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CONVERGENCE OF THE VLASOV-POISSONSYSTEM TO THE INCOMPRESSIBLE EULEREQUATIONSYann Brenier�R�esum�eOn �etudie la convergence du syst�eme de Vlasov-Poisson vers les �equationsd'Euler des uides incompressibles dans deux r�egimes asymptotiques : lalimite quasi-neutre et la limite gyrocin�etique.AbstractThe convergence of the Vlasov-Poisson system to the incompressible Eulerequations is investigated in two asymptotic regimes: the quasi-neutral limitand the gyrokinetic limit.A paraitre dans Comm. PDEs
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FROM VLASOV-POISSON TO EULERWe consider the displacement of an electronic cloud generated by thelocal di�erence of charge with a uniform neutralizing background of non-moving ions. The equations are given by the Vlasov-Poisson system, witha coupling constant � = ( �2� )2 where � is the (constant) oscillation periodof the electrons. In the so-called quasi-neutral regime, namely as � ! 0,the current is expected to converge to a solution of the incompressible Eu-ler equations, at least in the case of a vanishing initial temperature. Thisresult is proved by adapting an argument used by P.-L. Lions [Li] to provethe convergence of the Leray solutions of the 3d Navier-Stokes equation tothe so-called dissipative solutions of the Euler equations. For this purpose,the total energy of the system is modulated by a test-function. An alterna-tive proof is given, based on the concept of measure-valued (mv) solutionsintroduced by DiPerna and Majda [DM] and already used by Brenier andGrenier [BG], [Gr2] for the asymptotic analysis of the Vlasov-Poisson sys-tem in the quasi-neutral regime. Through this analysis, a link is establishedbetween Lions' dissipative solutions and Diperna-Majda's mv solutions ofthe Euler equations. A second interesting asymptotic regime, still leadingto the Euler equations, known as the gyrokinetic limit of the Vlasov-Poissonsystem, is obtained when the electrons are forced by a strong constant ex-ternal magnetic �eld and has been investigated by Grenier [Gr3], Golse andSaint-Raymond [GSR]. As for the quasi-neutral limit, we justify the gy-rokinetic limit by using the concepts of dissipative solutions and modulatedtotal energy.1 Formal analysis1.1 The Vlasov-Poisson systemAfter suitable normalizations, the Vlasov-Poisson system reads (see [BR] forexample) : @tf + �:rxf �rx�:r�f = 0; (1)ZIRd f(d�) = 1� ��� (2)where (x; �) 2 IR2d is the position/velocity variable, with d = 1; 2 or 3,f(t; x; �) � 0 the electronic density, �(t; x) 2 IR the electric potential and� > 0 the coupling constant between the Vlasov equation (1) and the Poissonequation (2). To complete this system, initial conditionsf(0; x; �) = f0(x; �) � 0 (3)2



FROM VLASOV-POISSON TO EULERand ZZd periodicity in x are prescribed. Up to a change of sign, we callcharge and current the two �rst moments�(t; x) = Z f(t; x; d�); J(t; x) = Z �f(d�): (4)Electrons are called cold electrons when the temperature, proportional toZ j� � J� j2f(t; x; d�); (5)vanishes.The conservation of total energy readsZ 12 j�j2f(t; dx; d�) + Z �2 jr�(t; x)j2dx (6)(where integrals in x are performed on the unit cube [0; 1]d), and theconservation laws for charge and current are :@t Z f(d�) +rx: Z �f(d�) = 0 (7)(or, equivalently because of (2),rx: Z �f(d�) = �@t��); (8)@t Z �f(d�) +rx : Z � 
 �f(d�) +r� (9)= �r : (r�
r�)� �2r(jr�j2):By computing the divergence of the last equations and using the Poissonequation, �(�@tt + 1)��� r2x : Z � 
 �f(d�) = (10)= ��r2 : (r�
r�) + �2�(jr�j2)is obtained for the electric potential �.The mathematical analysis of the Vlasov-Poisson system is now wellknown, in particular after the recent contributions of Batt and Rein [BR],Lions and Perthame [LP], Pfa�elmoser [Pf], etc... Global existence anduniqueness of smooth solutions have been proved for smooth initial dataf0(x; �), su�ciently decaying at in�nity in �. Then, all the formal compu-tations we have performed are fully justi�ed.3



