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Boundary integration and the discrete Wallach pointsJonathan Arazy Harald UpmeierAbstractLet D be an irreducible hermitian symmetric domain of rank r in C d and let G :=Aut(D) the group of all biholomorphic automorphisms of D. We construct explicit inte-gral formulas for the G-invariant inner products on spaces of holomorphic functions onD associated with the discrete Wallach points by means of integration on G-orbits on theboundary @D of D.0 IntroductionFor an irreducible hermitian symmetric space D of non-compact type, the holomorphic au-tomorphism group G = Aut(D) has a (scalar) holomorphic discrete series whose analyticcontinuation is given by parameters forming the so-called "Wallach set". It is an importantproblem to give explicit realizations of the corresponding irreducible representations of G interms of the (boundary) geometry of the underlying domain D. A standard reference using Lietheoretic methods is [RV76]. In our previous works ([AU97] and [AU98]) we considered mainlycertain parameter values within the continuous part of the Wallach set and constructed real-izations emphasizing the Jordan theoretic description of D [FK94]. In this paper we treat themore di�cult discrete part and �nd explicit integral formulas using Lassalle's boundary mea-sures [La87]. The paper contains also a new realization (and proof of existence) of Lassalle'smeasures, using only basic results from Jordan theory (Peirce decomposition).1 PreliminariesIn this section we review some known results in analysis on Jordan algebras and triples and onthe associated symmetric domains, and establish the notation. For more information consult[Hu63], [Gi64], [Lo77], [U87], [FK94] and [A95].Let D � C d be a Cartan domain, i.e. D is an irreducible bounded symmetric domain inthe Harish-Chandra realization. This is equivalent to saying that D is the open unit ball ofC d with respect to a certain norm k � k, such that the group G := Aut(D) of all biholomorphicautomorphisms of D acts transitively on D. By [Lo77], [U87], there exists a triple productf�; �; �g : C d � C d � C d ! C d so that Z := (C d ; k � k; f�; �; �g) is a Jordan-Banach �-triple (JB�-triple). The maximal compact subgroup of G is K := f' 2 G;'(0) = 0g = G \ GL(Z), andD � G=K.�Supported by a grant from the German-Israeli Foundation (GIF), I-415-023.06/951



Let (r; a; b) be the type of D (or, of Z), where r is the rank and a; b are the characteristicmultiplicities. Thus the dimension d and the genus p are given byd = r+ r(r� 1)2 a+ r b; p = 2 + (r � 1) a+ b: (1.2)A tripotent v 2 Z is an element satisfying fv; v; vg = v. The Peirce decomposition associatedwith the tripotent v is Z = Z1(v)� Z 12 (v)� Z0(v); (1.3)where Z�(v) := fz 2 Z; fv; v; zg = �zg; � = 1; 12 ; 0. The associated Peirce projection P�(v),is the projection whose range is Z�(v) and whose kernel is the sum of the other two Peircesubspaces. We denote also D�(v) := D \ Z�(v): (1.4)The spaces Z�(v) are sub-triples of Z, and the rank of the tripotent v is by de�nition the rankof Z1(v). We de�neSj = the set of tripotents of rank j; j = 0; 1; 2; : : : ; r: (1.5)S := Sr is the Shilov boundary of D. Let us choose a framee1; e2; : : : ; er; (1.6)i.e. a maximal set of tripotents of rank one which are pairwise orthogonal, i.e. fei; ei; ejg = 0whenever i 6= j. The tripotent e = e1 + e2 + : : :+ er (1.7)is maximal (having rank r), and thus Z0(e) = 0. The stabilizer of e in K, namelyL := fk 2 K; k(e) = eg; (1.8)will play an important role in the sequel. Notice that since K acts transitively on S, we haveS � K=L. More generally, K acts transitively on the frames, and in particular it is transitiveon each of the Sj . The sub-triple Z1(e) has the structure of a JB�-algebra with respect to theproduct z � w := fz; e; wg and the involution z� := fe; z; eg, and e is the unit of Z1(e). Thereal part of Z1(e), i.e. the subset X = X1(e) := fx 2 Z1(e); x� = xg of self-adjoint elements ofZ1(e) is a Euclidean (or formally-real) Jordan algebra, with determinant (\norm") and tracepolynomials N(z) = det(z) and tr(z) :=< z; e > (1.9)respectively. Here hz; wi denotes the uniqueK-invariant scalar product on Z satisfying he1; e1i =1. The set 
 := fx2; x 2 X;N(x) 6= 0g (1.10)is the symmetric cone associated with X . The group L, restricted to X , coincides with theJordan-algebra automorphisms of X . In particular, it is transitive on the frames of orthogonalminimal idempotents in X whose sum is the unit element e.2



For 1 � j � r, let uj = e1 + : : :+ ej and let Nj denote the determinant polynomial of theJordan sub-algebra Z(j) := Z1(uj), extended to all of Z via Nj(z) := Nj(P1(uj)z). Note thatNr � N . The conical function associated with s = (s1; s2; : : : ; sr) 2 C r is de�ned byNs(x) := N1(x)s1�s2 N2(x)s2�s3 � � �Nr�1(x)sr�1�sr Nr(x)sr ; 8x 2 
: (1.11)A partition is a sequence m = (m1; m2; : : : ; mr) of integers so that m1 � m2 � : : : � mr � 0.Note that for any partition m, Nm is a polynomial (called conical), and it extends to all of Z.Let us denote Pm := spanfNm � k; k 2 Kg: (1.12)A fundamental theorem [Sch69], (see also [U86]) says that the spaces Pm are irreducible andmutually inequivalent with respect to the action �(k)(f) := f � k�1 of K, and that the spaceP of all holomorphic polynomials on Z is their direct sum: P = P�m Pm. Thus the Pm aremutually orthogonal with respect to any K-invariant inner-product on P . The Fischer-Fockinner-product on P is given by< f; g >F= 1�d ZCd f(z) g(z)e�jzj2 dm(z); (1.13)where j � j is the Euclidean norm, and dm(z) is the Lebesgue measure. The reproducing kernelof Pm with respect to < �; � >F is denoted by Km(z; w). Thus, PmKm(z; w) = e<z;w> .The Gindikin-Koecher Gamma function associated with the cone 
 is de�ned for s =(s1; s2; : : : ; sr) 2 C r with <sj > (j � 1)a2 by the convergent integral�
(s) := Z
 e�tr(x)Ns(x) d�
(x); (1.14)where d�
(x) := N(x)� d1r dm(x) is the (unique up to a multiplicative constant) measure on 
which is invariant under the group GL(
) := fg 2 GL(X); g(
) = 
g, and d1 := dimR (X) =r(r�1)2 a+ r. It is known that �
 can be expressed as a product of ordinary Gamma functions:�
(s) := (2�) d1�r2 rYj=1�(sj � (j � 1)a2);and this allows the extension of �
 to a meromorphic function on all of C r . The Beta functionassociated with the cone 
 is related to the Gamma function viaB
(p;q) := �
(p) �
(q)�
(p+ q) : (1.15)For � 2 C and any partition m we denote(�)m := �
(�+m)�
(�) = rYj=1(�� (j � 1)a2)mj ; (1.16)where (t)m := t(t+ 1)(t+ 2) � � �(t +m� 1).Let h(z; w) be the unique K-invariant irreducible polynomial, which in holomorphic in z,anti-holomorphic in w, and satis�es h(x; x) = N(e� x2) 8x 2 X . It is known thath(z; w)�� =Xm (�)mKm(z; w); 8z; w 2 D; 8� 2 C ; (1.17)3



and the series converges absolutely and uniformly on compact subsets of D � D � C . Thefundamental formula (1.17) (called the \binomial expansion") was proved in special cases in[Hu63] and [La86], and in full generality in [FK94]. The Wallach set W (D) of D consists ofall those � 2 C for which (z; w) 7! h(z; w)�� is positive de�nite. Using the expansion (1.17)one sees that W (D) = f0; a2 ; 2a2 ; : : : ; (r� 1)a2g [ ((r � 1)a2 ; 1): (1.18)This result was established by several authors using various techniques: [Be75], [RV76] (in thecontext of Siegel domains), [W79], [La87] and [FK90]. For each � 2 W (D) we denote by H�the completion of spanfh(�; w)��;w 2 Dg with respect to the unique inner-product < �; � >�determined by < h(�; w)��; h(�; z)�� >�= h(z; w)��; 8z; w 2 D:Point evaluations are continuous linear functionals on H� and the corresponding reproducingkernel is h(z; w)��.If � > (r � 1)a2 then H� contains P as a dense subspace. On the other hand, for thediscrete Wallach points (which are our main concern in this paper) ` a2 , 0 � ` � r � 1, H`a2 isthe completion of P` := Xm1����m`�0=m`+1=���=mr Pm: (1.19)Since K acts irreducibly on each Pm, every K-invariant inner product on Pm is proportionalto the Fischer inner product. The computation of the proportionality constants for the innerproducts < �; � >� is one of the major steps in the proof of (1.17). Thus for every � 2 W (D)and every partition m for which Pm � H�,< f; g >�= < f; g >F(�)m ; 8f; g 2 Pm: (1.20)This implies for all functions f =Pm fm and g =Pm gm in H� (with fm; gm 2 Pm 8m),< f; g >�=Xm < fm; gm >F(�)m : (1.21)Let us de�ne an action of G on functions on D via(U (�)('�1)f)(z) := f('(z)) (J'(z))�p ; ' 2 G; (1.22)where J'(z) := Det('0(z)). Then, for � 2 W (D), U (�) is a projective representation of G onH�.It is well known that for � > p� 1 H� is the weighted Bergman space L2a(D; ��), i.e. thespace of all analytic functions in L2(D; ��), whered��(z) := c� h(z; z)��p dm(z); c� := �
(�)�d �
(�� dr ) :The representations fU (�);� > p � 1g form the holomorphic discrete series of representationsof G. The problem of concrete description of the analytic continuation of the holomorphicdiscrete series by means of Sobolev-type integral formulas attracted the attention of many4



mathematicians (see for instance [RV76], [O80], [A92-1], [A92-2], [FK90], [Y93], [AU97] and[AU98]). This problem is intimately connected with the problem of the concrete descriptionof the analytic continuation of the Riesz distribution (see [Ri49], [Ga47], [O80], [Gi75] and[AU97]). One of the oldest results on the description of the analytic continuity of the holomor-phic discrete series is the realization of H dr as the Hardy space H2(S) = L2a(S; �) (where S isthe Shilov boundary of D and � is the unique K-invariant probability measure on S).The shifting method of Yan (see [Y93] and [AU97]) enables one to give integral formulas ofthe form < f; g >�=< S�;`f; g >�+` (1.23)for suitable ` 2 N and shifting operator S�;` (which is a GL(
)-invariant di�erential operator).In particular, if � + ` > p� 1 or �+ ` = dr one obtains integral formulas for < f; g >� of thedesired type. However, these integral formulas su�er from two main weaknesses:1. They do not permit generalization to the in�nite-rank case;2. They use unnecessary large numbers of parameters. (i.e. the topological dimension of theset on which the integration is performed is too big compared to the Gelfand-Kirillovdimension of the representation).Our main goal here is to obtain explicit, Sobolev-type integral formulas for the invariantinner products < �; � >`a2 associated with the discrete Wallach points ` a2 , ` = 0; 1; 2; : : : ; r �1, by means of integration on the G-orbits on the boundary @D. These formulas seem touse the optimal number of parameters (i.e. the topological dimension of the set on whichthe integration is performed is minimal), and allow the passage to the case of in�nite rankdomains. The paper is a continuation of [AU97] and [AU98], in which we develop the formulasof the desired type for < f; g >a2 . The proofs in the general case given here use the Harish-Chandra isomorphism between the rings of invariant di�erential operators and the symmetricpolynomials. They are simpler and more conceptual.There is another type of integral formulas for < �; � >�, � 2 W (D) which use the Cayleytransform (which realizes D as a symmetric Siegel domain, denoted by T (
)) and the Fouriertransform (which realizes the weighted Bergman spaces on T (
) as weighted L2-spaces on 
).These formulas are extended to the discrete Wallach points `a2 in Sections 6 and 7 below; theyare relatively simple and quite natural, but they do not allow to work directly with the datacoming from D.In order to formulate our main result in the context of D let us describe the structure ofthe boundary @D and introduce some more notation. The boundary component associated toa tripotent v is the set B(v) := v + D0(v) (see (1.4)). Its closure is a face of D and all thefaces arise in this way. Notice that D1(v) and D0(v) are Cartan domains of type (`; a; 0) and(r � `; a; b) respectively, where ` := rank(v). Let us denote@`D := [v2S`B(v); 1 � ` � r: (1.24)The sets @`D are the G-orbits on @D, and:@`D = G(u`) = f'(u`);' 2 Gg; (1.25)5



