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Boundary integration and the discrete Wallach points

Jonathan Arazy Harald Upmeier

Abstract

Let D be an irreducible hermitian symmetric domain of rank r in C? and let G :=
Aut(D) the group of all biholomorphic automorphisms of D. We construct explicit inte-
gral formulas for the G-invariant inner products on spaces of holomorphic functions on
D associated with the discrete Wallach points by means of integration on G-orbits on the

boundary 0D of D.

0 Introduction

For an irreducible hermitian symmetric space D of non-compact type, the holomorphic au-
tomorphism group G' = Aut(D) has a (scalar) holomorphic discrete series whose analytic
continuation is given by parameters forming the so-called ”Wallach set”. It is an important
problem to give explicit realizations of the corresponding irreducible representations of G in
terms of the (boundary) geometry of the underlying domain D. A standard reference using Lie
theoretic methods is [RV76]. In our previous works ([AU97] and [AU98]) we considered mainly
certain parameter values within the continuous part of the Wallach set and constructed real-
izations emphasizing the Jordan theoretic description of D [FK94]. In this paper we treat the
more difficult discrete part and find explicit integral formulas using Lassalle’s boundary mea-
sures [La87]. The paper contains also a new realization (and proof of existence) of Lassalle’s
measures, using only basic results from Jordan theory (Peirce decomposition).

1 Preliminaries

In this section we review some known results in analysis on Jordan algebras and triples and on
the associated symmetric domains, and establish the notation. For more information consult

[Hu63], [Gi64], [Lo77], [UST], [FK94] and [A95].

Let D C C be a Cartan domain, i.e. D is an irreducible bounded symmetric domain in
the Harish-Chandra realization. This is equivalent to saying that D is the open unit ball of
C? with respect to a certain norm || - ||, such that the group G := Aut(D) of all biholomorphic
automorphisms of D acts transitively on D. By [Lo77], [U87], there exists a triple product
{0 )0 x € x € — € so that Z := (C4, | - ||, {,-,-}) is a Jordan-Banach *-triple (JB*-
triple). The mazimal compact subgroup of G is K = {¢ € G;¢(0) = 0} = G N GL(Z), and
D=G/K.

*Supported by a grant from the German-Israeli Foundation (GIF), [-415-023.06/95



Let (r,a,b) be the type of D (or, of Z), where r is the rank and a, b are the characteristic
multiplicities. Thus the dimension d and the genus p are given by

r(r—1)

d=
r 4 5

a+rb, p=2+(r—1)a+b. (1.2)
A tripotent v € Z is an element satisfying {v,v,v} = v. The Peirce decomposition associated
with the tripotent v is

7 = 74(v) & 71 (v) & Zo(v), (1.3)

where Z,(v) :={z € Z;{v,v,z} = vz}, v=1, %, 0. The associated Peirce projection P,(v),
is the projection whose range is Z,(v) and whose kernel is the sum of the other two Peirce
subspaces. We denote also

D,(v):=DnZ,(v). (1.4)

The spaces Z, (v) are sub-triples of Z, and the rank of the tripotent v is by definition the rank
of Z1(v). We define

S; = the set of tripotents of rank j, 7=0,1,2,...,7. (1.5)
S := S5, is the Shilov boundary of D. Let us choose a frame
€1, €2,y ..., 6, (1.6)

i.e. a maximal set of tripotents of rank one which are pairwise orthogonal, i.e. {e;, €;,€;} =0
whenever ¢ # j. The tripotent

e=e;+ey+...+e, (1.7)

is mazimal (having rank r), and thus Zy(e) = 0. The stabilizer of e in K, namely
L:=A{ke K;k(e) = e}, (1.8)

will play an important role in the sequel. Notice that since K acts transitively on 5, we have
S = K/L. More generally, K acts transitively on the frames, and in particular it is transitive
on each of the S;. The sub-triple Z;(e) has the structure of a JB*-algebra with respect to the
product zow := {z,e,w} and the involution z* := {e, z, e}, and e is the unit of Z;(e). The
real part of Z;(e), i.e. the subset X = Xy(e) := {2 € Zy(e);2* = 2} of self-adjoint elements of
Zy(e) is a Buclidean (or formally-real) Jordan algebra, with determinant (“norm”) and trace
polynomials

N(z) =det(z) and tr(z):=<z,e> (1.9)

respectively. Here (z, w) denotes the unique K-invariant scalar product on 7 satisfying (e, e1) =
1. The set
Q:={2%2 € X,N(z) #£ 0} (1.10)

is the symmetric cone associated with X. The group L, restricted to X, coincides with the
Jordan-algebra automorphisms of X. In particular, it is transitive on the frames of orthogonal
minimal idempotents in X whose sum is the unit element e.



For1<j<r,let u; =e 4 ...+ ¢; and let N; denote the determinant polynomial of the
Jordan sub-algebra ZU) := 7, (u;), extended to all of Z via N;(z) := N;(Py(u;)z). Note that
N, = N. The conical function associated with s = (s1,s2,...,s,) € C" is defined by

Ng(2z) == Ny(2)®7%2 No(2)®27% -« N,_q1(2)*=17% N,.(2)°", VaeQ. (1.11)

A partition is a sequence m = (my, mg,...,m,) of integers so that my > mqg > ... > m, > 0.
Note that for any partition m, Ny, is a polynomial (called conical), and it extends to all of Z.
Let us denote

P :=span{Ny o k; k € K}. (1.12)

A fundamental theorem [Sch69], (see also [U86]) says that the spaces Py, are irreducible and
mutually inequivalent with respect to the action 7(k)(f) := fo k™! of K, and that the space
P of all holomorphic polynomials on Z is their direct sum: P = Zg Pmn. Thus the Py, are
mutually orthogonal with respect to any K-invariant inner-product on P. The Fischer-Fock
inner-product on P is given by

< frg>e= %/«: F(z) gz e dm(z), (1.13)

where | -| is the Euclidean norm, and dm(z) is the Lebesgue measure. The reproducing kernel
of Pm with respect to < -,- >, is denoted by Km(z,w). Thus, > Km(z, w) = e<5*>.

The Gindikin-Koecher Gamma function associated with the cone Q is defined for s =
(51,52,...,5,) € C" with Rs; > (j — 1)§ by the convergent integral

To(s) = /Q e Ny(2) dpg (), (1.14)

where dugq(z) == N(av)_dr_1 dm(z) is the (unique up to a multiplicative constant) measure on 2
which is invariant under the group GL(2) := {g € GL(X);¢(Q) = Q}, and d; := dim,(X) =
r(r—1)

—5—a+r. It is known that I'q can be expressed as a product of ordinary Gamma functions:

4

Pa(s) = (2m) 7% [[ T - (G- 1)

),

N R

and this allows the extension of ' to a meromorphic function on all of C". The Beta function
associated with the cone  is related to the Gamma function via

_ La(p) Falq)

Ba(p,q) := . 1.15
a(p.q) Top+ q) (1.15)
For A € C and any partition m we denote
L'a(A+ m) : , a
Mmi=—————-= A—0G=1D)=)m,, 1.1

where (), :=t{t+ 1)t +2)---(t+m—1).
Let h(z,w) be the unique K-invariant irreducible polynomial, which in holomorphic in z,

anti-holomorphic in w, and satisfies h(z,2) = N(e — 2%) Va € X. It is known that

h(zw)™ =) (Mm Km(z,w), ¥z,weD, YAC, (1.17)

m



and the series converges absolutely and uniformly on compact subsets of D x D x C. The
fundamental formula (1.17) (called the “binomial expansion”) was proved in special cases in
[Hu63] and [La86], and in full generality in [FK94]. The Wallach set W (D) of D consists of
all those A € C for which (z,w) + h(z,w)™" is positive definite. Using the expansion (1.17)
one sees that

W (D) = {0, % 2% (r - 1)%}u ((r — 1)%, ). (1.18)

This result was established by several authors using various techniques: [Be75], [RV76] (in the
context of Siegel domains), [W79], [La87] and [FK90]. For each A € W (D) we denote by H
the completion of span{h(-,w)™*;w € D} with respect to the unique inner-product < -,- >\
determined by

<A w) TN h( 2) T >a=h(z,w) 7Y, Yz, w € D.
Point evaluations are continuous linear functionals on #, and the corresponding reproducing
kernel is h(z,w)™".

