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POISSON STRUCTURES: TOWARDS A CLASSIFICATION
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Abstract. In the present note we give an explicite description of certain class of

Poisson structures. The methods lead to a classification of Poisson structures in low

dimensions and suggest a possible approach for higher dimensions.

Introduction.

The Poisson structures were first introduced and discussed in the not so well-
known paper by S. Lie in 1875 [Lie] , who use the name of function groups. In a
systemetic way such structures were investigated by Kirillov [Kir] and Lichnerow-
icz [Lic]. An interesting example of quadratic Poisson structure was found by E.
Sklyanin in 1982 [Skl]. Further progress in this direction has been made by V.
Drinfeld [Dr1] while investigating solutions for the Yang-Baxter equation.

Let us mention also the paper [GLZ], where some nonlinear Poisson structures
were used for the description of classical (and quantum) integrable systems.

In this paper we would like to start a systematic investigation of Poisson struc-
tures, while referring to future work for specific physical applications of our study.
Even though we have in mind group manifolds, in this paper we shall mainly work
on Rn. Global aspects will be dealt with specific Lie groups in the future.

Let M be a manifold and F(M) be the space of smooth functions on M .

Definition. Poisson bracket {·, ·} on F(M) is a Lie bracket being a biderivative of
the associative algebra F(M), i.e. an operation assigning to every pair of functions
F,G ∈ F(M) a new function {F,G} ∈ F(M), which is linear in F and G and
satisfies the following conditions:

a) the skew-symmetry

{F,G} = −{G,F}, (1)

b) the Jacobi identity

{F, {G,H}}+ {G, {H,F}}+ {H, {F,G}} = 0, (2)
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c) the Leibnitz rule
{F,GH} = {F,G}H + {F,H}G. (3)

The identities (1)–(2) are nothing but the axioms of a Lie algebra. In this way,
the space F(M) equipped with the Poisson bracket {·, ·} becomes an (infinite-
dimensional) Lie algebra.

The identities (1) and (3) imply that our bracket is given by a skewsymmetric
biderivative, i.e. a bivector field Λ ∈ Γ(Λ2TM), and the Jacobi identity (2) can be
rewritten as [Λ,Λ]S = 0, where [·, ·]S stands for the Schouten bracket (we shall write
it without the index in the sequel). Such a bivector field we call Poisson structure.
Two Poisson structures Λ1, Λ2 are called compatible if any linear combination of
them is again a Poisson structure. In terms of the Schouten bracket it means that
[Λ1,Λ2] = 0.

Remark. Recall that the Schouten bracket is the unique (up to a constant) extension
of the usual Lie bracket of vector fields making the graded commutative algebra of
multivector fields into a graded Lie algebra (with n–vector fields being of degree
n-1) for which the adjoint action is a graded derivation with respect to the wedge
product:

[U, V ∧W ] = [U, V ] ∧W + (−1)u(v+1)V ∧ [U,W ],

u, v being the degrees of U, V.

In particular, for the case of wedge products of two vector fields, we have

[X ∧Y,U ∧V ] = [X,U ]∧Y ∧V +X ∧ [Y,U ]∧V +Y ∧ [X,V ]∧U +X ∧U ∧ [Y, V ].

Let xj be local coordinates on M and consider the Poisson brackets of the form

{F (x), G(x)} = ωjk(x)∂jF∂kG, ∂j =
∂

∂xj
. (4)

The Leibnitz rule (3) is automatically satisfied here, while the condition (1) is
equivalent to

ωjk(x) = −ωkj(x) (5)

and the condition (2) becomes

ωjk∂kω
lm + ωlk∂kω

mj + ωmk∂kω
jl = 0. (6)

The corresponding Poisson structure is given by

Λ = ωjk∂j ∧ ∂k.
Given a function H, we call the vector field XH = idHΛ the hamiltonian vector

field with hamiltonian H. From the Jacobi identity (2) easily follows that

[XF , XH ] = X{F,H}, (7)

so hamiltonian vector fields form a Lie subalgebra in the Lie algebra X (M) of all
smooth vector fields on M. In local coordinates

XH = ωjk(x)∂jH∂k. (8)

We emphasize that the tensor ωjk(x) appearing in (4) need not be nondegenerate,
in particular, the dimension of M may be odd.