where fejgrj=1) is the �xed frame and u` = e1 + � � �+ e`. Thus@D = [r̀=1@`D: (1.26)and the orbits of G in D are @0D := D, @1D; : : :, and @rD = S. Let us denote alsov` = e� u` = e`+1 + � � �+ er:Then u`; v` are orthogonal tripotents of rank ` and r� ` respectively, and u` + v` = e. Z(`) :=Z1(u`) is a JB�-sub-algebra of Z with unit u`, real partX(`) := fz 2 Z(`); z� = zg;and associated symmetric cone
(`) := fx2; x 2 X(`); N`(x) 6= 0g: (1.27)Consider the group of linear automorphisms of 
(`)GL(
(`)) := fg 2 GL(X(`)); g(
(`)) = 
(`)gand the associated ring of GL(
(`))-invariant di�erential operatorsD` := Di�(
(`))GL(
(`)): (1.28)Thus, D` consists of all di�erential operators T on 
(`) so that TCg = CgT for all g 2 GL(
(`)),where Cg(f) := f � g. Let us denoteL(`) := fk 2 K; k(u`) = u`g: (1.29)Then kj
(`) 2 GL(
(`)) 8k 2 L(`), and in particular T (f � k) = (Tf) � k for all T 2 D` andf 2 C1(
(`)). Let K(`) := fk 2 K; k(Z�(v`)) = Z�(v`); � = 1; 12 ; 0g: (1.30)Clearly, fk 2 K; k(v`) = v`g � K(`). Also, every triple-automorphism of Z�(v`) for some� = 1; 12 ; 0 extends to a triple-automorphism of Z which preserves all the Z�(v`), i.e. to anelement of K(`). Let K(`)C denote the complexi�cation of K(`). One of the technical resultsthat will be established below is the following.Lemma 1.1 Every T 2 D` extends uniquely to a di�erential operator on Z0(v`) which isinvariant under the group K(`)C .Let T 2 D` be extended to a K(`)C -invariant di�erential operator on Z0(v`). Given a tripotentv 2 Sr�l, we de�ne a di�erential operator Tv on Z0(v) in the following way. Since K actstransitively on Sr�`, there exists k 2 K for which k(v`) = v. We de�neTv := C�1k TCk; (1.31)6



where Ck(f) := f � k. Tv is well-de�ned, i.e. independent of the particular k 2 K for whichk(v`) = v. Indeed, if k1; k2 2 K satisfy k1(v`) = k2(v`) = v, then k�11 (k2(v`)) = v`, and sok2 = k1k for some k 2 K for which k(v`) = v`. As we remarked above, k 2 K(`), and thereforeCk2TCk2 = C�1k1 C�1k TCkCk1 = Ck1TCk1 :For any function f on D and any tripotent v, the restriction of f to B(v) yields a functionfv on D0(v) via fv(z) := f(v + z); z 2 D0(v): (1.32)For any 1 � ` � r let �` be the unique K-invariant probability measure on S`, de�ned viaZS` f d�` := ZK f(k(u`)) dk: (1.33)Our main result in this framework is the following theorem (compare Theorem 3.2)Theorem Let 1 � ` � r � 1 and let � > (`� 1)a2 . Then there exists T = T (`;�) 2 D` so thatfor every f; g 2 H`a2 which are analytic in a neighborhood of D,< f; g >`a2= ZSr�` < Tvfv; gv >H�(D0(v)) d�r�`(v): (1.34)For general f; g 2 H`a2 the integral (1.34) is an improper Riemann integral, namely< f; g >`a2= limt%1ZSr�` < Tv(f t)v; (gt)v >H�(D0(v)) d�r�`(v);where f t(z) := f(tz); gt(z) := g(tz).We remark that the case ` = 0 in the above theorem (and in subsequent results) is trivial sinceH0 consists of constant functions.The paper is organized in the following way. Section 2 is devoted to the construction of thetools needed to prove the above mentioned and related results. In subsection 2.1 we survey theHarish-Chandra isomorphism between the rings of invariant di�erential operators on symmetriccones and and of the symmetric polynomials. Using the spectral theory we extend this resultto more general invariant operators. In subsection 2.2 we use the conical polar decompositionZ = K �
 to study K-averaging of certain functions on D, (a process we call \conialization").In subsection 2.3 we construct for each ` 2 f1; 2; : : : ; r � 1g two K-orbits on �D and naturalmeasures on them. After these preparatory sections we prove the above mentioned theorem,in section 2.3 (see Theorem 3.2 for the exact formulation). Some related results are establishedas well.Section 4, is devoted to the development of canonical integral formulas for the inner prod-ucts < �; � >`a2 , 1 � ` � r�1, in the framework of the symmetric Siegel domain T (
) associatedwith the Cartan domain D via the Cayley transform. The case of symmetric Siegel domains oftype I (i.e. tubes over the symmetric cones 
) is treated �rst, where we use in an essential way7



the semi-invariant Lassalle measures on the boundary orbits @`
 of the cone 
. The develop-ment of the analogous integral formulas in the context of symmetric Siegel domains of type IIis technically harder and requires additional e�orts. In section 5 we use the Lassalle measuresto construct integral formulas for the invariant inner products associated with the continuousWallach points �` := dr + `a2 , 0 � ` � r� 1, in the context of symmetric Siegel domains of typeII, which generalize the analogous formulas in the context of symmetric Siegel domains of typeI constructed in [AU97]. Finally, in Section 6 we present a new construction of the Lassallemeasures. Unlike the original construction of Lassalle (see [La87]) which uses local coordinates(coming from the subgroup AN of GL(
)), our formulas use global coordinates and make thesemi-invariance apparent.2 Preparation2.1 Invariant di�erential operators on symmetric cones and symmetric poly-nomialsIn this section we review brie
y the connection between the ring D = Di�(
)GL(
) of GL(
)-invariant di�erential operators on 
 and the ring S of symmetric polynomials in r variables.See [FK94] for more details and [He78] for the general theory.We denote the half-sum of the strongly orthogonal positive roots by� = (�1; �2; : : : ; �r) where �j := (2j � r � 1)a4 ; 1 � j � r: (2.1)The L-spherical functions are the L-averages of the conical functions:��(x) := ZLN�(`(x)) d`: (2.2)They are L-invariant and normalized by the condition ��(e) = 1. It is known that the �� arethe spherical functions associated with the Riemannian symmetric space 
 in the usual sense.The Weyl group Wr in this case is simply the permutation group, acting naturally on C r andthus on the ��`s. It is known that �� = �� if and only if � and � are in the same orbit ofWr.For each partitionm the function �m is an L-invariant polynomial which belongs to Pm andin particular extends to a polynomial on Z. Every L-invariant polynomial in Pm is proportionalto �m. The ring S = C [�1; �2; : : : ; �r]Wr (2.3)of symmetric (i.e. permutation invariant) polynomials in � = (�1; �2; : : : ; �r) is isomorphic tothe full polynomial ring C [�1 ; �2; : : : ; �r] via the elementary symmetric polynomials f�jgrj=1de�ned by �j(�) := X1�i1<i2<���<ij�r �i1�i2 � � ��ij : (2.4)8



Thus, for each p 2 S there is a unique polynomial q 2 C [�1 ; �2; : : : ; �r] so thatp(�) = q(�1(�); �2(�); : : : ; �r(�)):Thus, f�jgrj=1 are algebraically independent generators of S.A fundamental property of the spherical functions is that they are the joint eigenfunctionsof the operators in D.Theorem 2.1 (i) The conical and the spherical functions are eigenfunctions of everyT 2 D: For all � 2 C r we haveT (N�+�) = 
T (�)N�+� ; T (��+�) = 
T (�)��+� : (2.5)(ii) 
T (�) is a symmetric polynomial in �1; ; �2; ; : : : ; �r, thus 
T 2 S.(iii) The map 
 : D ! S de�ned via D 3 T 7! 
T 2 S is a surjective ring isomorphism, calledthe Harish-Chandra isomorphism.(iv) D is commutative.De�nition 2.1 For 1 � j � r we de�ne �j := 
�1(�j). Namely, for every � 2 C r :�j(N�+�) = �j(�)N�+� ; �j(��+�) = �j(�) ��+� : (2.6)Corollary 2.1 The operators f�jgrj=1 are algebraically independent generators of D.Since 
 = GL(
)=L is a Riemannian symmetric space (more precisely, a direct product ofR+ with an irreducible symmetric space 
0 := fx 2 
 : N(x) = 1g of non-compact type), onehas a direct integral decompositionL2(
) = ZRr=Wr H� jc(�)j2 d� (2.7)where c(�) is Harish-Chandra's c-function and H� is the Hilbert space completion of the spacespanned by all GL(
)-translates of ��, endowed with its natural inner product [He84]. Via(2.7), the translation representation T of GL(
) on L2(
) has a decompositionT = ZRr=Wr T� jc(�)j�2d�where T� is the (irreducible) spherical representation of GL(
) on H�. For any continuousWr-invariant function F : Rr! R one can de�ne a GL(
)-invariant self-adjoint operator F̂ onL2(
) by the formula F̂ f = Z F (�) f� jc(�)j�2 d� (2.8)for f = Z f�jc(�)j�2 d�; f� 2 H�: (2.9)9



The domain of F̂ is de�ned as the space of functions f such thatZ jF (�)j2 k f� k2� jc(�)j�2 d� < +1:Thus F̂ is bounded if F is a bounded function. Let� := (�1; : : : ; �r) : C r ! C r ;where the �j are de�ned by (2.4). The direct integral decomposition above diagonalizes simul-taneously the (commuting) operators �k. WritingF = f � �for some continuous bounded function f : Rr! R, the bounded operator F̂ can be expressedas a function F̂ = f(�1; : : : ;�r);in the spectral-theoretic sense, of �1; : : : ;�r.Remark: There are many other natural choices of r algebraically independent generators of S,and each such choice yields r algebraically independent generators of D via the Harish-Chandraisomorphism. See [FK94], [N89], [M87], and [M95].Lemma 2.1 Let U � C r be a Wr-invariant domain, and let F be a Wr-invariant holomorphicfunction on U .(i) The associated GL(
)-invariant operator T = F̂ satis�esT (��+�) = F (�) ��+� 8� 2 U: (2.10)(ii) There exists a unique holomorphic function f on �(U) so that F = f � �, i.e.F (�) = f(�1(�); �2(�); : : : ; �r(�)) 8� 2 U:(iii) In terms of the L2-functional calculus associated with f�jgrj=1,T = f(�1;�2; : : : ;�r): (2.11)The results described above are valid in the context of the cones 
(`), 1 � ` � r. Thus thering S` := C [�1 ; : : : ; �`]W` of the symmetric polynomials in �(`) := (�1; : : : ; �`) is isomorphicto the full polynomial ring C [�1 ; : : : ; �`], and the elementary symmetric polynomials�(`)j (�(`)) := X1�i1<i2<���<ij�`�i1�i2 � � ��ij 1 � j � ` (2.12)are algebraically independent generators of S`. The spherical functions in the context of 
(`)are parametrized by C ` and are de�ned as before via�(`)�(`)(x) := ZL(`) N�(`)(k(x)) dk; x 2 
(`):10



The Harish-Chandra isomorphism between D` = Di�(
(`))GL(
(`)) and S` is given viaT (�(`)�(`)+�(`)) = 
(`)T (�(`)) �(`)�(`)+�(`) ; �(`) 2 C (`) ;where �(`) := (�(`)1 ; �(`)2 ; : : : ; �(`)` ); and �(`)j := a4(2j � `� 1): (2.13)The algebraically independent generators of D` are�(`)j := (
(`))�1(�(`)j ); 1 � j � `: (2.14)Lemma 2.1 is valid in the context of 
(`) with obvious notational changes.2.2 Conialization of functionsIn this section we study conialization (i.e. \conical polarization") of functions on Z. The basicfact used here is that every z 2 Z admits a conical polar decomposition z = k(x) with k 2 Kand a unique x 2 
. Thus Z = K � 
, and we have a formula for integration in conical polarcoordinates for functions f 2 L1(Z;m):ZZ f(z) dm(z) = c0 Z
 �ZK f(k(x 12 )) dk� N(x)b dx (2.15)where m is Lebesgue measure, and c0 = �d=�
(dr ). The function~f(x) := ZK f(k(x 12 )) dk; x 2 
; (2.16)is called the conialization of f . The map E(f)(x) := ~f(x2) can be considered as the averag-ing projection (i.e. conditional expectation) from L1(Z;m) onto its subspace of K-invariantfunctions.Lemma 2.2 (i) For every partition m and every x 2 
ZK j�m(k(x 12 ))j2 dk = �m(x)dm ; (2.17)where dm := dim(Pm).(ii) For every x 2 
 and all polynomials f = Pm fm and g = Pm gm with fm; gm 2 Pmfor all m, g(fg)(x) =Xm < fm; gm > dr �m(x) (2.18)Proof: Formula (2.17) is proved in [FK94], Proposition XI.4.1 in the case where Z is a JB�-algebra, and in [FK90] in the case where Z is a JB�-triple. Notice that (2.17) with x = e yieldsfor every m k�mk2dr = ZK j�m(k(e))j2 dk = 1dm :11



To prove (2.18), consider the K-invariant inner product< f; g >x:= g(fg)(x) = ZK f(k(x 12 )) g(k(x 12 )) dk (2.19)on P . Using the fact that the actions ofK on the Pm are irreducible and pair-wise inequivalent,we see that the Pm are pair-wise orthogonal with respect to < �; � >x, and that there existpositive constants cm(x) so that< fm; gm >x= cm(x) < fm; gm > dr ; 8fm; gm 2 Pm:The proportionality constants are computed by taking fm = gm = �m and using (2.17) for xand e.Let 1 � ` � r and denote the vectors in C ` by �(`) = (�1; : : : ; �`). For notational simplicitywe shall adopt the convention that ��(`) = �(�1;:::;�`;0;:::;0), and similarly for the conical func-tions. Recall that the spherical functions associated with the symmetric cone 
(`) of X(`) aredenoted by �(`)�(`) .Proposition 2.1 Let 1 � ` � r and let m(`) = (m1; : : : ; m`) 2 N` be a partition. Then forevery x 2 X(`) �m(`)(x) = 
m(`) �(`)m(`)(x); (2.20)where 
m(`) = (`a2)m(`)(r a2)m(`) = �
(`)(r a2)�
(`) (` a2) Ỳj=1 �(mj + (`+ 1� j)a2)�(mj + (r + 1� j)a2) : (2.21)Proof: Recall that for every y 2 X and � 2 C ,N(e� y)�� =Xm (�)m �m(y)k�mk2F : (2.22)Similarly, for x 2 X(`) and � 2 C ,N(e� x)�� = N`(u` � x)��Xm(`)(�)m(`) �(`)m(`)(x)k�(`)m(`)k2F : (2.23)In order to continue the proof of the proposition, we need the following result.Lemma 2.3 Let 1 � ` � r and let y 2 X be an element of rank at most `. If n = (n1; : : : ; nr)is a partition with n`+1 � 1, then Nn(y) = �n(y) = 0.Proof of the Lemma: The condition n`+1 � 1 guarantees that for some j > `, Nn isdivisible by Nj to a positive power. Notice that rank(P1(uj)y) � rank(y) � `. Hence, Nj(y) =Nj(P1(uj)y) = 0 (because in the Jordan algebra X(j) elements of rank smaller than j havezero determinant). In particular, Nn(y) = 0. If k 2 L then rank(k(y)) = rank(y) � `, andtherefore Nn(k(y)) = 0. Finally, �n(y) = RLNn(k(y)) dk = 0.12



