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Abstract. In applications to spatial structure in biology and to the theory of phase
transition, it has proved useful to generalize the idea of diffusion to a non-local dispersal
with an integral operator replacing the Laplacian. We study the spectral problem for the
linear scalar equation

ut(x, t) =

∫

Ω

K(x, y)u(y, t)dy+ h(x, t)u(x, t),

and tackle the extra technical difficulties arising because of the lack of compactness for the
evolution operator defined by the dispersal. Our aim is firstly to investigate the extent to
which the idea of a periodic parabolic principal eigenvalue may be generalized. Secondly,
we obtain a lower bound for this in terms of the corresponding averaged spatial problem,
and then extend this to the principal Lyapunov exponent in the almost periodic case.

Key words: Non-local dispersal, Prinipal eigenvalue, Principal Lyapunov exponent, Non-
autonomous reaction dispersal.

Mathematics subject classification: 37L05 47D06, 47G20

1 Introduction

Recently there has been extensive investigation into a class of models for non-local spatial
dispersal, in which the dispersal operatorD, say, involves an integral operator, for example

(Du)(x) =

∫

Ω

K(x, y)[u(y)− u(x)]dy. (1.1)

Such models occur in a number of applications, for example biology and the theory of
phase transition, as a generalisation of classical diffusion where D = ∆, the Laplacian
with a suitable boundary condition. The derivation in the biological context is discussed
in [22], [12] and [17], and for the theory of phase transition see [4] and [7, 8]. The non-
linear theory has been investigated in a number of papers, of which a sample, in addition
to the above, is [25], [6], [5], [11] and [16] .

We shall consider here aspects of spectral theory for linear evolution problems with
non-local dispersal; this of course provides a basic technical tool in the non-linear theory,
for example in a discussion of stability. Non-autonomous models have scarcely been
considered in the dispersal context, and here we shall focus particularly on the periodic
and almost-periodic cases. Consider then the linear evolution equation

ut(x, t) =

∫

Ω

K(x, y)u(y, t)dy+ h(x, t)u(x, t), (1.2)

where ut denotes the derivative of u with respect to time t (with x constant) and Ω ⊂ RN

is a compact spatial region; note that the second term in D in (1.1) has been incorporated
into h. It is convenient to abbreviate the notation and write this as

ut = Xu+Hu,
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where X is the integral operator in (1.2) and H is multiplication by h.
If D = ∆, for the autonomous case (h independent of t) and for the periodic case

(h(x, t) = h(x, t + T ) for all x ∈ Ω and t) there is a well-known theory yielding the
existence of a principal eigenvalue (PEV) and eigenfunction (PEF). For the theory, see
[15]; in applications the idea has been used for example in studying the evolution of
diffusion [18] and in permanence, see [2, Chapter 2]. This has important implications
for the study of stability, rate of increase, invasion problems and sub/super solution
methods for nonlinear models. The partial differentiation equation (PDE) technique of
proof depends critically on compactness properties for the evolution operator based upon
∆.

Our first objective here is to enquire to what extent these results hold for the non-local
case (1.2). The PDE technique is not applicable as the evolution operator generated by
X does not appear to have compactness properties in convenient spaces. We employ a
method based on using the evolution operator generated by the linear operator (− ∂

∂t
+H)

together with the compactness of X itself. It is proved that if N = 1, reasonable smooth-
ness conditions on h are sufficient to ensure the existence of a PEV. However, if N ≥ 2
then examples show that smoothness is not enough. This interesting issue is further
discussed in Section 3.

An upper bound for the growth rate of the solution for a continuous initial condition
is provided by the principal Lyapunov exponent λL. If a PEV λ exists, then λL = λ; it is
also shown (Theorem 3.9) that if there is no PEV then λL = s := supλ∈σ ℜ(λ), where σ
is the spectrum of (− ∂

∂t
+X +H) on the space of T -periodic functions.

If h is almost periodic (AP) only, there appears to be no analogue of a PEV. A partial
analogue of the above is provided by using the dynamical spectrum (see Definition 2.2)
Σ of (− ∂

∂t
+X +H). Then λL = λs := supλ∈Σ λ.

Our second main objective is to show that, for the periodic case, when a PEV exists it
is always larger than the PEV for the associated time-average case; this extends a result
of [19] for the PDE problem. In the biological context, this inequality shows that, perhaps
rather counter intuitively, invasion by a new species (see [2], p. 220) is always easier in the
periodic case. For the AP case, an analogous result holds, viz. that λL is always larger
than the PEV for the time-averaged case.

An outline of the contents is as follows. In Section 2, the notation is described and
some background results proved. The question of existence of a PEV for the periodic case
is considered in Section 3 and in Section 4 the lower bound for the PEV is established.
In Section 5, the AP case is discussed.

2 Definitions and Basic Properties

First the notation is described. Some of the spectral theory for the most general case to
be considered here (h AP in t) is then outlined. We note that the theory is not as simple
as for the well-known case where the dispersal operator is an elliptic partial differential
operator.
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The following conditions are assumed throughout.

(H1) (a) Ω ⊂ RN is compact.

(b) K : Ω × Ω → R is continuous and

K(x, y) ≥ 0 (x, y ∈ Ω). (2.1)

(c) h : Ω×R → R is Lipschitz continuous, is uniformly AP in its second argument,
t, and is uniformly bounded.

Let E = C(Ω) be the Banach space of continuous, complex valued functions on Ω with
the maximum norm ‖u‖ = maxx∈Ω |u(x)|. With the ordering induced by the positive cone

E+ = {u ∈ E|u(x) ≥ 0 (x ∈ Ω)},

(E, ‖ · ‖) is a complex Banach lattice, and we write u ≥ v if u(x) ≥ v(x) (x ∈ Ω). The
notation u > v if u(x) > v(x) for all x ∈ Ω will be adopted. A linear operator L : E → E
is said to be positive if u ≥ v ⇒ Lu ≥ Lv. For each t, define the (continuous) operators
X,H : E → E as follows.