Note that orbits of hamiltonian vector fields form a generalized foliation, i.e. the
orbits are integral manifolds of the corresponding distribution which is invariant
with respect to local flows of vector fields with values in the distribution.

Let us discuss typical examples of Poisson brackets.
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Example 1. The ”classical” Poisson bracket on a symplectic manifold (e.g. on
the cotangent bundle of a manifold) may be written in canonical coordinates (q,p)
in the form

{F,G} =
∑

j

∂F

∂pj

∂G

∂qj
− ∂F

∂qj

∂G

∂pj
.

Example 2. If tensor ωjk(x) does not depend on x, by a linear change of variables
this case can be reduced to the bracket as above, but with (q,p) being only a part
of coordinates. We get symplectic Poisson bracket if these are all coordinates, what
is possible only in even dimension.

Example 3. The next important case is that of linear coefficients ωjk(x) (we
assume here that M is a linear space):

ωjk(x) = Cjkl x
l. (9)

Since
{xj , xk} = Cjkl x

l, (10)

Cjkl are structure constant of a Lie algebra. Conversely, having a Lie algebra (g, [·, ·])
with a basis xl, we can regard this basis as coordinate (in fact linear) system for
the dual space g∗ and consider the unique Poisson bracket {·, ·} on g∗ for which
{xi, xj} = [xi, xj ]. The Jacobi identity for the bracket in g implies that this bracket
on F(g∗) given by

{F (x), G(x)} = Cjkl x
l∂jF∂kG (11)

is really a Poisson bracket. It is usually called the Kostant–Kirillov–Souriau bracket
and can be also written formally as

{F (x), G(x)} = (x, [
∂F

∂x
,
∂G

∂x
]). (12)

It is easy to see that the orbits of this Poisson structure–the leaves of the corre-
sponding generalized foliation–are exactly orbits of the coadjoint representation.
Notice also that the Poisson bracket of two polynomial functions on g∗ is again
a polynomial function, so that the space P(g∗) of all polynomials on g∗ is a Lie
subalgebra.

Example 4. Having associated our bracket with a tensor field, it is clear that
we can perform a coordinate transformation and generate ”new” brackets if the
transformation is not canonical.

Let M be the dual space of the Lie algebra of the group SO(3), M = {x : x =
(x1, x2, x3)}. The Poisson structure of Kostant–Kirillov-Souriau is given in this
case by

{xj , xk} = εjklxl, j, k, l = 1, 2, 3, (13)

where εjkl is a totally skew-symmetric tensor, ε123 = 1. The Poisson structure is
degenerate, and on the orbits Or = {x : |x|2 = x2

1 + x2
2 + x2

3 = r2} of the coadjoint
representation it can be expressed in spherical coordinates as

{F (θ, ϕ), G(θ, ϕ)} =
1

r sin θ
(
∂F

∂θ

∂G

∂ϕ
− ∂F

∂ϕ

∂G

∂θ
). (14)
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Here x1 = r sin θ cosϕ, x2 = r sin θ sinϕ, x3 = r cos θ. The dynamics in M is given
by the equation

ẋ = [x,
∂H

∂x
], (15)

where the bracket is the vector product. We notice that for a quadratic Hamiltonian

H =
1

2

∑
ajx

2
j (16)

these equations turn into Euler’s equations describing the motion of a rigid body
about a fixed point.

Example 5. Consider a Poisson structure Λ = ωjk∂j ∧ ∂k with constant coeffi-
cients. Using the coordinate transformation ξi = exi we get the bracket {ξj , ξk} =
ωjkξjξk corresponding to the Poisson structure

Λ = ωjkξjξk
∂

∂ξj
∧ ∂

∂ξk
.

