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Abstract:
The relations between conditional expextations and half—sided translations and half-sided mod-

ular inclusions will be investigated.

1. Introduction and results

In several applications one uses modular covariant subalgebras and the conditional
expectations € which are associated with them (see Takesaki [8]). At the same time there
often exist half—sided translations for the original algebra. In this situation one is interested
in knowing the result of the application of the conditional expectation on the half-sided
translations. In this paper we want to answer this question. One example, where this
situation appears, is the investigation of Anosov dynamical systems, see, e.g. [7]. Another
case is the investigation of tensor products, see e.g. [3].

We start with a von Neumann algebra M acting on a Hilbert space H and assume
that M has a cyclic and separating vector 2. The modular operator and the modular
conjugation of the pair (M, Q) will be denoted by (A,.J). In addition we assume, that
there exists a +half-sided translation, i.e. a one—parametric continuous unitary U(t) group
with non—negative generator such that one has U(¢)Q = Q Vt € IR and AdU(tH)M C M
for t > 0 or for t < 0. The algebras AdU(¢)M will be denoted by M(t). Moreover, we
assume that A C M is a modular covariant subalgebra of M. E denotes the projection
onto [NQ]. Since the algebra N is covariant under the modular action it follows that F

commutes with A. The restriction of V', € and A to EH will be denoted by ./V, é\, and A
respectively. The main questions are:

When does U(t) commute with E?

What can we say if U(t) does not commute with E7

We want to show the following results:
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1.1 Theorem.
Let M,N,E.E be as above and U(t) be a +half-sided translation. Then the following
statements are equivalent:

1. The group U(t) commutes with E.

2. One has AdU(H)N C N fort > 0.

o~

b

For every t > 0 E(M(t)) is a von Neumann algebra.

For one t >0 E(M(t)) is a von Neumann algebra.
There exists a von Neumann algebra P C N with [PQ] = E and AdU(¢t)P C N for
one t > 0.

A similar result holds if U(t) is a —half-sided translation.

Ot

The second result deals with the general case, namely the situation where U(#) and
E do not commute.

1.2 Theorem.

Let MU N, U(t),E, E be as above then there exists a continuous unitary group V(t) on EH
satisfying for t > 0 the relation

AdV (N = {EAAU M)}

A similar result holds if U(t) is a —half-sided translation.

For the second theorem we will present two different proofs. The second demonstration
is applicable for more general situations. In order to formulate it we need some explanation.

If M is a von Neumann algebra with cyclic and separating vector € then we call the
anti-linear operator S := JMA%tz the Tomita conjugation of (M, ). In this section we
will deal with operators of the same kind, i.e. operators S fulfilling:

(1) S is a densely defined closed anti-linear operator with domain of definition D(.5).
(i1) S? = 1 on D(S).
(1i7) Q € D(S) and SQ = Q.
We will call such operators generalized Tomita conjugations.
Since S is closed it has a polar decomposition S = JAY2. Then A is invertible and
J 1s a conjugation, 1.e.

JAT =AY J=J"=J" (1.1)

These properties follow from the condition S? = 1. (See e.g, Bratteli and Robinson [5]
Prop.2.5.11.)
With this notation we obtain:

1.3 Theorem.

Let M be a von Neumann algebra on H with cyclic and separating vector ) and let Sxq be
the Tomita conjugation of M. Let S be a generalized Tomita conjugation and assume S
18 an extension of S. Assume in addition that S 1s an extension of A‘/’{ASA/_\X for t < 0.
Then:

1. There exists a continuwous unitary group U(t) with

2
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a Ut)Q = for allt € IR.

B U(t) has a non—negative generator.
2. Between the modular group of M and U(t) exist the relations

AL U(S)A G =Ue™?™s), JmU () I = U(—1).

3. Define .
St = A‘/’{ASA/_Vltt
which 18 monotonously increasing with t and set
t—o0

Then there holds for s > 0
U(s)SecU(—s) =9

—%logs‘

Notice: There exists a variant of this theorem which is obtained by replacing every-
where t by —t.

