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Résumé

On étudie la convergence du systeme de Vlasov-Poisson vers les équations
d’Fuler des fluides incompressibles dans deux régimes asymptotiques : la
limite quasi-neutre et la limite gyrocinétique.

Abstract

The convergence of the Vlasov-Poisson system to the incompressible FEuler
equations is investigated in two asymptotic regimes: the quasi-neutral limit
and the gyrokinetic limit.
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FROM VLASOV-POISSON TO EULER

We consider the displacement of an electronic cloud generated by the
local difference of charge with a uniform neutralizing background of non-
moving ions. The equations are given by the Vlasov-Poisson system, with
a coupling constant € = (5=)* where 7 is the (constant) oscillation period
of the electrons. In the so-called quasi-neutral regime, namely as ¢ — 0,
the current is expected to converge to a solution of the incompressible Eu-
ler equations, at least in the case of a vanishing initial temperature. This
result is proved by adapting an argument used by P.-L. Lions [Li] to prove
the convergence of the Leray solutions of the 3d Navier-Stokes equation to
the so-called dissipative solutions of the Euler equations. For this purpose,
the total energy of the system is modulated by a test-function. An alterna-
tive proof is given, based on the concept of measure-valued (mwv) solutions
introduced by DiPerna and Majda [DM] and already used by Brenier and
Grenier [BG], [Gr2] for the asymptotic analysis of the Vlasov-Poisson sys-
tem in the quasi-neutral regime. Through this analysis, a link is established
between Lions’ dissipative solutions and Diperna-Majda’s muv solutions of
the Euler equations. A second interesting asymptotic regime, still leading
to the Euler equations, known as the gyrokinetic limit of the Vlasov-Poisson
system, is obtained when the electrons are forced by a strong constant ex-
ternal magnetic field and has been investigated by Grenier [Gr3], Golse and
Saint-Raymond [GSR]. As for the quasi-neutral limit, we justify the gy-
rokinetic limit by using the concepts of dissipative solutions and modulated
total energy.

1 Formal analysis
1.1 The Vlasov-Poisson system

After suitable normalizations, the Vlasov-Poisson system reads (see [BR] for
example) :

Of+ENVf =V, DV f =0, (1)
[ =1~ a0 (2)
Rd
where (z,€) € R* is the position/velocity variable, with d = 1,2 or 3,
f(t,x,&) > 0 the electronic density, ®(¢,z) € IR the electric potential and

¢ > 0 the coupling constant between the Vlasov equation (1) and the Poisson
equation (2). To complete this system, initial conditions

f(O,x,f):fO(x,f)ZO (3)
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and Z? periodicity in x are prescribed. Up to a change of sign, we call
charge and current the two first moments

plta) = [ flta.de), (o) = [ €f(a). 4)
Electrons are called cold electrons when the temperature, proportional to
J
[ 1€ 21 s, ae), 5)

vanishes.
The conservation of total energy reads

1 €
/§|5|2f(t7d907d5)—I—/§|V(I>(t,x)|2dx (6)

(where integrals in = are performed on the unit cube [0,1]%), and the
conservation laws for charge and current are :

0, [ 1€+ V.. [ €rag) =0 (7)

(or, equivalently because of (2),
Vo [ €01d) = corne), (8)
0, [ €116+ V. s [ ¢r(dg) + Vo (9)

=V (VO VD) — %v<|v<1>|2).

By computing the divergence of the last equations and using the Poisson
equation,

~(On + )AG-V2: [€aer(d) = (10)
= V2 (VO V) + %A(|V<I>|2)

is obtained for the electric potential ®.

The mathematical analysis of the Vlasov-Poisson system is now well
known, in particular after the recent contributions of Batt and Rein [BR],
Lions and Perthame [LP], Pfaffelmoser [Pf], etc... Global existence and
uniqueness of smooth solutions have been proved for smooth initial data
fo(z, &), sufficiently decaying at infinity in £&. Then, all the formal compu-
tations we have performed are fully justified.
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1.2 The quasi-neutral regime

The asymptotic analysis € — 0 is difficult and only partial results have been
obtained, in particular by Grenier in [Grl], [Gr2], [Gr3] (see also [Br]). The
oscillatory behaviour of the linear part of equation (10) is one of the main
difficulties.

