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1 Introduction

The Lagrangian formalism plays a major role in the description of evolutionary

system in Physics. Among other things, it allows for manifestly covariant theories,

Nöther’s theorem and locality.

Many relevant Lagrangians for physics (gauge theories, gravitation, relativistic

particles) give rise to dynamical systems in implicit form, i.e. they do not give rise

to vector fields. They only determine a submanifold of the relevant carrier space,

and this submanifold need not be a section of the appropriate bundle. For these

systems one usually deals with constrained formalism, as elaborated by Dirac and

Bergman. However, this procedure does not appear to be a natural approach

to these equations, for one is forced to deal with the inverse of a matrix which

may change rank from point to point. This equations are instances of implicit

differential equations and their solutions may exhibit singularities.

Another familiar example of partial differential equations (PDEs) arising in

implicit form in physics is provided by the Hamilton–Jacobi form of dynamics.

Here the equations for a function S on the configuration space Q has the form

H

(
q,
∂S

∂q

)
− ∂S

∂t
= 0 .

The Hamiltonian function H = H(q, p, t) is in general non linear and gives rise to

an implicit differential equation for S. In more geometrical terms, the equation for

S is replaced by an equation for Lagrangian submanifolds which are not necessarily

sections of the cotangent bundle T ∗(Q)
π−→ Q. To simply illustrate the situation

we restrict to Q = Rn, T ∗(Q) = R2n. Given a Hamiltonian function H, the

associated generalized version of the Hamilton–Jacobi form of the dynamics can

be given along the following lines.

First find the embedding Φ :

Rn Φ−→ T ∗Rn

↓
Rn

with the property

Φ∗H = E, Φ∗ω0 = 0

where ω0 = dpi ∧ dqi is the canonical symplectic structure. Of course if Φ(Rn)

is transverse to the fibers of T ∗Rn, we can find locally a function S such that

dS(Rn) = Φ(Rn) in the appropriate neighborhood. In many cases solutions Φ will
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fail to be transverse to the fibers, caustics arise in this way. Other singularities

also show up in this respect.

When the symplectic structure is replaced by the contact structure on R2n+1,

the 1-jets of functions on Rn, we have Legendre rather then Lagrange embeddings.

The projection of this submanifold on the base manifold is called its front. The

set where there is lack of tranversality is the wave front. The connection between

Hamilton–Jacobi theory and the Schrödinger equation shows that the analysis of

this singularities is very important in the WKB approximation of quasi–classical

asymptotics of the solutions of Schrödinger equation. One can hypotize that

the geometric background found by V. Maslov [1] for quasi classical asymptotic

solutions gives rise to a similar theory at the level of exact solution.

The study of these singularities is centered around the subsidiary equations,

describing all possible forms of a prescribed type of singularities admitted by a

given system of PDE’s. Therefore it is necessary to develop a theory of singular

solutions of PDE’s. Two steps are needed:

1. The first step is to formalize the concept of singularity for solutions of PDE’s,

and to classify them.

2. The second step requires that we develop a formal procedure to associate,

with a given system of PDE’s Y and a given singularity type Σ, the sub-

sidiary equations (YΣ) mentioned above.

Also central in this approach is the reconstruction problem, that is, given the

system of equations YΣ, and the singularity type Σ (to which they correspond),

find the original system Y . The quantization procedure, as well as the problem

of the sources of the fields, are of this kind. It also seems to be very important

for the mechanics of continuous media, as it gives regular methods to deduce

the equations governing the behaviour of the medium from the propagation of

singularities in it.

With this paper we would like to start a systematic investigation of the cor-

respondence Y ←→ YΣ for some fundamental equations of mathematical physics.

Our aim here is to deduce and to discuss the equations YΣ for some well known

equations, supposing Σ to be the geometric folding type singularities described in

[6, 7].

In section 2 we recall the general feature of fold type singularities, and the

subsidiary equations associated to them. We recognize in some of them the analog

of the classical characteristic equations, we call them k-characteristic equations.
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In section 3 we study the k-characteristic equations for some classical field

theory equations: Klein–Gordon, Schrödinger and Dirac. Here we will see that,

since the k–characteristic equations depend on the symbol only, the singularities

will not be sensitive to the mass, in the first and third case, or the time derivative

term and potential in the second case. We find, however, that for the Klein–

Gordon equation, 1 and 2 characteristics describe, respectively, the propagation

of massless point–like and one dimensional objects.

In section 4 we reconsider the same equations as reduction of homogeneous

equations in an extended space. Once this is done, all the terms in the equation

contribute to the symbol, and the folds then yield the correct equations of motion

of the corresponding propagating objects.

In section 5 we find the remaining subsidiary equations (for 1-singularity, called

complementary equations) for Klein–Gordon, Schrödinger, Dirac and Maxwell

equations.

As for now, our paper is a sort of ‘phenomenological’ paper, i.e. we discuss

several aspects of singularities for relevant equations even though at the moment

some equations do not allow for a clear cut physical interpretation.

2 Generalities

We recall that geometric singularities are singularities of multi-valued solutions of

PDE’s [2, 3, 4, 5]. To make more precise these concepts some preliminaries are to

be done. Let E be a (m+n)-dimensional manifold (the manifold of all dependent

and independent variables). Given two n-dimensional submanifolds, L1 and L2

of E we say that they have the same k-th order jet at a point α ∈ L1 ∩ L2 iff

they are tangent to each other with order k. So, a k-th order jet at α ∈ E is an

equivalence class of n-dimensional submanifolds of E passing through α. The set

of all such k-th order jet admits in a natural way a smooth manifold structure

which is called the k-th order jet space of n-dimensional submanifolds of E and is

denoted by Jk = Jk(E, n). Projections Jk,l : Jk → J l are defined in a natural way.