The statement of the theorem needs some explanation. By assumption the family
A%SA/_\j{t is increasing with ¢. Hence the projections onto the graphs are an increasing
family of projections which converges strongly. Since all these projections are majorized
by the projection onto the graph of S the limit is smaller or equal to the majorant.

2. Proofs and Applications

For the proof of the theorems we need the concept of Fhalf-sided modular inclusions
introduced by Wiesbrock [9,10]. This is in some sense the opposite of the concept of +half-
sided translations. Let N be a subalgebra of M such that Q is cyclic for A" and such that

Ad Ai/’{/t./\/ C N for t+ < 0, then we say N fulfils the condition of —half-sided modular
inclusion with respect to M. If this is the case then exists a half-sided translation U(t)
with N = AdU(1)M.

Proof of Thm. 1.1. Since £(A), A € M is given by EAE we see that {2 is cyclic for

é\(./\/l(t)) Hence the implications 1. — 2.,1. — 3. — 4. and also the implication 1. — 5.
are trivially fulfilled. So it remains to show the converse implications. Since A commutes
with E we obtain by the relation AdA'U(s) = U(e™%7s) the implication 4. — 3. (see
[1]). We know by the separability of Q that the map N — N is an isomorphism of von

Neumann algebras. Let « present this isomorphism, then oz_lg(./\/l(t)) C N is a von
Neumann algebra. Let o' denote the modular automorphism, then one obtains

o (aTTE(M(1) = aTE(FP M(1)) = aTLE(M(e7F0t)).
This implies in particular oz_lé\(./\/l(tl)) C Oé_lé\(M(tz)) for t; > t9. Notice that
E(M(t)),t > 0 fulfils the condition of —half-sided modular inclusion. Hence by Wies-

o~

brock’s result [9,10] exists on EH a +half-sided translation V(t) with AdV(¢)E(M) =

3
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é\(./\/l(t)) By means of the isomorphism o we can tranport V(¢) to the whole Hilbert
space. This means there exists an endomorphism ~* such that a o v/ (V) = AdV ()N
holds. This implies in particular E(AdU(t)M) = v*(E(M)). Applying this equation to
the vacuum vector we obtain for A € M the relation EU(t)AQ = V (t)EAQ. Restricting
the elements A to N we obtain EU(t)E = V(t) for t > 0. Since U(t) and V(¢) are both
unitary the last relation can hold only if U(#) commutes with E. This shows 4. — 1. and
also 2. — 1. Next we show 5. — 1. Since P is dense in EH and since U(¢) is unitary we
obtain U(t)EH C EH. Since Alf commutes with E we get by the known relation between
Al and U(s) (see [1]) U(e™2™*¢t)EH C EH for all s € IR. Using the spectrum condition for
U(t) we obtain by analytic continuation that the last inclusion is valid for all arguments
of U. Since U(t) is unitary this implies U(s)EH = EH,Vs € IR, which is equivalent to the
commutativity. ]

Proof of Thm. 1.2. Since U(t) is a half-sided translation we obtain for every ¢t > 0
the inclusion AdAYM(t) C M(t) for s < 0. Since A" commutes with E we obtain
AdABE(M(t)) C E(M(¢)). This implies Ad Al {EM(E)Y C {E(M(1)} for all £ > 0
and s < 0. Since A is the modular group of N = g(./\/l) it follows that {é\(./\/l(t))}” fulfils

the condition of half-sided modular inclusion and hence by Wiesbrock’s result [9,10] exist

o~ o~

continuous unitary groups Vi(s) on EH with AdVi(1)V = {E(M(¢))}”. It remains to
show that these groups coincide except for a scale factor. Since A!® commutes with E
we obtain Ad Aisé\(./\/l(l)) = g(./\/l(e_zﬂs)). This relation extends to the von Neumann
algebras generated by these sets. Since we also have the relation Ad Al*V; (1) = Vi(e™2™5¢)
we obtain the relation V;(e™2™*) = V,-2x:(1). This shows the theorem. O

We will show that this theorem is also a consequence of Thm. 1.3. For details see Prop.