If X > (r —1)5 then #, contains P as a dense subspace. On the other hand, for the
discrete Wallach points (which are our main concern in this paper) {5, 0 < {<r—1, 7{4% is
the completion of

Py = > Pa. (1.19)
myZeme20=meqp1=-=mr
Since K acts irreducibly on each Py, every K-invariant inner product on Py, is proportional
to the Fischer inner product. The computation of the proportionality constants for the inner
products < -,- > is one of the major steps in the proof of (1.17). Thus for every A € W (D)
and every partition m for which Py, C Ha,

< f,9>;
(Mm

This implies for all functions f =53 fm and ¢ =3, ¢gm in H) (with fi, ¢m € Pm Ym),

< frg>a= Vf,g € Pa. (1.20)

<fig>=) %. (1.21)

m

Let us define an action of G on functions on D via

U f)(2) = [e(2) Te(z)7, e, (1.22)

where Jp(z) := Det(¢’(2)). Then, for A € W(D), UM is a projective representation of G on
Ho.

It is well known that for A > p — 1 H, is the weighted Bergman space L2(D, ), i.e. the
space of all analytic functions in L%(D, p,), where

A (2) = ex bz, 2P (=), ey o= %

r

The representations {U(A); A > p— 1} form the holomorphic discrete series of representations
of G. The problem of concrete description of the analytic continuation of the holomorphic

discrete series by means of Sobolev-type integral formulas attracted the attention of many



mathematicians (see for instance [RV76], [O80], [A92-1], [A92-2], [FK90], [Y93], [AU97] and
[AU98]). This problem is intimately connected with the problem of the concrete description
of the analytic continuation of the Riesz distribution (see [Ri49], [Ga47], [O80], [Gi75] and
[AU97]). One of the oldest results on the description of the analytic continuity of the holomor-
phic discrete series is the realization of Ha as the Hardy space H*(S) = L2(S,0) (where S is

the Shilov boundary of D and o is the unirque K-invariant probability measure on S).

The shifting method of Yan (see [Y93] and [AU97]) enables one to give integral formulas of
the form

< [yg >a=<Saef, 9 >a4e (1.23)

for suitable ¢ € N and shifting operator S ¢ (which is a GL(€)-invariant differential operator).
In particular, if A+ ¢ >p—1or A+ 4= % one obtains integral formulas for < f,g > of the
desired type. However, these integral formulas suffer from two main weaknesses:

1. They do not permit generalization to the infinite-rank case;

2. They use unnecessary large numbers of parameters. (i.e. the topological dimension of the
set on which the integration is performed is too big compared to the Gelfand-Kirillov

dimension of the representation).

Our main goal here is to obtain explicit, Sobolev-type integral formulas for the invariant
inner products < -, - >es associated with the discrete Wallach points £5, £ = 0,1,2,...,r —
1, by means of integration on the G-orbits on the boundary 0. These formulas seem to
use the optimal number of parameters (i.e. the topological dimension of the set on which
the integration is performed is minimal), and allow the passage to the case of infinite rank
domains. The paper is a continuation of [AU97] and [AU98], in which we develop the formulas
of the desired type for < f, ¢ >a. The proofs in the general case given here use the Harish-
Chandra isomorphism between the rings of invariant differential operators and the symmetric
polynomials. They are simpler and more conceptual.

There is another type of integral formulas for < -,- >, A € W(D) which use the Cayley
transform (which realizes D as a symmetric Siegel domain, denoted by T'(§2)) and the Fourier
transform (which realizes the weighted Bergman spaces on T(Q) as weighted L%-spaces on ).
These formulas are extended to the discrete Wallach points £2 in Sections 6 and 7 below; they
are relatively simple and quite natural, but they do not allow to work directly with the data
coming from D.

In order to formulate our main result in the context of D let us describe the structure of
the boundary 0D and introduce some more notation. The boundary component associated to
a tripotent v is the set B(v) := v 4 Dg(v) (see (1.4)). Its closure is a face of D and all the
faces arise in this way. Notice that Dq(v) and Dy(v) are Cartan domains of type (¢, a,0) and
(r — €, a,b) respectively, where ¢ := rank(v). Let us denote

D = Uyes,B(v), 1<<r (1.24)
The sets 9, D are the G-orbits on dD, and:

O D = Glug) = {p(w); ¢ € G}, (1.25)



where {ej};f:l) is the fixed frame and uy = e; + -- -+ e;. Thus
0D =U;_,0¢D. (1.26)
and the orbits of G'in D are 0o D := D, 9, D, ..., and 8, D = S. Let us denote also

Vg=€— U= €1+t e

Then ug, v are orthogonal tripotents of rank ¢ and r — £ respectively, and u; + vy = e. ZU) :=
Z1(ug) is a JB*-sub-algebra of Z with unit ug, real part

XU ={ze 20, =2},
and associated symmetric cone
Q0 = {a% 2 e XU Ny(z) £ 0}. (1.27)
Consider the group of linear automorphisms of Q)
GL(QY) := {g € GL(X); g(01)) = 2}
and the associated ring of GL(Q®))-invariant differential operators
Dy = Diff(Q0)GL@“), (1.28)

Thus, Dy consists of all differential operators T on Q) so that TCy,=C,Tforallg e GL(Q(Z))7
where Cy(f) := fog. Let us denote

LY = {k e K:k(u) = ug}. (1.29)

Then kg € GL(QWY) VE € LO), and in particular T(f o k) = (Tf) o k for all T € D, and
feCc=(QY). Let

I((Z) = {k € K; k(Zy(UZ)) = ZU(UZ), v =1, %7 0} (130)

Clearly, {k € K;k(v¢) = v} C K. Also, every triple-automorphism of Z,(v,) for some
v =1, %, 0 extends to a triple-automorphism of Z which preserves all the 7, (v), i.e. to an

element of K. Let K(Z)C denote the complexification of K(). One of the technical results
that will be established below is the following.

Lemma 1.1 Fvery T € Dy extends uniquely to a differential operator on Zg(ve) which is

. . ~(nC
invariant under the group K.

Let T' € Dy be extended to a K(Z)C—invariant differential operator on Zp(v,). Given a tripotent
v € S,_;, we define a differential operator T, on Zy(v) in the following way. Since K acts
transitively on S,_¢, there exists k € K for which k(v;) = v. We define

T, = C;'TCy, (1.31)



where Ci(f) :== fok. T, is well-defined, i.e. independent of the particular k& € K for which
k(ve) = v. Indeed, if ky, ko € K satisfy ki(vs) = ka(vs) = v, then k7' (k2(ve)) = vs, and so
ky = k1k for some k € K for which k(v;) = vy. As we remarked above, k € K(Z), and therefore

Ck2TCk2 = Ck_llck_lTCkal = CleCkl.

For any function f on D and any tripotent v, the restriction of f to B(v) yields a function
fu on Dg(v) via
fu(z2):= flo+2), z€ Dy(v). (1.32)

For any 1 < £ <7r let vy be the unique K-invariant probability measure on S,, defined via

fdve= [ f(k(up)) dk. (1.33)
S K

Our main result in this framework is the following theorem (compare Theorem 3.2)

Theorem Let 1 <(<r—1andlet \> ({—1)5 . Then there exists T = TN €Dy s0 that
Jfor every f, g € 7{4% which are analytic in a neighborhood of D,

< fig >a= / < Ty fos Go >3, (Do(v)) Wr—i(v). (1.34)

ST—Z

For general f,¢g € 7—[4% the integral (1.34) is an improper Riemann integral, namely

<fg >Z%: 11}% s, < Tv(ft)vv (gt)v >7‘l>\(Do(v)) dVr—Z(U)v

where f'(2) := f(tz), ¢'(z) := g(tz).

We remark that the case ¢ = 0 in the above theorem (and in subsequent results) is trivial since

Ho consists of constant functions.