Let (x, u) with x = (x1, . . . , xn), u = (u1, . . . , xm) be a divided local chart on E,

that is a local chart on E where some of the coordinate functions are proclaimed

‘independent’ variables and the remaining ones ‘dependent’ variables. Such a

divided chart on E generates a local chart on J k(E, n) composed of the variables

xµ, ui, . . . , uiσ, . . . |σ| ≤ k (1)
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with 1 ≤ µ ≤ n, 1 ≤ i ≤ m and σ = (i1, . . . , in) being a multiindex, |σ| =

i1 + . . . + in. The Cartan distribution on J k(E, n), also called the k-th order

contact structure, is defined as a distribution of tangent subspaces of E given by

the system of Pfaff equations

duiσ − ui(σ+1)µdx
µ = 0, (2)

with 1 ≤ i ≤ m, 1 ≤ µ ≤ n, |σ| < k. Every n-dimensional submanifold L of E

given in the form

ui = fi(x
1, . . . , xn), 1 ≤ i ≤ m, (3)

can be lifted canonically on Jk(E, n). This lifted submanifold L(k) ⊂ Jk(E, n) is

given by the equations

uiσ =
∂|σ|fi
∂xσ

1 ≤ i ≤ m, 0 ≤ |σ| ≤ k (4)

where ∂|σ|
∂xσ

stands for ∂|σ|

∂x
i1
1 ...∂x

in
n

supposing that σ = (i1, . . . , in). A submanifold

N ⊂ Jk is called integral if it satisfies (2). Note that all the manifolds of the form

L(k) are integral. An n-dimensional submanifold N ⊂ J k is called R-manifold if

for almost every point θ ∈ N there exists a neighborhood of θ in N which is of

the form L(k) for an L ⊂ E. Here ‘almost every’ means excluding a subset Y

of N with dimY < n. It can be proved that this subset Y coincides with the

singular set of the projection πk,k−1 : Jk −→ Jk−1 restricted to N . Because of this

reason Y is denoted by singN ⊂ N . Let now θ be a point of singN , N being an

R-manifold, and TθN be the tangent space of N at θ. The kernel of the projection

of TθN along πk,k−1 is called the label of θ. These labels can be classified naturally

with respect to the group of contact diffeomorphisms of J k. recall that contact

diffeomorphisms are those diffeomorphisms that preserve the Cartan distribution

of Jk. The result of this classification (see [6, 7]) tells us that the label equivalence

classes can be labeled by the finite-dimensional commutative R-algebras (in fact

this result was formulated in [6] in slightly different terms).

As it is well known a finite-dimensional commutative R- algebra splits in an

essentially unique way into a direct sum of algebras F(k), with F = R,C, and F(k)

stands for the F -algebra generated by an element, say ξ, subjected to the condi-

tions ξk = 0, ξk−1 6= 0. In this paper we are concerned with solution singularities

corresponding to R(k)-label type which we will call folds. These singularities can

be paralleled with the Thom–Boardman ones of the standard singularity theory,

commonly denoted by Σ(k).

Recall, finally, that a k-th order system of PDE imposed on a n-dimensional

submanifold of E can be represented as a submanifold I ⊂ J k(E, n). In fact, local
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equations of I are obviously of the form

Fj(. . . x
µ . . . ui . . . uiσ . . .) = 0 j = 1, . . . , l (5)

It is easily seen now that the functions ui = fi(x), i = 1, . . . ,m give us a solution

of (5) iff L(k) ⊂ N where L ⊂ E is the submanifold of E given by the equations

ui = fi(x). This motivates the following concept which is crucial for what follows:

an R-manifold is called a multivalued solution of (5) iff N ⊂ I.

We stress that the concept of R-manifold allows one to generalize the notion

of solution for an arbitrary non–linear solution system of PDE essentially in the

same way as the concept of lagrangian submanifold in T ∗M does for the Hamilton–

Jacobi equation.

Roughly speaking, equations YΣ, as mentioned in the introduction, describe

possible shapes of singular submanifolds of singL formed by all Σ-type singular

points. The system YΣ for Σ = R(k) will be called the k-singularity system as-

sociated to Y . This is a (generally undetermined) system of partial differential

equations on n−k independent variables, which contains a specific equation which

we call k-characteristic; 1-characteristic equations coincide with classical charac-

teristic equations introduced by Hadamard when studying the uniqueness of the

Cauchy problem. Note that the eikonal equation is the characteristic equation for

a number of fundamental equations of mathematical physics. So, k-characteristic

equations for k > 1 describe, in particular, ‘wave front’ propagation for ‘extended

objects’. We call complementary equations those which have to be added to the

characteristic ones to get the full k-singularity system. Remembering that the

characteristic equations describe the space-time form of solution singularities it

is natural to think that complementary equations describe behaviours of inter-

nal structures of singularities giving a more intrinsic description. It is worth to

emphasize that the study of asymptotic solutions of a differential equation leads

to the theory of lagrangian submanifold on T ∗M . From his point of view one

can treat lagrangian submanifolds as the asymptotic counterpart of R manifolds.

