃0) as
part of the parameter and apply Theorem 5.8. However, we will have to deal
with several technical details.

Let (t̃0ε)ε and (x̃0ε)ε be representatives of t̃0 resp. x̃0. From now on, we
always let ε ≤ ε0. Let λ ∈ (0, 1) and set

Î := Bλα(0), I1 := B(1−λ)α(t0).

Choose µ ∈
(
0, β3

)
, set γ := β − 2µ and define

Û := Bγ+µ(0), U1 := Bµ(x0).

Then
Î + I1 = Bα(t0) ⊆ I and Û + U1 = Bβ(x0) ⊆ U
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hold. Hence, we may define Gε : Î × Û × (I1 × U1 × P )→ Rn by

Gε(t, x, (t1, x1, p)) := Fε(t+ t1, x+ x1, p).

Obviously, (Gε)ε is moderate and, therefore, G := [(Gε)ε] is in G(Î × Û ×
(I1 × U1 × P ))n. Now let δ ∈ (0, λα) and η ∈ (0, γ − µ). By assumption
(5.17) on (Fε)ε, we obtain

sup
(t,x,(t1,x1,p))∈D

|Gε(t, x, (t1, x1, p))| = sup
(t,x,(t1,x1,p))∈D

|Fε(t+ t1, x+ x1, p)|

≤ sup
(t,x,p)∈Bα(t0)×Bγ(x0)×P

|Fε(t, x, p)|

≤ a,

where D := Bδ(0)×Bη(0)× (I1 × U1 × P ) ⊆ Î × Û × (I1 × U1 × P ). Since

∂2Gε(t, x, (t1, x1, p)) =
∂

∂x
Fε(t+ t1, x+ x1, p) = ∂2Fε(t+ t1, x+ x1, p),

it follows immediately that for all K ⊂⊂ I1 × U1 × P

sup
(t,x,(t1,x1,p))∈Bδ(0)×Bη(0)×K

|∂2Gε(t, x, (t1, x1, p))| = O(| log ε|). (5.19)

By Theorem 5.8, there exists v ∈ G[(I1×U1×P )× Ĵ , Bη(0)] such that for all
(t̃1, x̃1, p̃) ∈ Ĩ1c × Ũ1c × P̃c the map v(t̃1, x̃1, p̃, . ) ∈ G[Ĵ , Bη(0)] is a solution
of the initial value problem

v′(t) = G(t, v(t), (t̃0, x̃0, p̃)), v(0) = 0, (5.20)

where ĥ < min
(
δ, ηa
)

and Ĵ := [−ĥ, ĥ]. Note that, since Bγ(0) + B2µ(x0) =
Bβ(x0), the estimate (5.19) still holds if Bη(0) is replaced by Bγ+µ(0).
Therefore, it follows from Remark 5.9 that the solution v is unique in
G[(I1 × U1 × P ) × Ĵ , Bγ+µ(0)] (we will need that in the proof of unique-
ness). Let (vε)ε be the representative of v that satisfies

v′ε(t1, x1, p, t) = Gε(t, vε(t1, x1, p, t), (t1, x1, p)), v(0) = 0,

for all (t1, x1, p, t) ∈ I1 × U1 × P × Ĵ . Let σ ∈
[

1
2 , 1
)
, h := σĥ and h1 :=

min(h, (1−σ)ĥ, (1−λ)α). Set J := [t0−h, t0 +h] and J1 := (t0−h1, t0 +h1).
Then J1 ⊆ J ⊆ Ĵ . We now define uε : J1 × U1 × P × J → Rn by

uε(t1, x1, p, t) := vε(t1, x1, p, t− t1) + x1.

The map uε is well-defined since J1 ⊆ I1 by the choice of h1 and

|t− t1| ≤ |t− t0|+ |t0 − t1| ≤ h+ h1 ≤ σĥ+ (1− σ)ĥ = ĥ. (5.21)
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The moderateness of (uε)ε is an immediate consequence of the moderateness
of (vε)ε. Moreover, since t − t1 ∈ Ĵ by (5.21) for all t ∈ J , t1 ∈ J1 and
x1 − x0 ∈ Bµ(0) for all x1 ∈ U1, it follows that

uε(t1, x1, p, J) ⊆ vε(t1, x1, p, Ĵ) + x1

⊆ Bη(0) + x1

⊆ Bη(x0)− x0 + x1

⊆ Bη(x0) +Bµ(0)