(Xu)(x, t) =

∫

Ω

K(x, y)u(y, t) dy, (2.2)

(Hu)(x, t) = h(x, t)u(x, t). (2.3)

In writing down the governing equation, we treat u(·, t) as an E-valued function for each
t and, for brevity, suppress the t-dependence. We study the equation

ut = Xu+Hu. (2.4)

Let Φ(s, t) (s ≤ t), defined by

Φ(t, s)u0 = u(t, ·; u0, s) (u0 ∈ E),

be the evolution operator generated on E, where u(t, x; s, u0) is the solution of (2.4) with
u(s, x; s, u0) = u0(x). For given λ ∈ R, define

Φλ(t, s) = e−λ(t−s)Φ(t, s).

In general, the ‘spectrum’ of the evolution operator and the ‘spectrum’ of its generator
may not be same, see [23, Chapter 2, example 2.1]. It is the spectrum of the evolution
operator which characterizes the asymptotic behaviour of solutions. For completeness,
this concept is defined here.

Definition 2.1. Given λ ∈ R, {Φλ(t, s)}s,t∈R,s≤t is said to admit an exponential di-
chotomy (ED for short) if there exist β > 0 and C > 0 and continuous projections
P (s) : E → E (s ∈ R) such that for any s, t ∈ R with s ≤ t the following holds:
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(1) Φλ(t, s)P (s) = P (t)Φλ(t, s);

(2) Φλ(t, s)|R(P (s)) : R(P (s)) → R(P (t)) is an isomorphism for t ≥ s (hence Φλ(s, t) :=
Φλ(t, s)

−1 : R(P (t)) → R(P (s)) is well defined);

(3)
‖Φλ(t, s)(I − P (s))‖ ≤ Ce−β(t−s), t ≥ s

‖Φλ(t, s)P (s)‖ ≤ Ceβ(t−s), t ≤ s.

Definition 2.2. (1) λ ∈ R is said to be in the dynamical spectrum, denoted by Σ(X,H),
of (2.4) if Φλ(t, s) does not admit an ED.

(2) λs(X,H) := sup{λ ∈ Σ(X,H)} is called the principal dynamical spectrum point of
(2.4).

Definition 2.3. λL(X,H) := lim supt−s→∞

ln ‖Φ(t, s)‖

t− s
is called the principal Lyapunov

exponent of (2.4).

Proposition 2.4. Assume that u0 ∈ C(Ω) and u0 ≥ 0. Assume also that p : Ω × R → R

is continuous and uniformly bounded. Suppose that u : Ω × R → R is continuous and
differentiable in its second argument with ut continuous on Ω×R. Then if u satisfies the
following:

ut(x, t) ≥

∫

Ω

K(x, y)u(y, t) dy+ p(x, t)u(x, t) (t ≥ s) (2.5)

u(x, s) = u0(x)

then

(1) K(x, y) ≥ 0 (x, y ∈ Ω) ⇒ u(x, t) ≥ 0 (x ∈ Ω, t > s)

(2) K(x, y) > 0 (x, y ∈ Ω) and u0 6≡ 0 ⇒ u(x, t) > 0 (x ∈ Ω, t > s)

Proof. Note first that from (2.5), v(x, t) = eλ(t−s)u(x, t) satisfies the inequality

vt(x, t) ≥

∫

Ω

K(x, y)u(y, t) dy+ [p(x, t) + λ]v(x, t) (t ≥ s)

with v(x, s) = u0(x). Therefore it may be assumed without loss of generality that
p(x, t) > 0 (x ∈ Ω, t ∈ R).

(1) Let

K0 = max
x∈Ω

∫

Ω

K(x, y) dy and p0 = sup
x∈Ω,t∈R

p(x, t).
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Take τ = 1
2
(K0 + p0)

−1. Suppose that for some x and t ∈ [s, s + τ ], u(x, t) < 0.
Then there exist x1 and t1 ∈ [s, s+ τ ] such that

min
x∈Ω,s≤t≤s+τ

u(x, t) = u(x1, t1) < 0.

Integrating (2.5) with respect to t over [s, t1] and using the Mean Value Theorem
for integrals, we deduce that

u(x1, t1) − u(x1, s) ≥ (t1 − s)(K0 + p0)u(x1, t1).

But by assumption, u(x1, s) = u0(x1) ≥ 0. Therefore

u(x1, t1)[1 − (t1 − s)(K0 + p0)] ≥ 0.

Since (t1 − s) ≤ τ = 1
2
(K0 + p0)

−1 we have u(x1, t1) ≥ 0 which is a contradiction.
Therefore u(x, y) ≥ 0 for all x ∈ Ω and s ≤ t ≤ s + τ . The result follows on
repeating the argument with initial times s+ τ, s+ 2τ, . . ..

(2) ¿From the result just proved and (2.5), clearly ut(x, t) ≥ 0 (x ∈ Ω, t ≥ s). Also,
since K > 0 and u0 6≡ 0 we see that ut(x, s) > 0 (x ∈ Ω). Therefore, by conti-
nuity and compactness, there exist δ > 0, t0 > s such that u(x, t0) ≥ δ (x ∈ Ω)
and u(x, t) > 0 (x ∈ Ω, s < t ≤ t0). If the assertion does not hold, there exist
x1 ∈ Ω, t1 > t0 such that u(x1, t1) = 0. But u(x1, t0) ≥ δ and ut(x1, t) ≥ 0 for all
t ≥ s. This yields a contradiction.

Proposition 2.5. λs(X,H) = λL(X,H).

Proof. The proposition may be proved by arguments similar to those in [24, Proposition
4.1]. For completeness, we provide a proof here.

First we note that there are C̄ and ω ∈ R such that

‖Φ(t, s)‖ ≤ C̄eω(t−s) (2.6)

for any s, t ∈ R with s ≤ t.
Next, suppose that λs(X,H), λL(X,H) > −∞. By (2.6), λs(X,H) < ∞. Hence, for

ǫ > 0 and λ∗ = λs(X,H) + ǫ, there is C > 0 such that

‖e−λ∗(t−s)Φ(t, s)‖ ≤ C

that is,
‖Φ(t, s)‖ ≤ Ceλ∗(t−s)

for s ≤ t. It then follows that

λL(X,H) ≤ λ∗ = λs(X,H) + ǫ.