2.9.

The proof of Thm. 1.3 is a variation of the proof of Wiesbrock’s theorem on half—sided
modular inclusions [9,10], but some explanations and preparations are needed.

We deal with the situation that we have a generalized Tomita conjugation S and a
Tomita conjugation S which is an extension of S. This implies the relation (14+A ) ™! >
(1 + A)~!. This relation can easily be derived by looking at the graphs of S and Sx. A
consequence of this is that the operator—valued function C(t) := A/_\/ittAit has a bounded
analytic extension into the strip S(0, %) We are interested in determining the value of this
function at the upper boundary. We obtain:

2.1 Lemma.

Let S be a generalized Tomita conjugation and Sxq be the Tomita conjugation of M such
that the latter is an extension of S. Define C(t) := AA'. Then C(t) has a bounded

analytic continuation into the strip S(0, %) and at the upper boundary one has

Ot + %) = T C(t)]. (2.2)
Moreover, the following estimate holds:
IC(n)ll < 1.

4
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Proof. Since Ay < A it follows by standard arguments that C(¢) has a bounded
extension into the strip S(0, %) This extension is bounded in norm by 1. Choose ¢» € D(S5*)
and ¢ € D(Sa) then we have

(p.C(t+ 3)6) = (Abep, AT ATATHy)
= (TS, A AT TS ) = (T A AT TS ), S ).
Since S*¢ € D(S*) we find Jp A ALTS*) € D(S%,). Hence we obtain
= (0, SUTMA AT TS* ).
With S%,Jam = JamSam and the commutation of Saq with ALY we find
= (0, JMA G SMAT TS ).

Because Spq is an extension of S, we can replace Sy by S which commutes with A
Hence we obtain

= (¢, JUA T ATS TS ).
With SJS* = J we get

(0, ClE+ 5)8) = (0, TnC(D) ).

Since D(Saq) and D(S*) are both dense in H the lemma follows. m]
Next we need a generalization of Thm. A in [2].

2.2 Lemma.

Let S = JAY? be a generalized Tomita conjugation. In addition let V' be a unitary operator
with

a. VD(S) C D(9).

b. VQ = Q.
c. For ¢ € D(S) one has SVip =V S,
Then:

The operator—valued function
ATHVAY = V(1)

has a bounded analytic continuation into the strip S(0, %) which fulfils the estimate

IVt +ir)| <1. 0<7<

N | —

At the upper boundary V(z) obeys the equation

Vit + %) = JV(t)J.

S
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Proof. Since S commutes with Al? it follows that S commutes with V(). Moreover,
since VD(S) C D(S) it follows by the usual argument that A~V A has a bounded
analytic continuation into S(0, %) Choose 1 € D(S*) and ¢ € D(S). Then one has

(0, V(t 4 D)) = (A2, ATV AAT2G) = (IS, V(1) 5")
= (5"J @, V(H)TS™0) = (SV(1)TS™, J¢) = (V()T6, T¢) = (0, TV(2)T1).

This shows the lemma. O
Next we have a look at the expression A/_\/ittAit under the assumption of the theorem.

2.3 Lemma.

Assume S 15 an extension of A%SA/_\j{t for t < 0. Then for the operator—valued function
A AT = C(t) the following holds:
(1) The inclusion properties:
a. C(t)D(S) C D(S) fort>0.
B. C(t)D(S*) C D(S*) fort<O.
v. C(t+ 1)D(S*) C D(S*) fort € R.
(1) This implies:
a. For o € D(S) one has SC(t)y = C(t)Sy  provided t > 0.
(. For ¢ € D(S*) one has S*C(t)p = C(t)S*p if t <0.
~. For o € D(S*) one has S*C(t + %)c,o =C(t+ %)S*c,o for allt € R.