Let us start by a purely formal analysis of the limit ¢ — 0. The Poisson
equation (2) becomes

[ sag =1 (1)

and we get from equations (8), (9)

V.. [ €rdg) =0 (12)

o, [ €1ds)+ V. i [€¢r(dg) + Vo =o. (13)

For the potential, we find

a0 =2 [eoer(d). (14)

For perfecty cold electrons, the probablity measure (in &) f(¢,z,§) is a
delta function, which exactly means

f(tvxvg):(s(g_J(tvx))v (15)

since J is the current and the charge p is identically equal to 1. In this
particular case, we obtain

V.J=0 (16)

T +V:(JDJ)+ Ve =0, (17)

which is nothing but the classical Euler equations for an incompressible
fluid (with velocity J and pressure @), for which we refer to [AK], [Ch], [Li],
[MP]...

The case of cold electrons is precisely the one for which we get a rigorous
asymptotic result in the present paper.
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2 The convergence result

Theorem 2.1 Let T > 0 and Jo(z) be a given divergence-free, Z7 periodic
in x, square integrable vector field. Assume the initial data f§(z,€) > 0 to
be smooth, Z' periodic in x, nicely decaying as & — oo, with total mass 1.
In addition, we assume

[ (e ydg = 10 ), e, (18)
in the strong sense of the space H=(R?/Z) and
[ 16 = wl@) (o, dwdg = [ 1o - volo) P, (19)

for all square integrable, divergence-free, Z* periodic, vector field vy.

Then, up to the extraction of a sequence ¢, — 0, the divergence-free com-
ponent of the current J¢ converges in C°([0,T], D'(R?/ Z%)) to a dissipative
solution J € C°([0,T), LA(R?/ Z?) — w) of the Euler equations, in the sense
of Lions [Li], with initial condition Jo. In particular, if Jy is smooth and
d=2 (ord=3 and T small), the entire family (without extraction of any
subsequence) converges to the unique smooth solution of the Euler equations
with Jy as initial condition.

Remark 1

Following Lions [Li], we say that J is a dissipative solution with initial
condition Jy if, for all smooth vector divergence-free vector fields v on [0, T'] X
R?/Z?, almost every t € [0,T],

J102) et ) < [ 19562~ o(0,2) Pz esp [ 2llatei@)Iae (20)

42 [ expl [ 2t @)1 [ A(0)(s,0) 0 T) s, )i,

where d(v) is the symmetric part of Dv = ((Dv);;) = (0;v;)
1
di;(v) = 5(5’in]‘ + 0z, v;), (21)

5
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||d(v(t))|| is the supremum in @ of the spectral radius of d(v)(¢, z), and A(v)
is the acceleration operator

A(v) = 0w + (v.V)v. (22)
Notice a slight change of definition with respect to [Li], since here we use
the spectral radius of the entire matrix d(v), not only its negative part.

Remark 2

The quasi-neutrality assumption (18) exactly means, because of (2),
e/ |V®(0, 2)|*dz — 0. (23)

Assumption (19) means that the electrons are cold and the initial current
converges to Jo. Indeed, we have (take vg = Jy and vy = 0)

[ 16 = Jo(@) £y (. ) drdg — 0, (24)

[ 1@ €)dnde — [ Lol da (25)
3 Proofs

The proof is a simple adaptation of the way that Lions follows in [Li] to
show the convergence of Leray solutions of the Navier-Stokes equations to
the so-called dissipative solutions of the Euler equations. To do that, the
total energy of the system is modulated by a test-function.

3.1 Control of the modulated total energy

Let us compute the time derivative of the total energy of the Vlasov-Poisson
system, modulated by a test function (¢, ) — v(t, z), Z* periodic, divergence-
free in =z,

(0 = [ 16— ot ) P e, Qdeds + [ SIVO5(1 0 e (26)

Let us temporarily drop the index €. Because of the total energy conserva-
tion, we have, for the charge p and the current .J,

d d (1 9

(1) = %/§|v(t,x)| p(t,2)de — /@(J(t,x).v(t,x))dx. 27)

6
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Elementary calculations lead to
SH) = [ )2 (€ = v(t,2) © (€ = o(t,2)) 1w, O deds (29
—|—e/d(v)(t, ©): VO, 2) © V(L 2)de