FROM VLASOV-POISSON TO EULER1.2 The quasi-neutral regimeThe asymptotic analysis �! 0 is di�cult and only partial results have beenobtained, in particular by Grenier in [Gr1], [Gr2], [Gr3] (see also [Br]). Theoscillatory behaviour of the linear part of equation (10) is one of the maindi�culties.Let us start by a purely formal analysis of the limit �! 0. The Poissonequation (2) becomes Z f(d�) = 1 (11)and we get from equations (8), (9)rx: Z �f(d�) = 0 (12)@t Z �f(d�) +rx : Z � 
 �f(d�) +r� = 0: (13)For the potential, we �nd��� = r2x : Z � 
 �f(d�): (14)For perfecty cold electrons, the probablity measure (in �) f(t; x; �) is adelta function, which exactly meansf(t; x; �) = �(� � J(t; x)); (15)since J is the current and the charge � is identically equal to 1. In thisparticular case, we obtain r:J = 0 (16)@tJ +r : (J 
 J) +r� = 0; (17)which is nothing but the classical Euler equations for an incompressibleuid (with velocity J and pressure �), for which we refer to [AK], [Ch], [Li],[MP]...The case of cold electrons is precisely the one for which we get a rigorousasymptotic result in the present paper.4



FROM VLASOV-POISSON TO EULER2 The convergence resultTheorem 2.1 Let T > 0 and J0(x) be a given divergence-free, ZZd periodicin x, square integrable vector �eld. Assume the initial data f �0(x; �) � 0 tobe smooth, ZZd periodic in x, nicely decaying as � ! 1, with total mass 1.In addition, we assumeZ f �0(x; �)d� = 1+ o(�1=2); �! 0; (18)in the strong sense of the space H�1(IRd=ZZd) andZ j� � v0(x)j2f �0(x; �)dxd�! Z jJ0 � v0(x)j2dx; (19)for all square integrable, divergence-free, ZZd periodic, vector �eld v0.Then, up to the extraction of a sequence �n ! 0, the divergence-free com-ponent of the current J� converges in C0([0; T ]; D0(IRd=ZZd)) to a dissipativesolution J 2 C0([0; T ]; L2(IRd=ZZd)�w) of the Euler equations, in the senseof Lions [Li], with initial condition J0. In particular, if J0 is smooth andd = 2 (or d = 3 and T small), the entire family (without extraction of anysubsequence) converges to the unique smooth solution of the Euler equationswith J0 as initial condition.Remark 1Following Lions [Li], we say that J is a dissipative solution with initialcondition J0 if, for all smooth vector divergence-free vector �elds v on [0; T ]�IRd=ZZd, almost every t 2 [0; T ],Z jJ(t; x)� v(t; x)j2dx � Z jJ0(x)� v(0; x)j2dx exp(Z t0 2jjd(v(�))jj)d� (20)+2 Z t0 exp(Z ts 2jjd(v(�))jjd�)(Z A(v)(s; x):(v� J)(s; x))dsdx;where d(v) is the symmetric part of Dv = ((Dv)ij) = (@jvi)dij(v) = 12(@xivj + @xjvi); (21)5