Using Lemma 2.3 we see that (2.22) for x 2 X(`) yieldsN(e� x)�� = Xm(`)(�)m(`) �m(`)(x)k�m(`)k2F : (2.24)Since �m(`)jZ0(v`) 2 P (`)m , we obtain by comparing the expansions (2.23) and (2.24) that�m(`)(x) = k�m(`)k2Fk�(`)m(`)k2F �(`)m(`)(x) = 
m(`) �(`)m(`)(x) 8x 2 X(`):In order to compute 
m(`) we use the known fact (see [FK90]) thatk�m(`)k2F = (dr )m(`)dm(`) and k�(`)m(`)k2F = (d`̀ )m(`)d(`)m(`) ;where d` := dim Z1(u`) = `+ `(`� 1)a2 , dm(`) = dim(Pm(`)), and d(`)m(`) has the same meaningwith respect to the algebra Z1(u`). Quite generally, the dimensions dm are expressed bydm = Y1�i<j�r B((j � i)a2 ; a2)B(mi �mj + (j � i)a2 ; a2) B((i� j)a2; a2)B(mj �mi + (i� j)a2 ; a2) (2.25)where B(x; y) := �(x) �(y)=�(x+ y) is the ordinary Beta function. (see [U83] for the generalcase, and [FK94], p. 315 for the case of JB�-algebras).A straightforward computation yields the expression (2.21) for 
m(`).Remark: One can prove Proposition 2.1 using the connection between the spherical poly-nomials and the Jack symmetric functions J(�)m , where � := 2a , and m ranges over all �nitepartitions. (See [M87], [M95] and [St89] for the study of Jack symmetric functions). J(�)� isde�ned on all �nite sequences (identi�ed with in�nite sequences which contain only �nitelymany non-zero terms), and it is permutation invariant. The connecting formula is�m( rXj=1 tjej) = J(�)m (t1; : : : ; tr; 0; : : : ; 0; : : :)J(�)m (1r) 8t1; : : : ; tr > 0; (2.26)where 1r := (1; : : : ; 1; 0; : : : ; 0; : : :) has r \1". A similar formula is valid also for the sphericalfunctions �(`)m(`) associated with 
(`):�(`)m(`)(X̀j=1 tjej) = J(�)m(`)(t1; : : : ; t`; 0; : : : ; 0; : : :)J(�)m(`)(1`) 8t1; : : : ; t` > 0; (2.27)It follows that for every t1; : : : ; t` > 0,�m(`)(Pj̀=1 tjej)�(`)m(`)(Pj̀=1 tjej) = J(�)m(`)(1`)J(�)m(`)(1r) = 
m(`): (2.28)The numbers J(�)m (1�), � 2 N, are known in full generality (see [St89] Th. 5.4 and [M95]):J(�)m (1�) = `(m)Yi=1 miYj=1(� + 1� i+ �(j � 1)); (2.29)13



where `(m) := maxfk;mk 6= 0g is the length ofm. It follows that if `(m) � r and � = 2a , thenJ(�)m (1�) = (2a)jmj rYj=1 �(mj + (� + 1� j)a2)�((� + 1� j)a2) = (2a)jmj(� a2)m:In particular,
m(`) = J(�)m(`)(1`)J(�)m(`)(1r) = (`a2)m(`)(r a2)m(`) = �
(`)(r a2)�
(`) (` a2) Ỳj=1 �(mj + (`+ 1� j)a2)�(mj + (r + 1� j)a2) ; (2.30)where �
(`) is the Gamma function associated with the cone 
(`). The spectral theorem in X[Lo77] and the fact that L acts transitively on the frames of primitive idempotents in X implythat every spherical polynomial �m is determined by its restriction to spanfejgrj=1. Thus(2.20) in general follows from (2.20) for x =Pj̀=1 tjej , i.e. from (2.28).Remark: Recall that the half sum of the strongly orthogonal positive roots associated with
(`) is �(`) := (�(`)1 ; : : :�(`)` ); �(`)j := (2j � ` � 1) a4 . For any partition m(`) = (m1; : : : ; m`)de�ne �(`) = (�1; : : : ; �`) via the \�(`)-shift"�(`) :=m(`) � �(`); namely �j := mj � �(`)j = mj � (2j � `� 1) a4 ; 1 � j � `:Then 
m(`) can be written as a symmetric function of �(`) = (�1; : : : ; �`):
m(`) = �
(`)(r a2)�
(`)(` a2) Ỳj=1 �(�j + (`+ 1) a4)�(�j + (2r� `+ 1) a4) : (2.31)This will be crucial in the sequel.Recall that H`a2 is the completion of P` (see (1.19)) with respect to the inner product (1.21)with � = ` a2 .Corollary 2.2 For all functions f; g 2 H`a2 with expansions f =Pm(`) fm(`) and g =Pm(`) gm(`),and for every x 2 
(`),g(fg)(x) = Xm(`) < fm(`); gm(`) > dr (`a2)m(`)(r a2)m(`) �(`)m(`)(x)= �
(`)(r a2)�
(`)(` a2) Xm(`)0@Ỳj=1 �(�j + (`+ 1) a4)�(�j + (2r� `+ 1) a4) �(`)m(`)(x)1A < fm(`); gm(`) > dr ;where, as before, �j = mj � �(`)j = mj � (2j � `� 1) a4 ; 1 � j � `:The point is that the coe�cients of < fm(`); gm(`) > dr in the expansion of g(fg)(x) are symmetricfunctions of �` = (�1; : : : ; �`). 14



2.3 Integration on K-orbitsIn this section we will be interested in two sequences of K-orbits. The �rst sequence is theG-orbits f@jDgrj=1 on @D. Notice that @r�`D = K(B(v`)), where v` = e`+1 + � � �+ er. Recallthat u` = e1 + � � �+ e`, and denote the open unit interval in the cone 
(`) byI(`) := 
(`) \ (u` � 
(`)) = fx 2 X(`); 0 < x < u`g: (2.32)The second sequence of K-orbits that we shall need isO` := K(I(`)); 1 � ` � r: (2.33)Note that @r�`D = K(v`+ I(`)) and O` are the K-orbits of the opposite faces I(`) and v`+ I(`)of the unit interval I := 
 \ (e� 
) of the cone 
.We shall use the subgroup Gv` := f' 2 G;'(v`) = v`g (2.34)of G, identi�ed naturally with Aut(D0(v`)), and the subgroups Kv` := K \ Gv` and K(`)(de�ned via (1.30)) of K.We describe now a construction which assigns to a measure � on I(`) measures �̂ and ~�on the orbits @r�`D and O` respectively. The construction uses as an intermediate step aconstruction of a measure � on D0(v`).Let � be a measure on I(`), and de�ne a measure � (depending on �) on D0(v`) viaZD0(v`) f d� = ZI(`)  ZK�` f(k(x 12 )) dk! d�(x): (2.35)We call � the conical part of �. Using � we construct measures ~� and �̂ on the K-orbits O`and @r�`D in a canonical way.Construction of ~�: We de�neZO` f d~� := ZD0(v`) �ZK f(k(z)) dk� d�(z)= ZI(`) �ZK f(k(x 12 )) dk� d�(x) = ZI(`) ~f(x) d�(x):Example 2.1 Let � > p`�1 (where p` := (`�1) a+2+b is the genus of D0(v`)), and considerthe probability measured�(`)� (z) := c(`) h`(z; z)��p` dm(z); c(`) = �
(`)(�)�` �
(`)(�� d(`)` ) (2.36)on D0(v`), where d(`) := dim Z0(v`) = `(`� 1) a2 + `+ ` b, andh`(k(x 12 ); k(x 12 )) = N`(u` � x); 8x 2 I(`); 8k 2 K(`):The conical part of d�(`)� is the probability measured�(`)� (x) := 1B
(`)(d(`)` ; �� d(`)` ) N`(u` � x)��p` N`(x)b dm(x) (2.37)on I(`), where B
(`) is the Beta function associated with the cone 
(`) (see (1.15)).15



Example 2.2 For � = d(`)` we consider the probability measure �` on the Shilov boundary@`D0(v`) of D0(v`): Z@`D0(v`) f d�` := ZK(`) f(k(u`)) dk: (2.38)Its conical part is the Dirac measure �u` .Note that with respect to the measures �(`)� and �` considered in Examples 2.1 and 2.2, wehave k�(`)m(`)k2L2(�(`)� ) = 1d(`)m(`) ZI(`) �(`)m(`)(x) d�(`)� (x) = k�(`)m(`)k2F(�)m(`) (2.39)and k�(`)m(`)k2L2(�`) = k�(`)m(`)k2F(d(`)` )m(`) = 1(d(`)` )m(`) : (2.40)Applying Corollary 2.2, and using (2.39) and (2.40), we obtainCorollary 2.3 Let f; g 2 P` have expansions f =Pm(`) fm(`) and g =Pm(`) gm(`). Then(i) < f; g >L2(O;~�) = Xm(`) (` a2)m(`)(r a2)m(`) ZI(`) �(`)m(`)(x) d�(x) < fm(`); gm(`) >F(dr )m(`) : (2.41)(ii) For any � > p` � 1,< f; g >L2(O`;g�(`)� ) = Xm(`) (` a2)m(`) (d(`)` )m(`)(r a2)m(`) (dr )m(`) < fm(`); gm(`) >F(�)m(`) : (2.42)(iii) < f; g >L2(O`;�`) = Xm(`) (` a2)m(`)(r a2)m(`) (dr )m(`) < fm(`); gm(`) >F : (2.43)Construction of �̂: The K(`)-invariant measure � on D0(v`) is used to de�ne a measure �̂on @r�`D: Z@r�`D f d�̂ = ZD0(v`)�ZK f(k(v` + z)) dk� d�(z): (2.44)Obviously,Z@r�`D f d�̂ = ZI(`) �ZK f(k(v` + x 12 )) dk� d�(x) = ZI(`) ~f(v` + x) d�(x): (2.45)
16



3 Integral formulas for the invariant inner products < �; � >`a2In this section we obtain the formulas for the inner products < f; g >`a2 , 1 � ` � r � 1, viaintegration on the K-orbits @r�` and O`.Let f�(`)j gj̀=1 be the elementary symmetric polynomials (2.4) in the variables �(`) =(�1; �2; : : : ; �`), and let �(`) be the vector map �(`) 7! (�(`)1 (�(`)); : : : ; �(`)` (�(`))). Follow-ing the remark after Lemma 2.1, let 
(`) : D` ! S` be the Harish-Chandra isomorphism, andlet �(`)j = �
(`)��1 ��(`)j � ; 1 � j � `: (3.1)We de�ne also �(`)0 (�(`)) � 1, �(`)0 = I , and let W` be the permutation group of the coordinatesin C ` . Thus if U is a W`-invariant domain and f is an analytic function in �(`)(U), then theoperator f(�(`)) = f(�(`)1 ; : : : ;�(`)` ) (3.2)(de�ned via the functional calculus analogous to Lemma 2.1) is GL(
(`))-invariant and satis�esf(�(`))(�(`)�(`)+�(`)) = f(�(`)(�(`)))�(`)�(`)+�(`) (3.3)for every �(`) 2 U , where �(`) is given by (2.13). In particular, for every partition m(`) =(m1; : : : ; m`; 0; 0; : : : ; 0) � 0 we obtainf(�(`))(�(`)m(`)) = f(�(`)(�(`)))�(`)m(`) (3.4)where �(`) :=m(`) � �(`).Lemma 3.1 Let � > (` � 1)a2. Then for every partition m(`) = (m1; : : : ; m`; 0; 0; : : : ; 0) wehave �
(`)(� +m(`)) = (2�)`(`�1)a4 Ỳj=1�(�j + � � a4(`� 1)) (3.5)where �j := mj � �(`)j = mj � (2j � ` � 1)a4. Thus �
(`)(� +m(`)) and (�)m(`) = �
(`)(� +m(`))=�
(`)(�) are symmetric functions of �(`) = (�1; �2; : : : ; �`). Moreover, for any s 2 N(�+ s)m(`)(�)m(`) = s�1Y�=0 Ỳj=1(�j + �+ � � a4(`� 1))= s�1Y�=0X̀k=0(�+ � � a4(`� 1))`�k�(`)k (�(`)): (3.6)Thus (� + s)m(`)=(�)m(`) is a symmetric polynomial in �(`) = (�1; �2; : : : ; �`). Hence theoperator T := s�1Y�=0X̀k=0(�+ � � a4(`� 1))`�k�(`)k (3.7)belongs to D` and satis�es T fm(`) = (�+ s)m(`)(�)m(`) fm(`) (3.8)for every m(`) = (m1; : : : ; m`; 0; : : : ; 0) � 0 and fm(`) 2 Pm(`).17