⊆ Bγ(x0)

for all (t1, x1, p) ∈ J1×U1×P , i.e. uε is c-bounded from J1×U1×P ×J into
Bγ(x0). Therefore, u := [(uε)ε] is an element of G[J1 × U1 × P × J,Bγ(x0)].
Furthermore, the function uε(t̃1ε, x̃1ε, p̃ε, . ) satisfies

∂

∂t
uε(t̃1ε, x̃1ε, p̃ε, t) =

∂

∂t

(
vε(t̃1ε, x̃1ε, p̃ε, t− t̃1ε) + x̃1ε

)
=

∂

∂t
vε(t̃1ε, x̃1ε, p̃ε, t− t̃1ε)

= Gε(t− t̃1ε, vε(t̃1ε, x̃1ε, p̃ε, t− t̃1ε), (t̃1ε, x̃1ε, p̃ε))

= Fε(t, vε(t̃1ε, x̃1ε, p̃ε, t− t̃1ε) + x̃1ε, p̃ε)

= Fε(t, uε(t̃1ε, x̃1ε, p̃ε, t), p̃ε)

and
uε(t̃1ε, x̃1ε, p̃ε, t̃1ε) = vε(t̃1ε, x̃1ε, p̃ε, 0) + x̃1ε = x̃1ε

for all (t̃1, x̃1, p̃) = ([(t̃1ε)ε], [(x̃1ε)ε], [(p̃ε)ε]) ∈ J̃1c× Ũ1c× P̃c and t ∈ J . Thus,
u(t̃1, x̃1, p̃, . ) is indeed a solution of the initial value problem (5.18).
Note that for any h ∈

(
0,min

(
α, βa

))
the constants λ, µ, δ, η, ĥ and σ can be

chosen within their required bounds such that all the necessary inequalities
in the construction of (uε)ε are satisfied.

Uniqueness: By Proposition 2.30, it suffices to show that for every near-
standard point (t̃1, x̃1, p̃) ∈ J̃1c×Ũ1c× P̃c the solution u(t̃1, x̃1, p̃, . ) is unique
in G[J,Bγ(x0)]. Let p̃ ∈ P̃c and let (t̃1, x̃1) = ([(t̃1ε)ε], [(x̃1ε)ε]) be near-
standard in J̃1c× Ũ1c with (t̃1ε, x̃1ε)→ (t1, x1) ∈ J1×U1 for ε→ 0. Assume
that w(t̃1, x̃1, p̃) ∈ G[J,Bγ(x0)] is another solution of (5.18). For brevity’s
sake we simply write u resp. w in place of u(t̃1, x̃1, p̃) resp. w(t̃1, x̃1, p̃).
We will show that w|(t0−a,t0+a) = u|(t0−a,t0+a) holds for any a ∈ (0, h). Since
G is a sheaf, the equality of w and u also holds on J◦.Then, by the continuity
of representatives, w and u are also equal on J .
Now, let a ∈ (0, h) and set τ := 1

2(a+ h). Define w̄ : Bτ (t0 − t1)→ Bγ+µ(0)
by w̄(t) := w(t+ t̃1)− x̃1. By Proposition 2.21, w̄ is well-defined since, by

|t+ t̃1ε − t0| ≤ |t− (t0 − t1)|+ |t̃1ε − t1| < τ + h− τ = h
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for t ∈ Bτ (t0 − t1) and |t̃1ε − t1| < h − τ = τ − a, the map t 7→ t + t̃1 is
c-bounded from Bτ (t0 − t1) into J . Moreover, w̄ is a solution of

v′(t) = G(t, v(t), (t̃1, x̃1, p̃)), vε(0) = 0. (5.22)

Since Bτ (t0− t1) ⊆ Ĵ and solutions of (5.22) are unique in G[Ĵ , Bγ+µ(0)] (as
proved earlier), it follows that w̄ = v(t̃1, x̃1, p̃)|Bτ (t0−t1). From

|t− t̃1ε − (t0 − t1)| ≤ |t− t0|+ |t1 − t̃1ε| < a+ τ − a = τ

for t ∈ Ba(t0), it follows that t 7→ t − t̃1 is c-bounded from Ba(t0) into
Bτ (t0 − t1). Hence, we may calculate

w(t) = w̄(t− t̃1) + x̃1 = v(t̃1, x̃1, p̃)(t− t̃1) + x̃1 = u(t),

establishing w|(t0−a,t0+a) = u|(t0−a,t0+a), and we are done. �

5.2 A Frobenius theorem in generalised functions

In order to prove a generalised Frobenius theorem we need to solve a gener-
alised first order linear system of ODEs.