FROM VLASOV-POISSON TO EULERjjd(v(t))jj is the supremum in x of the spectral radius of d(v)(t; x), and A(v)is the acceleration operatorA(v) = @tv + (v:r)v: (22)Notice a slight change of de�nition with respect to [Li], since here we usethe spectral radius of the entire matrix d(v), not only its negative part.Remark 2The quasi-neutrality assumption (18) exactly means, because of (2),� Z jr��(0; x)j2dx! 0: (23)Assumption (19) means that the electrons are cold and the initial currentconverges to J0. Indeed, we have (take v0 = J0 and v0 = 0)Z j� � J0(x)j2f �0(x; �)dxd�! 0; (24)Z j�j2f �0(x; �)dxd�! Z jJ0(x)j2dx (25)3 ProofsThe proof is a simple adaptation of the way that Lions follows in [Li] toshow the convergence of Leray solutions of the Navier-Stokes equations tothe so-called dissipative solutions of the Euler equations. To do that, thetotal energy of the system is modulated by a test-function.3.1 Control of the modulated total energyLet us compute the time derivative of the total energy of the Vlasov-Poissonsystem, modulated by a test function (t; x)! v(t; x);ZZd periodic, divergence-free in x,H�v(t) = Z 12 j� � v(t; x)j2f �(t; x; �)dxd�+ Z �2 jr��(t; x)j2dx: (26)Let us temporarily drop the index �. Because of the total energy conserva-tion, we have, for the charge � and the current J ,ddtHv(t) = ddt Z 12 jv(t; x)j2�(t; x)dx� Z @t(J(t; x):v(t; x))dx: (27)6



FROM VLASOV-POISSON TO EULERElementary calculations lead toddtHv(t) = � Z d(v)(t; x) : (� � v(t; x))
 (� � v(t; x))f(t; x; �)dxd� (28)+� Z d(v)(t; x) : r�(t; x)
 r�(t; x)dx+ Z A(v)(t; x):(�(t; x)v(t; x)� J(t; x))dxwhere d(v) is the symmetrized gradient of v de�ned by (21) and A(v) is theacceleration operator (22). Thus, we get, after rising index �,ddtH�v(t) � 2jjd(v(t))jjH�v(t) + Z A(v)(��v � J�)dx; (29)where H�v is de�ned by (26) and jjd(v(t))jj is the supremum in x of thespectral radius of d(v)(t; x). We deduce, after integrating (29) in t,H�v(t) � H�v(0) exp(Z t0 2jjd(v(�))jj)d� (30)+ Z t0 exp(Z ts 2jjd(v(�))jjd�)(Z A(v)(s; x):(��v � J�)(s; x))dsdx:In particular, in the case v = 0, we recover the total energy boundH�0(t) = Z 12 j�j2f �(t; x; �)dxd�+ Z �2 jr��(t; x)j2dx � H�0(0): (31)RemarkHere we use the spectral radius of the entire matrix d(v) and not only itsnegative part (as in Lions' de�nition for dissipative solutions of the Eulerequations). Indeed, in the right-hand side of (28), the �rst and the secondterms involve d(v) with opposite signs !3.2 A priori boundsThe assumptions on the initial conditions and equations (18), (7), implythat Z f �(t; x; �)dxd� = Z ��0(x)dx = 1; (32)7



FROM VLASOV-POISSON TO EULERZ j�j2f �0(x; �)dxd�+ � Z jr��(0; x)j2dx! Z jJ0(x)j2dx: (33)>From (31), we deduce thatZ j�j2f �(t; x; �)dxd�+ � Z jr��(t; x)j2dx � C: (34)Thus J� is bounded in L1([0; T ]; L1(IRd=ZZd)) since(Z jJ�(t; x)jdx)2 � Z j�j2f �(t; x; �)d�dx Z f �(t; x; �)d�dx� C:Up to the extraction of a sequence (�n), we can assume that J� has avague limit J , in the sens of (Radon) measures on [0; T ] � IRd=ZZd. Sim-ilarly, from (32), (7) and (34), we get that ��(t; x) � 0 converges to 1 inC0([0; T ]; D0(IRd=ZZd)) and therefore in the vague sense of measures. Let usnow consider the convex functional of (Radon) measuresK(�;m) = supb Z �12 jb(t; x)j2�(dtdx) + b(t; x):m(dtdx);where b spans the space of all continuous functions from [0; T ]� IRd=ZZd toIRd and �, m respectively denote nonnegative and vector-valued measureson [0; T ] � IRd=ZZd. When �(t; x) = 1 (the Lebesgue measure), we simplyobtain 2K(�;m) = Z jm(t; x)j2dtdx;if m is a square integrable function and +1 otherwise. Functional K is lscwith respect to the vague convergence of measures. Since, for each nonneg-ative function z 2 C0([0; T ]),2K(z��; zJ�) = Z jJ�(t; x)j2��(t; x) z(t)dtdx� Z j�j2f �(t; x; �)z(t)dtdxd� � C Z T0 z(t)dt;we deduce that 2K(z; zJ) � C Z T0 z(t)dt;which exactly means that J belongs to L1([0; T ]; L2(IRd=ZZd)). >From (8),we get that J is divergence-free in x and, from (9), that @tJ is bounded in8