The paper is organized in the following way. Section 2 is devoted to the construction of the
tools needed to prove the above mentioned and related results. In subsection 2.1 we survey the
Harish-Chandra isomorphism between the rings of invariant differential operators on symmetric
cones and and of the symmetric polynomials. Using the spectral theory we extend this result
to more general invariant operators. In subsection 2.2 we use the conical polar decomposition
7 = K -Q to study K-averaging of certain functions on D, (a process we call “conialization”).
In subsection 2.3 we construct for each £ € {1,2,...,r — 1} two K-orbits on D and natural
measures on them. After these preparatory sections we prove the above mentioned theorem,
in section 2.3 (see Theorem 3.2 for the exact formulation). Some related results are established

as well.

Section 4, is devoted to the development of canonical integral formulas for the inner prod-
ucts < -, >yq, 1 << r—1,in the framework of the symmetric Siegel domain 7'(Q2) associated
with the Cartan domain D via the Cayley transform. The case of symmetric Siegel domains of

type I (i.e. tubes over the symmetric cones 2) is treated first, where we use in an essential way



the semi-invariant Lassalle measures on the boundary orbits 9, of the cone €. The develop-
ment of the analogous integral formulas in the context of symmetric Siegel domains of type 11
is technically harder and requires additional efforts. In section 5 we use the Lassalle measures
to construct integral formulas for the invariant inner products associated with the continuous
Wallach points oy 1= %—I—K%, 0 <?Z<r—1,in the context of symmetric Siegel domains of type
II, which generalize the analogous formulas in the context of symmetric Siegel domains of type
I constructed in [AU97]. Finally, in Section 6 we present a new construction of the Lassalle
measures. Unlike the original construction of Lassalle (see [La87]) which uses local coordinates
(coming from the subgroup AN of GL(Q)), our formulas use global coordinates and make the
semi-invariance apparent.

2 Preparation

2.1 Invariant differential operators on symmetric cones and symmetric poly-
nomials

In this section we review briefly the connection between the ring D = Diff(Q)GL(Q) of GL(Q2)-
invariant differential operators on €2 and the ring § of symmetric polynomials in r variables.
See [FK94] for more details and [He78] for the general theory.

We denote the half-sum of the strongly orthogonal positive roots by

L1<ji<n (2.1)

=~

P = (P17P27---,,0r) where pj = (Qj—r— 1)

The L-spherical functions are the L-averages of the conical functions:

Oy (1) = /LN/\(E(QC)) dr. (2.2)

They are L-invariant and normalized by the condition @y (e) = 1. It is known that the & are
the spherical functions associated with the Riemannian symmetric space €2 in the usual sense.
The Weyl group W, in this case is simply the permutation group, acting naturally on C" and
thus on the ®y‘s. It is known that ®y = &, if and only if A and g are in the same orbit of
W,.

For each partition m the function @4, is an L-invariant polynomial which belongs to P, and
in particular extends to a polynomial on Z. Every L-invariant polynomial in Py, is proportional
to ®y,. The ring

S=C[A, Ay A (2.3)
of symmetric (i.e. permutation invariant) polynomials in A = (A1, Az, ..., A,) is isomorphic to
the full polynomial ring Cloy,0,...,0,] via the elementary symmetric polynomials {o;}"_,

defined by
o;(A) == > Ay Aiy o g, (2.4)

lsil <22<<2J <r



Thus, for each p € § there is a unique polynomial ¢ € Cloy,09,...,0,] so that

p(A) = q(UI(A)7 UZ(A)7 R UT(A))

Thus, {O‘j};zl are algebraically independent generators of S.

A fundamental property of the spherical functions is that they are the joint eigenfunctions

of the operators in D.

Theorem 2.1 (i) The conical and the spherical functions are eigenfunctions of every
T € D: Forall A\ € C" we have

T(NA+p) =77 (A)qu-p ) T((I)A+p) =77 (A)(I)A+p : (2.5)
(i) v, (A) is a symmetric polynomial in Ay, , Aa,, ..., Ay, thus v, € S.

(iii) The map v: D — S defined via D 5T — v, € S is a surjective ring isomorphism, called
the Harish-Chandra isomorphism.

(iv) D is commutative.

Definition 2.1 For 1 < j <r we define Aj := v~ (o). Namely, for every X € C":
Ai(Nxpp) = i) Nayp s Aj(@x p) =i () @y, p - (2.6)

Corollary 2.1 The operators {Aj};f:l are algebraically independent generators of D.

Since Q = GL(Q)/L is a Riemannian symmetric space (more precisely, a direct product of
R4 with an irreducible symmetric space Q' := {z € Q: N(2) = 1} of non-compact type), one

has a direct integral decomposition

12(Q) = / Hy, |e(N)]? dA (2.7)
R/ W,

where ¢(A) is Harish-Chandra’s c-function and Hy is the Hilbert space completion of the space
spanned by all GL(€2)-translates of ®y, endowed with its natural inner product [He84]. Via
(2.7), the translation representation T of GL(2) on L%(2) has a decomposition

T= / Ty le(N)]72dX
R7T/W,

where Ty is the (irreducible) spherical representation of GL(£2) on Hy. For any continuous
W,-invariant function F' : R” — R one can define a GL(Q2)-invariant self-adjoint operator F on

L%(2) by the formula
Ff= [ FO) gy e A (2.8)

for

f= /fA|c(A)|_2 dX, I\ € Hy. (2.9)

9



The domain of F is defined as the space of functions f such that
JIFQIE 1A I 112 ax < +oc.
Thus E is bounded if F is a bounded function. Let
o:=(01,...,0.): C = C,

where the o; are defined by (2.4). The direct integral decomposition above diagonalizes simul-
taneously the (commuting) operators Ay. Writing

F=foo

for some continuous bounded function f: R" — R, the bounded operator F' can be expressed

as a function

F:f(A17"'7A7’)7

in the spectral-theoretic sense, of Aq, ..., A,.

Remark: There are many other natural choices of r algebraically independent generators of S,
and each such choice yields r algebraically independent generators of D via the Harish-Chandra
isomorphism. See [FFK94], [N89], [M&7], and [M95].

Lemma 2.1 Let U C C be a W,.-invariant domain, and let I be a W,.-invariant holomorphic
SJunction on U.

(i) The associated GL(Q)-invariant operator T = F' satisfies
T(@/\_l_p):F(A) Pxrip VA eU. (2.10)
(ii) There exists a unique holomorphic function f on o(U) so that F'= foo, i.e.

FOA) = f(01(N), 02(N), ..., 00 (N) YA€ U

(iii) In terms of the L?-functional calculus associated with EAVE

T = f(Ar, Ag, ... A). (2.11)

The results described above are valid in the context of the cones Q), 1 < ¢ < r. Thus the
ring Sy := C[Aq, ..., A"V of the symmetric polynomials in AO = (A1,..., A¢) is isomorphic
to the full polynomial ring Cloy, ..., 0/], and the elementary symmetric polynomials

U](()(/\(Z)) — Z AiAiy oA, 1<j<e (2.12)
1§i1<’i2<"'<’i]§f

are algebraically independent generators of Sy. The spherical functions in the context of Q0
are parametrized by C¢ and are defined as before via

(I’(/@a (2) = /L(/o Ny (k(x)) dk, € Q0.

10



The Harish-Chandra isomorphism between D, = DiH(Q(Z))GL(Q(Z)) and Sy is given via

® _ Oy 9 0
Ty, p(,z)) =7 (A )q)/\“)+p<’f>’ A0 ¢,
where
a .
p(é) = (p(lé)v p(2€)7 cee PEZ)% and ,Oy) = 1(2] — (- 1)‘ (2‘13)

The algebraically independent generators of D, are

@ . (=170 .
A = ()16, 1<i< (2.14)

Lemma 2.1 is valid in the context of Q) with obvious notational changes.