Proof. S is for t < 0 an extension of A%SA/_\j{t. This implies All, D(S) C D(S)
C D(Sam). Hence we obtain C(¢)D(S) C D(S) for t > 0. Next choose ¢p € D(S*) and
© € D(5) then we obtain for ¢ < 0:

(. SARSY) = (¢, SMARS)
= (¥, ASmSe) = (U, Alye) = (A ¥, ).
On the other hand we get
(1, SALSP) = (S, AYS™Y).

Since the expression is continuous in ¢ we conclude A/_Vitts*@b € D(S*) and from S*D(S*) =
D(S*) we get for t < 0 AD(5*) C D(S*). This implies (i),3. Using Lemma 2.1 we obtain

Clt + %)D(S*) = TmC(8)ID(S*) = JnC(E)D(S).

Because of D(S) C D(Sam) we obtain by the definition of C'(#) the inclusion
C(t+ 5)D(S*) C JmD(Sm) = D(S3) C D(S*). This shows (i),y.

6
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For ¢t > 0 we obtain from A/_VittD(S) CD(S) CD(Sm)

SC(t)D(S) = SAGAID(S) = SMA G AD(S) = A SMAD(S)
= AISAID(S) = ATIATSD(S) = C(t)SD(S).

Next we calculate for ¢» € D(S*) and ¢ € D(S) and t <0
(0, S*C(t)Y) = (A AP, Sp) = (A, A SATIAR ).

As A%SA/_\j{t is the generalized Tomita conjugation with domain AL D(S) C D(S) it
follows that (All, SAT)* is an extension of S*. This implies

= (Al (ARSAL) AMY) = (Alyp, STAMY) = (9, AR ATS™Y).
This shows (ii),3. Finally
S*C(t + %)D(S*) = S* ImC(t)JD(S*).
As in the proof of (i),y we have JyC(t)JD(S*) C D(S%,) C D(S*). Hence we obtain
= ST ITMA G ATTD(S*) = JuA Y SmATID(S™).
Since Saq is an extension of S we get
= JMuA Y SATID(S*) = TmA G AN TS*D(S*) = C(t + %)S*D(S*).

This shows the lemma. O

C(t) has an analytic extension into S(0, %) For ¢ > 0 it maps D(S) into D(S) and
for the rest of the boundary it maps D(S*) into D(S*). Therefore, we will map S(0, %)
bi-holomorphic onto S(0, %) in such a way that IR ist mapped onto IR and the rest of
the boundary is mapped onto 5 + IR. This is achieved by the transformation

1 1
( = ——log(e*™ — 1), z = —log(e’™ 4 1).
27 27

We introduce .
B(t) := C(ﬁlog(ezm + 1)), (2.3)
then together with Lemma 2.3 holds
B(t)D(S) C D(S), fort € R and SB(t)D(S)= B(t)SD(S),

B(t + %)D(S*) CD(5*), fort € IR and S*B(t+ %)D(S*) = B(t + %)S*D(S*).
(2.4)



HJB—May /99

The last inclusion is valid with the possible exception of the point % Next we show:

2.4 Lemma.
Define B(s,t) = AT B(t)A® with B(t) from Eq. (2.3). B(s,t) has an analytic extension

into the tube based on the quadrangle with the corners

(Sm s, Imt) = (0,0), (%,—%), (%,0), (o,%). (2.5)

In the domain of holomorphy one has
|B(o, 7)|| < 1.
In the four corners B(o,T) takes the values

B(s,t) = AT B(t)A”,
B(s + %,t) = AT TB()JA,
B(s,t + %) = ATUB(t + %)Ais,

1 1 . i ,
B —t—=)=AT"JB(t + =)JA"Y.
(s 50t = 5) = ATTB(t 4 5)]