FROM VLASOV-POISSON TO EULERL1([0; T ]; D0(IRd=ZZd)), since J is divergence-free (which allows us to ignorer�� in (9), although this term could be of size O(��1=2)). It follows thatthe vague limit J(t; x) of J�(t; x) is a divergence-free vector �eld belongingto C0([0; T ]; L2(IRd=ZZd)�w). For the same reasons, the divergence-free (orsolenoidal) part of J� converges toward J , not only in the vague sense ofmeasures, but also in C0([0; T ]; D0(IRd=ZZd)).3.3 ConvergenceWe can rewrite (29) in weak form� Z H�v(t)z0(t)dt� z(0)H�v(0) � Z 2jjd(v(t))jjH�v(t)z(t)dt (35)+ Z A(v)(��v � J�)(t; x)z(t)dtdx;for all test function z � 0 in D0([0; T [), where H�v(t) is de�ned by (26). Letus introduce h�v(t) = Z jJ�(t; x)� v(t; x)��(t; x)j22��(t; x) dx (36)= supb Z [�12 jb(x)j2��(t; x) + b(x):(J� � v��)(t; x)]dx;where b spans the space of all continuous functions from IRd=ZZd to IRd,which is, for each �xed t, a convex fuction of J�(t; :) and ��(t; :). (It isa just a modulated version of functional K, with a test function v.) ByCauchy-Schwarz inequality, we haveh�v(t) � Z 12 j� � v(t; x)j2f �(t; x; �)dxd� � Z H�v(t):The a priori bound previously obtained show that, for �xed v, H�v(t) andh�v(t) are bounded functions in L1([0; T ]) and, up to the extraction of asequence (�n), respectively converge, in the weak-* sense, to some limitsHv(t) and hv(t), with Hv � hv . Since �� ! 1 and J� ! J in the vague senseof measures, by convexity of the functional de�ned by (36), we getZ jJ(t; x)� v(t; x)j2dx � 2hv(t): (37)The assumptions on the initial conditions mean2H�v(0) = Z j� � v(0; x)j2f �0(x; �)dxd�+ � Z jr��(0; x)j2dx! 2H0;v (38)9



FROM VLASOV-POISSON TO EULERwhere we set H0;v = 12 Z jJ0(x)� v(0; x)j2dx: (39)Then, we can pass to the limit in (35) to get� Z Hv(t)z0(t)dt� z(0)H0;v � Z 2jjd(v(t))jjHv(t)z(t)dt (40)+ Z A(v)(v � J)(t; x)z(t)dtdx:By integrating in t, we getHv(t) � H0;v exp(Z t0 2jjd(v(�))jj)d� (41)+ Z t0 exp(Z ts 2jjd(v(�))jjd�)(Z A(v)(s; x):(v� J)(s; x))dsdx:Thus hv(t) � H0;v exp(Z t0 2jjd(v(�))jj)d� (42)+ Z t0 exp(Z ts 2jjd(v(�))jjd�)(Z A(v)(s; x):(v� J)(s; x))dsdxand, therefore, (20) holds true, which concludes the proof.4 An alternative proofLet us sketch an alternative proof, which can be seen as a natural extensionof the analysis made in [BG] (stationary case) and [Gr2] (general case) tostudy the defect measures of the Vlasov-Poisson system in the quasi-neutralregime.After adaptating the proof (which requires an a priori L1 bound forf �, which is not acceptable in the framework of the present paper), wecan show 1) the existence of f(t; x; �), a nonnegative measure f in (x; �) 2IRd=ZZd � IRd, measurable in t, as the vague limit of f �, with enough tight-ness in � to allow the zero and �rst order moments in � (namely the chargeand the current) to pass to the limit; 2) the existence of �K(t; x; �) and�E(t; x; �), two defect measures in (x; �) 2 IRd=ZZd � Sd�1, measurable int, that correspond respectively to the defect of kinetic and potential en-ergies; 3) the existence of two defect electric �elds E+(t; x) and E�(t; x)2 L1([0; T ]; L2(IRd=ZZd)), taking into account the temporal oscillations ofthe electric �eld generated by (10); 4) the convergence of the solenoidal part10