From Poisson structures to differential forms.

As differential calculus with differential forms is more familiar, we associate
(n − k)–forms with k–vector fields on an n–dimensional orientable manifold M
putting

ΨΛ = iΛΩ,

where Ω stands for a volume form. The mapping Ψ yields an isomorphism between
k–vector fields and (n− k)–forms. Since for Λ = X1 ∧ ... ∧Xk

(iΛΩ)(Y1, ..., Yn−k) = Ω(X1, ..., Xk, Y1, ..., Yn−k),

for a bivector field Λ = cij∂i ∧ ∂j and Ω = dx1 ∧ ... ∧ dxn we have

ΨΛ = 2
∑

i<j

(−1)i+jcijdx1 ∧ ...
i
V ...

j

V ... ∧ dxn,

where ”
i
V ” stands for the omission. Note that Ψ depends on the choice of Ω.

For vector fields X,Y we have

i[X,Y ] = iX iY d− diX∧Y + iXdiY − iY diX

and one can prove that for bivector fields Λ1, Λ2 we have similarly

i[Λ1,Λ2] = −iΛ1
iΛ2d− diΛ2∧Λ1

+ iΛ1
diΛ2

+ iΛ2
diΛ1

,

that easily implies the following:
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Theorem 1. A bivector field Λ is a Poisson structure if and only if

2iΛdΨΛ = dΨΛ∧Λ. (17)

Two Poisson structures Λ1, Λ2 are compatible if and only if

dΨΛ1∧Λ2
= iΛ1

dΨΛ2
+ iΛ2

dΨΛ1
.

The isomorphism defined by Ψ suggests to compose it with operators available
on forms, say d, LX , iX , (cf. [LX] ,[Kos] ) so that we can state properties of the
Schouten bracket in terms of differential forms. We have, as it is well known,

1) LXΩ = div(X)Ω = diXΩ

2) d(iX∧YΩ) = i[Y,X]Ω + iXdiYΩ − iY diXΩ,

so defining D = Ψ−1 ◦ d ◦Ψ, we get

1′) D(X) = div(X)

2′) D(X ∧ Y ) = [Y,X] + div(Y )X − div(X)Y

for vector fields X,Y and

D(Λ1 ∧ Λ2) = [Λ1,Λ2] +D(Λ1) ∧ Λ2 − Λ1 ∧D(Λ2)

for bivector fields Λ1,Λ2. Hence we can rewrite (17) in the form

D(Λ ∧ Λ) = 2Λ ∧D(Λ). (18)

We shall call a Poisson structure Λ closed if D(Λ) = 0 (this implies D(Λ∧Λ) = 0).
This is clearly equivalent to the fact that the form ΨΛ (and hence ΨΛ∧Λ) is closed.
It should be mentioned that this definition is volume dependend, i.e. if Ω is replaced
by fΩ the Poisson structure may be not closed any more.

Differentiating the identity

df ∧ iΛ∧ΛΩ = −2iXf∧ΛΩ

we get

df ∧ diΛ∧ΛΩ = 2diXf∧ΛΩ.

Using now (17) we get a new version of it in terms of hamiltonians.
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Theorem 2. Given a volume form Ω a bivector field Λ is a Poisson structure if
and only if for any smooth function f, we have

df ∧ iΛdiΛΩ = diXf∧ΛΩ.

Starting with a given volume Ω we can try to decompose ΨΛ into a closed part
plus a remaining term. What is interesting in this decomposition is the fact that
this remainder is usually associated with rank 2 Poisson structure. We first outline
the main idea of the construction and then we try to say in which assumptions the
results can be stated in a more global setting. From Ψ = iΛΩ we can derive the
(n-1)–form dΨ (or even an (n-2)–form if the last is exact) and define the vector
field XΛ by iXΛ

Ω = dΨ. This vector field satisfies

1) div(XΛ) = 0

2) LXΛ
Λ = 0

(cf. [LX]).