Proof: (3.5) is a consequence of (1.14) for the cone 
(`). The �rst equality in (3.6) is aconsequence of (3.5) and the fact that �(z + 1) = z�(z), and the second is a well-knownproperty of the f�(`)k gk̀=0. The rest follows from (3.3).Remark: For every � 2 C de�neD(`)(�) := N�+1` @N` N��` 2 D` (3.9)It is well-known (see [FK94] Chapter XIV and [AU97]) that
(`)D(`)(�)(�(`)) = Ỳj=1(�j + a4(`� 1)� �): (3.10)It follows from (3.6) that if � > (`� 1)a2 and s 2 N then(�+ s)m(`)(�)m(`) = s�1Y�=0 
(`)D(`)(a2 (`�1)����)(�(`)):Since 
(`) : D` ! S` is a (surjective) ring isomorphism, it follows that the operator (3.7) admitsthe following expression T = N a2 (`�1)��` N` � ddx�sN�+s�a2 (`�1)` : (3.11)Theorem 3.1 Let 0 � ` � r�1 and let � > a2(`�1). Then there exists an operator T = T (`;�)on C1(
(`)) which is invariant under GL(
(`)), so that for every f 2 H`a2 with Peter-Weylexpansion f =Pm(`) fm(`), Tf = Xm(`) (�)m(`)(`a2)m(`) fm(`): (3.12)Hence, for all f; g 2 H`a2 , < f; g >`a2=< Tf; g >� : (3.13)Moreover, if � � `a2 2 N then T 2 D` (i.e. T is a GL(
(`))-invariant di�erential operator).Remark: Strictly speaking, the meaning of (3.13) is that T 12 (de�ned in general via the func-tional calculus (2.11), and for holomorphic functions via T 12 (Pm(`) fm(`)) =Pm(`)( (�)m(`)(`a2 )m(`) ) 12 fm(`))maps H`a2 isometrically into H� . Formula (3.13) is valid for all polynomials f; g.Proof: We de�ne an operator T0 on holomorphic functions of the form f = Pm(`) fm(`) viaT0f =Pm(`) (�)m(`)(`a2 )m(`) fm(`). Then T0 is well de�ned and continuous with respect to the topologyof uniform convergence on compact subsets of D (see [A96]). Notice that the eigenvalues(�)m(`)=(`a2)m(`) are positive (since m`+1 = � � �= mr = 0 and � > a2(`�1)). If f =Pm(`) fm(`)and g =Pm(`) gm(`) are polynomials then< Tf; g >�= Xm(`) 1(`a2)m(`) < fm(`); gm(`) >F=< f; g >`a2 :18



Thus T 120 maps H`a2 into H� isometrically. Using the notation �(`) = m(`) � �(`), Lemma3.1 guarantees that there exists a symmetric function of �(`) of the form p(�(`)(�(`))) =p(�(`)1 (�(`)); : : : ; �(`)` (�(`))), so that for all m(`) � 0(�)m(`)(`a2)m(`) = p(�(`)(�(`))):Hence T := p(�(`)) = p(�(`)1 ; : : : ;�(`)` ) is a GL(
(`))-invariant operator whose restriction tothe holomorphic functions of the form Pm(`) fm(`) is T0. If n := � � `a2 2 N, then (3.6) showsthat p is the polynomialp(x1; : : : ; x`) = n�1Y�=0 X̀k=0(`a2 + � � a4(`� 1))`�kxk!where x0 := 1. HenceT = p(�(`)1 ; : : : ;�(`)` ) = n�1Y�=0 X̀k=0(`a2 + � � a4(`� 1))`�k�(`)k !is a member of D` (i.e. a polynomial in the generators �(`)1 ; : : : ;�(`)` ).Using (3.4) and Corollary 2.2 we obtain the following result.Corollary 3.1 Let f; g 2 H`a2 have Peter-Weyl expansions f =Pm(`) fm(`) and g =Pm(`) gm(`).Then for every symmetric function of �(`) of the formp(�(`)(�(`))) = p(�(`)1 (�(`)); : : : ; �(`)` (�(`)))the corresponding di�erential operatorp(�(`)) = p(�(`)1 ; : : : ;�(`)` ) 2 D`satis�es for every x 2 
(`):p(�(`))�ff�g(x)� = (3.14)= c` Xm(`) (`a2)m(`)(r a2)m(`)(dr)m(`) p(�(`)(m(`) � �(`))) < fm(`) ; gm(`) >F �(`)m(`)(x):If � > p` � 1 = (`� 1)a+ 1 + b, thenZI` p(�(`))�ff�g� d�(`)� = (3.15)= c` Xm(`) (`a2)m(`)(d`̀ )m(`)(r a2)m(`)(dr )m(`)(�)m(`) p(�(`)(m(`) � �(`))) < fm(`); gm(`) >F :Here c` = �
(`)(`a2)=�
(`)(r a2), d` = dimR(X1(u`)) = `(` � 1)a2 + 1, and �(`)� is the measurede�ned in (2.37). 19



Notice that by Lemma 3.1 the coe�cients of < fm(`); gm(`) >F �(`)m(`)(x) in (3.14) and (3.15)are symmetric functions of �(`) :=m(`) � �(`).Remarks: (i) If one uses (3.14) with x = u`, one obtains (with T = p(�(`)))( ~Tf � �g)(u`) = T ( ~f � �g)(u`) = (3.16)= c` Xm(`) (`a2)m(`)tm(`)(r a2)m(`)(dr)m(`) < fm(`); gm(`) >F :(ii) If we choose T so that its eigenvalues satisfyc` (`a2)m(`)tm(`)(r a2)m(`)(dr )m(`) = 1(`a2)m(`)then for every f; g 2 H`a2̂Tf � �g(u`) = Xm(`) < fm(`); gm(`) >F(`a2)m(`) =< f; g >`a2 :Namely < f; g >`a2= ZS`(Tf � �g)(v) d�`(v): (3.17)This realizes H`a2 as a Hardy-type space on S`(iii) It would be interesting to exhibit T in concrete terms (not only via its eigenvalues). Ifa is even then T 2 D`, i.e. T is a polynomial in the generators �(`)1 ;�(`)2 ; : : : ;�(`)` of D`. Itwould be interesting also to exhibit T as a linear combination of Yan's operators (see [AU97]).If a is odd then either D is of type IVn with n odd (a case which was considered in [AU97]and [AU98] since ` = 1), or D is of type IIIr (with a = 1).Theorem 3.2 Let 0 � ` � r� 1 and let � > p` � 1 = (`� 1)a+1+ b. Let p(�(`)(�(`))) be thesymmetric function of �(`) = (�1; �2; : : : ; �`) so thatp(�(`)(�(`))) = 1c` (r a2)m(`)(dr )m(`)(�)m(`)(`a2)2m(`)(d`̀ )m(`) (3.18)for every �(`) := m(`) � �(`). Let T = p(�(`)1 ; : : : ;�(`)` ) be the GL(
(`))-invariant operatorde�ned via the functional calculus (Lemma 2.1). Then for every f; g 2 H`a2< f; g >`a2= ZI` T �ff�g� d�(`)� ; (3.19)where �(`)� is the measure de�ned in (2.37). Moreover, if s := ��`a2 2 N, then p is a polynomialin �(`) and T 2 D`, i.e. T is a GL(
(`))-invariant di�erential operator on 
.Proof: The right hand side of (3.18) is symmetric in �(`) := m(`) � �(`) by Lemma 3.1.Thus (3.14) yields for any f; g 2 H`a2 with Peter-Weyl expansions f = Pm(`) fm(`) and g =20



Pm(`) gm(`),ZI` T �ff�g� d�(`)� = Xm(`) < fm(`); gm(`) >F (�)m(`)(`a2)m(`)(d`̀ )m(`) ZI` �(`)m(`)(x) d�(`)� (x)= Xm(`) < fm(`); gm(`) >F(`a2)m(`) =< f; g >`a2 :Assume that s := � � `a2 2 N. If also n := (r � `)a2 2 N thenra2 � `a2 = dr � d`̀ = n;and Lemma 3.1 guarantees that p is a symmetric polynomial of degree `(s+2n) in (�1; �2; : : : ; �`).If (r � `)a2 =2 N, then necessarily b = 0, and bothn1 := (r � `+ 1)a2 � 1 and n2 := dr � `a2 = (r� 1� `)a2 + 1are in N. Again, Lemma 3.1 guarantees that p is a polynomial of degree `(s + n1 + n2) in(�1; �2; : : : ; �`). This completes the proof.Remarks:(i) Using Lemma 2.2 and Proposition 2.1 it follows that if T is a GL(
(`))-invariant operatoron C1(
(`)), then for every f; g 2 H`a2T �ff�g� = T̂ f � �g = f̂ � Tg: (3.20)Theorems 3.1 and 3.2 can be reformulated accordingly. For instance, (3.19) can be re-written as < f; g >`a2= ZI` T̂ f � �g d�(`)� = ZI` f̂ � Tg d�(`)� : (3.21)(ii) Formula (3.18) can be rewritten as< f; g >`a2= ZK  ZD0(v`)(Tf � �g)(k(z))d�(`)� (z)! dk4 Integral formulas in the context of symmetric Siegel domainsIn this section we develop integral formulas for the inner products in the spaces H`a2 (T (
)),(where T (
) is the symmetric Siegel associated to D via the Cayley transform) in terms of theFourier transform of the functions. We begin with the relatively simple case of a Siegel domainof type I . The results presented below for the discrete Wallach points f`a2gr�1`=0 will be somewhatanalogous to our earlier results [AU97] for the continuous Wallach points � > (r � 1)a2 . Thedevelopment of the integral formulas in the context of a general symmetric Siegel domain oftype II requires additional machinery, and will be treated separately.The case of a symmetric Siegel domain of type I21



Assume that Z is a JB�-algebra with a unit e. The open unit ball of Z is holomorphicallyequivalent to the tube domain T (
) = X + i
via the Cayley transform c(z) = i(e+ z)(e� z)�1; z 2 D. T (
) is a symmetric Siegel domainof type I . For any � 2 W (D) the operator V (�)f = (f � c�1)(J c�1)�=p maps the space H�(D)isometrically onto a Hilbert space of analytic functions on T (
), denoted by H�(T (
)). Theinner product in H�(T (
)) is de�ned byhf; gi� = hf; giH�(T (
)) = hV (�)�1(f); V (�)�1giH�(D) : (4.1)The description of H�(T (
)) is therefore equivalent to the description of H�(D).The reproducing kernel of H�(T (
)) isK�(z; w) = N�z � w�i ���; z; w 2 T (
) : (4.2)Namely, for all z; w 2 T (
)(J(c�1)(z)�=p h(c�1(z); c�1(w))�� (J c�1(w))�=p = N�z � w�i ��� :It is known that for � > p� 1 H�(T (
)) is the weighted Bergman spaceH�(T (
)) = L2a(T (
); m�) = L2(T (
); m�) \ fanalytic functiongwhere dm�(z) = c� dx N(2y)��pdy; z = x+ iy; x 2 X; y 2 
and c� = �
(�)�d �
(y � dr )Also, the Shilov boundary of T (
) is X := fz 2 Z; z� = zg, and H dr (T (
)) coincides withthe Hardy space H2(X) (consisting of all analytic functions f in T (
) for which k f k2H2(X):=supy2
 RX jf(x+ iy)j2dx <1).Using the Fourier transform (with respect to x) one obtains the following result. Here for� > (r � 1)g2 we consider on 
 the measured ��(v) = ��N(v) dr�� dv; �� = (2�)�2d�
(�): (4.3)Proposition 4.1 [AU97; Proposition 6.1] Let � > (r � 1) a2 , and let f be a holomorphicfunction in T (
). Then the following are equivalent:(i) f 2 H�(T (
));(ii) The boundary values f(x) := lim
3y!0 f(x + iy) exist almost everywhere on X, and theFourier transform f̂ of f(x) is supported in 
 and belongs to L2(
; ��);Moreover, the map f 7! f̂ is an isometry of H�(T (
)) onto L2(
; ��). Consequently, for allf; g 2 H�(T (
)) hf; gi� = Z
 f̂ ĝ d �� (4.4)22



Our goal here is to extend Proposition 4.1 to the discrete Wallach points `a2 ; ` = 0; 1; 2; : : : ; r�1. With respect to the �xed frame fejgrj=1 of minimal, pairwise orthogonal idempotents, wedenote u` = Pj̀=1 ej , v` = Prj=`+1 ej , 0 � ` � r � 1. Recall that the orbits of GL(
) on @
are exactly @`
 = GL(
)(u`) = f'(u`); ' 2 GL(
)g (4.5)= fx 2 
; rank(x) = `g; ` = 0; 1; 2; : : : ; r� 1The following fundamental fact is established in [RV76] and [La87]. An explicit direct proofwill be given in Section 6 bellow.Theorem 4.1 Let 0 � ` � r � 1. There exists a unique measure �` on @`
, having thefollowing properties: d�`('(x)) = Det(')`a2= d1r d�`(x); 8' 2 GL(
) (4.6)where d1 = dim(Z1(e)) = r(r � 1)a2 + r, andZ@`
 e�<x;y> d�`(y) = 
` N`(x)�` a2 8x 2 
; (4.7)where 
` = (2�)`(r�`)a2�
(`)(`a2).Let GL(
) = LN
A be the Iwasawa decomposition. Then it is known that the setN
A(u`) = fx 2 @`(
); N`(x) > 0g (4.8)is open and dense in @` 
 and �`(@`
 nN
A(u`)) = 0. The following result is established in[La87].Lemma 4.1 An element x 2 @` 
 belongs to N
A(u`) if and only if in its Peirce decompositionrelative to u` : x = x1 + x1=2 + x0; x1 is invertible in X1(u`) andx0 = 2 v`(x1=2(x1=2 x�11 )) (4.9)The expression of �` in the coordinates (x1; x1=2) of x 2 N
A(u`) isd�`(x) = N`(x1)`a2� dr dx1 dx1=2 (4.10)The properties of �` enable us to describe the space H`a2 .Lemma 4.2 Fix w 2 T (
) and 0 � ` � r � 1. Then the Fourier transform with respect to xof the function K(`a2 )w (x) = K(`a2 )(x; w) = N(x�w�i )�`a2 is the following measure with support@` 
: \K(`a2 )w (t) = (2�)d
` e�ihw� jti d�`(t) (4.11)where 
` = (2�)`(r�`)a2�
(`)(a2), as in Theorem 4.1.23