A physical interpretation of these complementary equations depend obviously on

the physical nature of the original equation in question. We hope to present some

examples of this kind in a future publication.

In the following two sections we deduce both k-characteristic equations and

complementary equations for fundamental equations of mathematical physics.

The necessary computational algorithms, extracted from the geometrical descrip-

tion of YΣ given in [7]are presented here without proof.
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3 k-characteristic equations.

Characteristic equations for a differential equation

The simplest, but not trivial, case in which k-characteristic equations appear

is that of second order scalar differential equations. k-characteristic equations for

them can be found as follows.

Let x = (x1, . . . , xn) be independent variables. The general second order scalar

differential equation is of the form:

F (x, u, ui, uij) = 0 (6)

where ui = ∂u/∂xi etc. The corresponding characteristic matrix is then of the

form:

M =

(
∂F

∂uij

)
. (7)

With this matrix we can associate a bilinear pairing on 1-forms on the space of

independent variables, namely

< du|dw >F=
∂F

∂uij
uiwj. (8)

This pairing can be extended to the full exterior algebra. For instance on two

forms

< dφ1 ∧ dφ2|dφ3 ∧ dφ4 >F=< dφ1|dφ3 >F< dφ2|dφ4 >F −
− < dφ1|dφ4 >F< dφ2|dφ3 >F . (9)

The k- characteristic equations express the fact that the (n − k)–vector tangent

to N is isotropic with respect to the metric on Λn−kTM induced naturally by

the metric on TM which is in its turn dual to the metric Mij , Mij = ∂F
∂uij

on

T ∗M . Equivalently these equations state that the dual k-covector is isotropic with

respect to the metric on ΛkT ∗M coming from the just mentioned metric on T ∗M .

The fact that a decomposable k-covector θ∗1∧. . .∧θ∗k ∈ ΛkT ∗aM ,where θ∗1, . . . , θ
∗
k ∈

T ∗aM , is isotropic means that the K-dimensional subspace L generated by the θ’s

is tangent to the characteristic cone K∗a ⊂ T ∗aM given by the equation

∑

ij

Mij(x)pipj = 0 for x = a. (10)

Similarly, the dual (n−k)- vector θ1∧. . .∧θn−k ∈ Λn−kTaM , θ1, dots, θn−k ∈ TaM ,

being isotropic is tangent to the dual cone Ka ⊂ TaM given by

∑
M ij(x)vivj = 0 (11)
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where M ij is the n− 1-order minor of the matrix ||Mij|| which is the complement

of the element Mij. It results that a solution of equation (17) is an (n − k)-

dimensional submanifold N of M which is tangent to the cone Ka at each point

a. The lines along which N is tangent to the cones Ka form a field of directions

(= 1-dimensional distribution) on N . Integral curves of this distribution are

exactly those along which Rk-singularities propagate. For k = 1 they are classical

bicharacteristics of the original equations (6).

To find explicitly the k-characteristic equations divide the variables x into two

parts, say τ = (τ1, . . . , τn−k) and y = (y1, . . . , yk), where for instance

τi = xk+i , 1 ≤ i ≤ n− k
yi = xi , 1 ≤ i ≤ k . (12)

Suppose that the projection of the k-singularity (which lies in J 2) on the x space

is of the form

Φ̃i = yi − φi(τ) = 0, i = 1, . . . , k .

The k-form

dΦ̃1 ∧ dΦ̃2 ∧ · · · ∧ dφ̃k (13)

defines the k-characteristic equations by setting

< dΦ̃1 ∧ · · · ∧ dφ̃k|dΦ̃1 ∧ · · · ∧ dφ̃k >= 0. (14)

Using the coordinates introduced above these equations can be written in the

following way: consider the (n− k)× n-matrix

Φ =
∂xi(τ)

∂τj
(15)

with i = 1, . . . n, j = 1 . . . n−k. Indicating with φk,l = ∂φk
∂τl

, with the above choice

(12) we have

Φ =




φ1,1 φ2,1 . . . φk,1 1 0 . . . 0

φ1,2 φ2,2 . . . φk,2 0 1 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . .

φ1,n−k φ2,n−k . . . φk,n−k 0 0 . . . 1



. (16)

Indicating by Φi1,...,in−k , 1 ≤ i1 < i2 . . . < in−k ≤ n, the minors of Φ composed of

its i1-th,. . . ,in−k-th columns multiplied by (−1)i1+...+ik+n−k, then (14) takes the

form

Φi1,...,in−kΦj1,...,jn−kM
i1,...,in−k
j1,...,jn−k = 0 , (17)
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whereM
i1,...,in−k
j1,...,jn−k stands for the minor ofM which remains after cancelling i1, . . . , in−k-

th rows and the j1, . . . , jn−k columns; a sum over repeated indices is understood

here and in the following . In some cases below we have found more convenient

to choose the τ ’s in a way different from (12), in these cases the explicit form of

the Φ in (16) will change accordingly.

1 and 2-characteristic equations for systems of differ-
ential equations.

Let

Fi(x
µ, ua, uaσ) = 0 (18)

i = 1, . . . , l , a = 1, . . . ,m , µ = 1, . . . , n , σ = (i1, . . . , in) (19)

be a determined system (l=m), and let D(p), p = (p1, . . . , pn), be its characteristic

determinant, that is:

D(p) = det|| ∂Fi
∂uaσ

pσ|| pσ = pi11 · · · pinn . (20)

We now discuss one and two-folds.