5.11. Proposition: Let I be an open interval, t0 ∈ I and A ∈ G(I)n
2

satisfying

sup
t∈I
‖Aε(t)‖ = O(| log ε|).

Then the initial value problem

u′(t) = A(t) · u(t), u(t0) = 0 (5.23)

has only the trivial solution u = 0 in G(I)n.

Proof: Obviously, u = 0 is a solution of (5.23). The uniqueness of this solu-
tion follows from a slight modification of the proof of uniqueness in Theorem
5.2. �

Note that in the above proposition a solution of the initial value problem
need not to be c-bounded since A(t) is a generalised matrix for all t ∈ I.

Now we are ready to prove a generalised version of Frobenius’ Theorem
1.8.
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5.12. Theorem: Let U be an open subset of Rn, V an open subset of Rm

and F = [(Fε)ε] ∈ G(U × V )mn. If for all x̃0 ∈ Ũc with x̃0 ≈ x0 ∈ U and

ỹ0 = [(ỹ0ε)ε] ∈ Ṽc there exist ε0 ∈ (0, 1], α, β > 0 and a > 0 such that

sup
(x,y)∈Q

|Fε(x, y)| ≤ a (5.24)

for all ε ≤ ε0 and

sup
(x,y)∈Q

|∂2Fε(x, y)| = O(| log ε|), (5.25)

where Q := Bα(x0)× Lβ, Lβ := L+ Bβ(0) and L is a compact subset of V

such that ỹ0ε ∈ L for all ε ≤ ε0, then the following are equivalent:

(1) For all (x̃0, ỹ0) ∈ Ũc × Ṽc with x̃0 ≈ x0 ∈ U the initial value problem

Du(x) = F (x, u(x)), u(x̃0) = ỹ0 (5.26)

has a unique solution u(x̃0, ỹ0) in G[U(x̃0, ỹ0), Lβ], where U(x̃0, ỹ0) is an

open neighbourhood of x0 in U .

(2) The integrability condition is satisfied, i.e. the mapping

(x, y, v1, v2) 7→ DF (x, y)(v1, F (x, y) · v1) · v2

is symmetric in v1, v2 ∈ Rn as a generalised function in G(U ×V ×Rn×
Rn)m.

5.13. Remark: Note that if for all (x0, y0) ∈ U ×V there exist ε0, α, β and
a such that condition (5.24) holds, this property is equivalent to F being
c-bounded.

Proof: The proof uses the same line of argument as in the classical case 1.12.
However, we have to be much more careful when it comes to composing and
pointwise characterisation of generalised functions. We will make good use
of several results of Chapter 2.

(1) ⇒ (2): By Proposition 2.30, we only have to check if

DF (x̃, ỹ)(ṽ1, F (x̃, ỹ) · ṽ1) · ṽ2 = DF (x̃, ỹ)(ṽ2, F (x̃, ỹ) · ṽ2) · ṽ1

for all near-standard points ṽ1, ṽ2 ∈ R̃n
c and (x̃, ỹ) ∈ Ũc× Ṽc. Therefore, let x̃

and ỹ be near-standard points in Ũc resp. Ṽc. By (1), there exists a solution
u of the initial value problem

Du(x) = F (x, u(x)), u(x̃) = ỹ.
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Writing Du as Du = F ◦ (id, u), then, by Proposition 2.21 and Corollary
2.29, we obtain

D2u(x̃)(ṽ1, ṽ2) = (D2u(x̃) · ṽ1) · ṽ2

= evṽ2
(
D(Du)(x̃) · ṽ1

)
= evṽ2

(
D(F ◦ (id, u))(x̃) · ṽ1

)
= evṽ2

((
DF (x̃, u(x̃)) ◦ (id,Du(x̃))

)
· ṽ1

)
= evṽ2

(
DF
(
x̃, u(x̃)