Proof: Theorem 4.1 and the fact that 
 is a set of uniqueness for holomorphic functions onT (
) imply that for all z 2 T (
)Z@`
 eihzjtid �`(t) = 
` N(zi )`a2It follows that for all z; w 2 T (
)K(`a2 )(z; w) = �N�z � w�i ���`a2 = 1
` Z
` e�h z�w�i jti d �`(t) :Hence K(`a2 )w (x) = 1
` Z@`
 eihxjtie�ihw�jti d �`(t); w 2 T (
) (4.12)Thus K(`a2 )w (x) is the inverse Fourier transform of the measure (2�)d
` e�ihw� jti d �`(t), which issupported on @` 
, and (4.11) follows.Lemma 4.2 can be reformulated by saying that\K(`a2 )w is a measure supported in @` 
 whichis absolutely continuous with respect to �`, with Radon-Nikodym derivatived\K(`a2 )wd �` (t) = (2�)d
` e�ihw� jti (4.13)Lemma 4.3 For every z; w 2 T (
) and 0 � ` � r � 1Dd\K(`a2 )wd �` ; d\K(`a2 )zd �` EL2(@`
;�`) = (2�)2d
` K(`a2 )(z; w) (4.14)Proof: Both sides of (4.14) are holomorphic in z and anti-holomorphic in w. Therefore itsu�ces to prove (4.14) for z = w = u+ iv; u 2 X; v 2 
. In this case we obtain by Lemma4.1 ����������d\K(`a2 )d �` ����������2L2(@`
;�`) = (2�)2d
 2̀ Z@`
 ���e�ihw� jti���2 d �`(t) = (2�)2d
 2̀ Z@` 
 e�ih2vjti d �`(t)= (2�)2d
` N(2v)�`a2 = (2�)2d
` K(`a2 )(w;w) :Fix 0 � ` � r � 1 and consider the spaceH(0)`a2 (T (
)) := span nK(`a2 )w ; w 2 T (
)o : (4.15)We de�ne a map V (0)` on H(0)`a2 (T (
)) viaV (0)` f = 
 12̀(2�)d d f̂d �` ; (4.16)24



where f̂ is the Fourier transform of the restriction of f to the Shilov boundary X , and d f̂d �`is the Radon-Nikodym derivative of the measure f̂ with respect to �`, which exists in view ofLemma 4.2 and the fact that f 2 H(0)`a2 (T (
)).Lemma 4.4 V (0)` is an isometry of H(0)`a2 (T (
)) into L2(@` 
; �`), and it has a dense range.Proof: : Let f = nPj=1 cjK(`a2 )wj 2 H(0)`a2 (T
). Thenk f k2̀a2= nXi;j=1 ci cj hK(`a2 )wi ; K`a2wj i`a2 = nXi;j=1 ci cj K(`a2 )(wj ; wi) :Also, Lemma 4.3 impliesk V (0)` k2L2(@`
�`) = 
`(2�)2d nXi;j=1 ci cj Dd\K(`a2 )wid �` ; d\K(`a2 )wjd �` EL2(@`
;�`)= nXi;j=1 ci cj K(`a2 )(wj ; wi) =k f k2̀a2Thus V (0)` is an isometry. The range of V (0)` contains all the functionsV (0)` �
1=2` K(`a2 )w � (t) = e�ihw�jti; w 2 T (
) :The linear span of these functions is a self-adjoint sub-algebra of C(@`
), which separatesthe points of @` 
. Therefore V (0)` (H(0)`a2 (T (
)) is dense in C0(@` 
) by the Stone-Weierstrasstheorem. Since �` is mutually absolutely continuous with respect to Lebesgue measure on @` 
,the density of V (0)` (H(0)`a2 (T (
)) in L2(@`
; �`) follows now by standard arguments.It follows from Lemma 4.4 that V (0)` extends an isometry V` ofH(0)`a2 (T (
)) onto L2(@` 
; �`).The exact statement is the following result.Theorem 4.2 Let 0 � ` � r�1 , and let f be a holomorphic function in T (
). The followingconditions are equivalent:(i) f 2 H`a2 (T (
));(ii) The boundary values f(x) = lim
3y!0 f(x + iy) exist almost everywhere on X, the Fouriertransform f̂ of f(x) is a measure with support in @` 
 which is absolutely continuous withrespect to �`, and the Radon-Nikodym derivative d f̂d �` belongs to L2(@`
; �`). Moreover, themap V` f = d f̂d �` is an isometry of H`a2 (T (
)) onto L2(@`
; �`). Thus for all f; g 2 H(0)`a2 (T (
))hf; gi`a2 = �
(`)(`a2)(2�)2�` Z@` 
 d f̂d �` (t) d ĝd �` (t) d �`(t) (4.17)where �` = d� `(r� `) a2 . 25



Expressing �` via (4.10) on N
A(u`), we obtainhf; gi`a2 = �
(`)(`a2)(2�)2�` ZN
 A(u`) d f̂d �` (t) d ĝd �` (t) N`(t1)`a2� dr dt1 dt2 (4.18)Remark 4.1 In the case where � > (r � 1) a2 , (4.4) can be written in the formhf; gi� = �
(�)(2�)2d Z
 d f̂d �� (t) d ĝd �� (t) N(t)�� dr dt (4.19)(where f̂ ; ĝ are considered as the measures f̂(t) dt and ĝ(t) dt). Thus (4.18) is the right analogueof (4.19), and therefore of (4.4). It is an interesting problem to obtain (4.18) from (4.19) byanalytic continuation in the parameter �.The case of a symmetric Siegel domain of type IIAssume now that e is a maximal tripotent in Z which is not unitary. Thus Z1(e) +Z1=2(e)and Z1=2(e) 6= 0. Thusd1 := dim Z1(e) = r + r(r� 1) a2 ; d1=2 := dim Z1=2(e) = rb(where 1 � b 2 N). Z1(e) is a JB�-algebra which operates on Z1=2(e) viaR(z)w = 2fz; e; �g; z 2 Z1(e); � 2 Z1=2(e) : (4.20)R : Z1(e) ! End (Z1=2(e)) is a monomorphism of Jordan �-algebras, where the involution inEnd (Z1=2(e)) is induced by the given K-invariant inner product h�j�i (see [Lo75], Lemma 8.1,p.75). Let us denote F (�; �) = f�; �; eg; �; � 2 Z1=2(e) : (4.21)Then F : Z1=2(e) � Z1=2(e) ! Z1(e) is sesquilinear, and F (�; �) 2 
 for all � 2 Z1=2(e). Wedenote also F (�) := F (�; �). Let us de�ne � : Z � Z ! Z1(e) by�(z; w) = z1 � w�1i � 2F (z1=2; w1=2) (4.22)where z = z1+ z1=2; w = w1+w1=2 (z1; w1 2 Z(e)1 and z1=2; w1=2 2 Z1=2(e)). For conveniencewe denote �(z) = �(z; z). The associated Siegel domain of type II isT (
) := fz 2 Z; �(z) 2 
g : (4.23)It is known that the Cayley transformc(z) = i e + z1e � z1 +p2 R((e� z1)�1)(z1=2); z = z1 + z1=2 (4.24)maps the Cartan domain D (i.e. the open unit ball of Z) biholomorphically onto T (
).Again, for � 2 W (D) the operator V (�)f = (f � c�1)(J c�1)�=p maps H�(D) isometrically ontoH�(T (D)), which is endowed with the inner product (4.1). Also, the reproducing kernel ofH�(T (D)) is K(�)(z; w) = N(�(z; w))��; z; w 2 T (
) : (4.25)26



Our main goal here is to describe the inner product of H�(T (D)) concretely.The Shilov boundary of T (
) is the setH = fz 2 T (
); �(z) = 0g = fx+ i F (�) + �; x 2 X1(e) + � 2 Z1=2(e)g: (4.26)Proposition 4.2 Let �; � 2 Z1=2(e). Then for every v 2 
jhF (�; �)jvij � hF (�jv)i1=2hF (�jv)i1=2 � 12hF (�) + F (�)jvi: (4.27)Thus ReF (�; �) � 12h(F (�) + F (�)): (4.28)The straightforward proof is based on the positivity of F (i.e. the fact that F (�) 2 
 for all� 2 Z1=2(e)), and it is omitted.Corollary 4.1 For all z; w 2 T (
)Re (�(z; w))� 12(�(z) + �(w)) : (4.29)In particular Re (�(z; w)) 2 
, and this is true even if z 2 H and w 2 T (
).Proof: Using (4.28) we have2R�(z; w) = z1 � z�1i + w1 � w�1i � 4ReF (z1=2; w1=2)� z1 � z�1i + w1 � w�1i � 2F (z1=2)� 2F (w1=2) = �(z) + �(w) :For � > (r�1) a2 consider the measure d��(x) = N(x)�� d1r dx on 
. For � = `a2 ; 0 � ` � r�1,let �� := �` be the Lassalle measure (see Theorem 4.1 and Section 6 bellow). Then for all� 2 W (D) Z
 e�hyjxi d��(x) = 
�N(y)��; (4.30)with 
� = �
(�) for � > (r�1)a2, and 
� = 
` = (2�)`(`�1)a2 �
(`)(`a2) for � = `a2 ; 0 � ` � r�1.Corollary 4.2 Let z; w 2 T (
) and let � 2 W (D). ThenK(�)(z; w) = 1
� Z
 e�h�(z;w)jti d ��(t) : (4.31)The formula holds also for z 2 H and w 2 T (
).Proof: Since Re �(z; w) 2 
, the integral converges absolutely, and uniformly on compactsubsets of T (
) � T (
). Therefore, the integral is holomorphic in z and anti-holomorphicin w. Since K(�)(z; w) is also sesqui-holomorphic, it is enough to show that (4.31) holds forz = w 2 T (
). Writing z = x+ iy + � (x 2 X; (e); y 2 
; � 2 Z1=2(e)), and using (4.30), weobtain Z
 e�h�(z)jti d ��(t) = 
�N(�(z))�� = 
�K(�)(z; z) :Thus (4.31) is established for all z; w 2 T (
). Letting �(z) ! 0 in (4.31) for �xed w 2 T (
)(i.e. z ! H), we obtain (4.31) also for z 2 H and w 2 T (
).27



Lemma 4.5 Let � 2 W (D), �x w = u+ iv+ � 2 T (
) (with u 2 X1(e); v 2 
; � 2 Z1=2(e))and � 2 Z1=2(e), and consider the functionK(�)w;�(x) = K(�)(x+ i F (�) + �; w); x 2 X1(e) : (4.32)Then the Fourier transform of K(�)w;�, considered as measure, has support in 
, and is given byK(�)w;�(t) = (2�)d1
� exp f�hF (�) + v � 2F (�; �)+ iujtig d��(t): (4.33)Proof: Using (4.31) for w 2 T (
) and z = x+ i F (�) + � 2 H , we obtainK(�)w;�(x) = 1
� Z
 eihxjti e�hF (�)+v�2F (�;�)+iujti d ��(t) :Thus K(�)w;� is the inverse Fourier transform of the measure 
�1� exp f�hF (�) + v � 2F (�; �) +iujtig d ��(t), whose support is contained in 
. From this (4.33) follows by inverting theFourier transform.For � > (r � 1) a2 we consider on 
� Z1=2(e) the measured ��(t; �) = N(t)b d ��(t) d� = N(t)�� d1r +b dt d� : (4.34)Lemma 4.6 For every w 2 T (
)Z Z
�Z1=2(e) ���[K(�)w;�d �� (t) ���2 d ��(t; �) = (2�)rp�
(�) K(�)(w;w) : (4.35)Proof: Writing w = u+ iv + � as in Lemma 4.5, we obtain �� from (4.33)ZZ1=2(e) ���d[K(�)w;�d �� (t) ���2 d� = (2�)2d1
2� e�2hvjti ZZ1=2(e) e�2hF (�)�2ReF (�;�)jti d�= (2�)2d1
2� e�2hvjti e2hF (�)jti ZZ1=2(e) e�2hF (���)jti d�= (2�)2d1
2� e�h�(w)jti ZZ1=2(e) e�kR(t1=2)�k2 d�= (2�)2d1+rb
2� N(t)�b e�h�(w)jti :Here we used the well-known formulahxjfy; z; wgi = hfx; y; zgjwi; 8 x; y; z; w 2 Z (4.36)to obtain k R(t1=2) � k2= h�jR(t) �i = h�j2ft; e; �gi = 2hf�; �; egjti= 2hF (�)jti :28