FROM VLASOV-POISSON TO EULERof J� toward J = R �f(d�) in C0([0; T ]; D0(IRd=ZZd)). This is enough toenforce 1) the conservation in time of the total energy with defects2H(t) = Z j�j2f(t; dx; d�) + Z (�K + �E)(t; dx; d�) (43)+ Z (jE+(t; x)j2 + jE�(t; x)j2)dx;2) the following properties for the current J(t; x) = R �f(t; x; d�) :r:J = 0; (44)@tJ +r : Q = 0; (45)where Q = Z � 
 �f(d�) + Z � 
 �(�K � �E)(d�) (46)�E+ 
 E+ �E� 
E�:(Note the change of sign between �K+�E and �K��E when we switch fromthe energy conservation to the current conservation.) >From these relations,we deduce that the weak-* L1 limit of the modulated total energy H�v(t) isgiven by2Hv(t) = Z j� � v(t; x)j2f(t; dx; d�)+ Z (�K + �E)(t; dx; d�) (47)+ Z (jE+(t; x)j2 + jE�(t; x)j2)dx:Thus, we directly getddtHv(t) = � Z d(v)(t; x) : (� � v(t; x))
 (� � v(t; x))f(t; dx; d�) (48)� Z d(v)(t; x) : � 
 �(�K � �E)(t; dx; d�)+ Z d(v)(t; x) : (E+ 
E+ + E� 
E�)(t; x)dx+ Z A(v)(t; x):(v(t; x)� J(t; x))dx� 2jjd(v(t))jjHv(t) + Z A(v)(t; x):(v(t; x)� J(t; x))dx; (49)and we conclude as in the �rst proof.11



FROM VLASOV-POISSON TO EULER5 Comparison of dissipative and mv solutions to the EulerequationsOur analysis makes a link between Lions' concept of dissipative solutions [Li]and Diperna-Majda's concept of measure-valued solutions (\mv solutions)[DM], both introduced to describe the vanishing viscosity limit of the Navier-Stokes equations [Li]. If we get back to [DM], we obtain, as before, two limitsf , J = R �f(d�), and a kinetic defect measure �K (the only relevent defectmeasure when approaching the Euler equations from the Navier-Stokes sideand not from the Vlasov-Poisson side). We get for J (44) and (45) with,Q = Z � 
 �f(d�) + Z � 
 ��K(d�): (50)In addition, the total kinetic energy, including defects, namely := Z j�j2f(t; dx; d�)+ Z �K(t; dx; d�) (51)is decaying in time. Thus, after the same kind of manipulations we alreadyused, we see that J is a dissipative solution of the Euler equations. Thus,the mv solutions are not as di�erent from the dissipative solutions as theylook. Anyway, the concept of dissipative solutions clarify the relationshipbetween mv solutions and classical solutions, which was not discussed in[DM].6 The gyrokinetic limitThere is a second asymptotic regime of the Vlasov-Poisson system leadingto the Euler equations, the so-called gyrokinetic limit. We consider, as in[Gr3] (see also the included references) or in [GSR] (with a di�erent scaling),the e�ect of a large external magnetic �eld. If this magnetic �eld is parallelto the third coordinate x3, we get the following two-dimensional (in both xand �) Vlasov-Poisson system@tf � + �:rxf � + 1� (�r�� +? �):r�f � = 0; (52)�� = 1����; Z ��(t; x)dx = 1; (53)where x 2 IR2=ZZ2, � 2 IR2, and ?� = (��2; �1) is the additional term due tothe external magnetic �eld. We assume the total mass of �� to be equal toone at time 0 to enforce global neutrality. The total energy is still conservedand, here, de�ned by 12