2.2 Conialization of functions

In this section we study conialization (i.e. “conical polarization”) of functions on Z. The basic
fact used here is that every z € Z admits a conical polar decomposition z = k(z) with k € K
and a unique z € . Thus Z = K -Q, and we have a formula for integration in conical polar

coordinates for functions f € LY(Z, m):

/Zf(z) dm(z):co/g( Kf(k(x%)) dk) N(z)" da (2.15)

where m is Lebesgue measure, and co = 7%/T'q(£). The function

f@)= | skt
K

N

) dk,  x €, (2.16)

is called the conialization of f. The map E(f)(z) := f(22?) can be considered as the averag-
ing projection (i.e. conditional expectation) from L(Z, m) onto its subspace of K-invariant
functions.

Lemma 2.2 (i) For every partition m and every x € 2

Livi2 _(I)m(w)
[ @it an = 2805,

(2.17)

where dy = dim(Pp).

(i) For every x € Q and all polynomials f =%, fm and ¢ =73, 9m with fm,gm € Pm
for all m,

(f/\g/)(x) = Z < fms 9m >% (I)m(w) (2.18)

Proof: Formula (2.17) is proved in [FK94], Proposition XI.4.1 in the case where 7 is a JB*-
algebra, and in [FFK90] in the case where 7 is a JB*-triple. Notice that (2.17) with « = e yields

for every m
2 2 1
il = [ em(b) k= -
v K d

m

11



To prove (2.18), consider the K-invariant inner product
. 1 1
<= (9@) = | k@) g(k(?)) db (2.19)
K

on P. Using the fact that the actions of K on the Py, are irreducible and pair-wise inequivalent,
we see that the P, are pair-wise orthogonal with respect to < -, >,, and that there exist
positive constants ¢y (2) so that

< fm, Ym >o= Cm(w) < fmy9m >4,  V/m,9m € Pm.

The proportionality constants are computed by taking fm = ¢m = ®m and using (2.17) for
and e. B

Let 1 < ¢ < r and denote the vectors in C* by A0 = (A1, ..., Ar). For notational simplicity
we shall adopt the convention that @A(z) = ®(\,,...00,0,...,0);, and similarly for the conical func-

tions. Recall that the spherical functions associated with the symmetric cone Q) of X are

denoted by @&Z%Z) .

Proposition 2.1 Let 1 < ¢ < r and let m\Y = (my,...,my) € N* be a partition. Then for
every r € X

¢
P10 (T) = Tmo q)fn)(,z)(x), (2.20)
where ,
((3) Lo (r9) T(m; +((+1—j)%)
Tm® = 3 m(® FQ 53 H r ? 1 Z . (221)
(r3) oo (€3) (mj+(r+1-7)3)

N9 = 3 W —2lt) (2.22)

" @mllE

Similarly, for z € X and X € C,

A A (I)(Z)(z) ()
N(e—a)™ = Ne(ug = 2)™ ) (M) g 22— (2.23)
ol 195113

In order to continue the proof of the proposition, we need the following result.

Lemma 2.3 Let 1 < {<r andlety € X be an element of rank at most (. Ifn= (ny,...,n,)
is a partition with ngyq > 1, then Ny(y) = ®n(y) = 0.

Proof of the Lemma: The condition ng4q > 1 guarantees that for some j > {, Ny is
divisible by N; to a positive power. Notice that rank(P; (u;)y) < rank(y) < €. Hence, N;(y) =
N;(Pi(u;)y) = 0 (because in the Jordan algebra X ) elements of rank smaller than j have
zero determinant). In particular, Ny(y) = 0. If k& € L then rank(k(y)) = rank(y) < ¢, and
therefore Ny (k(y)) = 0. Finally, ®n(y) = [; Na(k(y)) dk=0. N

12



Using Lemma 2.3 we see that (2.22) for 2 € X yields

_ ¢ 0 (2)
N(e — A= E A —_m- 2 2.24
(e w) m(Z)( )m(Z) Hq)m(f) H%‘ ( )

Since @97, (ve) € Pl(ﬁ), we obtain by comparing the expansions (2.23) and (2.24) that

P 2
7” m(Z)HF (I)fﬁ)(z) () = Y (I)fﬁ)(z) () Vae X0,

10l

Do () =

In order to compute v, we use the known fact (see [FK90]) that

(¢ ¢ (%)
[ and [|@\) |2 = Q
m(0) d

where dy :=dim Zy(uy) =L+ 00— 1), dy = dim(Py,0), and dfﬁ)(z) has the same meaning
with respect to the algebra Z;(us). Quite generally, the dimensions dyy, are expressed by

e [] - P53 Bi-)%3) -

1<i<j<r B(m; —mj+(j —1)%,%) B(m; —m;+(i—j)%,%)

where B(z,y) :=I'(z) I'(y)/I'(z 4+ y) is the ordinary Beta function. (see [U83] for the general
case, and [FK94], p. 315 for the case of JB*-algebras).

A straightforward computation yields the expression (2.21) for v, 9. 1

Remark: One can prove Proposition 2.1 using the connection between the spherical poly-

()

nomials and the Jack symmetric functions Jy, ', where o := %, and m ranges over all finite
partitions. (See [M87], [M95] and [St89] for the study of Jack symmetric functions). J(Aa) is
defined on all finite sequences (identified with infinite sequences which contain only finitely
many non-zero terms), and it is permutation invariant. The connecting formula is

Sty t,0,...,0,..)

tie;) = : Vg, ...t >0, (2.26)
E: i) 7 (1) !

where 17 := (1,...,1,0,...,0,...) has r “17. A similar formula is valid also for the spherical
functions (I)Ei)(z) associated with Q():

¢ ()
J (tl...tgo...o...)

¢ m® 3 s Uy Yy s YV

oS tie) = e Vi, ...t >0, (2.27)
7=1 Jm(Z) (1 )
It follows that for every tq,...,t > 0,

P L otee g e

m(0) (Z]_1 J ]) _ m(z)( ) =y (2.28)

¥ o
o (2 ey I,

The numbers J,(ﬁy)(l”)7 v € N, are known in full generality (see [St89] Th. 5.4 and [M95]):

Z(l‘l‘l ™ms

g =[[[Je+1-i+ai-1), (2.29)

=1 j=1

13



where ((m) := max{k;my # 0} is the length of m. It follows that if {(m) < r and o = 2, then

(@) (1vy = v—
T ()= Nwri-p% @ U2

2 |m|ﬁf(mj+('/+1—])%) _ (3)'“" a

In particular,

g = 21 B Tanlrd) (e ri=n8) o

where I'(y is the Gamma function associated with the cone Q. The spectral theorem in X
[Lo77] and the fact that L acts transitively on the frames of primitive idempotents in X imply
that every spherical polynomial ®,, is determined by its restriction to span{ej};zl. Thus
(2.20) in general follows from (2.20) for z = Z§:1 tje;, e from (2.28). B

Remark: Recall that the half sum of the strongly orthogonal positive roots associated with
Q) is p = (,ogé)7 .. .py)% py) = (2§ — £ —1) . For any partition m© = (my,...,m)
define A0 = (A1, ..., Ag) via the “p0)_ghift”

AW = m — p®  namely Aji=my; — py) =m; —(2j—(—-1) %, 1<j<Ut.

Then +,,» can be written as a symmetric function of AW = (Ay ey Ag)e
a £
) (r5) L+ +1) %)
. 2.31
(0= E% HF/\—|—2r—£—|—1)%) (2:31)

=1
This will be crucial in the sequel.

Recall that #,¢ is the completion of P, (see (1.19)) with respect to the inner product (1.21)
with A= (5.

Corollary 2.2 For all functions f, g € Hea with expansions f =3, frmo and g =310 9m(
and for every z € QO

D) = D < fnor Imo >, -
m(9)

FQ r

P +U+1D) ) o
P
Z HF A + 27‘—£—|—1) %) m(z)($) <fm(Z)7gm(Z) >%7

NIQ wl@

where, as before,

/\j:mj—,o(z):mj—(2j—€—1)g

; ;ol<is<e

The point is that the coefficients of < f (1), 90 >, in the expansion of (fg)(x) are symmetric
functions of A* = (Aq, ..., \g).