1-Folds

The singularity is of the form

f(x) = 0, (21)

and the characteristic equation is

D(∇f) = 0. (22)

2-Folds

Let us look now to the (n−2)-dimensional surfaces corresponding to the 2-folds

singularities in the form

x1 = φ(t) , x2 = ψ(t) , t = (t1, . . . , tn−2). (23)

Below we present only a procedure to deduce 2-characteristic equations, a more

detailed presentation can be found in [7]. Let us do the substitutions

p1 −→ ξ, p2 −→ η, p2+α = −(ξφα + ηψα) (24)

where φα = ∂φ/∂tα ψα = ∂ψ/∂tα we obtain

D(p) = V (ξ, η). (25)

9



Here V (ξ, η) is a homogeneous polynomial of order k (the order of the system

Fi = 0) whose coefficients depend on φα, ψα. The characteristic equation for

2-folds is then

r(h) = 0 (26)

where h = V (ξ, 1) and r(h) = R(h, h′). Being R(h, g) the resolvent determinant

of the two polynomial f, g:

h(ξ) = a0ξ
n + a1ξ

n−1 + . . .+ an, (27)

g(ξ) = b0ξ
m + . . .+ bm. (28)

That is

R(h, g) =




a0 a1 . . . an 0 0 . . . 0

0 a0 . . . an−1 an 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . .

0 . . . . . . 0 a0 a1 . . . an

. . . . . . . . . . . . . . . . . . . . . . . .

b0 b1 . . . bm 0 0 . . . 0

0 b0 . . . bm−1 bm 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . .

0 . . . . . . 0 0 b0 . . . bm




(29)

this determinant is of order n+m. If the system Fi = 0 is overdetermined (l > m),

1 and 2-characteristic equations are (22) and (26) imposed on all characteristic

determinants.

4 Examples

We now discuss in detail some examples, first the case of the Klein–Gordon equa-

tion. Here the eikonal equation we find for 1-folds. For 2-folds we find an equation

describing a null two dimensional surface, to be interpreted as an analog of the

‘wave front’ propagation. The situation is analogous for 3-folds, were we will ob-

serve the n, (n − k)-fold duality. Then we discuss the Schrödinger equation were

we find that, since the symbol of the differential operator does not contain any

information, not only on the potential V , but also on the time derivatives, the

solutions of the characteristic equation are ‘space–like’, that is transverse with re-

spect to time. We will discuss and interpret these results. finally we will consider

1 and 2 characteristic equations for the Dirac equation.

Klein-Gordon equation
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The Klein–Gordon equation is:

(∂2
t − ~∇2 +m2)u = 0 (30)

The matrix M and the differential equation on J2 are respectively

M =




1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1




(31)

and

F = u00 − Σuii +m2u = 0. (32)

The parametrizations of the singularities and the corresponding characteristic

equations for 1,2 and 3-folds are:

1-Folds

We write the singularity in the form:

t = φ(x1, x2, x3) , (33)

therefore the 3× 4 matrix Φ is

Φ =




φ1 1 0 0

φ2 0 1 0

φ3 0 0 1


 . (34)

Using equation (17), or equation (14)

< dΦ̃|dΦ̃ >= 0 (35)

where

Φ̃ = φ(x1, x2, x3)− t = 0, (36)

we obtain
3∑

i=1

φ2
i = (~∇φ)2 = 1 . (37)

This is the eikonal equation. Observe however that an interpretation of this

equation (more precisely of its characteristics) in terms of particles associated to

the fields is correct only for m = 0 as the surfaces move at the speed of light.

The meaning of (37) for the massive case has been discussed by Racah, [9], in the

context of the Dirac equation. He observed that if the wave function of a particle is

different from zero in a finite region, then the eikonal equation describes the motion
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of the boundary of such a region. Since the Fourier expansion of the wave function

will have components with all possible wave numbers, this surface will move at

the speed of light, even if the particle does not. This problem of interpretation

will obviously be present for all k-folds, as well as for the Schrödinger case below,

the next section is in fact dedicated to a discussion of this problem.

2-Folds

In this case it is convenient to parametrize the singularity as follows:

x2 = φ2(t, x1) (38)

x3 = φ3(t, x1) . (39)

As this is not the choice made in (12), the form of Φ will be slightly different,

using equation (15) we obtain:

Φ =


 1 0 φ2,0 φ3,0

0 1 φ2,1 φ3,1


 . (40)

And the equation is

(φ2,0φ3,1 − φ2,1φ3,0)2 + (φ3,0)2 + (φ2,0)2 − (φ3,1)2 − (φ2,1)2 − 1 = 0 (41)

This equation describes a two dimensional null submanifold, that is a surface

which is everywhere tangent to a null cone. Notice that the world surfaces of null

(tensionless) strings [8] are two dimensional null submanifolds.