It follows that Z Z
�Z1=2(e) ���d[K(�)w;�d �� (t) ���2 d� N(t)b d ��(t) == (2�)rp
2� Z
 e�h�(w)jti d ��(t)= (2�)rp�
(�) �N(�(w))�� = (2�)rp�
(�) K(�)(w;w) :Corollary 4.3 Let � > (r� 1)a2. For all z; w 2 T (
)Z
 ZZ 12 (e) d[K(�)w;�d�� (t)ddK(�)z;�d�� (t) d��(t; �) = (2�)rp�
(�) K(�)(z; w): (4.37)Also, considering[K(�)w;�(t) as a function, we haveZ
 ZZ 12 (e)[K(�)w;�(t) dK(�)z;� (t) d� N(t) dr�� dt = (2�)rp�
(�) K(�)(z; w): (4.38)Proof: Both sides of (4.37) are sesqui-holomorphic in (z; w) and coincide on the \diagonal"z = w by Lemma 4.6. Hence they coincide for all z; w 2 T (
). (4.38) is an obvious consequenceof (4.37), since d[K(�)w;�d�� (t) �N(t)�� dr =[K(�)w;�(t): (4.39)The generalization of Proposition 4.1 to Siegel domains of type II is the following result.Theorem 4.3 Let T (
) be a symmetric Siegel domain of type II, let � > (r� 1)a2, and let fbe a holomorphic function on T (
). Then the following conditions are equivalent(i) f 2 H�(T (
));(ii) The boundary values of f at points z = x+ iF (�)+ � (x 2 X1(e); � 2 Z 12 (e)) of the Shilovboundary H, i.e.f�(x) = f(x+ iF (�) + �) = lim
3y!0 f(x+ iy + iF (�) + �)exist almost everywhere, the Fourier transform f̂�(t) is supported in �
, andZ
 ZZ 12 (e) jf̂�(t)j2 d� N(t) dr�� dt <1:29



Moreover, the operator V� : H�(T (
))! L2(
� Z 12 (e); N(t) dr�� dt d�) de�ned by(V�f)(t; �) = �
(�) 12(2�) rp2 f̂�(t) (4.40)is an isometry of H�(T (
)) onto L2(
�Z 12 (e); N(t) dr�� dt d�). In particular, for every f; g 2H�(T (
)) < f; g >�= �
(�)(2�)rp Z
 ZZ 12 (e) f̂�(t) ĝ�(t)d� N(t) dr�� dt: (4.41)The proof uses (4.38) and is analogous to the proofs of Proposition 4.1 (i.e. Proposition 6.1 andTheorem 6.1 of [AU97]) and to the proof of Theorem 4.2. Therefore we omit it. We remarkthat in view of (4.37),(4.41) can be written also in the form< f; g >�= �
(�)(2�)rp Z
 ZZ 12 (e) df̂�(t)d�� dĝ�(t)d�� d��(t; �); (4.42)where �� is the measure de�ned by (4.34).We turn now to the case where � = `a2 , 0 � ` � r � 1 (and for simplicity denote �`a2 = �`and 
`a2 = 
`).Let t 2 @`
, then its support idempotent s(t) has rank `. Thus Z 12 (e) is the direct sumZ 12 (e) = �Z 12 (e)\ Z 12 (s(t))�+ �Z 12 (e)\ Z0(s(t))� : (4.43)Let us denote @` �[T (
)� = ft+ �; t 2 @`
; � 2 Z 12 (e) \ Z 12 (s(t))g: (4.44)(The notation is chosen as to indicate that the Fourier transforms of functions in H`a2 (T (
))are supported in @` �[T (
)�).@` �[T (
)� can be viewed as a bundle whose base is @`
, and the �ber over t 2 @`
 is Z 12 (e)\Z 12 (s(t)). Let us consider on @` �[T (
)� the measure ~�`, de�ned byZ@`�[T (
)� fd ~�` = Z@`
0@ZZ 12 (e)\Z 12 (s(t)) f(t+ �) d�1Ad�`(t): (4.45)For every t 2 @`
 let det(t) = NX1(s(t))(t) be the determinant of t in the Jordan algebraX1(s(t)). We de�ne a measure �` on @` �[T (
)� viaZ@`�[T (
)� fd�` = Z@`
0@ZZ 12 (e)\Z 12 (s(t)) f(t + �) d�1A det(t)bd�`(t); (4.46)i.e., d�`(t; �) = det(t)bd~�`(t; �). Namely, on the base @`
 we use the measure �` and at the�ber above t 2 @`
 we use the measure det(t)bd�. Notice the analogy between �` and �� for� > (r � 1)a2 . 30



Lemma 4.7 Let 0 � ` � r � 1 and �x w = u + iv + � 2 T (
) (where u 2 X1(e), v 2 
 and� 2 Z 12 (e)). Then the Fourier transform (with respect to x) of K(`a2 )w;� (x) = K(`a2 )w (x+ iF (�)+�)is a measure on @` �[T (
)� which is absolutely continuous with respect to ~�`, andd\K(`a2 )wd~�` (t; �) = (2�)d1
` exp �*iu� 2i=F (�; �)+ 12�(w) + F (� � �)�����t+! : (4.47)Moreover, with �` = (2�)2d1+`b�`(r�`)a2 � 2�`b we haveZ@`�[T (
)� ������d\K(`a2 )wd~�` ������2 d�` = �`
` K(`a2 )(w;w): (4.48)Proof: Using Lemma 4.5 for � = `a2 , we see that for t 2 @`
 and � 2 Z 12 (e),\K(`a2 )w;� (t) = (2�)d1
` exp (� hiu+ v + F (�)� 2F (�; �)jti) d�`(t):It is easy to see that for all �; � 2 Z 12 (e)hF (�; �)jti= hF (P 12 (s(t))�; P 12 (s(t))�)jti: (4.49)Hence, the measure\K(`a2 )w is supported in @` �[T (
)�, it is absolutely continuous with respectto ~�`, and its Radon-Nikodym derivative with respect to ~�` is given by (4.47). Next, using(4.49) we see that for �xed t 2 @`
ZZ 12 (e)\Z 12 (s(t)) ������d\K(`a2 )wd~�` (t; �)������2 d� = (2�)2d1
 2̀ e�h�(w)jti ZZ 12 (e)\Z 12 (s(t)) e�2hF (�)jtid�= (2�)2d1�`b
 2̀ e�h�(w)jti det(t)�b:Hence, using Corollary 4.2, we obtainZ@`�[T (
)� ������d\K(`a2 )wd~�` (t; �)������2 d�`(t; �) = (2�)2d1�`b
 2̀ Z@`
 e�h�(w)jtid�`(t)= �`�
(`)(`a2) N(�(w))�`a2 = �`�
(`)(`a2) K(`a2 )(w;w):Corollary 4.4 Let 0 � ` � r � 1. For every z; w 2 T (
),Z@`�[T (
)� d\K(`a2 )wd~�` � d\K(`a2 )zd~�` d�` = �`�
(`)(`a2) K(`a2 )(z; w): (4.50)Proof: Both sides of (4.50) are holomorphic in z and anti-holomorphic in w, and they coincideon the \diagonal" z = w. Hence they coincide for all z; w 2 T (
).31



Theorem 4.4 Let T (
) be a symmetric Siegel domain of type II, let 0 � ` � r � 1, and let fbe a holomorphic function on T (
). The following conditions are equivalent(i) f 2 H`a2 (T (
));(ii) The boundary values of ff�(x) = f(x+ iF (�) + �) = lim
3y!0 f(x+ iy + iF (�) + �)exist for almost all points x+ iF (�)+ � of the Shilov boundary H, the Fourier transformf̂�(t) := RX1(e) e�ihxjtif�(x)dx is a measure with support in @` �[T (
)� which is abso-lutely continuous with respect to ~�`, and the Radon-Nikodym derivative @f̂@~�` belongs toL2 �@` �[T (
)� ; �`�.Moreover, the operator V` : H`a2 (T (
))! L2 �@` �[T (
)� ; �`� de�ned via(V`f)(t; �) = ��
(`)(`a2)�` � 12 @f̂@~�` (t; �) (4.51)is a surjective isometry. Thus, for all f; g 2 H`a2 (T (
)),< f; g >`a2 = �
(`)(`a2)�` Z@`�[T (
)� @f̂@~�` � @ĝ@~�`d�` (4.52)= �
(`)(`a2)�` Z@`
0@ZZ 12 (e)\Z 12 (s(t)) @f̂@~�` (t; �) � @ĝ@~�` (t; �) det(t)b d�1Ad�`(t):The proof of Theorem 4.4 uses Lemma 4.7 and Corollary 4.4, as well as the standard argumentsused in the proofs of Proposition 4.1 and Theorem 4.2; it is therefore omitted.Although the bundle @` �[T (
)� and the measure �` give natural and canonical descriptionof the space H`a2 and its inner product (Theorem 4.4), they are not easy to use in some concretecomputation. We therefore develop now a formula for< f; g >`a2 analogous to (4.52) with moreconcrete space and measure, which are however not invariant.Recall that u` =Pj̀=1 ej , v` =Prj=`+1 ej . We writeZ( 12 )12 = Z 12 (e) \ Z 12 (u`); Z(0)12 = Z 12 (e) \ Z0(u`): (4.53)Thus Z 12 (e) = Z( 12 )12 + Z(0)12 . Recall also (see Lemma 4.1) that every t 2 N
A(u`) � @`
 hasPeirce decomposition t = t1+ t 12 + t0, where t1 2 X1(u`) positive and invertible, t 12 2 X 12 (u`) =X 12 (v`), and t0 2 X1(v`) depends on t1 and t 12 viat0 = 2v`(t 12 (t 12 t�11 )); (4.54)where t�11 is the inverse of t1 in X1(u`). 32



Lemma 4.8 For every � = � 12 + �0 2 Z 12 (with � 12 2 Z( 12 )12 and �0 2 Z(0)12 ) and every t =t1 + t 12 + t0 2 N
A(u`), 2hF (�)jti = kR(t 121 )� 12 +R(t� 121 )R(t 12 )�0k2 (4.55)where t� 121 is the inverse of t 121 in X1(u`).Proof: (4.55) will follow as soon as we prove that2hf� 12 ; � 12 ; u`gjt1i = kR(t 121 )� 12 k2 (4.56)2hf�0; � 12 ; u`gjt 12 i = hR(t� 121 )R(t 12 )�0jR(t 121 )� 12 i (4.57)2hf� 12 ; �0; v`gjt 12 i = hR(t 121 )� 12 jR(t� 121 )R(t 12 )�0i (4.58)and 2hf�0; �0; v`gjt0i = kR(t� 121 )R(t 12 )�0k2: (4.59)Indeed, by the \Peirce calculus" and orthogonality of the Peirce spaces2hF (�)jti = 2hf� 12 + �0; � 12 + �0; u` + v`gjt1 + t 12 + t0i= 2hf� 12 ; � 12 ; u`gjt1i+ 2hf�0; �0; v`gjt0i+2hf�0; � 12 ; u`gjt 12 i+ 2hf� 12 ; �0; v`gjt 12 i:Using the fact that R : Z1(e) ! End(Z 12 (e)) is a monomorphism of Jordan-�-algebras, (see[Lo75], Lemma 8.1, p. 75), we see that RjZ1(u`) : Z1(u`) ! Z( 12 )12 is also a monomorphism ofJordan-�-algebras. In particular, for every � 12 2 Z( 12 )12 ,R(t 121 )R(t 121 )� 12 = R(t1)� 12 and R(t� 121 )R(t 121 )� 12 = R(u`)� 12 = � 12 :It follows that kR(t 121 )� 12 k2 = h� 12 jR(t 121 )�R(t 121 )� 12 i = h� 12 jR(t1)� 12 i= 2h� 12 jf� 12 ; u`; t1gi; since t1 is orthogonal to v`= 2hf� 12 ; � 12 ; u`gjt1i; by (4.36);and (4.56) is established. Using similar arguments and the fact that R(t 12 )Z(0)12 � Z( 12 )12 , weobtain hR(t 121 )� 12 jR(t� 121 )R(t 12 )�0i = h� 12 jR(t 121 )�R(t� 121 )R(t 12 )�0i = h� 12 jR(t 12 )�0i= 2h� 12 jf�0; v`; t 12 gi; since �0 is orthogonal to u`= 2hf� 12 ; �0; v`gjt 12 i:33



This establishes (4.58). The proof of (4.57) is similar and is therefore omitted. To prove (4.59),notice �rst that kR(t� 121 )R(t 12 )�0k2 = h�0jR(t 12 )R(t� 121 )�R(t� 121 )R(t 12 )�0i= h�0jR(t 12 )R(t�11 )R(t 12 )�0i:Next, since R is a Jordan homomorphism, it preserves the \quadratic representation" operatorP (x) := 2M(x)2 �M(x2) (where M(x)y := xy = fx; e; yg 8x; y 2 Z1(e)). ThusR(t 12 )R(t�11 )R(t 12 ) = R(P (t 12 )t�11 )= 2R(M(t 12 )2t�11 )� R(M(t212 )t�11 ):Now, M(t 12 )2t�11 = t 12 (t 12 t�11 ) 2 X1(u`) +X1(v`), hence2R(M(t 12 )2t�11 )�0 = 4ft 12 (t 12 t�11 ); v`; �0g; since �0 is orthogonal to u`= 4fv`(t 12 (t 12 t�11 )); v`; �0g= 2ft0; v`; �0g; by (4.54).Next, t212 2 X1(u`) +X1(v`). Hence M(t212 )t�11 2 X1(u`), and therefore R(M(t212 )t�11 )�0 = 0. Itfollows that kR(t� 121 )R(t 12 )�0k2 = h�0j2R(M(t 12 )2t�11 )�0 �R(M(t212 )t�11 )�0i= 2h�0jf�0; v`; t0gi = 2hf�0; �0; v`gjt0iand (4.59) is established. This completes the proof of Lemma 4.8.Let us de�ne a measure ~�` on the set N
A(u`)� Z( 12 )12 viaZN
A(u`) ZZ( 12 )12 f d~�` = ZN
A(u`)0@ZZ( 12 )12 f(t + � 12 )d� 121AN`(t1)bd�`(t): (4.60)Notice the analogy between ~�` and �` (and the fact that they use the same number of variables.The advantage of ~�` is that it uses �xed coordinates (t1; t1=2; �1=2) 2 
1(u`)�X1=2(u`)�Z(1=2)1=2 .Lemma 4.9 Let 0 � ` � r � 1 and w 2 T (
). ThenZN
A(u`) ZZ( 12 )12 ��������d\K(`a2 )w;� 12d�` (t)��������2 d~�`(t; � 12 ) = �`�
(`)(`a2) K(`a2 )(w;w); (4.61)where �` is as in Lemma 4.7.Proof: Write w = u + iv + � with u 2 X1(e), v 2 
 and � 2 Z 12 , and �x t 2 N
A(u`) withPeirce decomposition t = t1 + t 12 + t0 with t� 2 X�(u`) and t0 given by (4.54). Then��������d\K(`a2 )w;� 12d�` (t)��������2 = (2�)2d1
 2̀ e�h�(w)jtie�2hF (� 12��)jti;34