T
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2.3 Integration on K-orbits

In this section we will be interested in two sequences of K-orbits. The first sequence is the
G-orbits {8JD};:1 on 0D. Notice that 0,_,D = K(B(v/)), where v; = ey41 + - - - + €,. Recall
that wg = € + - - - + e, and denote the open unit interval in the cone Q) by

1= (uy— Q) = {2z e X0 < 2 < up}. (2.32)
The second sequence of K-orbits that we shall need is

Op:=KI"), 1<i<r (2.33)
Note that 9., D = K (v, + I(Z)) and O, are the K-orbits of the opposite faces I and v, 4+ 10
of the unit interval 1 := QN (e — Q) of the cone Q.
We shall use the subgroup

Gy ={p € Gio(v) = v} (2.34)

of G, identified naturally with Aut(Dg(v,)), and the subgroups K,, := K N G,, and K
(defined via (1.30)) of K.

We describe now a construction which assigns to a measure v on 1Y) measures i and fi
on the orbits d,_,D and O, respectively. The construction uses as an intermediate step a

construction of a measure p on Dg(vy).

Let v be a measure on [(9), and define a measure u (depending on v) on Dg(v,) via

/_f du:/_(  Fk(eh)) dk) dv(z). (2.35)
Do (ve) I Ky,

We call v the conical part of p. Using p we construct measures i and i on the K-orbits O,

and ¢._;D in a canonical way.

Construction of ji: We define

i = [ ([ suen i) anc

_ /HT)( Kf(k(x%))dk) dv(z) = /ﬁf(x) dv(z).

Example 2.1 Let A > py—1 (where p; := ((—1) a+2+Db is the genus of Dy(v¢) ), and consider

the probability measure

4D (2) = O hy(z, 2P dm(z), O = - F;gz)(z)/\(i) i (2.36)
on Do(ve), where d*) := dim Zo(ve) = (({ - 1) %+ (+ (b, and
ho(k(22), k(22)) = Ny(ug — ), Vo e IO, vk e KO,
The conical part of d,u(f) is the probability measure
0 (@) 1= ———d o Nu(ue — )P Ny(a)? dim(o) (2.37)
Bowo (775 A = )

on 19 where Bqy is the Beta function associated with the cone QY (see (1.15)).
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Example 2.2 For A = d(TZ) we consider the probability measure oy on the Shilov boundary

¢ Do(ve) of Do(vg):
/ Fdor= | Flk(u)) dk. (2.38)
9 Do (’Ug) K

Its conical part is the Dirac measure &,,.

()

Note that with respect to the measures py’ and o, considered in Examples 2.1 and 2.2, we

have
1 ¢ ¢ H(I) H2
B0y = i [, Pt @) vl @) = T 23
1950172 0, d), Jro i (7) 37 (2) = 5 (239
and (0)
1@ 0l 1
H¢ HL2 Uz) — d(Z) = d(l’) (240)

(o (e

Applying Corollary 2.2, and using (2.39) and (2.40), we obtain

Corollary 2.3 Let f,g € Py have expansions f =73 (o fo and g =" g - Then

(1)

(5 m(® ¢ < S I >
m (%) - Jm

—~
[

(i) For any A > p;,— 1,

r2 &= < >
< f7g > Z 23 fl )m(z) fm(;)mgm(f) E (242)
OM@ - 5 m® ;)m(z) ( )m(l’)
(iii)
E% m0
< f10 >12(0000) Z 5 (2 < fn®s I > - (2.43)
0 rS)mo (Hmo

Construction of ji: The K)-invariant measure y on Do(ve) is used to define a measure [

on 0,_yD:
/ar_zpfdﬂ:/Do(W)( ket 2) dk) dp(z). (2.44)

Obviously,

/ar_szdﬂz/I(_z)( Kf(k(vwrx%)) dk) dv(x / flve+2) dv(z). (2.45)
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3 Integral formulas for the invariant inner products < -,- >

In this section we obtain the formulas for the inner products < f, g >, 1<l <r—1, via
integration on the K-orbits d,_, and O,.

Let {O'](Z) §:1 be the elementary symmetric polynomials (2.4) in the variables A0 =

(A1, Az, .., A¢), and let o be the vector map A (U@(A(Z)), . .7U§Z)(A(Z))). Follow-
ing the remark after Lemma 2.1, let 7(4) : Dy — 8¢ be the Harish-Chandra isomorphism, and

let
NG (7“))_1 (a]@)) L 1<j< L. (3.1)

We define also U(()Z)(A(Z)) =1, Aéé) = I, and let Wy be the permutation group of the coordinates
in C*. Thus if U is a Wy-invariant domain and f is an analytic function in O'(Z)(U)7 then the

operator
a0 = ral . Al (32)
(defined via the functional calculus analogous to Lemma 2.1) is GL(Q(®))-invariant and satisfies
ONTAS) — (e A0} ¥
f(A )((I)A(Z)-kp(f)) = f(U (A ))(I)A(Z)q-p(f) (3-3)

for every A0 ¢ U, where p¥) is given by (2.13). In particular, for every partition m) =
(m1,...,me,0,0,...,0) > 0 we obtain
J4 J4
HAOY @) = oA, (3.4)

where A9 := m® — 0.

Lemma 3.1 Let o > ({ —1)5. Then for every partition m() = (m1,...,me,0,0,...,0) we
have ,
Foeo (o +m®) = 2m) D5 [T +a = 2(0-1) (3.5)
7=1

where A := mj — py) =m; — (2 — - 1)%. Thus Py (a + m) and (a) 0 = Do (o +
rn(é))/FQ(z) () are symmetric functions of A0 = (A1, Azy oty Ar). Moreover, for any s € N

s—1 /(
[TIT+a+v=-S-1)
v=0 ;=1
s—1 /£

= [ (@ -Je-m)=af(a). (3:)

v=0 k=0

(Oé + S)m(z)
(Oé)m(f)

Thus (o + 8) 0/ (@) o s a symmetric polynomial in A = (A, Ay, ..., \;). Hence the

operator
s—1 ¢
._ a =k A
7= (a+r— (-1 Al (3.7)
v=0 k=0
belongs to Dy and satisfies
a4+ S)n
T frato = (@t Smio fmo (3.8)
(Oé)m(f)

for every m(¥) = (my,...,me,0,...,0) >0 and f 0 € Py
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Proof: (3.5) is a consequence of (1.14) for the cone Q). The first equality in (3.6) is a
consequence of (3.5) and the fact that I'(z + 1) = 2I'(2), and the second is a well-known
property of the {O'](f) t _o- The rest follows from (3.3). &

Remark: For every § € C define
DBy == N oy, N7 e Dy (3.9)

It is well-known (see [FK94] Chapter XIV and [AU97]) that

£
7%()13) (5)(A(Z)) = H(/\j + %(ﬁ —-1)-p). (3.10)

i=1

It follows from (3.6) that if @ > (£ —1)% and s € N then

s—1
a4+ S)n
( ) = = va()f)(%(é—l)—a—u) (A(Z))
v=0

(@) me
Since v\ : D, — Sy is a (surjective) ring isomorphism, it follows that the operator (3.7) admits
the following expression

L(f-1)—«a d\°  ots—g(t—
T=nNy, (%) NpFemEEY, (3.11)

Theorem 3.1 Let0 </{<r—1andlet > 5({—1). Then there exists an operator T = T8
on C°°(QUW) which is invariant under GL(Q®), so that for every f € Hog with Peter-Weyl

expansion f — Zm(z) Jm@®

(8) o
Tf= S fa@- (3.12)
n%;) (£3)mo
Hence, for all f, g € 7—[4%,
< f,g >g%:< Tfg>p. (3.13)

Moreover, if 3 — (5 € N then T € Dy (i.e. T isa GL(Q(Z))-invam’ant differential operator).

Remark: Strictly speaking, the meaning of (3.13) is that T3 (defined in general via the func-
. . . .ol (8) L
tional calculus (2.11), and for holomorphic functions via T2 (3 () frn0) = Yom(® ((é“)mnff;) )2 fin(0)

maps 7{4% isometrically into Hg. Formula (3.13) is valid for all polynomials f, g.