6



By taking ǫ → 0, we have λL(X,H) ≤ λs(X,H). Conversely, since λL(X,H) < ∞, for
any ǫ > 0,

e−(λL(X,H)+ǫ)(t−s)‖Φ(t, s)‖ → 0 as t− s→ ∞.

This implies that λL(X,H) + ǫ ∈ R \ Σ(X,H) and λs(X,H) ≤ λL(X,H) + ǫ. Since ǫ is
arbitrary, λs(X,H) ≤ λL(X,H). Therefore, λs(X,H) = λL(X,H).

Now if λs(X,H) = −∞ or λL(X,H) = −∞, by the above arguments, for any M >
0, λL(X,H) ≤ −M or λs(X,L) ≤ −M . Therefore, λL(X,H) = −∞ or λs(X,H) =
−∞.

Proposition 2.6. λL(X,H) is continuous in H with respect to the topology of uniform
convergence, that is, if hn(x, t) → h(x, t) as n → ∞ uniformly in x ∈ Ω and t ∈ R, then
λL(X,Hn) → λL(X,H), where Hnu = hnu and Hu = hu.

Proof. First, let Φ±ǫ(t, s) be the evolution operators generated by (2.4) with H being
replaced by H ± ǫ. It is clear that

Φ±ǫ(t, s) = Φ±ǫ(t, s) = e±ǫ(t−s)Φ(t, s).

Therefore,
λL(X,H ± ǫ) = λL(X,H) ± ǫ. (2.7)

Next, for given h1, h2 with h1 ≤ h2, let Φi(t, s) (i = 1, 2) be the evolution operators
generated by (2.4) with Hu = Hiu := hiu. We claim that

‖Φ1(t, s)‖ ≤ ‖Φ2(t, s)‖. (2.8)

In fact, for any given u0 ∈ E with u0 ≥ 0, by Proposition 2.4 (1) with p = hi, Φi(t, s)u0 ≥ 0
for s ≤ t and i = 1, 2. Let v(x, t) = Φ2(t, s)u0 − Φ1(t, s)u0. Then v(x, t) satisfies

vt =

∫

Ω

K(x, y)v(y, t)dy+ h2(x, t)v(x, t)+ (h2(x, t)− h1(x, t))Φ
1(t, s)u0

≥

∫

Ω

K(x, y)v(y, t)dy+ h2(x, t)v(x, t)

with v(x, s) = 0. By Proposition 2.4 (1) with p = h2 − h1, v(x, t) ≥ 0 which implies (2.8)
and this in turn gives

λL(X,H1) ≤ λL(X,H2). (2.9)

The proposition then follows from (2.7) and (2.9).

3 The Periodic Case.

Our objective is to enquire to what extent the well-known PDE theory for the existence
of a PEV when h is periodic extends to the non-local dispersal case (2.4). It will be
proved that, under the assumed smoothness condition, that is h is Lipschitz in x, the

7



results extend if the dimension N = 1. If N > 1, in general a smoothness condition is not
enough; this observation raises questions which are discussed at the end of this section.
We also show that even when a PEV does not exist, the principal Lyapunov exponent
λL = s(X̃, H̃), s(X̃, H̃) := supλ∈σ(X̃,H̃) ℜ(λ), where X̃, H̃ are X, − ∂

∂t
+H, respectively,

restricted to a space of periodic functions and σ(X̃, H̃) is the spectrum of H̃ + X̃ .
It will be assumed in this section that h is T -periodic in t, that is h(x, t) = h(x, t+ T )

for each x ∈ Ω. Since the problem is linear and we shall be discussing the spectrum, we
may assume h(x, t) ≤ 0 (x ∈ Ω, t ∈ R) without loss of generality, since only a shift in the
spectrum is involved. By a solution of equation (2.4), or related equations, we shall mean
a function u ∈ C(Ω × R) which is continuously differentiable in the second variable with
ut continuous on Ω × R.

Set
Ẽ = {u ∈ C(Ω × R)|u(x, t+ T ) = u(x, t)},

equipped with the sup norm. Let H̃, X̃ : Ẽ → Ẽ be the linear operators defined as follows:

(H̃u)(x, t) = −ut(x, t) + h(x, t)u(x, t),

with domain
D(H̃) = {u ∈ H̃ |u is C1 in t and ut ∈ Ẽ},

and

(X̃u)(x, t) =

∫

Ω

K(x, y)u(y, t) dy.

The governing equation (2.4) restricted to Ẽ becomes, in this notation,

(H̃ + X̃)u = 0, (3.1)

and our object is to study the spectrum of (H̃ + X̃). Denote by ρ(X̃, H̃), σ(X̃, H̃)
its resolvent set and spectrum respectively: s(X̃, H̃) = supµ∈σ(X̃,H̃) ℜ(µ) will be called

the principal spectrum point (s(X̃, H̃) is defined to be −∞ if σ(X̃, H̃) = ∅). As usual,
λ ∈ C is said to be an eigenvalue of (H̃ + X̃) if there is a non-trivial solution φ ∈ Ẽ, an
eigenfunction, of the equation

(H̃ + X̃)φ = λφ. (3.2)

An eigenvalue λ is called the principal eigenvalue (PEV) if there is exactly one corre-
sponding principal eigenfunction φ, with φ(x, t) ≥ 0 (x ∈ Ω, t ∈ R), and the inequality
ℜ(µ) ≤ λ (µ ∈ σ(X̃, H̃)) holds. Obviously λ = s(X̃, H̃).

We use ρ(H̃), σ(H̃), and s(H̃) for ρ(X̃, H̃), σ(X̃, H̃), and s(X̃, H̃) respectively when
K(x, y) ≡ 0.

The following additional conditions are imposed.

(H2) (a) K(x, y) > 0 (x, y ∈ Ω).

(b) For each x and t (x ∈ Ω, t ∈ R), h(x, t) ≤ 0 and h(x, t) = h(x, t+ T ).
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Theorem 3.1. Assume (H1) and (H2) and take N = 1. Then λ = s(X̃, H̃) is the PEV
of (3.2) and is an isolated point of σ(X̃, H̃). Furthermore, φ(x, t) > 0 (x ∈ Ω, t ∈ R).