3-Folds

Again here it is convenient to use t in the parametrization of the singularity:

x1 = φ1(t) (42)

x2 = φ2(t) (43)

x3 = φ3(t) , (44)

thus

Φ = (1 φ1,0 φ2,0 φ3,0) . (45)

And the characteristic equation is

3∑

i=1

φ2
i,0 = 1 (46)

This equation describes a null curve. In this equation we immediately recognize

the lagrangian of a free particle, thus showing the above mentioned duality.
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Schrödinger Equation

The Schrödinger equation is:

(
−ih̄ ∂

∂t
− h̄2∇2

2m
+ V (~x)

)
u(~x, t) = 0 (47)

with t = x0. Written in terms of the coordinates on J2 this equation becomes

F = −ih̄u0 −
h̄2

2m

3∑

i=1

uii + V u = 0. (48)

¿From equation (7) we obtain for the matrix M :

M =




0 0 0 0

0 − h̄2

2m
0 0

0 0 − h̄2

2m
0

0 0 0 − h̄2

2m




(49)

1-Folds

The singularity is of the form:

t = φ(x1, x2, x3) (50)

therefore the 3× 4 matrix Φ is

Φ =




φ1 1 0 0

φ2 0 1 0

φ3 0 0 1


 (51)

and using equation (17) we obtain

3∑

i=1

φ2
i = 0 (52)

Which has as solution

φ = t = const. (53)

That is the fold is transverse with respect to time, this is in agreement with what

we said about the eikonal equation for the massive Klein-Gordon equation. Here

in fact, being the theory non relativistic, the surface bounding the region in which

the wave function is different from zero moves with infinite speed

2-Folds
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For 2-folds instead the equation for the form of the singularity and of the

matrix Φ are:

t = φ0(x2, x3) (54)

x1 = φ1(x2, x3) (55)

Φ =


 φ0,2 φ1,2 1 0

φ0,3 φ1,3 0 1


 (56)

and the equation is

(φ0,2φ1,3 − φ1,2φ0,3)2 + φ2
0,2 + φ2

0,3 = 0 . (57)

The solutions are :

t = constant

φ1 = φ1(x2, x3) (58)

where φ1(x2, x3) is an arbitrary function. They describe two dimensional surface

in space at a fixed time. Even in this case the singularities are transverse with

respect to time.

3-Folds

We parametrize the 3–Folds as follows:

t = φ0(x3) (59)

x1 = φ1(x3) (60)

x2 = φ2(x3) (61)

thus

Φ = (φ0,3 φ1,3 φ2,3 1) (62)

and the equation is

(φ0,3)2 = 0 (63)

which again has solution φ0 = t =const, the other φ’s being arbitrary. This

describes a one-dimensional curve in space at a given time. And therefore such a

curve cannot be considered a world–line.

Dirac Equation

We finish this section with a brief discussion of Dirac equation, or rather Dirac

equations, as it is a system of four equations, one for each component of the spinor.

The system is

(i 6∂ −m)u = 0 (64)
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which written explicitly is:

Fα(xµ, uα, uαµ) = iγµαβu
α
µ −mδαβuβ = 0 (65)

1-Folds

If the singularity is defined by

f(xµ) = 0, (66)

The equation characteristic is:

det

(
∂Fα

∂uβν
fν

)
= 0 (67)

Which gives:

fνf
ν = 0 (68)

2-Folds

Parametrizing the fold by

x2 = φ2(x0, x1) (69)

x3 = φ3(x0, x1) (70)

and following the procedure of section (3) we find the 2-characteristic equation:

−
∑

i

φ2,iφ3,i +
∑

i,j

φ2
2,iφ

2
3,iφ

2
2,j +

∑

i6=j
φ2

2,iφ
2
3,j = 0 (71)

5 Extended Equations

In the case of Maxwell equations, or massless Klein–Gordon, the characteristic

equation describes the classical motion of the particles associated to the fields

(photons or scalar massless particles). In the Schrödinger or massive Klein–

Gordon case this does not happen. The reason is that the characteristic equation

is sensitive only to the symbol and therefore potential and time derivative do not

appear in the former case, while all information about the mass is absent from

the latter, for which wave fronts move in fact at the speed of light.

We expect that other singularities, sensitive not only to the symbol, will pro-

vide the particle trajectories even in this case. We observe however that it is

possible to write the equations above as reduction of homogenous equations in an
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extended space. If this is done, all the terms in the equation will contribute to

the symbol, and the folds will then yield equations of motion of the particles even

in these cases. We will describe briefly the reduction procedure and then consider

again the fold singularities and how they get reduced.

Consider a second order differential equation of the kind

(Aµν∂µ∂ν +Bµ∂µ + C)u = 0 (72)

where the coefficients Aµν , Bµ, C are functions, and µ, ν = 0 . . . , n−1. Introducing

an extra variable x−1, this equation can be obtained as reduction of the following

equation homogenous in the second derivatives:

gab∂a∂bũ = 0 a, b = −1, . . . , 3 (73)

The n+ 1×n+ 1 metric gab, written in terms of the matrix A = (Aµν), the vector

B = (Bµ) and the scalar C, has the form:

gab =


 C B

BT A


 (74)

If we consider the space with an additional variable as a principal R-bundle, func-

tions ũ on the total space are simply R-equivariant functions. The new operator

D̃ on the total space and the operator D on the base manifold are related by

g∗(π∗(Du)) + D̃(g∗π∗u). (75)

The reduction is obtained restricting the dependence of the functions ũ(xa) on

the x−1 as follows:

ũ(xa) = ex−1u(xµ) (76)

and setting x−1 equal to a constant. In our examples, in order to have that the

extended metric has signature (+,−, . . . ,−), we will use equation (74) with C

replaced by −C and equation (76) with ex−1 replaced by eix−1 .