Proof: We define an operator T on holomorphic functions of the form f =37 fia via

Tof =30 ((zﬁg))m(f;) fin(o- Then Ty is well defined and continuous with respect to the topology

of uniform convergence on compact subsets of D (see [A96]). Notice that the eigenvalues

(B)mo/(5) e are positive (since mypy =---=m, =0and 3> S({—1)). If f=>" 0 fim©
and ¢ =Y .0 g0 are polynomials then

1
<Tho>= ) oy < Jm@:9mo >r=< 1,9 > .
m0 ( 5)111(@
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1
Thus 75 maps H,e into Hp isometrically. Using the notation AO = m® — pO Lemma
3.1 guarantees that there exists a symmetric function of AW of the form p(o‘(é)(A(Z))) _
p(@ A0, e D(A®)), 50 that for all mO > 0

Hence T := p(AY)) = p(A(IZ)7 . .,Ay)) is a GL(QY)-invariant operator whose restriction to
the holomorphic functions of the form (o fi0 is To. If n:= 3 — £5 € N, then (3.6) shows
that p is the polynomial

n—1 14
p(x1,...,x0) = H (Z(ﬂ% +v - %(6 — 1))f—kxk)

v=0 \k=0

where z¢ := 1. Hence

n—1 £
a a _
r=pad,. a0 =] (2(65 +v = (t=1) kAEf))

v=0 k=0
is a member of Dy (i.e. a polynomial in the generators Agé), .. .,Ay)). |

Using (3.4) and Corollary 2.2 we obtain the following result.

Corollary 3.1 Let f,g € Hg% have Peter-Weyl expansions f =3 (o fono and g =" (0 Gm© -

Then for every symmetric function of A0 of the form
Pl I = (oA, o))

the corresponding differential operator

p(a) (Fo(x)) = (3.14)

/e
— Z ( z)m;) p(o.(f)(m(f) _ p(f))) < fun0)s Ge(6) >F q)(f)(z) (2).

m

/ p(a) (Fg) vl = (3.15)

p(a(m® = pl)) < fru0, gin >F -

Here ¢ = D' (f%)/FQ(Z) (r
defined in (2.37).

%), dp = dimp(Xy(ue)) = (0 - 1)§ 4+ 1, and v is the measure
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. . ¢ .
Notice that by Lemma 3.1 the coefficients of < f, 9,9, >F (I)En)(‘»’) (z)in (3.14) and (3.15)

are symmetric functions of A = m® — p.

Remarks: (i) If one uses (3.14) with & = uy, one obtains (with 7' = p(A¥))

(Tf-9)(u) =T(fg)(ur) = (3.16)

then for every f,g € 7{4%

Tf glu) =) —mEmma =t =< fig >0
m(f) ( f)m(z)
Namely
<fgva= [ @190 doto). (3.17)
£

This realizes 7{4% as a Hardy-type space on Sy

(iii) It would be interesting to exhibit 7" in concrete terms (not only via its eigenvalues). If
a is even then T € Dy, i.e. T is a polynomial in the generators A(lé), Agé), .. .,Ay) of Dy. It
would be interesting also to exhibit 7" as a linear combination of Yan’s operators (see [AU9T]).
If @ is odd then either D is of type IV, with n odd (a case which was considered in [AU97]

and [AU9S8] since £ = 1), or D is of type [11, (with a = 1).

Theorem 3.2 Let 0 < (< r—1andlet @ > py—1= ({—1)a+1+0b. Let p(aD(AD)) be the
symmetric function of A = (A1, Az, ..oy Ag) so that

0 (£) mio (@) mio
£

m (3.18)
Ce (Ki),zn(z)(dT)m(é’)

for every ALY .= m®W — p. Let T = p(A(f)7 .. .,Ay)) be the GL(Q(Z))-invam’ant operator
defined via the functional calculus (Lemma 2.1). Then for every f,g € 7{4%

< /g >zg:/ T (fg) avth, (3.19)
I,

()

where v, is the measure defined in (2.37). Moreover, if s :== a—{5 € N, then p is a polynomial
in A and T € Dy, te. T isa GL(Q(Z))-invam’ant differential operator on €.

Proof: The right hand side of (3.18) is symmetric in A = m® — p¥ by Lemma 3.1.
Thus (3.14) yields for any f,¢ € Hog with Peter-Weyl expansions f = > (o f,0 and ¢ =
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2 om0 Im(@)s

/ T ('/]‘5) dyg) _ Z < fm(f)mgm(f) >F (Oé)m(z) /I q)fﬁ)(z) ($) dl/g)($)
£

d
Le m( ((3) mo (Fm©
< 0 I >F
- Z m(gg’)m =< f,9 > .
m® 2/m(0)

Assume that s := o — (5 € N. If also n := (r — {)§ € N then

a a d dy
——K—:———:n7
2 2 r {

and Lemma 3.1 guarantees that p is a symmetric polynomial of degree {(s+2n) in (A1, Az, ..., A).
If (r —£)5 ¢ N, then necessarily b = 0, and both

d
n1 ::(r—€+1)%—1 and ngy ::;—K%:(r—l—ﬂ)%—l—l

are in N. Again, Lemma 3.1 guarantees that p is a polynomial of degree (s 4+ ny 4+ nz) in
(A1, Az, ..o, Ag). This completes the proof. B

Remarks:

(i) Using Lemma 2.2 and Proposition 2.1 it follows that if 7' is a GL(Q(®))-invariant operator
on C’OO(Q(Z))7 then for every f,g € Hos

o ——

T(fg)=Tf9=1-Ty. (3.20)
Theorems 3.1 and 3.2 can be reformulated accordingly. For instance, (3.19) can be re-
written as o
< frg>pa= / Tf-gdvV= | f-Tgdv). (3.21)
I I

(ii) Formula (3.18) can be rewritten as

Y VN du (5
<o [ ( [ 0 D >) ak

4 Integral formulas in the context of symmetric Siegel domains

In this section we develop integral formulas for the inner products in the spaces Hg%(T(Q)),
(where T'(Q) is the symmetric Siegel associated to D via the Cayley transform) in terms of the
Fourier transform of the functions. We begin with the relatively simple case of a Siegel domain
of type I. The results presented below for the discrete Wallach points {K%}Q;S will be somewhat
analogous to our earlier results [AU97] for the continuous Wallach points A > (r — 1)5. The
development of the integral formulas in the context of a general symmetric Siegel domain of

type I1 requires additional machinery, and will be treated separately.

The case of a symmetric Siegel domain of type [
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Assume that 7 is a JB*-algebra with a unit e. The open unit ball of Z is holomorphically

equivalent to the tube domain
T(Q) = X 40
via the Cayley transform c(z) = i(e+2)(e — 2)~', z € D. T(Q) is a symmetric Siegel domain
of type I. For any A € W (D) the operator VWV f = (foc™')(J ¢=1)M? maps the space H (D)
isometrically onto a Hilbert space of analytic functions on T(2), denoted by H(7(2)). The
inner product in H(7'(2)) is defined by
1

(2905 =, Drnr@y = VO, VI g, o) - (4.1)
The description of H,(1'(€2)) is therefore equivalent to the description of H, (D).
The reproducing kernel of H,(T(2)) is

—1

z — w*

Ky (z,w) = N )_A, sweT(Q). (4.2)

?
Namely, for all z, w € T(Q)

*

z—w )—A

1

)@Y he (2), e (w) T e () 7 =
It is known that for A > p — 1 H,\(T'(Q?)) is the weighted Bergman space
HA(T(Q)) = L2(T(Q),my) = L*(T(Q),my) N {analytic function}
where
dmy(z) = cxda N(Qy)A_pdy7 z=ax+iy, v€ X, yeQ

and

R 1 0

YT Ry - 9)

Also, the Shilov boundary of T'(Q2) is X := {2z € Z; 2" = z}, and H4(T(Q)) coincides with
the Hardy space H?(X) (consisting of all analytic functions f in T(Q) for which || f HJQLI?(X)::

sup [|f(z 4 iy)[Pde < o).
yeQ X

Using the Fourier transform (with respect to ) one obtains the following result. Here for
A > (r—1)% we consider on Q the measure

doy(v) = N(@W)F > dv,  fBy= (27) 2 Tq(N). (4.3)

Proposition 4.1 [AU97; Proposition 6.1] Let A > (r — 1) 5, and let f be a holomorphic
function in T(Q2). Then the following are equivalent:

(1) feHAT(Q));
(ii) The boundary values f(x) = Qlimo f(z + iy) exist almost everywhere on X, and the
Sy—

Fourier transform f of [ () is supported in Q and belongs to L?(2,0,);
Moreover, the map f — f is an isometry of HA(T(Q)) onto L*(Q,0)). Consequently, for all

<ﬁwA=/f§dm (4.4)

Q
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Our goal here is to extend Proposition 4.1 to the discrete Wallach points (3, £ =10,1,2,..., r—

1. With respect to the fixed frame {ej};zl of minimal, pairwise orthogonal idempotents, we
denote uy = Z§:1 €, v = Z;:Z-l—l e;, 0 < € <r—1. Recall that the orbits of GL(2) on 99
are exactly

0¢2

GL(Q) (ue) = {p(ue); ¢ € GL(Q)} (4.5)
= {2 €Q; rank(z)=(}, (=0,1,2,...,r =1

The following fundamental fact is established in [RV76] and [La87]. An explicit direct proof
will be given in Section 6 bellow.