Remark. If we start with dΨ = 0 and change the volume, we get

iXΛ
fΩ = df ∧Ψ,

i.e. XΛ = −Xf/f.
Having constructed dΨ we can look for a 1–form θ such that

1) Ω = θ ∧ dΨ

2) θ(XΛ) = 1

3) dθ = 0.

In these conditions, as can be easily seen,

Xθ ∧XΛ − Λ

is closed. We shall notice that θ is defined only up to a closed 1–form which is a
constant of the motion of XΛ and such that θ ∧ Ψ = 0. In the proof of this claim
the following properties play a crucial role:

A. Xθ and XΛ define an involutive distribution;
B. LXθΛ = 0.

The first one says that Xθ∧XΛ is a Poisson structure and the second one implies
compatibility with Λ.

Theorem 3. If Λ is a Poisson structure then there is X defined on the support of
XΛ such that Λ−X ∧XΛ is a closed Poisson structure.

Lets observe that in some cases we are able to define Xθ globally or to replace it
with a global one satisfying properties A and B. For instance having a polynomially
quadratic Poisson structure on Rn we can choose X to be 1

nx
i∂i (cf. [LX]).

It is obvious that if a bivector field Λ is a Poisson structure with the leaves of
dimension at most two, then Λ ∧ Λ = 0 and we have iΛdΨΛ = 0. Looking for the
converse, we get the following.
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Theorem 4. If f, f1, ..., fn−2 are smooth functions on an open and dense subset of
an n–dimensional manifold M with a given volume form Ω such that Ψ = fdf1 ∧
... ∧ dfn−2 is a smooth (n− 2)–form on M corresponding to a bivector field Λ then
Λ is a Poisson structure with orbits of dimension at most two for which f1, ..., fn−2

are Casimir functions and with The Poisson bracket defined by

{g, h} = fdg ∧ dh ∧ df1 ∧ ... ∧ dfn−2/Ω.

Conversely, if Λ is a Poisson structure with orbits of dimension at most two, then
there are smooth functions f, f1, ...fn−2 defined on an open and dense subset of M
such that ΨΛ = fdf1 ∧ ... ∧ fn−2.

Proof. Let Ω̃ be the corresponding contravariant volume. Since Λ = iΨΩ̃, it is easy
to see that idfjΛ = 0. Hence iΛΨ = 0 and iΛdΨ = 0, so (17) holds.

Conversely, if Λ has orbits of dimension at most two then in a neighbourhood
of a nonsingular point there are coordinates yj such that the orbits of Λ give us
the foliation defined by yj = const, j = 1, ..., n− 2. Since the form ΨΛ vanishes on
∂n−1, ∂n, it is of the form fdy1 ∧ ... ∧ dyn−2.

Remark. This theorem holds true if we replace the exact 1–forms dfi with closed
1–forms.

If we are on the vector space Rn, we can use the dilation vector field ∆ = xi∂i to
define homogeneous Poisson structures. We say that a tensor field τ is homogeneous
of degree k if L∆τ = kτ, where L denotes the Lie derivative. We shall say that
a Poisson structure Λ on Rn, is polynomially homogeneous of degree k if L∆Λ =
(k − 2)Λ. In particular, the polynomially quadratic Poisson structures (L∆Λ = 0)
have the form

Λ = Rrsij xrxs∂i ∧ ∂j
and using our association with forms, we easily see that the corresponding (n− 2)–
form ΨΛ is of degree n.

We are now ready to tackle the problem of the description of Poisson brackets
in R3 and R4.

The three dimensional case.