)(
ṽ1, F (x̃, u(x̃)) · ṽ1

))
= DF (x̃, ỹ)

(
ṽ1, F (x̃, ỹ) · ṽ1

)
· ṽ2

for all near-standard points ṽ1, ṽ2 ∈ R̃n
c . The last expression is symmetric in

ṽ1 and ṽ2 since, by Schwarz’s Theorem, D2u(x̃) has this property.
(2)⇒ (1): Let x̃0 = [(x̃0ε)ε] be a near-standard point in Ũc with x̃0 ≈ x0

and let ỹ0 ∈ Ṽc.
Existence: Choose δ ∈ (0, α) and set γ := α − δ. There exists some ε1 ≤ ε0

such that x̃0ε is in Bδ(x0) for all ε ≤ ε1. From now on, we always let ε ≤ ε1.
Since for |t| < γ and v ∈ B1(0) ⊆ Rn

|x̃0ε + tv − x0| ≤ |x̃0ε − x0|+ |t||v| < δ + γ = α

holds, we have x̃0ε + tv ∈ Bα(x0) ⊆ U and the function

Gε : (−γ, γ)× V ×B1(0) → Rm

(t, y, v) 7→ Fε(x̃0ε + tv, y) · v

is well-defined. By Propositions 2.21 and 2.32, G := [(Gε)ε] is a well-defined
generalised function in G ((−γ, γ)× V ×B1(0))m. Now consider the initial
value problem

f ′(t) = G(t, f(t), v), f(0) = ỹ0, (5.27)

with parameter v ∈ B1(0). We will show that the conditions of Theorem 5.8
are satisfied. Choose η ∈ (0, γ). Then, by (5.24),

sup
(t,y,v)∈Bη(0)×Lβ×B1(0)

|Gε(t, y, v)| = sup
(t,y,v)∈Bη(0)×Lβ×B1(0)

|Fε(x̃0ε + tv, y) · v|

≤ sup
(x,y)∈Q

|Fε(x, y)| · sup
v∈B1(0)

|v|

≤ a.
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Furthermore, by (5.25), we obtain

sup
(t,y,v)∈Bη(0)×Lβ×B1(0)

∂2Gε(t, y, v) =

= sup
(t,y,v)∈Bη(0)×Lβ×B1(0)

| evv ◦ ∂2Fε(x̃0ε + tv, y)|

≤ sup
v∈B1(0)

| evv | · sup
(x,y)∈Q

|∂2Fε(x, y)|

= O(| log ε|).

From Theorem 5.8, it follows that there exists a generalised function f ∈
G[B1(0) × J, Lβ] such that f(v, . ) is a solution of (5.27) for all v ∈ B1(0)

where h is in
(

0,min
(
η, βa

))
and J := [−h, h]. Fix some r ∈ (0, h) and

λ ∈ (0, 1) and set
U(x̃0, ỹ0) := Bλr(x0).

We choose ε2 ≤ ε1 such that |x0 − x̃0ε| < (1− λ)r for all ε ≤ ε2. From now
on, we always let ε ≤ ε2. We define uε(x̃0, ỹ0) : U(x̃0, ỹ0)→ Lβ by

uε(x̃0, ỹ0)(x) := fε

(
1
r

(x− x̃0ε), r
)
.

By the choice of ε2, the inequality∣∣∣∣1r (x− x̃0ε)
∣∣∣∣ ≤ 1

r
(|x− x0|+ |x0 − x̃0ε|) <

1
r

(λr − (1− λ)r) = 1

holds and the function uε(x̃0, ỹ0) is well-defined. From now on, we denote
uε(x̃0, ỹ0) simply by uε. Since, obviously, the net

(
x 7→ 1

r (x− x̃0ε)
)
ε

is mod-
erate and c-bounded into B1(0), the composition with (fε)ε is moderate.
By the c-boundedness of (fε)ε into Lβ, also (uε)ε is c-bounded into Lβ, i.e.
u := [(uε)ε] ∈ G[U(x̃0, ỹ0), Lβ].
To prove that u is indeed a solution of (5.26) we will use the equality of
(t, v, w) 7→ ∂1f(v, t) ·w and (t, v, w) 7→ F (x̃0 +tv, f(v, t)) ·(tw) in G((−h, h)×
B1(0)× Rn)m. To see this we consider the net (kε)ε given by kε : (−h, h)×
B1(0)× Rn → Rm,

kε(t, v, w) := ∂1fε(v, t) · w − Fε(x̃0ε + tv, fε(v, t)) · (tw).