Theorem 4.1 Let 0 < { < r — 1. There exvists a unique measure py on 082, having the
following properties:

due(p(@)) = Det(p)'s/ % dpue(x), Ve € GL(Q) (4.6)

where dy = dim(Zy(e)) = r(r — 1) +r, and
/ € dpe(y) = e Ne(@) ™5 Ve €@, (4.7)
0,82
where ¢ = (27) Y5 T (€5).

Let GL(Q2) = L Ng A be the lwasawa decomposition. Then it is known that the set
Ng A(UZ) = {ac € 8{(9); Ng(w) > 0} (4.8)
is open and dense in J;Q and p (9,2 \ No A(ug)) = 0. The following result is established in
[La87].

Lemma 4.1 An elementx € 0, belongs to No A(ue) if and only if in its Peirce decomposition
relative to uy 1 @ = x1 + 15 + ®o, 1 is invertible in X, (uy) and

950:2”4(951/2(951/2951_1)) (4.9)
The expression of yy in the coordinates (w1, 2/;) of @ € Ng A(ug) is
a_d
dpe(x) = No(z)5 77 day dxy /o (4.10)
The properties of us enable us to describe the space 7{4%.

Lemma 4.2 Fiz w € T(Q) and 0 < { <r — 1. Then the Fourier transform with respect to x
of the function Kffg)(w) = K(Z%)(x, w) = N(x%w)_ég is the following measure with support
0¢ Q:
) o2m)d
K0 = B0 mitwrt gy, 1) (4.11)
Ve

where vy = (QT)Z(T_Z)%FQ(Z)(%), as in Theorem 4.1.
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Proof: Theorem 4.1 and the fact that € is a set of uniqueness for holomorphic functions on

T () imply that for all z € T(Q)

/ 0 (1) = 7 N(?) S
8,92
It follows that for all z,w € T'(Q)
(¢2) dmw YR L ey
Z% pu— _ = — = w t
K2 (2, w) (N( - )) ol d pre(t)
£
Hence . 1
KUY (o) = = / e e (1), w e T(Q) (4.12)
e

9,02

(2

Thus K, 2)(96) is the inverse Fourier transform of the measure % e~ X d e (t), which is
supported on dy 2, and (4.11) follows. B

e

(£3)

Lemma 4.2 can be reformulated by saying that K, 2’ is a measure supported in d; Q which
is absolutely continuous with respect to us, with Radon-Nikodym derivative

) a
dK,*? 2 (w*
(1) = 210 it (4.13)
d pue Ve
Lemma 4.3 For every z,w € T() and 0 < <r—1
<d[(w2 | dK:? > _ (QT)QdK( %)(Z7w) (4.14)
d d L2(8¢8,12¢) e

Proof: Both sides of (4.14) are holomorphic in z and anti-holomorphic in w. Therefore it
suffices to prove (4.14) for z = w =u+ v, v € X, v € Q. In this case we obtain by Lemma
4.1

Gl
d e

_ (o / ‘ i |t dw( ) = ) / =200 ¢ 1y (1)

L2(2¢9,p10) 8, Q 8,0
2 o (2m)%

I NPT Cl)

Ye Ve

Fix 0 < ¢ <r —1 and consider the space

U (T(9)) = span {KS2; weT@)]) . (4.15)
We define a map w(o) on Hg%) (T()) via
©,_ 1 df
‘/Z f_ (277)51 d,ué 9 (416)



where f is the Fourier transform of the restriction of f to the Shilov boundary X, and %

is the Radon-Nikodym derivative of the measure f with respect to pg, which exists in view of
Lemma 4.2 and the fact that f € 7—[20) (T(2)).

a
2

0)

Lemma 4.4 VZ(O) is an isometry of 7—[2g (T()) into L?(9; Q, pe), and it has a dense range.
2

Proof: : Let f = zn: ¢ Kff;%) e #O ('2). Then

J=1 .+
ey e "L
1 Ife= D it <K£u¢2)7kw§>zg =3 ity KU (wy, wy) .
Also, Lemma 4.3 implies
1V |2 ST <df<5uf) Lt
€ NL2(9,8 pe) (2r)2d i Cj due ' dp o)

7,75=1
n
= > eitg KU (wj,w) =|| f [

7,75=1
Thus VZ(O) is an isometry. The range of VZ(O) contains all the functions
VO (37 kL) () = 07, w e T(@)

The linear span of these functions is a self-adjoint sub-algebra of C'(9,€2), which separates
the points of J; 2. Therefore VZ(O) (7—[2%) (T(92)) is dense in Cy(9, ) by the Stone-Weierstrass
theorem. Since py is mutually absolutely continuous with respect to Lebesgue measure on d; €2,
the density of VZ(O) (7—[2%) (T(Q)) in L*(9682, py) follows now by standard arguments. N

It follows from Lemma 4.4 that VZ(O) extends an isometry V; of 7—[2%) (T(2)) onto L2(8; 2, e).
The exact statement is the following result. ’

Theorem 4.2 Let 0 < {<r—1, and let f be a holomorphic function in T(Q2). The following

conditions are equivalent:

(i) f € Hea(T(Q));
(ii) The boundary values f(x) = Qlim Of(ac + iy) exist almost everywhere on X, the Fourier
Sy—

transform f of f(x) is a measure with support in 0, Q which is absolutely continuous with

respect to py, and the Radon-Nikodym derivative % belongs to L*(9,9, p0). Moreover, the

map Vy f = % is an isometry of Hg%(T(Q)) onto L?(9,8, ). Thus for all f,g € 7—[2%) (T(2))

_Tow(3) [ df . dj
s = /Q ) 2L dul) (117

where §p = d — ((r — ()

a
5
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Expressing p via (4.10) on Ng A(ug), we obtain

(f,9)ee = 27? 25[ / d—f d—g( ) No(10) =% diy dt, (4.18)
o Au

Remark 4.1 In the case where A > (r — 1) 5, (4.4) can be written in the form

(fr90n = (F;T()Azzl / ddl'i (t) dd,i (t) N7 dt (4.19)
Q

(where f,§ are considered as the measures f(t) dt and §(t) dt). Thus (4.18) is the right analogue
of (4.19), and therefore of (4.4). It is an interesting problem to obtain (4.18) from (4.19) by
analytic continuation in the parameter .