FROM VLASOV-POISSON TO EULER� Z 12 j�j2f �(t; dx; d�) + Z 12 jr��(t; x)j2dx (54)(notice that the magnetic �eld is not involved). In addition, we get@t�� +r:J� = 0; (55)@tJ� +rx : Z � 
 �f �(d�) (56)= 1� (���r�� +? J�):By combining (56) and (55), we also get@t(�� � �?r:J�) +? r:(��r��) (57)= �?r:(rx : Z � 
 �f �(d�)):Formally, as � goes to zero, we expect for the limits �, J and �, theself-consistent system : @t�+r:J = 0; (58)��r�+? J = 0; � = 1���; (59)which is nothing but the Euler equations written in the so-called vorticityformulation, with � � 1 standing for the vorticity and � for the stream-function. The limit � ! 0 has been successfully investigated in [Gr3] formonokinetic data and small time, as well as in [GSR] for a di�erent scalingand global weak solutions of the Euler equation in Delort's sense (see [De]).We can perform the same kind of analysis as for the quasi-neutral limit,and show :Theorem 6.1 Let T > 0 and J0(x) = �?r�0 be a given divergence-free,ZZ2 periodic in x, square integrable vector �eld. Assume the initial dataf �0(x; �) � 0 to be smooth, ZZ2 periodic in x, nicely decaying as � !1, withtotal mass 1. In addition, we assume� Z j�j2f �0(x; �)d�dx! 0; (60)Z jr��(0; :)�? J0(x)j2dx! 0: (61)13



FROM VLASOV-POISSON TO EULERThen, up to the extraction of a sequence �n ! 0, �?r�� converges inC0([0; T ]; L2(IR2=ZZ2)�w) to a dissipative solution J of the Euler equationswith initial condition J0. In particular, if J0 is smooth, the entire familyconverges to the unique smooth solution of the Euler equations with J0 asinitial condition.To prove this result, we use the same technique as for the quasi-neutrallimit by introducing a modulated total energy, de�ned in the following way.Given a smooth divergence-free vector �eld v(t; x) = �?r (t; x), we setH�v(t) = Z �2 j� � v(t; x)j2f �(t; x; �)dxd�+ Z 12 jr(�� �  )(t; x)j2dx: (62)A straightforward but lengthy calculation (using (56) in a crucial way, seethe details in the appendix), leads toddtH�v(t) = �� Z d(v)(t; x) : (� � v(t; x))
 (� � v(t; x))f �(t; x; �)dxd� (63)+ Z d(v)(t; x) : r(�� �  )(t; x)
 r(�� �  )(t; x)dx+� Z A(v)(t; x):(��(t; x)v(t; x)� J�(t; x))dx+ Z A(v)(t; x):(v(t; x)+? r��(t; x))dxwhere d(v), A(v) are still de�ned by (21), (22).We also get the following bounds : r�� is bounded inL1([0; T ]; L2(IR2=ZZ2));�� and �1=2J� are bounded inL1([0; T ]; L1(IR2=ZZ2))(because of the conservation of charge and energy). Next, ��r�� is boundedin L1([0; T ]; D0(IR2=ZZ2)):Indeed, for all smooth vector �eld g(x), because of (2),Z g(x):��(t; x)r��(t; x)dx = Z g:r��14