Note that, by Propositions 2.21 and 2.32, k := [(kε)ε] is a well-defined gen-

eralised function in G((−h, h)×B1(0)×Rn)m. Let ṽ ∈ B̃1(0)c and w̃ ∈ R̃n
c .

Since v 7→ f(v, 0) = ỹ0 is constant in G(B1(0))m and F maps to a space of
generalised linear functions, we have

k(0, ṽ, w̃) = ∂1f(ṽ, 0) · w̃ − Fε(x̃0 + 0 · ṽ, f(ṽ, 0)) · (0 · w̃) = 0
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in R̃m. By Schwarz’s Theorem, the chain rule and the integrability condition
(2), we obtain

∂

∂t
k(t, ṽ, w̃) =

=
∂

∂t

(
∂1f(ṽ, t) · w̃ − F (x̃0 + tṽ, f(ṽ, t)) · (tw̃)

)
(5.28)

=
∂

∂v

( ∂

∂t
f(v, t)︸ ︷︷ ︸

=F (x̃0+tv,f(v,t))·v

)∣∣∣
v=ṽ
· w̃

−
(
∂1F (z̃) · ṽ · tw̃ + ∂2F (z̃) ·

( ∂

∂t
f(ṽ, t)︸ ︷︷ ︸

=F (z̃)·ṽ

)
· tw̃ + F (z̃) · w̃

)

=
∂

∂v

(
F (x̃0 + tv, f(v, t)) · v

)∣∣∣
v=ṽ
· w̃

−
(

DF (z̃) · (ṽ, F (z̃) · ṽ) · tw̃ + F (z̃) · w̃
)

(2)
=
(
∂1F (z̃) · tw̃ · ṽ + ∂2F (z̃) · (∂1f(ṽ, t) · w̃) · ṽ + F (z̃) · w̃

)
−
(

DF (z̃) · (tw̃, F (z̃) · tw̃) · ṽ + F (z̃) · w̃
)

= ∂1F (z̃) · tw̃ · ṽ + ∂2F (z̃) · (∂1f(ṽ, t) · w̃) · ṽ
− ∂1F (z̃) · tw̃ · ṽ − ∂2F (z̃) · (F (z̃) · tw̃) · ṽ

= ∂2F (z̃) · (∂1f(ṽ, t) · w̃ − F (z̃) · tw̃) · ṽ
= ∂2F (z̃) · k(t, ṽ, w̃) · ṽ

=
(

evṽ ◦∂2F (x̃0 + tṽ, f(ṽ, t))
)
· k(t, ṽ, w̃) (5.29)

for z̃ = (x̃0 + tṽ, f(ṽ, t)). Corollary 2.29 says that evṽ is in G(Rmn)m. We
may regard evṽ as a generalised function of (t, A) ∈ (−h, h) × Rmn which
is independent of t, i.e. evṽ ∈ G((−h, h) × Rmn)m. From Proposition 2.33,
it follows that ěvṽ : t 7→ evṽ is in G((−h, h))m·mn. Therefore, the expres-
sion in the brackets in the last line of (5.28) can also be written as ěvṽ(t) ◦
∂2F (x̃0 + tṽ, f(ṽ, t)). Since t 7→ ∂2F (x̃0 + tṽ, f(ṽ, t)) is in G((−h, h))mn·m,
by Proposition 2.32, the mapping A(t) := ěvṽ(t) ◦ ∂2F (x̃0 + tṽ, f(ṽ, t))
is in G((−h, h))m

2
. From (5.25), it follows that supt∈(−h,h) |A(t, ṽ, w̃)| =

O(| log ε|) for all ṽ, w̃ ∈ R̃n
c . Hence, k( . , ṽ, w̃) is a solution of a linear initial

value problem satisfying the conditions of Proposition 5.11 and, therefore,
k( . , ṽ, w̃) = 0 for all ṽ, w̃ ∈ R̃n

c . By Proposition 2.30, we conclude that k = 0
in G((−h, h)× Rn × Rn)m.
Finally, we check that u is indeed a solution of (5.26). Observe that for
v = 0 the initial value problem (5.27) is reduced to

f ′(t) = 0, f(0) = ỹ0.
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Therefore, f(0, . ) is the (in G[(−h, h), Lβ]) constant function t 7→ ỹ0. Thus,
by the definition of u, we obtain

u(x̃0) = f
(1
r

(x̃0 − x̃0), r
)

= ỹ0.