We start with R3, standard coordinates (x1, x2, x3) and standard volume form
Ω = dx1 ∧ dx2 ∧ dx3. For a bivector field Λ = cij∂i ∧ ∂j we have f := ΨΛ = fkdxk,
where fk = εijrδ

rkcij . Since in this dimension clearly Λ ∧ Λ = 0, due to Theorem
1, the Jacobi identity for the Poisson bracket has the form iΛd(fkdxk) = 0. This
in turn is equivalent to df ∧ f = 0, i.e. f admits an integrating factor, so we can
write f = udϕ for some smooth functions u, ϕ defined at least on an open and
dense subset of the support of Λ. One can explain it also in a different way. It
is easy to see that f vanishes on the tangent spaces to (two dimensional) orbits
of Λ. In neighbourhoods of nonsingular points of Λ we can choose the coordinates
(y1, y2, y3) such the the orbits are described by y3 = const. Hence the form dy3 has
the same kernel as f, so they differ by a factor. This way we get the following.

Theorem 5. Every Poisson structure Λ on R3 corresponds to the one form f =
iΛΩ which can be written as f = udϕ for smooth functions u, ϕ defined on an open
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and dense subset of the support of Λ. The most general Poisson bracket in R3 can
be therefore written in the form

{xi, xj} = εijku
∂ϕ

∂xk
.

Remark. It is worth noting that we really have to admit not everywere defined
(singular) functions. For example the bracket in R3 defined by {x1, x3} = x1,
{x2, x3} = x2, {x1, x2} = 0, corresponds to the one–form f = x2dx1 − x1dx2. The
integrating factor is here 1

x2
1+x2

2
, so we can write

f = (x2
1 + x2

2)d(arctg
x1

x2
).

We list now some relevant examples.

I. Assume that u = 1.
1. The function ϕ is linear in x1, x2, x3. Then after orthogonal transformation we
may consider ϕ = ax3 and we obtain

{x1, x2} = a, {x3, x1} = {x3, x2} = 0.

We may take x3 = c and we have the standard Poisson brackets.
2. The function ϕ is quadratic in x1, x2, x3. Then by means of orthogonal trans-
formation we obtain

ϕ =
1

2
(a1x

2
1 + a2x

2
2 + a3x

2
3).

We have

{x1, x2} = a3x3, {x2, x3} = a1x1, {x3, x1} = a2x2.

Let us consider some special cases
(i)

a1 = a2 = a3 = 1;

we get the K–K–S bracket corresponding to the Lie algebra so(3).
(ii)

a1 = a2 = −a3 = 1;

we get the K–K–S bracket corresponding to the Lie algebra so(2, 1).
(iii)

a3 = 0; {x1, x2} = 0, {x2, x3} = x1, {x3, x1} = x2;

we get the K–K–S bracket corresponding to the Lie algebra e(2).
(iv)

a1 = a2 = 0,

we get the K–K–S bracket corresponding to the Heisenberg-Weyl algebra W1

{x1, x2} = x3, {x2, x3} = {x3, x1} = 0.

2’. When ϕ = x1x2 + x2x3 + x1x3, the quadratic form associated with ϕ can be
reduced to the canonical form ϕ = −2y2

1 + y2
2 + y2

3 and we get again so(2, 1).
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3. The function ϕ is cubic; Here we have 10 monomials, i.e. in general we have a
10–parameter family of brackets. We give only two examples.

(i) ϕ = x1x2x3. We get the bracket

{x1, x2} = x1x2, {x2, x3} = x2x3, {x3, x1} = x3x1.

(ii) ϕ = 1
3 (x3

1 + x3
2 + x3

3). We get the bracket

{x1, x2} = x2
3, {x2, x3} = x2

1, {x3, x1} = x2
2.

By using a polynomial function of degree k we get the bracket which is polynomial
of degree k − 1.

II.
1. Put now f = udϕ, where ϕ = ψ(x1) + ψ(x2) + ψ(x3), u = χ(x1)χ(x2)χ(x3),

where χ(x) = 1
ψ′(x). We get

{x1, x2} = χ(x1)χ(x2), {x2, x3} = χ(x2)χ(x3), {x3, x1} = χ(x3)χ(x1).