To prove this result, several preliminary lemmas are needed. The basic approach is to use
the idea that the linear operator H̃ = − ∂

∂t
+ h(x, t) itself generates a nice semigroup on

Ẽ; this is related to an approach used in [3].

Lemma 3.2. H̃ generates a positive continuous semigroup of contractions on Ẽ. H̃ is
closed with dense domain.

Proof. Let φ(s) : Ẽ → Ẽ (s ∈ R) be defined by

(φ(s)u)(x, t) = exp

{
∫ t

t−s

h(x, ξ)dξ

}

u(x, t− s)

and let U(s, t, x; u) be the solution of

∂U

∂s
= −

∂U

∂t
+ h(x, t)U

with U(0, t, x; u) = u(x, t) ∈ Ẽ.
Then by direct computation, we have

{u ∈ Ẽ| lim
t→0+

φ(s)u− u

s
exists} = D(H̃)

and
U(s, t, x; u) = (φ(s)u)(x, t)

for any u ∈ D(H̃). Hence {φ(s)}s∈R+ is a continuous semigroup on Ẽ with generator H̃.
By the definition of φ(s), for any u ∈ Ẽ with u(x, t) ≥ 0, φ(s)u ≥ 0 for any s ≥ 0.

Moreover, since h(x, t) ≤ 0, we have

‖φ(s)u‖Ẽ ≤ ‖u‖Ẽ

for s ≥ 0. Therefore, {φ(s)}s∈R+ is a positive continuous semigroup of contractions on Ẽ
with generator H̃ . It follows from [23, Chapter 1, Corollary 2.5] that H̃ is closed with
dense domain.

Lemma 3.3. X̃ : F̃ → Ẽ is positive and compact, where F̃ = D(H̃) with the graph norm.

Proof. ¿From (H2)(a), the positivity is obvious. Let {un} be a sequence in the unit ball
of F̃ and let

vn(x, t) =

∫

Ω

K(x, y)un(y, t) dy.

Then |∂un

∂t
(x, t)| ≤ 1 (n ≥ 1, x ∈ Ω, t ∈ R), and there is a constant M > 0 such that

|∂vn

∂t
(x, t)| ≤ M (n ≥ 1, x ∈ Ω, t ∈ R). Also, from the uniform continuity of K, given

ǫ > 0 there is a δ > 0 such that

|vn(x1, t)− vn(x2, t)| < ǫ (x1, x2 ∈ Ω, |x1 − x2| < δ, n ≥ 1, t ∈ R).

It follows that the sequence {vn} is equicontinuous and the compactness then follows from
the Arzela-Ascoli theorem.
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To investigate the spectrum of X̃ + H̃, take

Ē = {u ∈ C(R)|u(t+ T ) = u(t)},

and let C(R) have the sup norm. For given x0 ∈ Ω let H̄(x0) be the linear operator on Ē
defined by

(H̄(x0)u)(t) = −
du

dt
(t) + h(x0, t)u(t)

with D(H̄) the set C1(R) ⊂ Ē of functions with continuous first derivatives. Denote by
ρ(H̄(x0)) and σ(H̄(x0)) the resolvent set and spectrum respectively of H̄(x0). Define

λ(x0) =
1

T

∫ T

0

h(x0, s) ds,

and note that by (H2)(b), λ(x0) ≤ 0.

Lemma 3.4. (1) For fixed x0 ∈ Ω and λ ∈ R, H̄(x0)u − λu = 0 has a non-trivial
solution u ∈ Ē if and only if λ = λ(x0).

Choose any δ > 0. Then there are constants M1,M2 > 0 such that the following hold
for any x0 ∈ Ω.

(2)

‖(H̄(x0) − λ)−1‖ ≥
M1

|λ− λ(x0)|
(3.3)

for λ ∈ R with 0 < |λ− λ(x0)| ≤ δ.

(3)

‖(H̄(x0) − λ)−1‖ ≤
M2

|ℜ(λ) − λ(x0)|
(3.4)

for λ ∈ C with 0 < |ℜ(λ) − λ(x0)| ≤ δ.

Proof. (1) This follows from the Floquet theory for periodic ordinary differential equa-
tions.

In preparation for the proof of (2) and (3), we first note that by the Fredholm alternative
(see Lemma 1.1 and Theorem 1.1 in Chapter IV of [13]), for any x0 ∈ Ω and λ ∈ C with
ℜ(λ) 6= λ(x0), and for any v ∈ Ē, the equation

[H̄(x0) − λ]u = v

has a unique solution u ∈ Ē. Denote it by [H̄(x0)−λ]−1v. We show that [H̄(x0)−λ]−1v =
u(·; v), where u(·; v) is defined by

u(t; v) = −

∫ t

−∞

exp

{
∫ t

s

[h(x0, τ ) − λ] dτ

}

v(s) ds if ℜ(λ) > λ(x0) (3.5)
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and

u(t; v) =

∫ ∞

t

exp

{

−

∫ s

t

[h(x0, τ ) − λ] dτ

}

v(s) ds if ℜ(λ) < λ(x0). (3.6)

By direct computation, we have that u(t; v) is a solution of

[H̄(x0) − λ]u = v.

We claim that u(·; v) ∈ Ē, i.e. u(t+ T ; v) = u(t; v). We prove the claim for the case
ℜ(λ) > λ(x0). It can be proved similarly for the case ℜ(λ) < λ(x0). By (3.5),

u(t+ T ; v) = −

∫ t+T

−∞

exp

{
∫ t+T

s

[h(x0, τ ) − λ] dτ

}

v(s) ds

= −

∫ t

−∞

exp

{
∫ t+T

s+T

[h(x0, τ ) − λ] dτ

}

v(s+ T ) ds

= −

∫ t

−∞

exp

{
∫ t

s

[h(x0, τ ) − λ] dτ

}

v(s) ds

= u(t; v)

Hence u(·; v) ∈ Ē. It then follows from the uniqueness of the solutions of [H̄(x0)−λ]u = v,
[H̄(x0) − λ]−1v = u(t; v).

(2) We next prove (3.3) for the case λ > λ(x0); the case λ < λ(x0) may be proved
similarly. Note that

‖[H̄(x0) − λ]−1‖ = sup
v∈Ē,‖v‖=1

‖[H̄(x0) − λ]−1v‖.