Proof. For t real we get by Lemma 2.2 in s an analytic extension into S(0, %) which
is bounded in norm by 1. Moreover, we have B(s 4 5,t) = JB(s,t)J = AT JB(t)JA".
For s real Lemma 2.1 yields an analytic extension in ¢ into S(0, %) which is also bounded
in norm by 1. Moreover, we have B(s,t + 5) = AT"B(t + 5)A'®. Since J is anti-linear

the expression JB(t).J can be analytically continued into S(—%, 0) wich is norm—bounded

by 1. At the lower boundary one finds B(s + %,t — %) = AT JB(t + %)JAiS. Using the

Malgrange-Zerner theorem (see [6]) we obtain the statement of the lemma. D
Now we are prepared for the first crucial step:

2.5 Proposition.
Between the group A and the operator-—valued function B(t) exist the relations

A"B(t)A™* = B(t —s) and JB(t)J = B(t + %).

Proof. Choose ¢ € D(S) and ¢ € D(S*) and define the two functions

F+(37t) = (@7B(Svt)¢) = (997A_iSB(t)AiS¢)7
F~(s,t) = (S, B(s,1)*S*¢) = (S, AT B(t)* Al*S* o).

8
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By Lemma 2.4 F7T(s,t) has a bounded analytic extension into the tube given by Eq. (2.5)
and F'~(s,t) into the conjugate complex of that domain, which is also the negative of the
domain given by Eq. (2.5). By Eq. (2.4) we obtain for real s,

F¥(s,t) = ("S5, ATUB(H)A" ) = (SAT*B(t) A", S™p)
= (AT B(t)A Sy, S*p) = F~(s,1).

Moreover, one obtains with Eq. (2.4) and Lemma 2.4

Fr(s+ %,t - %) = (§*S* o, AT IB(t + %)miw) = (SATJB(t + %)JA%, S*p)
= (ATJS*B(t + %)miw, S*p) = (AT JB(t + %)s*miw, S*p)

= (AT JB(t + %)JA“S;Z;,S*@ — F(s— %J n %)‘

Using the edge of the wedge theorem we obtain a function which is periodic, i.e.
F(s,t) = F(s + ni, t — ni), nez.

The discontinuity which might exist at % is harmless, becase the boundary values coin-
cide in the sense of distributions, for details see e.g. [4]. Since F(o,7) is bounded by
max{||Y]||lell, [[SY)||S* e} the function must be constant in the direction of periodicity,
1,e.

F(s,t) = F(s+z,t—2), zeC.

Choosing z = —s and inserting the expression for ' we obtain:
(9, A B(HAR) = (g, B(t + 5)1).

For s = % and z = —% one finds

(o, TB(TE) = (¢, Bt + 5)0)

Since D(S) and D(S*) are both dense in H we obtain the statement of the proposition. D
The last result is the basis of the following

2.6 Proposition.

The operator—valued function C(t) is a commutative family of unitary operators. Moreover,
there exists a continuous unitary group U(s) with non-negative generator such that

C(t) = U(e*™ —1) (2.6)

holds.
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The proof of this statement is based on the last proposition and it is an exact copy
of the corresponding part of the proof of [2] Thm. 4.1. Therefore it does not need to be
repeated here.

Proof of Theorem 1.3. The first statement of the theorem is the content of Proposition
2.6. We know that C(¢) fulfils the cocycle relation, which we use in the form A7#C (¢) Al =
C(s+t)C(s)*. Inserting Eq.(2.6) we find

A/—VitsU(GZﬂ't _ 1)A{/f/t — U(GZﬂ'(s—l—t) _ 1)U(_62ﬂ'3 + 1) — U(GZTFS(eZTrt . 1))

Since U(t) fulfils the spectrum condition the last equation can analytically be continued
to arbitrary arguments. This shows the first part of statement 2. From (2.6) we obtain

C’(%) = U(—2). Hence we obtain Jy = C’(%)J = U(=2)J. If we insert Eq. (2.3) into the

second expression of Proposition 2.5 we get
AQTC (- log(e™ + 1) = C (5 log(—e#™ + 1)
27 27 '

Using Eq. (2.6) this reads Ad JU(e*™) = U(—e®™). With the above expression for J
we obtain

Ad JpU(e*™) = Ad{U(—2)J}U(e*™) = U(—e*™).