The reduction for the singularity is obtained by fixing the value od the variable

x−1. The introduction of this reduction procedure [10] here may seem artificial, it

is nonetheless interesting because it shows that already the simplest (fold) singu-

larities have several non trivial features and are able to capture relevant aspects

of the dynamics of particles associated to fields. In the following we will find

convenient to put some constants in the exponent of ũ in (76) rather than in the

metric gab.

Extended Klein-Gordon case
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The extended Klein–Gordon equation is:

gabũab = 0 (77)

with the metric

gab =




−m2 0 0 0 0

0 1 0 0 0

0 0 −1 0 0

0 0 0 −1 0

0 0 0 0 −1




(78)

and the reduction follows from:

ũ = eix−1u (79)

1-Folds

Parametrised the singularity by:

x−1 = φ(xµ) µ = 0, . . . , 3 (80)

and Φ is

Φ =




φ0 1 0 0 0

φ1 0 1 0 0

φ2 0 0 1 0

φ3 0 0 0 1



, (81)

the characteristic equation then is:

gµνφµφν −m2 = 0 (82)

which after reduction, namely setting x−1 = const. in (80) now correctly describes

free particles with arbitrary masses.

2-Folds

The singularity and Φ are:

x−1 = φ−1(xi) (83)

x0 = φ0(xi) i = 1, 2, 3 (84)

Φ =




φ−1,1 φ0,1 1 0 0

φ−1,2 φ0,2 0 1 0

φ−1,3 φ0,3 0 0 1


 (85)

and the characteristic equation is:

∑

i

(
∑

jk

εijkφ−1,jφ0,k)
2 +

∑

i

(
m2(φ0,i)

2 − (φ−1,i)
2
)
−m2 = 0 (86)
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3-Folds

The singularity is parametrized by

x−1 = φ−1(xi) (87)

x0 = φ0(xi) (88)

x1 = φ1(xi) i = 2, 3, (89)

Φ =


 φ−1,2 φ0,2 φ1,2 1 0

φ−1,3 φ0,3 φ1,3 0 1


 (90)

The characteristic equation is:

(φ−1,2φ0,3 − φ0,2φ−1,3)2 + (φ−1,2φ1,3 − φ1,2φ−1,3)2 −m2(φ0,2φ1,3 − φ1,2φ0,3)2

+(φ−1,3)2 + (φ−1,2)2 +m2
(
(φ1,3)2 + (φ1,2)2 − (φ0,3)2 − (φ0,2)2 + 1

)
= 0 (91)

4-Folds

In this case we parametrize the singularity with t:

x−1 = φ−1(t) (92)

xi = φi(t) i = 1, 2, 3 (93)

Φ = (φ−1,0 1 φ1,0 φ2,0 φ3,0) (94)

and the characteristic equation is:

(φ−1,0)2 = m2

(
1−

3∑

i=1

(φi,0)2

)
(95)

Which after reduction gives the square of the usual lagrangian m
√
xµxµ

We now list the parametrization of the singularities and the corresponding

characteristic equations for k–folds in the Schrödinger case.

Extended Schrödinger case

The extended Schrödinger equation is:

gabũab = 0 a, b = −1, 0, 1, 2, 3 (96)

with

gab =




−V −1/2 0 0 0

−1/2 0 0 0 0

0 0 −1
2m

0 0

0 0 0 −1
2m

0

0 0 0 0 −1
2m




(97)
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The expression for ũ is

ũ(x) = ei
x−1
h̄ u(xµ) (98)

1-Folds

x−1 = φ(xµ) (99)

−1

2m
(∇φ)2 + φ0 − V = 0 (100)

Reducing φ one finds that this can be interpreted in four dimensions as the

Hamilton–Jacobi equation.

2-Folds

x−1 = φ−1(xi) (101)

x0 = φ0(xi) i = 1, 2, 3 (102)

(
1

2m
)2
∑

ijk

(εijkφ−1,jφ0,k)
2 − 1

2m

∑

i

φ−1,iφ0,i + V
1

2m

∑

i

(φ0,i)
2 − 1

4
= 0 (103)

3-Folds

x−1 = φ−1(x2, x3) (104)

x0 = φ0(x2, x3) (105)

x1 = φ1(x2, x3) (106)

−(
1

2m
)3 (φ−1,2φ0,3 − φ0,2φ−1,3)2

+(
1

2m
)2 ((φ0,2φ1,3 − φ1,2φ0,3) (φ−1,2φ1,3 − φ1,2φ−1,3) + φ−1,3φ0,3 + φ−1,2φ0,2)

−V (
1

2m
)2
(
(φ0,2φ1,3 − φ1,2φ0,3)2 + (φ0,3)2 + (φ0,2)2

)
− 1

8m

(
(φ1,3)2 + (φ1,2)2 + 1

)
= 0

(107)

4-Folds

x−1 = φ−1(t) (108)

xi = φi(t) i = 1 . . . 3 (109)
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1

2
m

(
3∑

i=1

(φi,0)2

)
− φ−1,0 + V = 0 (110)

After reduction this equation gives the lagrangian of a particle in the potential V .

6 Complementary equations for 1-folds

In this last section we discuss the complementary equations which, as we said, are

necessary for a complete description of the singularities.

The procedure for finding the complementary equations for 1-folds in the case

of 1-singularity equations for a scalar second order differential equation is as fol-

lows. Let us consider a singularity described by the equation

xn − φ(xi) = 0 i = 1, . . . , n− 1 , (111)

a basis of vector fields tangent to the projection of the fold on the base is

Xi = ∂i + φi∂n (112)

We also have the initial data

u− h = 0 (113)

un − g = 0 (114)

Initial data on a singularity are subject to constraints, which can be described in

terms of a set of equations, which turn out to be the complementary equations.