By (3.5), since the exponential is positive, we have

‖[H̄(x0) − λ]−1‖ = ‖[H̄(x0) − λ]−1v∗‖,

where v∗(t) ≡ 1 and

[H̄(x0) − λ]−1v∗ = −

∫ t

−∞

exp

{
∫ t

s

[h(x0, τ )− λ] dτ

}

ds.

Let ns be the largest integer less than or equal to t−s
T

. Then

∣

∣

∣

∣

∫ t

−∞

exp

{
∫ t

s

[h(x0, τ ) − λ] dτ

}

ds

∣

∣

∣

∣

=

∫ t

−∞

exp

{
∫ t−nsT

s

[h(x0, τ ) − λ] dτ

}

exp

{
∫ t

t−nsT

[h(x0, τ )− λ] dτ

}

ds.
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Hence
∣

∣

∣

∣

∫ t

−∞

exp

{
∫ t

s

[h(x0, τ )− λ] dτ

}

ds

∣

∣

∣

∣

≥ M1

∫ t

−∞

exp

{
∫ t

t−nsT

[h(x0, τ ) − λ] dτ

}

ds

= M1

∫ t

−∞

exp {[λ(x0) − λ]nsT} ds

≥ M1

∫ t

−∞

exp

{

[λ(x0) − λ]

(

t− s

T

)

T

}

ds

=
M1

|λ− λ(x0)|
,

where

M1 = inf
t−nsT≥s≥t−(ns+1)T,x0∈Ω,0<|λ−λ(x0)|<δ

(

exp

{
∫ t−nsT

s

[h(x0, τ )− λ] dτ

})

.

The length of the integration range is less than T , and since the integrand is inde-
pendent of s, M1 > 0 and (3.3) follows.

(3) We note that from (3.5)

‖[H̄(x0) − λ]−1‖ ≤ ‖[H̄(x0) − ℜ(λ)]−1v∗‖

where v∗(t) ≡ 1. A very similar argument yields (3.4) and we omit the details.

Lemma 3.5. (1) {λ(x0)|x0 ∈ Ω} ⊂ σ(H̃).

(2) C \ {λ| infx0∈Ω λ(x0) ≤ ℜ(λ) ≤ supx0∈Ω λ(x0)} ⊂ ρ(H̃).

Proof. (1) Given λ = λ(x0) for some x0 ∈ Ω, if λ ∈ ρ(H̃), then for any v̄ ∈ Ē,

−
du

dt
+ [h(x, t)− λ(x0)]u = v

has a unique solution u ∈ Ẽ, where v(x, t) = v̄(t). This implies that for any v̄ ∈ Ē,

−
du

dt
+ [h(x0, t) − λ(x0)]u = v̄

has a solution u ∈ Ē. Then by the Fredholm alternative (see Lemma 1.1 and
Theorem 1.1 in Chapter IV of [13]), H̄(x0)u−λ(x0)u = 0 has no nontrivial solution
in Ē, which contradicts Lemma 3.4 (1). Hence λ ∈ σ(H̃).
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(2) Take any λ ∈ C with ℜ(λ) > supx0∈Ω λ(x0) or ℜ(λ) < infx0∈Ω λ(x0). By Lemma
3.4(3), λ ∈ ρ(H̄). Also for each x0 ∈ Ω,

([H̃ − λ]−1u)(x0, t) = ([H̄(x0) − λ]−1u)(x0, t).

Hence also λ ∈ ρ(H̃).

Lemma 3.6. There is an α > s(H̃) such that

r(X̃(H̃ − α)−1) > 1,

where r(·) denotes the spectral radius.

Proof. First note that λ(x0) is continuous in x0, and it follows from Lemma 3.5 that there
is an x0 ∈ Ω such that λ(x0) = s(H̃). By Lemma 3.4, [H̄(x) − α]−1 exists for α > λ(x0),
and there is an M1 > 0 such that if α 6= λ(x) then

‖[H̄(x) − α]−1‖ ≥
M1

|α− λ(x)|
(3.7)

for all x ∈ Ω and α in a neighbourhood of λ(x). Note also that

λ(x) =
1

T

∫ T

0

h(x, s)ds. (3.8)

¿From (H1)(c), there is an M3 > 0 such that

|h(x, s)− h(x0, s)| ≤ M3|x− x0| (x ∈ Ω, s ∈ R).

Therefore

|λ(x) − λ(x0)| ≤
1

T

∫ T

0

|h(x, s)− h(x0, s)|ds

≤ M3|x− x0|. (3.9)

From (3.7) and (3.9)

‖(H̄(x)− α)−1‖ ≥
M1

|α − λ(x)|

≥
M1

|α − λ(x0)| +M3|x− x0|
. (3.10)

Noting that by (H2)(a), min(x,y)∈Ω×ΩK(x, y) > 0, we deduce that for u(x, t) ≡ 1, there is
a constant M4 > 0 such that

|(X̃(H̃ − α)−1u)(x, t)| =

∣

∣

∣

∣

∫

Ω

K(x, y)((H̃ − α)−1u)(y, t) dy

∣

∣

∣

∣

,

≥ M4

∫

Ω

dy

|α − λ(x0)| +M3|y − x0|

from (3.10). The right hand side of this inequality tends to infinity as α → λ(x0). This
completes the proof.
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The proof of the existence of the PEV below is based on [1, Theorem 2.2 and Remark
2.1], and for convenience we give the part of this result needed here translated into the
current notation. Let

rα = r(X̃(H̃ − α)−1).

Theorem 3.7. Assume that

(1) X̃ is positive and bounded.

(2) H̃ is closed with dense domain and generates a positive continuous semigroup of
contractions.

(3) X̃ : F̃ → Ẽ is compact.

Then if rα > 1 for some α > s(H̃), there is a unique α0(> s(H̃)) with rα0
= 1 and

α0 = s(X̃, H̃). Further, α0 is an isolated eigenvalue of (X̃ + H̃) of finite multiplicity with
a positive eigenfunction.