For example, if ψ(x) = 1
1−mx

1−m, we find udϕ = (x2x3)mdx1 + (x3x1)mdx2 +

(x1x2)mdx3.
2. Here

ϕ = ψ(x1)ψ(x2)ψ(x3)(
1

ψ(x1)
+

1

ψ(x2)
+

1

ψ(x3)
)

and u as above. Now

udϕ = (
ψ(x2)

ψ′(x2)

1

ψ′(x3)
+
ψ(x3)

ψ′(x3)

1

ψ′(x2)
)dx1 + cyclic.

For instance, with ψ(x) = 1
1−mx

1−m, we get udϕ = c(x2x
m
3 +x3x

m
2 )dx1 + cyclic.

3. For udϕ = f1(x1, x2)dx1 + f2(x1, x2)dx2 the Poisson bracket is

{x1, x2} = 0, {x2, x3} = f1, {x3, x1} = f2.

4. udϕ = F (x1, x2, x3)dx3 gives

{x1, x2} = F, {x2, x3} = 0, {x3, x1} = 0.

Remark. For computational purposes it is convenient to notice that in solving for
Λ the equation iΛΩ = ψ we may start from a volume in the contravariant form, let
say Ω̃ = ∂1∧...∧∂n and consider the contraction iψΩ̃ = Λ. In our three dimensional

examples this procedure gives iudϕΩ̃ = u ∂ϕ
∂x1

∂2 ∧ ∂3 + u ∂ϕ
∂x2

∂3 ∧ ∂1 + u ∂ϕ
∂x3

∂1 ∧ ∂2.
This remark allows to conclude immediately that ϕ is a Casimir of our bivector
field as in Theorem 4.

We notice that by using our formula on compatible Poisson structures we find
dΨΛ∧Λ = 0 because of dimensionality arguments and the remaining term

iΛ1
d(f3df4) + iΛ2d(f1df2)
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reduces to
d(f1df2 + f3df4) ∧ (f3df4 + f1df2) = 0,

i.e.
(f1df3 − f3df1) ∧ df2 ∧ df4 = 0.

For the Poisson structures compatible with the K–K–S structure on so(3)∗ we find
f2 = (x2

1 + x2
2 + x2

3)/2, f1 = 0. Therefore we get

df3 ∧ df4 ∧ d(x2
1 + x2

2 + x2
3) = 0.

This condition is equivalent to the closure of f3df4 on every three dimensional
sphere. Thus the general solution is

f3df4 = gdf2 + dh

with arbitrary g and h.

As a way to illustrate our association of bivector fields with one–forms we re-
produce in a quick way a classification of all three dimensional Lie algebras. We
start with coordinates (x1, x2, x3) for R3 and write Ω = dx1∧dx2∧dx3. The linear
bivector field Λ gives us the following 1–form:

Ψ = iΛΩ = Aijx
idxj .

We have to reduce Ψ to normal form using linear transformations. We first notice
that

Aijx
idxj =

1

2
(Aij −Aji)xidxj + d(

1

4
(Aij +Aji)x

ixj).

By using linear transformation we can set

1

2
(Aij −Aji)xidxj = n(ydz − zdy).

Now, using a linear transformation that preserves dy ∧ dz, we can reduce the qua-
dratic form to ax2 + by2 + cz2. We obtain the normal form for Ψ to be

Ψ = n(ydz − zdy) + d(ax2 + by2 + cz2).

Finally we impose the Jacobi condition Ψ ∧ dΨ = 0 to get na = 0. Therefore all
three dimensional Lie algebras are parametrized by (a, b, c, n) with na = 0.

The four dimensional case.