By analytic continuation we obtain the second relation of statement 2. Finally with
AdAi/’{AS = S; and AdA"S = S we obtain AdC(—t)S = S;. Inserting Eq. (2.6) we
find AdU(e™?™ — 1)S = S;. With Ss = limi—yo0 St = limyyoo AdU(e72™ — 1)S we get
Sy =AdU(e™?™)S, or AdU(s)See = S_ s > 0. This proves the theorem. ]

1
5 log 57

From Thm. 6.2.2 one can draw several conclusions. We start with the following result:

2.7 Corollary.

Let M be a von Neumann algebra on H with cyclic and separating vector Q and let Sy
be the Tomita conjugation of M. Let S be a generalized Tomita conjugation and assume
Sam 1s an extension of S. Assume also that S 1s an extension of A%SA/_\j{t fort <0. If
we have wn addition
SM = lim St,
t—o0

then S is the Tomita conjugation of a von Neumann algebra N which has Q as cyclic and
separating vector. Moreover, on has

N = U(1)MU(-1).

2.8 Remark.

Unfortunately I could not show that A is a von Neumann subalgebra of M, although it
is suggested by the fact that Siq is an extension of Syr. Up to now one needs additional
information in order to conclude that A is a subalgebra of M.

10
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Proof of the Corollary. With S+ = lim;—, o S; we know from Thm. 6.2.2 the relation
S =U(1)ScU(—1). With Soc = Saq it follows S = U(1)SpmU(—1). Since M is a core
for S it follows with V' = U(1)MU(—1) that N'Q is a core for S. Hence the corollary is
proved. ]

In connection with conditional expectations one can conclude that the algebra A,
described in Corollary 2.7, is a subalgebra of M.

2.9 Proposition.

Let M be a von Neumann algebra on H with cyclic and separating vector Q2. Assume N is
a modular covariant subalgebra of M and & the associated conditional expectation. Denote
by N resp. € the restriction of N resp. &€ to the cyclic subspace of N'. Assume V() is a
+half-sided translation for M. Then:

(1) EV()MV (—t)) is dense in the von Neumann algebra {E(V (t)MV (—1))}".

(1) There exists a +half-sided translation for N = g(./\/l) with

o~

UONU(=t) = {E(VENMV (~1))}.

o~

Proof. From the relation E(V () MV (—t))Q = EV(t)MQ we see that
EV )MV (—1))Q is dense in E'H. Let S—%logt
EV(tH)AV(-t)? — EV(t)A*V(—t)Q. Since JM./(\/JM is the commutant of NV in EH

it follows that S—%logt is pre—closed. Denote the closure again by S_ Since

be the map

% logt-
V() MV (=t) C V(to) MV (—tg) for t > to we obtain with A%V(S)A/_\j{t = V(e %7s) and
with Ai/e, = A‘]{AEH that S is an extension of Sy which is an extension of A%[SOA/_(/}t
for t < 0. Hence the family {S;} fulfils the conditions of Thm. 1.3. Consequently exists a
+half-sided translation U(t) of N with

Sy = U(e2™)S (U (—e?™).

Since {EV (e?™)AQ; A € M} is a core for S; there exists an operator B affiliated with A
such that U(e?*™)BU(—e*™)Q = EV(e?™)AV (—e?™)Q holds. (See [BR79] Prop. 2.9.5.)
Since () is separating for N we obtain U(e*™)BU (—e?™) = EV(e*™) AV (—e*™)E which
implies || B|| < ||A||. Hence we get EV(e?™ )MV (—e*™)E C U(ezﬂt)./vU(—eZ”t). The sets
EV(e*™)MQ and U(ezﬂt)./vﬂ are both a core for Sy which implies that EV(e*™)MQ
is dense in U(ezm)./vﬁ in the graph topology of S;. Since the graph topology of S; is
stronger than the Hilbert space topology we get the density in the Hilbert space topol-
ogy. As Q is separating and since EV(e*™ )MV (—e*™)E is convex we conclude that