At last, we have

Du(x) · w̃ =
d

dx

(
f
(x− x̃0

r
, r
))
· w̃

= ∂1f
(x− x̃0

r
, r
)
· 1
r
· w̃

= F
(
x̃0 + r · x− x̃0

r
, f
(x− x̃0

r
, r
))
· r 1
r
w̃

= F (x, u(x)) · w̃

for all w̃ ∈ R̃n
c . Applying Proposition 2.30 to the above equation, we conclude

that u is indeed a solution of the initial value problem (5.26).
Uniqueness: Let ū ∈ G[Bλr(x0), Lβ] be another solution of (5.26). We will
show that ū|Ba(x0) = u|Ba(x0) for all a < λr. Since G is a sheaf, the equality
also holds on Bλr(x0) = U(x̃0, ỹ0).
Let a ∈ (0, λr). Observe that if (fε)ε is the representative of f that solves
(5.27) for the representatives (Gε)ε of G, (x̃0ε)ε of x̃0 and (ỹ0ε)ε of ỹ0 clas-
sically for small ε (such a representative exists by Theorem 5.8), then

fε(v, ct) = fε(cv, t)

holds for all c, v and t for which both sides are defined. Hence, the same is
true for f as a generalised function. Now, let ṽ = [(ṽε)ε] ∈ B̃1(0)c and set
τ := 1

3(λr − a). We define g(ṽ) : Ba+2τ (0) → Lβ by g(ṽ)(t) := ū(x̃0 + tṽ).
The function g(ṽ) is well-defined since, by

|x̃0ε + tṽε − x0| ≤ |x̃0ε − x|+ |t||ṽε| < τ + (a+ 2τ) · 1 = λr

for t ∈ Ba+2τ (0) and |x0 − x̃0ε| < τ , the map t 7→ x̃0 + tṽ is c-bounded from
Ba+2τ (0) into Bλr(x0). Moreover, g(ṽ) is an element of G[Ba+2τ (0), Lβ] and
a solution of (5.27) for v = ṽ. Since Ba+2τ (0) ⊆ J and solutions are unique

in G[J, Lβ], it follows that g(ṽ) = f(ṽ, . )|Ba+2τ (0) for all ṽ ∈ B̃1(0)c. By
Proposition 2.30, g : (v, t) 7→ g(v)(t) is an element of G[B1(0)×Ba+2τ (0), Lβ]
and equal to f on B1(0)×Ba+2τ (0). Since∣∣∣ 1

a+ τ
(x− x̃0ε)

∣∣∣ ≤ 1
a+ τ

· (|x− x0|+ |x0 − x̃0ε|) <
1

a+ τ
· (a+ τ) = 1
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holds for all x ∈ Ba(x0) and sufficiently small ε, the map x 7→ 1
a+τ (x − x̃0)

is c-bounded from Ba(x0) into B1(0). Hence, we may calculate

ū(x) = g
( 1
a+ τ

(x− x̃0)
)

(a+ τ)

= f
( 1
a+ τ

(x− x̃0)
)

(a+ τ)

= f
(1
r

(x− x̃0)
)

(r)

= u(x),

establishing the claim. �
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theorem, Birkhäuser Boston Inc., Boston, MA, 2002 1

[Kri04] Kriegl, Andreas, Analysis 2, Lecture Notes, University of Vi-
enna, 2004 1

[KS99a] Kunzinger, Michael, Steinbauer, Roland, A note on the
Penrose junction conditions, Classical Quantum Gravity, 16(4):
1255–1264, 1999 84, 89, 90, 94



References 133

[KS99b] Kunzinger, Michael, Steinbauer, Roland, A rigorous solution
concept for geodesic and geodesic deviation equations in impulsive
gravitational waves, J. Math. Phys., 40(3): 1479–1489, 1999 81,
83, 111

[Lew57] Lewy, Hans, An example of a smooth linear partial differential
equation without solution, Ann. of Math. (2), 66: 155–158, 1957
23
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