Proof of Theorem 3.1. Under the assumptions of Theorem 3.1, (1)-(3) and the condition
on rα of Theorem 3.7 are satisfied. In fact, (1) follows from (H1) and (2) is then a
consequence of Lemma 3.2. The compactness (3) is given by Lemma 3.3 and the condition
on rα is Lemma 3.6. The assertions of Theorem 3.1 then follow except for the claims that
the eigenfunction, φ say, is strictly positive and unique.

For the positivity, note first that for every t, there is an x0 such that φ(x0, t) > 0.
For otherwise, for some t0, φ(x, t0) = 0 (x ∈ Ω), and by uniqueness for the initial value
problem, φ(x, t) = 0 (x ∈ Ω, t ∈ R), in which case φ is not an eigenfunction. It follows
from Proposition 2.4(2) with p(x, t) = h(x, y)− λ that φ(x, t) > 0 (x ∈ Ω, t ∈ R).

The uniqueness is proved by a contradiction argument: suppose there is another eigen-
function ψ. Then one can choose a ∈ R with a 6= 0 such that ω = φ− aψ and

ω(x, t) ≥ 0 (x ∈ Ω, t ∈ R) and ω(x0, t0) = 0

for some x0 ∈ Ω, t0 ∈ R. But this contradicts the conclusion of the previous paragraph
and so yields uniqueness.

Remark 3.8. If N = 2, a smoothness condition on h is not quite enough. However, we
may prove the following by a slight extension of the above argument. Let Ω have a uniform
cone property: there exist a, b > 0 such that for any x ∈ Ω, there is a right circular cone
Vx with vertex x, opening a, height b, such that Vx ∈ Ω. Assume that h(·, t) ∈ C1(Ω)
and hx(·, t), the partial derivative of h with respect to x, is uniformly Lipschitz. Note that
λ(x0) = maxx∈Ω λ(x), where λ(x) is defined by (3.8).

Then the conclusions of Theorem 3.1 hold if x0 ∈ Int(Ω).

In order to discuss the dimension issue further, let us rewrite the governing equation
(2.4) slightly, by replacing X by ρX, where X is fixed and ρ > 0 is a parameter, obtaining

ut = ρXu +Hu. (3.11)
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Here ρ is a dispersal rate, analogous to the diffusion rate for the corresponding reaction-
diffusion case. To show that a PEV may not exist, let us consider the special case where
h is independent of t, that is the stationary case, and the kernel K ≡ 1. It is then
straightforward to show explicitly, by constructing a counter-example, that in general a
PEV does not exist for small ρ > 0, even in the following cases.

(1) N = 1 and h is continuous.

(2) N = 2 and h satisfies the conditions of Remark 3.8 except for the restriction x0 ∈
Int(Ω).

(3) N ≥ 3, Ω is the closed unit ball and h = −r2 where r is the distance from the centre
of Ω.

In each of these, a further condition is needed, and similar remarks of course broadly
apply for general K. This condition is that the dispersal rate ρ in (3.11) is large enough.
It is not apparent what the implications are in applications, for example in biology. This
issue raises interesting questions about the invasion of species, and further investigation is
warranted. For information on invasion and its relation to the PEV for classical diffusion
see [2, p. 220].

The PEV λ and PEF are useful in providing estimates of rates of growth, and for the
application of sub/super solution methods. The maximum growth rate for the initial value
problem is indeed measured by λL(= λs), the principal Lyapunov exponent. It may be
shown that λL = λ, and of course λ = s(X̃, H̃), the principal spectrum point. However,
as remarked above, in the dispersal case (as opposed to the case of classical diffusion)
a PEV may not exist. Nonetheless we shall show that λL = s(X̃, H̃), thus providing a
partial analogy.

Theorem 3.9. Assume that (H1) and (H2) hold. Then λs(X,H) = λL(X,H) = s(X̃, H̃).

To show this result, we first show

Lemma 3.10. s(X̃, H̃) ≥ s(H̃).

Proof. We prove the lemma by contradiction. Assume that s(X̃, H̃) < s(H̃). Let λ0 =
s(H̃). Then λ0I − (X̃ + H̃) is invertible and

λ0I − H̃ = λ0I − (X̃ + H̃) + X̃

=
(

λ0I − (X̃ + H̃)
)(

I +
(

λ0I − (X̃ + H̃)
)−1

X̃
)

.

By Lemma 3.5, s(H̃) ∈ σ(H̃). We then must have −1 ∈ σ
(

(

λ0I − (X̃ + H̃)
)−1

X̃
)

. By

Lemma 3.3, X̃ is compact. Hence
(

λ0I − (X̃ + H̃)
)−1

X̃ is compact and −1 is then an

isolated eigenvalue of
(

λ0I − (X̃ + H̃)
)−1

X̃.

Let u0 ∈ Ẽ be a nontrivial solution of
(

I +
(

λ0I − (X̃ + H̃)
)−1

X̃
)

u0 = 0. (3.12)
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It follows that
(λ0I − H̃)u0 = 0,

i.e.
∂u0(x, t)

∂t
= (h(x, t)− λ0)u0(x, t). (3.13)

This implies that

u0(x, t) = u0(x, 0)e
R

t

0
(h(x,τ )−λ0)dτ

for every x ∈ Ω.
Let v0(x, t) = |u0(x, t)|. Clearly v0(x, t) is also a nontrivial solution of (3.13) and thus

is a nontrivial solution of (3.12).

Note that X̃ is positive. By [10, Theorem 1.1], (λ0I − (X̃ + H̃)
)−1

is positive. Hence

(λ0I − (X̃ + H̃)
)−1

X̃ is positive. Therefore

0 =
(

I +
(

λ0I − (X̃ + H̃)
)−1

X̃
)

v0 ≥ v0 ≥ 0

This implies that v0 ≡ 0 and hence u0 ≡ 0. This is a contradiction. The lemma then
follows.

Proof of Theorem 3.9. To clarify the proof, we shall slightly contract the notation and
put λs = λs(X,H), λL = λL(X,H) and s = s(X̃, H̃). From Proposition 2.5, λs = λL.