In R4 we expect to have bivector fields that on some open submanifold are the
inverse of a symplectic structure or are of rank two so that, at least locally, they
admit two Casimir functions. The most general bivector field Λ will be associated
with a two form, let us call it F = Fmndx

m ∧ dxn, m, n = 0, ..., 3 and, by Theorem
1, the equation for Λ to be a Poisson structure reads

2iΛdF = diΛF.
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We can also write F = (Eidx
i)∧dx0−Bijdxi∧dxj . If we introduce Hk = εijkBij ,

we can also rewrite F in terms of H. Of course F ∧F = 2EHdx0∧ ...∧x3. Therefore
our bivector field will be degenerated at the points where EH = 0. Assume this
equation, since otherwise we are in the symplectic case. If our 2–form F satisfies
the Maxwell equations for electromagnetism, we have dF = 0 and our associated
bivector field will automatically satisfy the Jacobi identity due to Theorem 1 . By
using a vector potential to write F and by noting that F is defined up to a ”gauge”,
i.e. a closed 1–form, we see that in this case our bracket is associated with three
functions. If F is non–degenerate on an open submanifold of R4, this describes
the situation completely, i.e. iΛdF = 0 implies dF = 0 if F ∧ F 6= 0. If there is
degeneracy, i.e. F ∧ F = 0 but F 6= 0 on some open submanifold, we can write
locally F = f1df2 ∧ df3. By using the contraction with Ω̃ we get Λ = f1idf2

idf3
Ω̃

which shows that Λ(df2) = 0, Λ(df3) = 0, i.e. both f2 and f3 are Casimirs, therefore
iΛdF = iΛ(df1∧df2∧df3) = 0. Thus if F ∧F = 0 the most general Poisson bracket is
locally characterized by three functions. It should be noticed that in our argument
the conclusion remains true if df2 and df3 are both replaced by closed 1–forms which
are not exact, actually it is not even required that the monomial form we use is
globally true, the condition iΛdF = 0 can be tested on each neighbourhood. For
instance F = εijkxidxj ∧ dxk satisfies our requirement on open submanifolds and
iΛdF = 0 globally.

Theorem 6. If a Poisson structure Λ in R4 is degenerate (i.e. has orbits of
dimension at most two) then it corresponds to a two form F = f1df2 ∧ df3 for
densely defined smooth functions f1, f2, f3.

Remark that in general df2 and df3 can be replaced by closed 1–forms.

We close these general considerations by saying that when F reduces to purely
”electric” or ”magnetic” or ”radiation” field, we will have a degenerate Poisson
bracket.

Example 7. Due to Theorem 4, the form F = d(aix
2
i ) ∧ d(bjx

2
j ) where ai, bi, i =

0, 1, 2, 3, corresponds to a Poisson structure Λ on R4. Since clearly F = 2(aibj −
biaj)xixjdxi ∧ dxj , so Λ = εijkl(aibj − biaj)xixj∂k ∧ ∂l and we get the Poisson
bracket

{xk, xl} = εklij(aibj − biaj)xixj .
If we put b0 = 0, b1 = b2 = b3 = 1, a0 = 1, we get the Sklyanin bracket [Skl]

{xk, xl} = εjklx0xj , {xk, x0} = εjkl(aj − al)xjxl,

where j, k, l = 1, 2, 3.

Example 8. Put F = (Eidx
i) ∧ dx0 − εijkHidx

j ∧ dxk. Then Λ = ∂0 ∧ (Hi∂i) +
εijkEk∂i ∧ ∂j , i.e. {x0, xi} = Hi, {xi, xj} = εijkEk. Let us look for quadratic
brackets. From F = dA and the quadratic requirement A = Aidx

i must have
Aiof degree three, therefore d(x0(x2

i dxi) + (x3
1 + x3

2 + x3
3)d(x1 + x2 + x3)) = F

will provide us with an instance of quadratic bracket in four dimension. It is
possible of course to manifacture many more examples. For instance by taking
c1 = x1x0 − x2x3, c2 = x2

0 + ... + x2
3 we get a quadratic Poisson bracket by

setting Λ = idc1idc2Ω̃. It should be noticed that if we consider the Amper two–form
G = (Hidx

i) ∧ dx0 + Dijdx
i ∧ dxj with G ∧ G 6= 0 the associated bivector field
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will satisfy the Jacobi identity except at the world lines of the sources. For the
electromagnetic field of a moving charge the Jacobi identity fails only along the
world line of the charge. This situation generalizes to four dimension the situation
for magnetic monopoles in R3.