To find them let us proceed as follows.

Acting with the vector fields Xi on the initial data, after some manipulations

and including the differential equations F = 0, we obtain a system in the un-

knowns uµν :

uin + φiunn = gi

uij − φiφjunn = hij − φijg − (φigj + φjgi)

F (xµ, u, uµ, uµν) = 0 (115)

There are n− 1 + n(n−1)
2

+ 1 = n(n+1)
2

equations in the same number of unknowns.

Using the 1-characteristic equation (i.e. along the singularity) the system be-

comes degenerate, that is the determinant of the matrix of the coefficients of the

20



uµν ’s vanishes identically when the characteristic equation is substituted into it.

Writing the system in matricial form we can express it as

M · U = C (116)

Where U is the vector of the unknowns, M is the matrix of the coefficients, and

C is the vector of the known factors of the system (115). If we indicate by Yi a

basis of vectors of the left kernel of M ,

Y †i M = 0, (117)

the complementary equations are

Y †i C = 0 (118)

Obviously if we change the choice of the coordinate xn in (111), the equations

(112–115) will change accordingly.

Examples

Klein–Gordon case

The singularities are described by the equation

t− φ(xi) = 0 , i = 1 . . . , 3 . (119)

and the initial data are:

u− h = 0 (120)

u0 − g = 0 (121)

The system (115) becomes:

ui0 + u00φi = gi

uij − φiφju00 = hij − φijg − (φigj + gjφi)

u00 −
3∑

i=1

uii = −m2h (122)

The characteristic equation is

(~∇φ)2 = 1 . (123)

The complementary equation is

∇2h+m2h− g − (∇2φ)g − 2~∇φ · ~∇g = 0 (124)

Schrödinger case
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With the same parametrization of the singularity, the system (115) becomes:

ui0 + u00φi = gi

uij − φiφju00 = hij − φijg − (φigj + gjφi)

− h̄2

2m

3∑

i=1

uii = −V u+ ih̄g (125)

The characteristic equation is
3∑

i=1

φ2
i = 0 , (126)

whose solution is

φi = 0 . (127)

The complementary equation is:

− h̄2

2m
∇2h+ V u− ih̄g = 0 (128)

Extended Klein–Gordon

Parametrising the singularity as follows:

x−1 − φ(xµ) = 0 µ = 0, . . . , 3 , (129)

the complementary equation is:

2h̃−2φg̃ − 2∂µφ∂
µg̃ = 0 (130)

The reduced equation is obtained using for h̃ and g̃ the ansatz in eq. (79):

h̃(x) = eix−1h(xµ) (131)

g̃(x) = ∂−1h̃(x) = ieix−1h(xµ). (132)

The result is

2h−2φh− 2i∂µφ∂
µh = 0. (133)

Extended Schrödinger

Using the same parametrisation of the previous example, the complementary

equation is:
h̄2

2m
(∇2h̃− (∇2φ)g̃ − 2∇φ · ∇g̃)− g̃0 = 0. (134)

According to eq.(98), we set

h̃(x) = ei
x−1
h̄ h(xµ) (135)

g̃(x) = ∂−1h̃(x) =
i

h̄
ei
x−1

h̄
h(xµ). (136)
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So that the reduced equation is

h̄2

2m
(∇2h− i

h̄
(∇2φ)h− i

h̄
2∇φ · ∇h)− i

h̄
h0 = 0 (137)

Maxwell Case

Now we deduce the complementary equations for Maxwell equations. This

time the system of differential equations is degenerate of the first order, and the

fields are vectors, therefore the fields uα will have an extra (upper) index, to avoid

confusions, we will use for it the first letters of the greek alphabet. The differential

equations are represented on J1 by Fa(xµ, u
α, uαµ) = 0.

The characteristic equations can be obtained by equating to 0 highest order

minors of the characteristic matrix: (∂Fa/∂u
α
µ)fµ where the fµ(x) = 0 is the

equation for the singularity.

In the Maxwell case the fields are 6, we identify ui = Ei, ui+3 = Bi, i = 1, 2, 3,

the 8 Maxwell equations are:

uii = 0

ui+3
i = 0

εijkuji = −uk+3
0

εijkuj+3
i = uk0εµ (138)

The characteristic matrix is rectangular 6× 8, and its minors of order 6 have

determinants of the form

εµf 2
0 −

3∑

i=0

f 2
i = 0. (139)

So that the only solution is, as expected, the eikonal equation.

We now look for the complementary equations. To this purpose let us consider

a singularity described by equations

t− φ(xi) = 0, (140)

with tangent fields spanned by

Xi = ∂i + φi∂0 . (141)

This time the initial data will be of the kind:

uα − hα = 0 (142)
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Proceeding in analogy with the scalar case we obtain:

uαi + φiu
α
0 = hαi (143)

which together with the (138) form a system on J1.

To find the complementary equations we can proceed as before, even if the

system is overdetermined. In this case the matrix of the coefficients is 26 × 24

and, using the eikonal, the left kernel has dimension four. The equations one

obtains can be written as:

εµ∇ · hE +∇f · (∇∧ hB) = 0 (144)

εµ∇∧ hE +∇f(∇ · hB)−∇f ∧ (∇∧ hB) = 0 (145)

where

hE = (h1, h2, h3)

hB = (h4, h5, h6) .