+ [ AW G-l 2)o(t,2) = T(t,0)d
where d(v) is the symmetrized gradient of v defined by (21) and A(v) is the

acceleration operator (22). Thus, we get, after rising index e,

SH(0) < A0 + [ A@) 7o - Tz, (20)

where H{ is defined by (26) and ||d(v(¢))|| is the supremum in 2 of the
spectral radius of d(v)(¢, ). We deduce, after integrating (29) in ¢,

HE(0) < ) expl [ 2do(@)) )6 (30

+ [ el [ 2@ [ Aw)s,2) 50 - ) s, )i

In particular, in the case v = 0, we recover the total energy bound
1 €
10 = [ SRS, drde + [ ST 0)Pde < H0). (1)

Remark

Here we use the spectral radius of the entire matrix d(v) and not only its
negative part (as in Lions’ definition for dissipative solutions of the Euler
equations). Indeed, in the right-hand side of (28), the first and the second
terms involve d(v) with opposite signs !

3.2 A priori bounds

The assumptions on the initial conditions and equations (18), (7), imply
that

[ £t 2 dads = [ pi(arda = 1, (32)

7
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/|€|2f5(ac,€)dwd€—|—e/|V¢>E(O,x)|2dac —>/|J0(ac)|2dac. (33)

JFrom (31), we deduce that
J1el 4w dwd + ¢ [ V0t < . (31)
Thus J¢ is bounded in L ([0, T], L'(IRY/Z%)) since

([ 1t olde < [ 1650w, €)deda [ 5200, )dds < C.

Up to the extraction of a sequence (¢,), we can assume that J¢ has a
vague limit .J, in the sens of (Radon) measures on [0,7] x R?/Z?. Sim-
ilarly, from (32), (7) and (34), we get that p°(t,2) > 0 converges to 1 in
CO([0, 7], D'(RY/Z?)) and therefore in the vague sense of measures. Let us
now consider the convex functional of (Radon) measures

K(o,m) = S%p/ —%|b(t, )20 (dtdz) + b(t, 2).m(dtdz),

where b spans the space of all continuous functions from [0, 7] x R*/Z? to
R? and @, m respectively denote nonnegative and vector-valued measures
on [0,7] x RY/Z*. When o(t,2) = 1 (the Lebesgue measure), we simply
obtain

2K (0, m) :/|m(t,x)|2dtdac,

if m is a square integrable function and 400 otherwise. Functional K is Isc
with respect to the vague convergence of measures. Since, for each nonneg-
ative function z € C°([0,77),

: | Je(t, @)
2K (zp°, zJ° :/7
(2p", 2J%) Pt

7$)

z(t)dtdz

T
2 re
< [ Il 9=ddzde < ¢ [ sy,
we deduce that

T
2K (2,2)) < C / =(0)dt,
0

which exactly means that J belongs to L°°([0, T], L3(R¢/Z%)). ;From (8),
we get that J is divergence-free in 2 and, from (9), that d;J is bounded in
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L=2([0, T], D'(RY/Z%)), since J is divergence-free (which allows us to ignore
V&* in (9), although this term could be of size O(e~'/2)). Tt follows that
the vague limit J(t, z) of J°(¢, ) is a divergence-free vector field belonging
to C°([0, T), L*(IR*/Z?) — w). For the same reasons, the divergence-free (or
solenoidal) part of J, converges toward J, not only in the vague sense of
measures, but also in CO([0, T, D'(R¢/Z%)).

3.3 Convergence

We can rewrite (29) in weak form
/HE £)dt — =(0 /2||d WIHS(D=(0)dt — (35)
+ / A(0) (p70 — J) (1, ) =(1) dtde,
for all test function z > 0 in D’([0,T]), where HS(t) is defined by (26). Let

us introduce )
“(t — vt “(t
)= [ttt .