and in view of Lemma 4.8,ZZ(1=2)1=2 e�2hF (�1=2��)jti d�1=2 = ZZ(1=2)1=2 e�kR(t1=21 )(�1=2��1=2)�R(t�1=21 )R(t1=2)�0k2 d�1=2= ZZ(1=2)1=2) e�kz1=2k2 d(R(t�1=21 )z1=2) = �`bN`(t1)�b :Using this and the knowledge of the Laplace transform of �` (see Theorem 4.1), we obtainZN`A(u`) ZZ(1=2)1=2 �����d \K(`a2 )w;�1=2d�` (t)�����2d�1=2 N`(t1)b d�`(t) == (2�)2d1+`b
 2̀ ZN
A(u`) e�h�(w)jti d�`(t)= (2�)2d1+`b
` 2`b N(�(w))�`a2 = �`�
(`)(`a2) K(`a2 )(w;w) :Theorem 4.5 Let T (
) be a symmetric Siegel domain of type II. Let 0 � ` � r � 1, and letf be a holomorphic function on T (
). Then the following conditions are equivalent:(i) f 2 H`a2 (T (
));(ii) The boundary values of f at points of the Shilov boundary H:f�(x) := f(x+ i F (�) + �) lim
3y!0 f(x+ iy + i F (�) + �)exist almost everywhere on H, the Fourier transform f̂�(t) is a measure with support in @` 
which is absolutely continuous with respect to �`, and the Radon-Nikodym derivative d f̂�d �` (t)satis�es Z@`(
) ZZ(1=2)1=2 �����d f̂�1=2d�` (t)�����2d~�` (t; �1=2) < 1 :Moreover, the operator V` : H`a2 (T (
))! L2(@`
� Z(1=2)1=2 ; ~�`) de�ned via(V f)(t; �1=2) = ��
(`)(`a2)�` � 12 d f̂�1=2d�` (t) (4.62)is a surjective isometry. Thus, for all f; g 2 H`a2 (T (
)),hf; gi`a2 = �
(`)(`a2)�` ZN
A(u`) ZZ(1=2)1=2 df̂�1=2d�` (t) dĝ�1=2d�` (t) d�1=2 N`(t1)`a2+b� d1r dt1 dt1=2 : (4.63)35



The proof relies on Lemma 4.9 and standard techniques (as in the proof of earlier Theoremsin this section); it is therefore omitted.Remark: (1) @`(\(T (
)) should not be confused with the boundary orbit @`(T (
)) of T (
):@`(T (
)) = fz 2 T (
); �(z) 2 @`
g (4.64)(2) There is a representation ' 7! ~' of GL(
`) on Z1=2(e), de�ned on the generators of GL(
)via ]P (x) = R(x); x 2 
; and ~̀= `; ` 2 L :One has '(F (�; �)) = F ( ~'(�); ~'(�)); ' 2 GL(
); �; � 2 Z1=2(e):GL(
) acts also on @` �[T (
)� via':(t; �) = ('(t); ~'(�)); ' 2 GL(
); t 2 @`(
); � 2 Z1=2(e) \ Z1=2(s(t)) :In particular, ~'(�) 2 Z1=2(e)\Z1=2(s('(t))). The proof of Lemma 4.7 yields the transformationformula �` � ' = (Det ')(b+`a2 )= d1r �` 8' 2 GL(
) (4.65)as well as the Laplace transform formulaZ@`([T (
)) e�hv+F (�)jtid�`(t; �) = (2�)b`+(r�`)`a2 �
(`)(`a2) N(v)�`a2 (4.66)for all v 2 
. These properties are analogous to the corresponding properties of �` (seeTheorem 4.1).5 Realization of H�`(T (
)) and H�`(D) by boundary integrationIn this section our main concern will be the Wallach points�` = `a2 + dr ; 0 � ` � r � 1: (5.1)Let D be a Cartan domain and let T (
) be the associated symmetric Siegel domain (as in theprevious section). We assume that T (
) is of type II; the analysis in the type I case is easierand will follow from the general case.For 0 � ` � r � 1 consider the set@`(T (
)) = fz 2 T (
) ; �(z) 2 @`
g: (5.2)Thus @`(T (
)) consists of all pointsz = x+ iy + iF (�) + �; x 2 X1(e); � 2 Z 12 ; y 2 @`
: (5.3)Hence @`(T (
)) is the direct sum of the Shilov boundary H and i @`
:@`(T (
)) = H + i @`
: (5.4)36



We equip @`(T (
)) with the measuredMT (
)` (z) = "�1` dx d� d�`(y); (5.5)where z = x+ iy + iF (�) + � as in (5.3) and"` = 2d1�`2 a2 �d+`(`�r)a2 �
(`)(`a2)�
(`)(�`) : (5.6)The reason for including the constant "�1` in the measure will be clari�ed by the next lemma.Thus MT (
)` is a constant multiple of the product measure MT (
)` = mH � �`, wheredmH(x+ iF (�) + �) = dx d� (5.7)is the Haar measure of H .Lemma 5.1 Fix w = u+ iv + � 2 T (
), with u 2 X1(e); v 2 
 and � 2 Z 12 (e). ThenZ@`(T (
)) ���K(�`)w ���2 dMT (
)` = K(�`)(w;w): (5.8)Proof: Let z 2 @`(T (
)) have the decomposition (5.3). Then���K(�`)w (z)���2 = ����N(x� u+ 2=F (�; �)+ i (y + 12�(w) + F (� � �)))�����2�` :Hence, as in [AU97, Theorem 6.3]ZX ���K(�`)w (z)���2 dx = ZX ����N �x+ i �y + 12�(w) + F (� � �)�������2�` dx= cN �y + 12�(w) + F (� � �)��2�`+ d1r ;where d1 = dimRX1(e) = r(r � 1)a2 + r andc = 4d1�r�`�d1 �
(2�` � d1r )�
(�`)2 :Next, using the formulaN(s)�2�`+ d1r = 1�
(2�` � d1r ) Z
 e�hsjtiN(t)2�`�2 d1r dtwith s = y + 12�(w) + F (� � �), we obtainZZ 12 (e) ZX ���K(�`)w (z)���2 dxd� = c�
(2�` � d1r ) Z
 e�hy+ 12 �(w)jtiN(t)2�`�2 d1r dt ZZ 12 (e) e�hF (���)jtid�= (2�)rbc�
(2�` � d1r ) Z
 e�hy+ 12 �(w)jtiN(t)2�`�2 d1r �b dt:37



Thus, Z@`(T (
)) ���K(�`)w (z)���2 dMT (
)` (z) == "�1` (2�)rbc�
(2�` � d1r ) Z
 e�h 12 �(w)jtiN(t)2�`�2 d1r �b dt Z@`
 e�hyjti d�`(y)= "�1` (2�)rbc 
`�
(2�` � d1r ) Z
 e�h 12 �(w)jtiN(t)�`� d1r dt= "�1` (2�)rbc 
` �
(�`)�
(2�` � d1r ) N �12�(w)���` = K(�`)(w;w):For 0 � ` � r � 1 we consider the Hardy-type spaceH2 (@`(T (
))) = H2 �@`(T (
)); MT (
)` �consisting of all holomorphic functions f on (T (
)) for whichkfk2H2(@`(T (
))) := supt2
 Z@`(T (
)) jf(z + it)j2 dMT (
)` (z) (5.9)is �nite. Standard arguments show that for f 2 H2 (@`(T (
))) the boundary valuesf(z) := lim
3t!0 f(z + it); z 2 @`(T (
)) (5.10)exist almost everywhere, andkfk2H2(@`(T (
))) = lim
3t!0 Z@`(T (
)) jf(z + it)j2 dMT (
)` (z) (5.11)= Z@`(T (
)) jf(z)j2 dMT (
)` (z):See the proof of Theorem 6.3 in [AU97].Theorem 5.1 For 0 � ` � r � 1 we have H�` = H2(@`(T (
))), and moreoverkfk�` = kfk2H2(@`(T (
))); 8f 2 H�`(T (
)): (5.12)Thus, for all f; g 2 H�`< f; g >�`= lim
3t!0 Z@`(T (
)) f(z + it) g(z + it)dMT (
)` (z): (5.13)38



Theorem 5.1 is the generalization of Theorem 6.3 of [AU97] to symmetric Siegel domains of typeII. The proof uses Lemma 5.1 (which yields (5.12) and (5.13) for functions in H�`(T (
))(0) =spanfK(�`)w ; w 2 T (
)g) as well as the standard arguments used in the proofs of the theoremsin Section 6 and in the proof of Theorem 6.3 in [AU97].Notice that, in particular, the reproducing kernel of H2(@`(T (
))) isK(�`)(z; w) = N(�(z; w))��`; z 2 @`(T (
)); w 2 T (
): (5.14)Consider the inverse Cayley transform c�1 : T (
)! D,c�1(w) := w1 � iew1 + ie +p2i R((w1+ ie)�1)w 12 (5.15)(where w = w1+w 12 ; w1 2 Z1(e); w 12 2 Z 12 (e)). c�1 extends to @(T (
)) = fw 2 T (
); �(w) 2@
g, and it maps holomorphic boundary components of T (
) to holomorphic boundary com-ponents of D, and preserves the rank of the boundary components. But not every holomorphicboundary component B(v) = v + D0(v) of D is obtained in this way, since c(B(v)) = 1 ife� v is not invertible in Z1(e). Thusc�1 (@`(T (
))) = [v2Sr�`e�v invertible B(v) $ @r�`(D): (5.16)On the set c�1 (@`(T (
))) consider the measuredM D̀(z) := jJc(z)j� 2�`p dMT (
)` (c(z)): (5.17)Then M D̀ is absolutely continuous with respect to the volume measure on c�1 (@`(T (
))).Since @r�`(D)nc�1 (@`(T (
))) is a lower dimensional subset of @r�`(D), its volume measure iszero. This consideration enables us to consider M D̀ as an absolutely continuous measure onall of @r�`(D) in a unique way.The Hardy space H2(@r�`(D)) = H2 �@r�`(D); M D̀� (5.18)is the space of all holomorphic functions in D for whichkfk2H2(@r�`(D)) := sup0<t<1 Z@r�`(D) jf(tz)j2 dM D̀(z) (5.19)is �nite. By standard arguments, for each f 2 H2(@r�`(D)) the radial limit (here ft(z) :=f(tz)) f1(z) = limt!1� ft(z); z 2 @r�`(D) (5.20)exists in L2(@r�`(D)) and almost everywhere on @r�`(D). MoreoverkfkH2(@r�`(D)) = limt!1� kftkL2(@r�`(D))kf1kL2(@r�`(D)): (5.21)Recall that the operator f 7! (f � c)(Jc)�`=pmaps H�`(T (
)) isometrically onto H�`(D). Therefore Theorem 5.1 enables us to obtain thefollowing result. 39



Theorem 5.2 For 0 � ` � r � 1 we have H�`(D) = H2 �@r�`(D); M D̀� andkfk�` = kfkH2(@r�`(D);M D̀) 8f 2 H�`(D): (5.22)Thus, for all f; g 2 H�`(D)< f; g >�`= limt!1� Z@r�`(D) f(tz) g(tz)dM D̀(z): (5.23)Theorems (3.1) and (5.2) combine to yield the following result.Theorem 5.3 Let 0 � ` � r�1 and, as before, let �` = `a2 + dr . Then there exists an operatorT on C1(D [ @r�`(D)) which is GL(
(`))-invariant, so that(i) For every f 2 H`a2 (D) with Peter-Weyl expansion f =Pm(`) fm(`), one hasTf = Xm(`) (�`)m(`)(`a2)m(`) fm(`): (5.24)(ii) For all f; g 2 H`a2 (D),< f; g >`a2 = < Tf; g >H2(@r�`(D))= limt!1� Z@r�`(D) T (fg) dM D̀: (5.25)The volume measure m on @r�`(D) is given byZ@r�`(D) f dm = ZSr�` d�r�`(v) ZD0(v) fv(z) dmv(z) (5.26)where mv is the Lebesgue measure on D0(v). Let us consider the Radon-Nikodym derivative!(z) = dM D̀dm (z); z 2 @r�`(D):Then formula (5.25) can be written in the form< f; g >`a2 = ZSr�` d�r�`(v) ZD0(v) Tv(fv)(z) gv(z)!(v + z) dmv(z)= ZSr�` d�r�`(v) ZD0(v) Tv(fv gv)(z)!(v+ z) dmv(z): (5.27)6 Canonical Realization of Lassalle measureAnalogous to the domain D, the cone 
 has boundary orbits (under GL(
)) given by@`
 = fx 2 
 : rank (x) = `g (6.1)40



for 0 � ` � r � 1. It is known [RV76], [La87] that the Riesz distribution for parameter` a2 can be realized as a measure �` on @`
 which is relatively invariant under the action ofGL(
). We will show that �` has a natural polar decomposition with respect to the subgroupAut (X) � GL(
). Along the way we also give an explicit construction of �` using elementaryJordan theory.Let G be a locally compact group with a (left) Haar measure �, and let H � G be aclosed subgroup with a left Haar measure �. By [Bou63, p.44] every (Radon) measure � on Gsatisfying �h� = �H(h) � 8 h 2 H (6.2)induces a "quotient" measure �=� on G=H such thatZG d� � f = ZG=H d(�=�)(gH) ZH d�(h) f(gh) (6.3)for all f 2 Cc(G). Here �h denotes right translation on G and �H is the modulus function onH . If H 0 � H is a closed subgroup, with a left Haar measure �0, such that for all h0 2 H 0�H 0(h0) = �H(h0); (6.4)the quotient measures �=�0 and �=�0 also exist, andZG=H 0 d(�=�0)' = ZG=H d(�=�)(gH) ZH=H 0 d(�=�0)(hH 0) � '(ghH 0) (6.5)for all ' 2 Cc(G=H 0) [Bou63, p.64]. If � : G! R�+ is a character such that for all h0 2 H 0�(h0) = �H 0(h0)�G(h0) (6.6)then the measure �� on G satis�es�h0(��) = �h0� � �h0� = �H 0(h0)�G(h0) ��G(h0)� = �H 0(h0)�� (6.7)and the resulting quotient measure ��=�0 on G=H 0 is relatively invariant with multiplier �[Bou63, p.58].Now assume G is a Lie group, and consider the left translation action g 7! 
g of G on G=H .Let J(g; s) denote the Jacobian of 
g evaluated at s 2 G=H . For h 2 H; Adg(h) leaves h � ginvariant, and 
h has the tangent map Adg=h(h) at H 2 G=H . ThereforeJ(h;H) = Det Adg=h(h) = Det Adg(h)Det Adh(h) : (6.8)With [Dieu74, 19.16.4.3] this impliesjJ(h;H)j = �H(h)�G(h) : (6.9)41