Dirac equation

Here we find four complementary equations:

fµγ
µ
να(iγjαβu

β
j − uα) = 0 (146)

where j = 1, . . . , 3 α, β, µ, ν = 1, . . . , 4 , and f = 0 is the equation of the

singularity.

7 Conclusions

¿From the mathematical point of view the theory of singularities of the generalized

solutions of PDE’s is a generalization of the standard singularity (or ‘catastrophe’)

theory. In fact the latter can be viewed as the part of the former dealing with

solution of zero–order differential equations. Many interesting aspects appear in

this generalization, and we discussed but a few of them in this paper. Therefore

there is no doubt that this generalized theory of singularities is worth to be devel-

oped as a new branch of pure mathematics to a much larger extent. For the state

of the art see [3, 4, 5, 6, 11]. A possible important role of this theory is discussed

in [6, 12]

The ‘phenomenology’ presented in this article indicates a number of more

concrete problems of interest. Among them there is the systematic development
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of the theory of bicharacteristic of k-characteristic equations. Some sort of duality

between k-characteristic and (n − k)-characteristic equations emerges from this

paper, this lead to the hypothesis of an analogue of the Legendre transform,

and a natural extension of the classical Lagrangian formalism. Apart from these

argument we can expect a generalization of the standard Hamiltonian formalism

which, with respect to Σ-characteristic equations, would play the same role the

standard one plays with the usual characteristics. It is very likely that such a

generalization is in the spirit of [13, 14].

A problem that remains open is that of a systematical physical interpretation

of the new equations presented here, as well as the search of alternative singularity

types. In particular the extended equations presented in section 5, which at this

moment can seem a mere trick, have to be understood more conceptually. Another

open question of possible physical relevance is that of putting the old problem of

the field sources [15, 16] in the framework of the theory presented here.
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[1] V. P. Maslov, Théorie des perturbations et métodes asymptotiques, Dunod

Gauthier–Villars, Paris, 1972.

[2] A. M. Vinogradov, Multivalued solutions and a principle of classification of

nonlinear partial differential equation Sov. Math. Dokl. 14 (1973) 661.

[3] A. M. Vinogradov, Geometry of nonlinear differential equations Itogi Nauk.

Tekh. Ser. Probl. Geom. 11 (1980) 89, Engl. Trans. J. Sov. Math. 17 (1981)

1624.

[4] I. S. Krasil’shchik, V. V. .Lychagin, A. M. Vinogradov, Geometry of Jet

Spaces and Non Linear Partial Differential Equations, (Gordon and Breach,

New York, 1986).

[5] V. V. Lychagin, Geometric theory of singularity of solutions of nonlinear

differential equations Itogi Nauk. Tekh. Ser. Probl. Geom. 20 (1988) 207,

Engl. Trans. J. Sov. Math. 151 (1990) 2785.

25



[6] A. M. Vinogradov, Geometric Singularities of Solutions of Partial Differential

Equations, in Proc. Conf. on Differential Geometry and its Applications,

(Brno, 1986), pag.359, Purkyne Univ. and Reidel, Dordrecht, 1987.

[7] A. M. Vinogradov, On Geometric Solution of Singularities, in preparation.

[8] A. Shild, Null Strings, Phys. Rev. D16 (1977) 1722; A. Karlhede and U. Lind-

ström, The Classical Bosonic String in the Zero Tension Limit, Class. Qua.

Grav. 3 (1986) L73; F. Lizzi, B. Rai, G. Sparano and A. Srivastava, Quanti-

zation of the null string and absence of critical dimensions, Phys. Lett. 182B

(1987) 376.

[9] G. Racah, Caratteristiche delle equazioni di Dirac e principio di indetermi-

nazione, Rendiconti dell’Accademia dei Lincei 13 (1931) 424.

[10] C. Duval, G. Burdet, H.P. Künzle and M. Perrin, Bargmann Structures

and Newton–Cartan Theory, Phys. Rev. D31 (1984) 1841; A. P. Balachan-

dran, H. Gomm and R. Sorkin, Quantum Symmetries from Quantum Phases:

Fermion from Bosons, a Z(2) Anomaly and Galilean Invariance, Nucl. Phys.

B281 (1987) 573.

[11] V. V. Lychagin, Singularities of Multivalued Solutions of Nonlinear Differen-

tial Equations and Nonlinear Phenomena, Acta Appl. Math. 3 (1985) 135.

[12] A. M. Vinogradov, From Symmetries of Partial Differential Equations to-

wards the Secondary (‘Quantized’) Calculus, Preprint ESI 9, E. Schrödinger

Institute, 1993, to appear in J. of Geom. and Phys.

[13] P. Michor, A Generalization of Hamiltonian Mechanics, J. of Geom. and

Phys. 2 (1975) 92.

[14] A. M. Vinogradov and A. Cabras, Extensions of the Poisson Bracket to Dif-

ferential Forms and Multi–vector Fields, J. of Geom. and Phys. 9 (1985) 92.

[15] T. Levi-Civita, Caratteristiche dei Sistemi Differenziali e Propagazione On-

dosa, (Zanichelli, Bologna, 1931).

[16] R. K. Luneburg, Mathematical Theory of Optics, (Univ. of California Press,

Berkeley–Los Angeles, 1964).

26