(t,2)

= sup [ [ b (1, 2) + Do) (I = vp) (1, 2) ]

b

where b spans the space of all continuous functions from IRd/Zd to RY,
which is, for each fixed ¢, a convex fuction of J(¢,.) and p°(¢,.). (It is
a just a modulated version of functional K, with a test function v.) By
Cauchy-Schwarz inequality, we have

W) < [ 56 = vl ol r e deds < [ i),

The a priori bound previously obtained show that, for fixed v, H5(t) and
h(t) are bounded functions in L*([0,77]) and, up to the extraction of a
sequence (€,), respectively converge, in the weak-* sense, to some limits
H,(t) and h,(t), with H, > h,. Since p* — 1 and J* — J in the vague sense
of measures, by convexity of the functional defined by (36), we get

/|J(t, v) — o(t,2)|de < 2, (1). (37)
The assumptions on the initial conditions mean

210) = [ 16 = 0(0.2) (e, ) dad + ¢ [ [T0(0,2) o — 21y, (35)

9
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where we set

Ho = %/Uo(x) — (0, 2)|2da. (39)

Then, we can pass to the limit in (35) to get
—/Hv(t)z’(t)dt — 2(0)Ho, < /2||d(v(t))||HU(t)z(t)dt (40)

+ / A(0) (v = J)(t, 2)=(t)dtd.

By integrating in ¢, we get

HL(0) < Hogexpl [ 2lto()]) e ()

+/Ot exp(/:2||d(v(0))||d0)(/A(v)(s,x).(v— J) (s, 2))dsdz.
Thus .
(1) < Hoexp( [ 2/ld(o(6)])0 (42)

+ [ expt [ 2@ a0 [ AW 2). 00— ) (5,0

and, therefore, (20) holds true, which concludes the proof.

4 An alternative proof

Let us sketch an alternative proof, which can be seen as a natural extension
of the analysis made in [BG] (stationary case) and [Gr2] (general case) to
study the defect measures of the Vlasov-Poisson system in the quasi-neutral
regime.

After adaptating the proof (which requires an a priori L* bound for
f°, which is not acceptable in the framework of the present paper), we
can show 1) the existence of f(¢,z,£), a nonnegative measure f in (z,§) €
R?/Z? x R, measurable in ¢, as the vague limit of f¢, with enough tight-
ness in £ to allow the zero and first order moments in £ (namely the charge
and the current) to pass to the limit; 2) the existence of v (¢, z,n) and
vi(t,z,n), two defect measures in (z,n) € Rd/Zd x §%1 measurable in
t, that correspond respectively to the defect of kinetic and potential en-
ergies; 3) the existence of two defect electric fields I} (¢, 2) and E_(t, )
€ L>=([0,T), L*(R?/Z%)), taking into account the temporal oscillations of
the electric field generated by (10); 4) the convergence of the solenoidal part

10
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of J¢ toward J = [£f(d€) in C°([0,T], D'(R?/#%)). This is enough to

enforce 1) the conservation in time of the total energy with defects
21(1) = [ 1Pt de,d§)+ [ (v +vg) (0 do ) (13)

+ OBt )+ B (t,2) ) da,

2) the following properties for the current J(¢,z) = [£f(¢, z, d§) :

V.J =0, (44)
oJ+V:Q=0, (45)

where
Q= [caerae+ [nenive—ve)an (46)

-FioFE - F_®F_.
(Note the change of sign between vy 4+ vg and v — vy when we switch from
the energy conservation to the current conservation.) ;jFrom these relations,
we deduce that the weak-* L limit of the modulated total energy H;(t) is
given by
211, (1) = / € — ot, 2)2f (¢, d, dE) + /(VK bup)(t de,dy)  (47)
+ JUEL o) + | E- () )da.

Thus, we directly get
SH(0) =~ [d@)(62) < (€~ o(t,2)) © (€~ o(t,2)) (b, de, ) (18)
= [d)(t.2) 9 (v = v)(t, do, di)
+ / d(o)(t,2): (Ey © By + E- © E_)(t, 2)dx
—I—/A(v)(t,x).(v(t,x) —J(t,2))da

< 2[d(v(t))[| Hu(?) +/A(v)(t7$)-(v(t7$) —J(t,2))de, (49)

and we conclude as in the first proof.