We claim that s ≤ λs. For any λ with ℜ(λ) > λs,

‖Φλ(t, s)‖ = ‖e−λ(t−s)Φ(t, s)‖ → 0

as t− s→ ∞ exponentially. It then follows that for any v ∈ C(Ω×R) with v(x, t+ T ) =
v(x, t),

u(x, t) = −

∫ t

−∞

Φλ(t, s)v(x, s) ds

is the unique periodic solution of (3.1) with period T . Therefore λ ∈ ρ(X̃, H̃), and the
claim follows.

We next prove that for any ǫ > 0, λL ≤ s+ ǫ. Consider the equation

−ut +Xu +Hu− λǫu = v, (3.14)

where λǫ = s+ ǫ and v ∈ Ẽ. Since λǫ ∈ ρ(X̃, H̃), equation (3.14) has exactly one solution
u ∈ Ẽ. Rewrite (3.14) as

(

X −

[

∂

∂t
−H + λǫ

])

u = v (3.15)

By Lemma 3.2, H̃ = − ∂
∂t

+H generates a positive continuous semigroup of contractions

on Ẽ. By Lemma 3.10, λǫ ∈ ρ(H̃). Hence λǫ − H̃ = ∂
∂t

− H + λǫ is invertible and
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( ∂
∂t
−H+λǫ)

−1 and X( ∂
∂t
−H+λǫ)

−1 are positive. Equation (3.14) can then be rewritten
as

(

X

[

∂

∂t
−H + λǫ

]−1

− I

)

(

∂

∂t
−H + λǫ

)

u = v (3.16)

¿From [1, Theorem 2.2(ii)] if α = s,

r

(

X

[

∂

∂t
−H + α

]−1
)

= 1.

By Lemma 3 of [1], r(·) above is a strictly decreasing continuous function of α. Hence,

r

(

X

[

∂

∂t
−H + λǫ

]−1
)

< 1.

Therefore, by [21, Proposition 4.1.1], I−X( ∂
∂t
−H+λǫ)

−1 is invertible and has a positive
inverse. Now (3.14) can be rewritten as

u =

(

∂

∂t
−H + λǫ

)−1
(

X

[

∂

∂t
−H + λǫ

]−1

− I

)−1

v. (3.17)

By the positivity of ( ∂
∂t
−H + λǫ)

−1 and [I −X( ∂
∂t

−H + λǫ)
−1]−1, if v ≤ 0, then u ≥ 0.

Take v∗(x, t) ≡ −1, and let u∗ be the (unique) solution of (3.14), given by (3.17) in Ẽ
with v∗ = v. Clearly u∗ 6≡ 0, and by the conclusion of the last paragraph u∗ ≥ 0, so there
are an s and an x such that u∗(x, s) > 0. Since u∗ satisfies

u∗t = Xu∗ + (H − λǫ)u
∗ + 1

> Xu∗ + (H − λǫ)u
∗,

by Proposition 2.4(2) with p(x, t) = h(x, t) − λ, u∗ > 0. From periodicity and the
compactness of Ω, there exists δ > 0 such that u∗(x, t) ≥ δ (x ∈ Ω , t ∈ R).

Fix some s ∈ R and define

θ(x, t) = Φ(t, s)u∗(x, s),

ω(x, t) = eλǫ(t−s)u∗(x, t).

Simple calculations show that θ is the solution of

θt −Xθ −Hθ = 0 (3.18)

with θ(x, s) = u∗(x, s), and ω is the solution of

ωt −Xω −Hω = eλǫ(t−s) (3.19)
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with ω(x, s) = u∗(x, s). Therefore (ω− θ)(x, s) = 0. Also, subtracting (3.18) from (3.19),
we see that by Proposition 2.4(1) applied to p = ω− θ, θ(x, t) ≤ ω(x, t), (x ∈ Ω, t ∈ R).
Thus for all x, s, t with s ≤ t,

0 ≤ Φ(t, s)u∗(x, s) ≤ eλǫ(t−s)u∗(x, t). (3.20)

Note next that for any u0 ∈ C(Ω) with ‖u0‖ = 1,

−
u∗(x, t)

δ
≤ u0(x) ≤

u∗(x, s)

δ
.

Applying again Proposition 2.4 and using (3.20), we conclude that

‖Φ(t, s)‖ ≤ eλǫ(t−s)‖u∗‖/δ.

It follows from Definition 2.3 that
λL ≤ λǫ,

and since ǫ is arbitrary, λL ≤ s. Together with the opposite inequality, this proves the
result.

4 A Bound for the Principal Eigenvalue

Here it is assumed that a strictly positive PEF φ exists for the periodic case. We show
that a lower bound for the PEV is the PEV for the stationary case obtained by taking
the time average of h. Again it is assumed that this time-averaged problem does have a
strictly positive PEF, ψ.

Theorem 4.1. Assume that (H1) holds and that h(x, t) is periodic in t. Define

ĥ(x) =
1

T

∫ T

0

h(x, t) dt (4.1)

and let λ, λ∗ and φ, ψ be the PEVs and PEFs for the original problem and the time-
averaged autonomous problem respectively. That is

−φt(x, t) +

∫

Ω

K(x, y)φ(y, t) dy+ h(x, t)φ(x, t) = λφ(x, t) (4.2)

and
∫

Ω

K(x, y)ψ(y) dy+ ĥ(x)ψ(x) = λ∗ψ(x). (4.3)

Then λ ≥ λ∗. Also, if λ = λ∗ and K(x, y) > 0∀x, y ∈ Ω, then

h(x, t) = ĥ(x) + g(t).

The following corollary follows directly from Theorems 3.9 and 4.1.
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Corollary 4.2. If K(x, y) > 0 for x, y ∈ Ω, then λs(X,H) = s(X̃, H̃) ≥ s(X, Ĥ) = λ∗,
where Ĥu = ĥu.

The proof of the theorem will depend upon a preliminary lemma, and the proof of that
depends upon a Jensen inequality, viz. if f is a positive, continuous function defined on
[0, T ] then,

1

T

∫ T

0

f(t) dt ≥ exp

{

1

T

∫ T

0

ln[f(t)] dt

}

(4.4)

with equality if and only if f is a constant function.

Lemma 4.3. Let w(x, t) be a positive, continuous function defined on Ω × [0, T ]. Let

θ(x, y) =
1

T

∫ T

0

w(y, t)

w(x, t)
dt.