On the other hand, we have 
hH = H and thereforeJ(gh;H) = J(g;H) J(h;H) : (6.10)It follows that �(g) := jJ(g;H)j (6.11)satis�es for all h 2 H : �(gh) = �(g) �H(h)�G(h) = �(g) �(h) : (6.12)Hence �h(��) = �h � � �h � = � �H(h)�G(g) �G(h)� = �H(h) �� ; (6.13)so that the quotient measure ��=� exists on G=H . For h0 2 H 0, (6.4), (6.6) and (6.9) imply�(h0) = �H 0(h0)�G(h0) = �H(h0)�G(h0) = �(h0) (6.14)and therefore �(gh0)�(gh0) = �(g)�(h0)�(g) �(h0) = �(g)�(g) : (6.15)It follows that �� is a function on G=H 0. Applying (6.5) we obtainZG=H 0 d(��=�0)' = ZG=H 0 d(��=�0) �� ' == ZG=H d(��=�)(gH) ZH=H 0 d(�=�0)(hH 0) �(gh)�(gh) '(ghH 0) (6.16)for all ' 2 Cc(G=H 0). The function �� can be determined as follows: Suppose for any g 2 Gthere exists k 2 K and h 2 H such thatgH 0 = khH 0 : (6.17)Here K � G is a compact subgroup. Then�� (gH 0) = �(kh)�(kh) = �(k)�(h)�(k) �(h) = �(h)�H(h) �G(h) : (6.18)We will now apply these general considerations to the reductive (hence unimodular) Liegroup G := GL(
) (6.19)with maximal compact subgroup K := Aut (X) (6.20)(Jordan algebra automorphisms). The group G has an involution g 7! g� satisfyinggfx(g�y)�zg = f(gx) y�(gz)g (6.21)42



for all x; y; z 2 X [U87]. The corresponding Lie algebra involution A 7! A� of g = gl(
)satis�es Afxy�zg = f(Ax) y�zg � fx(A� y)�zg+ fxy�(Az)g : (6.22)We have K = fk 2 G : k� = k�1g.Fix 0 � ` < r, and consider the boundary orbit@` 
 = G � u` : (6.23)The closed subgroup H 0 := fh0 2 G : h0 u` = u`g ; (6.24)with Lie algebra h0 := fA0 2 g : A0 u` = 0g ; (6.25)induces a di�eomorphism G=H 0 3 gH 0 7! g u` 2 @` 
 : (6.26)Via this identi�cation, we have a commuting diagram@` 
 g � @` 
" "G=H 0  �
g G=H 0 ; (6.27)where 
g denotes left translation on G=H 0.Let P` denote the compact space of all rank ` projections in X . Consider the �bration@` 
 = �[p2P`
1(p) (disjoint union) (6.28)into boundary components 
1(p) (the strictly positive cone in X1(p)) [Lo77]. Since G permutesthe �bers of (6.28), there exists an action g 7! eg of G on P` satisfyingg(
1(p)) = 
1(eg(p)) (6.29)for all g 2 G and p 2 P`. Equivalently, the diagram@` 
 g � @` 
� # # �P`  �eg P` (6.30)commutes, where � is the canonical projection. The action of G on P` is transitive, so thatthere exists a di�eomorphism G=H 3 gH 7! eg(u`) 2 P` ; (6.31)where H := fh 2 G : eh(u`) = u`g (6.32)= fh 2 G : h(u`) 2 
1(u`)g (6.33)43



is a closed subgroup containing H 0, with Lie algebrah := fA 2 g : Au` 2 X1(u`)g : (6.34)Via this identi�cation, we have a commuting diagramP` eg � P`" "G=H  �
g G=H ; (6.35)where 
g denotes left translation on G=H .For h 2 H , we have h u` 2 
1(u`) and h�(e� u`)) 2 
0(u`). Thus we obtain charactersh 7! N(h u` + e � u`) (6.36)and h 7! N(u` + h�(e� u`)) (6.37)of H . The associated in�nitesimal characters on h are given byA 7! �(Au`) (6.38)and A 7! �(A�(e� u`)) ; (6.39)respectively. Here � : X ! R is the Jordan algebra trace, normalized by � e1 = 1.Proposition 6.1 For A 2 h we havetr adg=h(A) = a2 [` �(A�(e� u`))� (r � `) �(Au`)] (6.40)and �(Au`) + �(A�(e� u`)) = �(Ae) : (6.41)Proof: We will use the (restricted) root decompositiong = �X� g� (6.42)of a reductive Lie algebra g with respect to a Cartan subspace a � g. For � 2 a] (= lineardual space of a), we put a� := fB 2 g : [A;B] = �(A)B 8 A 2 ag : (6.43)Then g0 � a and [g�; g�] � g�+� (6.44)for all �; � 2 a]. In order to describe the root decomposition of g = gl (
), �x a framefe1; : : : ; erg of projections in X and de�ne the Cartan subspacea := ( rXk=1 �k ek 2 e�k : �1; : : : ; �r 2 R) : (6.45)44



Using the associated Peirce spacesXij = Xji := (x 2 X : fek e�k xg = �ki + �kj2 x 8 k) (6.46)for 1 � i; j � r, de�ne gij := fei 2 x� = x 2 e�j : x 2 Xijg : (6.47)Here we use the "triple operator" (x 2 y�) z := fxy�zg (6.48)for all x; y; z 2 X . The Jordan triple identity [U87] implies, for i 6= j and x 2 Xij[ek 2 e�k; ei 2 x�] = fek e�k eig 2 x� � ei 2 fx e�k ekg� == �ki ei 2 x� � �ki + �kj2 ei 2 x� = �ki � �kj2 ei 2 x� : (6.49)Therefore gij is the root space for� rXk=1 �k ek 2 e�k! := rXk=1 �k �ki � �kj2 = �i � �j2 : (6.50)One can show [UU94] that g = g10 � g�0 �Xi6=j gij ; (6.51)where g�0 = a and g10 = fA 2 g : Aek = 0 8 kg (6.52)belong to � = 0. Now consider the sub-algebrah = 8<:A 2 g : Au` 2 X1(u`) = �X1�i�j�`Xij9=; : (6.53)For A 2 g10, we have Au` = Ae1 + : : :+ Ae` = 0. Therefore g10 � h. Since(ek 2e�k) u` = ( ek k � `0 k > ` (6.54)we also have a � h. Now let A = x 2 e�j for some x 2 Xij with i 6= j. If j > `, thenAu` = fx e�j e1g+ : : :+ fx e�j e`g = 0. If j � `, thenAu` = fx e�j ejg = x2 (6.55)belongs to X1(u`) if and only if i � `. Henceh = g0 � X1�i;j�`i6=j gij � Xj>`i6=j gij (6.56)45



and g = h� �Xj�`<i gij : (6.57)It su�ces to prove (6.40) and (6.41) for A 2 h belonging to the various root subspaces. Suppose�rst that A = ei 2 x� = x 2e�j (6.58)for some x 2 Xij with i 6= j and i � ` or j > `. Since A belongs to a non-zero root (6.50), wehave tr adg=h(A) = 0 by (6.44). On the other hand, Au` = fx e�j u`g 2 Xji and A�(e� u`)) =fx e�i (e � u`)g 2 Xij are both traceless since i 6= j. Similarly, Ae = fx e�j eg = x2 2 Xij hastrace 0. Therefore (6.40) and (6.41) hold in this case. Next, assume A 2 g10 � aut (X) = k.Then A� = �A and Au` = A�(e� u`) = Ae = 0 (6.59)whereas tr adg=h (A) = 0 since K is compact. This proves (6.40) and (6.41).Now let A = rXk=1 �k ek 2 e�k 2 a : (6.60)Since dim gij = dim Xij = a for i 6= j, we havetr adgij (A) = a �i � �j2 (6.61)and hence, by (6.57)tr adg=h(A) = a2 Xj�`<i(�i � �j) = a2[(�`+1 + : : :+ �r) `� (�1 + : : :+ �`)(r� `)] : (6.62)On the other hand, A� = A and therefore �(Au`) = P̀k=1�k and �(A�(e � u`)) = rPk=`+1 �k =�(A(e� u`)). This proves (6.40) and (6.41) in the remaining case.Proposition 6.2 For h 2 H, we have�H(h) = Det Adg=h(h) = N(u` + h�(e� u`))` a=2N(h u` + e� u`)(r�`)a=2 (6.63)and N(h u` + e� u`) N(u` + h�(e� u`)) = N(h e) : (6.64)Proof: Since g�0 � X1�i<j�r gij � h (6.65)it follows that fAe : A 2 hg = X . Therefore the identity component H� of H acts transitivelyon 
 [ ]. Thus for each h 2 H there exists h1 2 H� satisfying he = h1 e. Hencek := h�11 h 2 H \Aut (X) : (6.66)46



Moreover, h1 = exp (A1) � � �exp (An) for suitable A1; : : : ; An 2 h, implyingh = exp (A1) � � �exp (An) k : (6.67)Since both sides of (6.63) and (6.64) de�ne characters of H , it su�ces to consider the factorsof (6.67) separately.For h = expA; A 2 h, the identities (6.63) and (6.64) follow from (6.40) and (6.41),respectively, by di�erentiation. For k 2 H \ Aut (X); k u` 2 X1(u`) is a rank ` projection,hence k u` = u`. Also, k� = k�1 and hencek�(e� u`) = k�1(e� u`) = k�1 e � k�1 u` = e� u` : (6.68)It follows that N(u` + k�(e� u`)) = N(k u` + e� u`) = N(k e) = 1 : (6.69)Since H \ Aut (X) is compact, we also haveDet Adg=h(k) = 1 : (6.70)Thus (6.63) and (6.64) hold for k as well.Since H acts transitively on 
1(u`), with stabilizer subgroup H 0, there is a di�eomorphismH=H 0 3 hH 0 7! h u` 2 
1(u`) : (6.71)Now 
1(u`) has the invariant measureN(x+ e� u`)�n0=`dx (6.72)where n0 = dim X1(u`). It follows that (6.4) is satis�ed and �=�0 corresponds to (6.72) underthe identi�cation (6.71).Corollary 6.1 There exists a measure �` on @` 
 � G=H 0 which is relatively invariant underG with character �(g) := N(ge)` a=2 : (6.73)Proof: For h0 2 H 0 we have h0 u` = u` and hence�H(h0) = N(u` + (h0)�(e� u`))` a=2 = N(h0e)` a=2 (6.74)by (6.63) and (6.64). Since G is unimodular, (6.4) implies that (6.6) is satis�ed, and ��=�0is a relatively invariant measure (for �) on G=H 0 which, under the identi�cation (6.26), givesthe Lassalle measure �` on @` 
.Theorem 6.1 The Lassalle measure �` on @` 
 has the polar decompositionZ@` 
 d�` � ' = ZP` dp Z
1(p) N(y + e� p) ra2 �n0̀ '(y) : (6.75)Here dp is the K-invariant probability measure on P`.47



Proof: The measure ��=� on G=H is invariant under the left translation action of K since�(kg) = jJ(kg;H)j= jJ(k; gH)jjJ(g;H)j= jJ(g;H)j= �(g) : (6.76)It follows that ��=� is (proportional to) the normalized K-invariant measure dp on P` � G=H .Now let g 2 G. Then p := eg(u`) = k u` (6.77)for some k 2 Aut (X). Since k = ek; h := k�1 g satis�eseh(u`) = ek�1(eg(u`)) = u` : (6.78)Therefore h 2 H . Put y := g u` = k h u` 2 @` 
 � G=H 0 : (6.79)Computing �� as in (6.18), (6.63) and (6.64) imply�� (y) = �(h)�H(h) = N(he)` a=2N(h u` + e � u`)(r�`)a=2N(u` + h�(e� u`))` a=2= N(h u` + e � u`)r a=2 = N(y + e � p)r a=2 (6.80)since y = k h u` and p = k u`. Now the assertion follows with (6.16), since the measureN(y + e � p)�n0=`dy on 
1(p) is the image under k of the measure N(x+ e � u`)�n0=`dx on
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