11
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5 Comparison of dissipative and mv solutions to the Euler
equations

Our analysis makes a link between Lions’ concept of dissipative solutions [Li]
and Diperna-Majda’s concept of measure-valued solutions (“muv solutions)
[DM], both introduced to describe the vanishing viscosity limit of the Navier-
Stokes equations [Li]. If we get back to [DM], we obtain, as before, two limits
£, J = [£&f(d€), and a kinetic defect measure vi (the only relevent defect
measure when approaching the Fuler equations from the Navier-Stokes side
and not from the Vlasov-Poisson side). We get for J (44) and (45) with,

Q= [¢oerde)+ [ e mwitdn. (50)

In addition, the total kinetic energy, including de fects, namely :

:/|§|2f(t,dyc,d€)—|—/V]((t7d967d77) (51)

is decaying in time. Thus, after the same kind of manipulations we already
used, we see that J is a dissipative solution of the Euler equations. Thus,
the mv solutions are not as different from the dissipative solutions as they
look. Anyway, the concept of dissipative solutions clarify the relationship
between muv solutions and classical solutions, which was not discussed in

[DM].
6 The gyrokinetic limit

There is a second asymptotic regime of the Vlasov-Poisson system leading
to the Euler equations, the so-called gyrokinetic limit. We consider, as in
[Gr3] (see also the included references) or in [GSR] (with a different scaling),
the effect of a large external magnetic field. If this magnetic field is parallel
to the third coordinate z3, we get the following two-dimensional (in both z
and &) Vlasov-Poisson system

O HET LS+ (VB ).V f =0, (52)

pf=1—Ad", /,OE(t7 z)de =1, (53)

where € R?/Z?, ¢ € R?, and ~¢ = (=&, &) is the additional term due to
the external magnetic field. We assume the total mass of p® to be equal to
one at time 0 to enforce global neutrality. The total energy is still conserved

and, here, defined by

12
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1 1
<[ Slelritdn.ag + [ 5V o) P (54)
(notice that the magnetic field is not involved). In addition, we get
Oip" +V.J =0, (55)
0+ Vo s [ €oer ) (56)

1
(—p VO 47 J).

€

By combining (56) and (55), we also get

O(pt— e V.J)+7 V. (pVIY) (57)

= VYL [€oerg).

Formally, as € goes to zero, we expect for the limits p, J and &, the
self-consistent system :

dip+V.J =0, (58)
oV =0, p=1- AD, (59)

which is nothing but the Euler equations written in the so-called vorticity
formulation, with p — 1 standing for the vorticity and & for the stream-
function. The limit ¢ — 0 has been successfully investigated in [Gr3] for
monokinetic data and small time, as well as in [GSR] for a different scaling
and global weak solutions of the Euler equation in Delort’s sense (see [De]).

We can perform the same kind of analysis as for the quasi-neutral limit,
and show :

Theorem 6.1 Let T > 0 and Jo(z) = —~ V&g be a given divergence-free,
Z? periodic in x, square integrable vector field. Assume the initial data
f&(x,€) > 0 to be smooth, Z* periodic in x, nicely decaying as & — oo, with
total mass 1. In addition, we assume

[ 16- st dedo — 0, (60)
/|v<1>€(o, )= Jo(a)|2dz — 0. (61)

13
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Then, up to the extraction of a sequence ¢, — 0, ——V®° converges in
C°([0,T], L*(R*/ Z*) — w) to a dissipative solution J of the Euler equations
with initial condition Jo. In particular, if Jo is smooth, the entire family
converges to the unique smooth solution of the Fuler equations with Jy as
initial condition.

To prove this result, we use the same technique as for the quasi-neutral
limit by introducing a modulated total energy, defined in the following way.
Given a smooth divergence-free vector field v(t, z) = =~V (¢, z), we set

10 = [ S1e = ot ) P, Qdede + [ SV )0, ) de. (62)

A straightforward but lengthy calculation (using (56) in a crucial way, see
the details in the appendix), leads to

SH0) =~ [A)(62) (€~ olt2) © (€~ vlt,2) [ (1,2, dede. (63

where d(v), A(v) are still defined by (21), (22).
We also get the following bounds : V®* is bounded in

L([0,T], L*(R?*/7Z7)),
p° and €'/2J¢ are bounded in
L>([0, 77, L'(R?/Z?))

(because of the conservation of charge and energy). Next, pV®* is bounded

mn

L*([0,T7], D'(IR? /Z?)).