Then either w(x, t) is independent of x or there exists x∗ ∈ Ω such that

θ(x∗, y) ≥ 1 ∀ y ∈ Ω

with strict inequality for some y.

Proof. Let

χ(x) = exp

(

1

T

∫ T

0

ln[w(x, t)] dt

)

, (x ∈ Ω)

then from the inequality (4.4)

θ(x, y) =
1

T

∫ T

0

w(y, t)

w(x, t)
dt

≥ exp

{

1

T

∫ T

0

ln
w(y, t)

w(x, t)
dt

}

(4.5)

= exp

{

1

T

∫ T

0

ln[w(y, t)] dt−
1

T

∫ T

0

ln[w(x, t)] dt

}

=
exp

{

1
T

∫ T

0
ln[w(y, t)] dt

}

exp
{

1
T

∫ T

0
ln[w(x, t)] dt

}

=
χ(y)

χ(x)
.

Now χ is a continuous function defined on the compact set Ω and so is bounded and
attains its bounds. Let its least value occur at x0. Then

θ(x0, y) ≥ 1 ∀ y ∈ Ω.
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If χ is not a constant then the inequality will be strict for some y and the required result
(with x∗ = x0) is established. Otherwise χ is a constant and so

θ(x, y) ≥ 1 ∀ (x, y) ∈ Ω × Ω.

If this last inequality is somewhere strict, say at (x1, y1), then the theorem is proved with
x∗ = x1. Suppose therefore that there is equality everywhere, i.e. θ(x, y) ≡ 1. This implies
that there is equality in (4.5) and so w(y, t)/w(x, t) is independent of t. Let

w(0, t) = γ(t) and
w(y, t)

w(0, t)
= F (y),

then
w(y, t) = F (y)γ(t)

and so

1 =
1

T

∫ T

0

w(y, t)

w(x, t)
dt =

1

T

∫ T

0

F (y)

F (x)
dt =

F (y)

F (x)
.

Thus F is a constant and w(x, t) depends only upon t.

Proof of Theorem 4.1. ¿From equation (4.3)

λ∗ = ĥ(x) +

∫

Ω
K(x, y)ψ(y) dy

ψ(x)
∀ x ∈ Ω

and from equation (4.2)

λ = h(x, t) +

∫

Ω
K(x, y)φ(y, t) dy

φ(x, t)
−
φt(x, t)

φ(x, t)
∀ x, t. (4.6)

When integrated over t, this last equation, because of equation (4.1) and φ being periodic
in t, implies

λ = ĥ(x) +
1

T

∫

Ω

K(x, y)

∫ T

0

φ(y, t)

φ(x, t)
dt dy ∀ x ∈ Ω

and so

λ∗ − λ =

∫

Ω

K(x, y)

{

ψ(y)

ψ(x)
−

1

T

∫ T

0

φ(y, t)

φ(x, t)
dt

}

dy ∀ x ∈ Ω.

Set w(y, t) = φ(y, t)/ψ(y) to give

λ∗ − λ =

∫

Ω

K(x, y)
ψ(y)

ψ(x)

{

1 −
1

T

∫ T

0

w(y, t)

w(x, t)
dt

}

dy ∀ x ∈ Ω.

From the lemma, we know that there exists an x∗ such that when x = x∗ the expression
within {} is non-positive for all y. Since K(x, y) is non-negative and u is positive, it
follows that λ∗ ≤ λ.
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If K is strictly positive everywhere, then the lemma implies that either w(y, t) varies
with y (and hence λ∗ < λ) or w(y, t) depends only upon t (and hence λ = λ∗). In this
latter case

φ(y, t) = ψ(y)γ(t)

and so, from equation (4.6),

λ = h(x, t) +

∫

Ω
K(x, y)ψ(y) dy

ψ(x)
−

1

γ

dγ

dt

= λ∗ = ĥ(x) +

∫

Ω
K(x, y)ψ(y) dy

ψ(x)

=⇒ h(x, t) = ĥ(x) +
1

γ

dγ

dt

and so h has the required form.

5 The Almost-Periodic Case

In this section, we consider (2.4) with h(x, ·) being almost periodic. Our aim is to obtain
a lower bound for the principal dynamic spectrum point λs, or equivalently the principal
Lyapunov exponent. This provides the natural extension of the previous section from the
periodic to the AP case. Define

ĥ(x) = lim
t→∞

1

t

∫ t

0

h(x, s)ds. (5.1)

Of course ρ(X, Ĥ), σ(X, Ĥ) and s(X, Ĥ) are defined in the obvious way for the stationary
problem on C(Ω) for the operator (X + Ĥ), where X is the integral operator and Ĥ is
multiplication by ĥ.

Theorem 5.1. Suppose that (H1) and (H2) hold. Assume that a PEV λ of finite multi-
plicity exists for the stationary case with ĥ defined by (5.1), and suppose moreover that λ
is an isolated point of σ(X, Ĥ). Then

λL(X,H) = λs(X,H) ≥ s(X, Ĥ) = λ.

Proof. By the properties of almost-periodic functions (see [9]), there are periodic functions
hn(x, t) such that

hn(x, t) → h(x, t) as n→ ∞

uniformly for x ∈ Ω and t ∈ R. Then

1

t

∫ t

0

(

h(x, s) − hn(x, s)
)

ds→ 0 as n→ ∞
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uniformly in x ∈ Ω, that is,

ĥn(x) → ĥ(x) as n→ ∞.

By Proposition 2.6,
λs(X, H̃n) → λs(X,H) as n→ ∞ (5.2)

and by Proposition 2.6 and Theorem 3.9,

s(X, Ĥn) = λs(X, Ĥn) → λs(X, Ĥ) = s(X, Ĥ) as n→ ∞. (5.3)

¿From the assumed condition on λ, by perturbation theory for the spectrum, see [20, IV
Section 3.5], λs(X, Ĥn) = s(X, Ĥn) is an isolated PEV of (X + Ĥn) for n≫ 1. Hence by
Theorem 4.1,

λs(X, H̃n) ≥ λs(X, Ĥn) (5.4)

for n≫ 1. It then follows from (5.2)-(5.4) that

λs(X,H) ≥ s(X, Ĥ).
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