FROM VLASOV-POISSON TO EULER+ Z (12 jr��j2r:g + (r��:r)g:r��)dx � CjjgjjC1(IR2=ZZ2):Then, because of (57), �� � �?r:J� is compact inC0([0; T ]; D0(IR2=ZZ2)):Since �?r:J� = 0(�1=2) in L1([0; T ]; D0(IR2=ZZ2)), we deduce that ��, andtherefore r��, are also compact in C0([0; T ]; D0(IR2=ZZ2)). Thus, we con-clude that, up to the extraction of a sequence �n ! 0, H�v and r�� convergeto some limits Hv and r�, respectively in L1([0; T ]) weak-* andC0([0; T ]; L2(IR2=ZZ2)� w):Then, we can pass to the limit in (62) and (63) to getZ jr(��  )(t; x)j2dx � Hv(t); (64)� Z Hv(t)z0(t)dt� z(0)H0;v � Z 2jjd(v(t))jjHv(t)z(t)dt (65)+ Z A(v):(v+? r�)(t; x)z(t)dtdx;for all smooth nonnegative z(t) compactly supported in 0 � t < T , whereH0;v = Z jr(�0 �  (0; :))(x)j2dx (66)is, by assumption, the limit of H�v(0). By integrating in t, we getHv(t) � H0;v exp(Z t0 2jjd(v(�))jj)d� (67)+ Z t0 exp(Z ts 2jjd(v(�))jjd�)(Z A(v)(s; x):(v+? r�)(s; x))dsdx;and, �nally, by using (64), we conclude that �?r� is a dissipative solutionof the Euler equations with initial condition J0 = �?r�0, which concludesthe proof. 15



FROM VLASOV-POISSON TO EULER7 AppendixIn this appendix, we prove the crucial identity (63). Because of the conser-vation of energy, we get from de�nition (62) :ddtHv = I1 + I2 + I3 + I4 + I5 + I6 + I7;where index � has been dropped and2I1 = � Z jvj2@t�; 2I2 = � Z �@tjvj2;I3 = �� Z v:@tJ; I4 = �� Z J:@tv;2I5 = Z @tjvj2; I6 = � Z r�:@tr ; I7 = � Z r :@tr�:We have I7 = Z @t�� = � Z @t� = Z r:J = � Z J:r I3 = � Z v:(r : Z � 
 �f) + Z �v:r�� Z v:?J= �� Z d(v) : Z � 
 �f � Z ��v:r�+ Z J:r = �� Z d(v) : Z � 
 �f + Z d(v) : r�
r�� I7:Thus I3 + I7 = Q1 + Q2 +Q3 +Q4 + Q5 + Q6 + Q7whereQ1 = �� Z d(v) : Z (� � v)
 (� � v)f + Z d(v) : r(��  )
 r(��  );Q2 = �� Z Dv : J 
 v; Q3 = �� Z Dv : v 
 J16



FROM VLASOV-POISSON TO EULERQ4 = Z Dv : r 
 r�; Q5 = Z Dv : r�
r Q6 = � Z �Dv : v 
 v; Q7 = � Z Dv : r 
r :Then, Q3 = �� Z @jviJjvi= 12� Z r:J jvj2 = �12� Z @t�jvj2 = �I1:Next, we observe thatI2 + I4 +Q2 + Q6 = � Z A(v):(v� J)and I5 + I6 + Q4 +Q5 +Q7 = Z A(v):(v+? r�)+ R;where R = R1 + R2 + R3 +R4;R1 = Z Dv : (�v 
 v) = � Z vivj@jvi = 0;R2 = Z Dv : r(��  )
 r ;R3 = Z Dv : (r 
 r��? r�
 v):Since v = �?r and (?)2 = �1, , we getR3 = Z (r
 v) : (�v 
? r�+r�
? v)= Z (r
? v) : (v 
r��r�
 v) = Z (r
r ) : (v 
 r��r�
 v)= Z (r
r) : (v 
 r�� r�
 v) = 0:Similarly, after setting � = ��  ,R2 = Z (r
 v) : r 
 r�= Z (�r
? r ) : r 
r� = Z (r
r ) : r 
? r�17



FROM VLASOV-POISSON TO EULER= Z (r
r) : r 
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