Example 9. Consider R4 as the group G = R+ × SU(2) of 2 × 2 matrices intro-
ducing coordinates (

x1 + ix2 −x3 + ix4

x3 + ix4 x1 − ix2

)
.

With the element X ∧ Y in the wedge product of the Lie algebra of G and where

X =

(
0 −1
1 0

)
, Y =

(
0 i
i 0

)

is associated a Lie–Poisson structure on G defined by

Λ(x) = (Lx)∗(X ∧ Y )− (Rx)∗(X ∧ Y ),

where Lx, Rx denote the left and right translations. The corresponding Poisson
bracket in R4 is quadratic and has the form

{x2, x1} = x2
3 + x2

4; {x1, x4} = x2x4; {x1, x3} = x2x3;

{x2, x4} = −x1x4; {x2, x3} = −x1x3; {x3, x4} = 0.

This bracket is invariant with respect to the left and right action of the group of
matrices (

eit 0
0 e−it

)

(which is the Cartan subgroup). Here one of Casimir functions is C = 1
2 (x2

1+...+x2
4),

so the structure reduces to spheres, in particular to the SU(2)–group (cf. [Gr1]).
We find the form ΨΛ to be

ΨΛ = (x2
3 + x2

4)
x3dx4 − x4dx3

x2
3 + x2

4

∧ dC

(cf. Theorem 6).

Example 10. Similarly as above, starting with the element

(
0 1
0 0

)
∧
(

0 0
1 0

)

of the wedge product of the Lie algebra gl(2,R), we get a Lie–Poisson structure on
R4 ' GL(2,R). The bracket is

{x2, x1} = x2x1; {x1, x4} = −2x2x3; {x1, x3} = −x1x3;

{x2, x4} = −x2x4; {x4, x3} = x4x3; {x3, x2} = 0.
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This bracket is invariant with respect to the left and right action of the group of
matrices (

et 0
0 e−t

)

(which is the Cartan subgroup).
One of Casimir functions is here the determinant C = x1x4 − x2x3 and the

structure reduces to SL(2,R). Here we can write ΨΛ in the form

ΨΛ = (x2
2 + x2

3)
x3dx2 − x2dx3

x2
2 + x2

3

∧ dC.

We close this section by mentioning how the Lie–Poisson condition can be stated
in terms of Ψ. We consider Λ to be a Poisson structure on a Lie group. The following
multiplicative condition characterizes a Lie–Poisson structure

Λ(gh) = (Lg)∗Λ(h)− (Rh)∗Λ(g).

By using a volume Ω which is invariant under the left and right multiplication, we
find the following transformation property for Ψ = iΛΩ :

Ψ(gh) = (Lg−1)∗Ψ(h)− (Rh−1)∗Ψ(g)

when Λ is assumed to define a Lie–Poisson structure.

Conclusions.

There are sound reasons for the current interest in quantum groups. Let us
quote some important applications: solvable two–dimensional systems, rational
conformal field theory, two–dimensional gravity, three–dimensional Chern–Simons
theory, and other interesting topics. It has also been shown [Dr2] that the classical
limit of a quantum group is provided by a Lie–Poisson group. It seems therefore
of interest to study Poisson structures on Lie groups which are candidates to be
Lie–Poisson structures. Our paper is an attempt to start an effective systematic
study of Poisson structures, even though we have not yet tackled the Lie–Poisson
aspect. Our approach seems to be rather powerful for Poisson brackets of rank
two. For this particular situation we expect (cf. [Gr2]) that a star–quantization
is possible providing a star–product on the algebra of functions. Additional work
is required to systematically investigate higher rank Poisson structures, we hope it
will be easier by using the presented approach. Our procedure allows us to deal
with compatible Poisson structures in a constructive way and therefore to deal with
completely integrable systems that arise in such a framework, however these aspects
shall be taken up in future work.
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