Indeed, for all smooth vector field g(z), because of (2),
/g(x).pﬁ(t,x)vq)e(t,x)dx: /g.V@E

14
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1 € € €

+ [ GIVOPY.g+ (V8-V)g. V) do < Cllgll g )
Then, because of (57), p¢ — e~ V.J¢ is compact in

C°([0,T], D'(R?/Z?)).
Since €~ V.J¢ = 0(¢'/?) in L>([0,T], D'(R?/Z*)), we deduce that p°, and
therefore V&<, are also compact in C°([0,T], D'(R*/#%?*)). Thus, we con-
clude that, up to the extraction of a sequence ¢, — 0, H{ and V®* converge
to some limits H, and V®, respectively in L>([0,7]) weak-* and

CO([0, 7], LA(R?/Z*) — w).

Then, we can pass to the limit in (62) and (63) to get

[ 19 (@ = o)t.0)de < ,(0) (64)

—/Hv(t)z’(t)dt — 2(0)Ho, < /2||d(v(t))||HU(t)z(t)dt (65)

—I—/A(v).(v V) (1, 2)2(1)dtde,
for all smooth nonnegative z(t) compactly supported in 0 < ¢ < T, where
Ho, = [ V(@ = 0(0.))(x)da (66)

is, by assumption, the limit of HS(0). By integrating in ¢, we get

Ho(0) < Hoospl [ 2lld(e(@)) )8 (67

¢ ¢
+ [Cexp( [ 20lde@)IIdB) ([ A)(s,0)- (047 T@)(s.2))dsde,
0 5
and, finally, by using (64), we conclude that —~ V& is a dissipative solution

of the Euler equations with initial condition Jo = —~V®q, which concludes
the proof.

15
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7 Appendix

In this appendix, we prove the crucial identity (63). Because of the conser-
vation of energy, we get from definition (62) :

d
%Hv:Il+12+13‘|‘]4+15+16+177

where index ¢ has been dropped and

2L = 6/|v|28t,0, 21, = 6/,08,5|v|27
15 = —e/v.@tJ, 1, = —e/J.@tv,

2[5 :/8t|?]|27 16: —/V@@tVQb, 17: —/v¢8tv¢

We have
t= [oa00 == [apv
:/V.J¢:—/J.V¢
13:e/v.(v:/f@ff)+/pv.v(1>—/v._J
:—e/d(v):/E@Ef—/A(I)v.V(P—I—/J.VQb
:—e/d(v):/f@ff—l—/d(v):V@@V(I)—h.
Thus
LB+ =Q1+ Q2+ Q3+ Qs+ Qs+ Qs+ Q7
where

Q1:—6/d(v):/(E—v)@(f—v)f—l—/d(v):V(<I>—¢)®V(<I>_¢)7
QzZ—G/DviJQQU, ng—e/Dv:v®J

16
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Q4:/DU:V¢®VQ>, Q5:/DU:V(I>®V¢

Q6:e/pDv:v®v, Q7:—/DU:V¢®V¢.
Then,
Qs = —e/@viiji

1 1
= §€/V.J|U|2 = —56/8tp|v|2 =-1I.

Next, we observe that

12—|—I4—|—Q2—|—Q6:6/A(U).(U—J)

and
Is+Is+Q4+ Qs+ Q7= /A(U)-(U—I-_ Vo) + R,
where
R =Ry + Ry + Rs + Ry,
Ry = /Dv (—vev) = —/ijajvi =0,
RQZ/DU:V(¢—¢)®V¢,
Rgz/Dv:(V¢®V@—_V@®v).
Since v = -~V and (7)? = —1, , we get

R32/(V®v):(—v®_v¢+vq)®_v)

:/(V®_v):(U®V¢—V¢®v):/(V®V¢):(U®V¢—V(I>®v)

:/(V@V)Qb:(@@V@—V@@v):O.

Similarly, after setting 8 = ® — 1),

Rgz/(V@U):V¢®V0
:/(-V@@—w):v¢®v0:/(V®w):W®—w

17



FROM VLASOV-POISSON TO EULER

— /(v Q) Vi e~ Vo= /V(%|V¢|2)._V0 0.

Thus, R = 0 and we finally get

%HU o —|—/A(v).[v +7 VO + €(pv - J)),

which is the desired result.
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