EV(e2™ )MV (—e*™)E is strongly dense in U(ezﬂt)./(\/U(—eZ”t). Hence the theorem is
proved. ]

An application of Thm. 1.1 can be found in [7] Thm. (3.10). Another problem is
the following: Let U(t) be a half-sided translation for M and A a modular covariant
subalgebra of M. Assume U(t) does not commute with the conditional expectation & :

11
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M = N. Can one find modular covariant subalgebras N'* with AV ¢ At and N™ c
in such a way that U(¢) commute with the corresponding conditional expectations? The
answer is the following:

2.10 Lemma:

Let U(t) be a half-sided translation for M and N a modular covariant subalgebra of M.
Assume U(t) does not commute with the conditional expectation £ : M — N. Then there
exists a minimal modular covariant subalgebra N'& of M such that N ¢ Nt and Ul(t)
commute with the conditional ezpectation €t : M — Nt There ezists also a mazimal
modular covariant subalgebra N~ of M such that N > N~ and U(t) commutes with the
conditional ezpectation €~ : M — N~

Proof. Define Nt = t\>/0 AdU(t)N. This implies by the invariance of N Ad AN+ =
t\>/0 AdU (e *™t)N = Nt ‘Hence N* is a modular covariant subalgebra of M containing
N. Moreover we obtain for s > 0 Ad Us)Nt = t\>/ AdUMN < Nt Hence U(t)

commutes with £ by Thm. 1.1. From the construction we see that Nt is the minimal
modular subalgebra of M with the stated properties. )
For defining N'~ we use the commutant of A" and set N'7 = { \</ AdU(#)N'}. That
t<s

this algebra fulfils the stated requirements is shown as before. O

In the last result we have seen, that one can vary the modular covariant subalgebra if
U(t) and € do not commute in such a way that U(¢) commutes with the new conditional
expectation. But in some situation it might be better to keep the modular subalgebra fixed
and try to change the half—sided translation in such a way that one obtains commutation.
That this is indeed possible is the content of the next result.

2.11 Lemma:

Let U(t) be a half-sided translation for M and N a modular covariant subalgebra of M.
Assume U(t) does not commute with the conditional expectation £ : M — N. Then there
exists a modified half-sided translation W(t) which commutes with &.

Proof. Let a be the isomorphism o : N — N. Define the algebra
Pt) = oz_l{g(./\/l(t))}”. This algebra is contained in N by construction. Since the modular
action commutes with a we obtain Ad A*P(t) = P(el*t). Defining M(t) = P(t)VM(t) we
get Ad A M(t) = M(e*¥t). This shows that M(1) fulfils the condition of —half-sided mod-
ular inclusion. Therefore exists a half-sided translation W (¢) with Ad W ()M = ./\;l(t) It
remains to show that W(t) commuts with €. We know from construction £(M(t)) C P(t).
Let S; be the map AQ — A*Q, A € P(t) UM(t). Since M’ commutes with P(¢) U M(t)
it follows that S; is a closable operator. Denoting its closure again by 5S¢ then it ful-

fils the conditions of Thm. 1.3. Hence we obtain M(#)Q2 = closure of {P(t) U M(t)}Q

in the graph topology of S;. From this we get E(M(t)Q = E(closure {P(t) U M(t)}Q =
E closure {P(t)UM(t)}Q. Since with A € {P(t)UM(t)} also A* belongs to {P(t)UM(t)}
we obtain that the closure commutes with E. But from E{P(t)UM(t)}E = P(t)E it fol-

lows that E(M(t)) = P(t) holds and hence W(t) commutes with £ by Thm. 1.1. 0

12
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2.12 Remarks. In special situations it might happen that the algebra N* defined in
Lemma 2.10 coincides with M or that the algebra N~ coincides only with the center of
M. It also can happen that the algebra M (t) defined in the proof of Lemma 2.11 coincides
with M. In this case the half-sided translations W (t) are trivial.
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