The case of a symmetric Siegel domain of type I7

Assume now that e is a maximal tripotent in Z which is not unitary. Thus Z;(e) + Z; /5(e)
and 7y /5(e) # 0. Thus

dy :==dim Zy(e) =r+r(r—1) %, dyjg = dim Zy5(e) = rb
(where 1 <b € N). Z(e) is a JB*-algebra which operates on 7 /5(e) via
R(z)w:Q{z,e,n}, z € Zl(e)v URS Zl/?(e) : (420)

R : Zi(e) — End (Z;/5(€)) is a monomorphism of Jordan *-algebras, where the involution in
End (Z;/5(e)) is induced by the given K-invariant inner product (£|n) (see [Lo75], Lemma 8.1,
p.75). Let us denote

F&m) ={&m e}y &ne Ziple) (4.21)
Then F : Zyj5(e) X Zyj5(e) — Zi(e) is sesquilinear, and F'(&,&) € Q for all £ € Z;5(e). We
denote also F'(§) := F'(£,€). Let us define 7: Z x Z — Zy(e) by

T(z,w) = M - QF(ZI/% wl/z) (4.22)
(3

where z = 2y + 21/, w = wy +wy/y (21,w1 € Z{e) and zy /9, Wy /9 € Z1/5(e)). For convenience
we denote 7(z) = 7(z, z). The associated Siegel domain of type Il is

TQ):={z€7; 7(2) €Q}. (4.23)
It is known that the Cayley transform

etz
C(Z)—26_21

+V2 R((e— 20" (z1p2), z=21421p (4.24)

maps the Cartan domain D (i.e. the open unit ball of Z) biholomorphically onto 7'(€2).
Again, for A € W (D) the operator VN f = (foe™)(J ¢=')M? maps H, (D) isometrically onto
HA(T (D)), which is endowed with the inner product (4.1). Also, the reproducing kernel of
HA(T (D)) is

KWV(z,w) = N(r(z,w))™, zweT(Q). (4.25)
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Our main goal here is to describe the inner product of H, (7' (D)) concretely.
The Shilov boundary of T'(R) is the set

H={zeT(Qir(z) =0} = {e + i FO)+& 2 € X1(e) + £ € Zy (o)} (1.26)

Proposition 4.2 Let ,n € Zy3(e). Then for every v € Q

[(F(n,€)]0)] < (F(&]0)/*(F(nlv))'/? < %<F(€) + F(n)|v). (4.27)
Thus 1
Re F(n,) < S((F(€) + F(n). (4.28)

The straightforward proof is based on the positivity of I’ (i.e. the fact that F(&) € Q for all
£ € Zy/3(€)), and it is omitted.

Corollary 4.1 For all z,w € T(Q)

Re (1(z,w)) > =(7(2) + 7(w)) . (4.29)

N | —

In particular Re (T(z,w)) € Q, and this is true even if z € H and w € T(2).

Proof: Using (4.28) we have

2RT(z,w) = & ; SRR ; T 4Re F(z1/2, wy)9)

* *
21— 2 wy — wy
_I_

z = 2F(z1y9) = 2F(wy ) = 7(2) +7(w) . N

¢ ¢
For A > (r—1) § consider the measure dp(z) = N(av)A_dr_1 dron Q. ForA=(5, 0 <({<r—1,
let py := p¢ be the Lassalle measure (see Theorem 4.1 and Section 6 bellow). Then for all

A e W(D)
/Qe‘<y'““’> dux(x) =7 N(y) ™, (4.30)
with vy = Iq(A) for A > (r—1)%, and vy = v, = (2m) =02 Ty (0%) for A = la, 0< (<=1,

Corollary 4.2 Let z,w € T(Q) and let X € W (D). Then

K“Nauﬁzzii/e_“@MWhMM@)- (4.31)
T

The formula holds also for z € H and w € T(12).

Proof: Since Ret(z,w) € Q, the integral converges absolutely, and uniformly on compact
subsets of T'(2) x T'(2). Therefore, the integral is holomorphic in z and anti-holomorphic
in w. Since KW (z,w) is also sesqui-holomorphic, it is enough to show that (4.31) holds for
z=w €& T(Q). Writing 2 =2+ +& (z € X, (e), y € Q, £ € Zy)5(¢)), and using (4.30), we
obtain

/gwwmm@::wwwmﬁszW@@.
Q

Thus (4.31) is established for all z,w € T'(Q2). Letting 7(z) — 0 in (4.31) for fixed w € T'(2)
(i.e. z — H), we obtain (4.31) also for z € H and w € T(Q). 1
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Lemma 4.5 Let A € W(D), fix w=u+iv+ne€ T(Q) (withu € Xi(e), v€Q, n€ Zyle))
and § € Zy5(e), and consider the function

KOV o) = KO (@ +iFE) +& w), € Xy(e) . (4.32)

Then the Fourier transform of Kffg, considered as measure, has support in Q, and is given by
. 27 )4 ]

KO0 = 22 exp (€ + 0 - 20(6 )+ 1)) i 1), (133

Proof: Using (4.31) for w € () and z =z + 1 F(§) + £ € H, we obtain
1

Kffé(w> = — | eilol) ~FE@Fv2FEmtiult) g (1)
' TN Ja
Thus Kﬁg is the inverse Fourier transform of the measure 'y;l exp{—(F(§) +v—-2F(¢n)+

iult)} d px(t), whose support is contained in Q. From this (4.33) follows by inverting the

Fourier transform. 1

For A > (r — 1) § we consider on © x Z; (e} the measure
b A-dy
doy(t,&) = N(t)” dux(t) d6 = N(t)"~+ 7 dtd¢ . (4.34)

Lemma 4.6 For every w € T(Q)

)

K 2 7P

// T (t)‘ doy(t,&) = a0 K" (w,w) . (4.35)
QXZl/Q(e)

Proof: Writing w = u + iv 4 7 as in Lemma 4.5, we obtain p) from (4.33)

—

d[(fu/\) 2 27) 21
/ ot e = 2m) 2 -2tel / —HF@-2ReFEnI) g
HA 15

Z1)2(e) Z172(0)
I TP / AP E=n)ID) g
Z172(6)
_ @O / e~ IBEEIR ge

Z1/2(5)

Here we used the well-known formula
(zl{y, 2, wh) = {z, y, 2Hw), Ya,y,z,we”z (4.36)
to obtain
| R ENP= €IR(E) €) = (€[2{t, e, €}) = 2({&, & e}ty = 2(F(E)]e) -
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It follows that

// dikt\%N@wm@z

QXZ1/2

_ (2772 /e—< I (1)
Q

15
20" e = 27 w.w

Corollary 4.3 Let A > (r — 1)3. For all z,w € T(Q)

dI( dA( ) "
e _@enrooy
/ /Z1 dl//\ dy/\ ( ) dg/\(t’g) - FQ(/\) K (va)- (4.37)
Also, considering Kfug( ) as a function, we have
) ( d_y (2m)"P )
L/wjgl we(t) Ko () dEN ()" dt = oy X (2, w). (4.38)

Proof: Both sides of (4.37) are sesqui-holomorphic in (z, w) and coincide on the “diagonal”

z = w by Lemma 4.6. Hence they coincide for all z, w € T'(Q2). (4.38) is an obvious consequence
of (4.37), since

Py —
w,¢ A=d (M)
s (- NOM*F =K ). n (4.39)

The generalization of Proposition 4.1 to Siegel domains of type Il is the following result.

Theorem 4.3 Let T(2) be a symmetric Siegel domain of type II, let A > (r — 1)5, and let f
be a holomorphic function on T(Q2). Then the following conditions are equivalent

(i) feHANT(Q)):

(ii) The boundary values of f at points z = x + 1 F (&) + & (x € X1(e), € € Z1(e)) of the Shilov
2
boundary H, i.e.

fe(x) = fla+iF(§+¢) = ngrgof(x +iy+iF(€)+¢)

exist almost everywhere, the Fourier transform fg (t) is supported in Q, and

// Fe(O2de N dt < .
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Moreover, the operator Vy : H\(T(Q)) — L2(2 X Z1(e), N(t)g_A dt d) defined by
2

(&) = ¢(t) (4.40)
is an isometry of H(T()) onto L*(Q x Z%(e)7 N(t)g_A dtd§). In particular, for every f, g €
HA(T(92))

< fy Ge(t) dE N ()7~ dt. (4.41)

The proof uses (4.38) and is analogous to the proofs of Proposition 4.1 (i.e. Proposition 6.1 and
Theorem 6.1 of [AU97]) and to the proof of Theorem 4.2. Therefore we omit it. We remark
that in view of (4.37),(4.41) can be written also in the form

)re / / dw dyi)d‘”(t £); (4.42)

where o) is the measure defined by (4.34).

</fyg

We turn now to the case where A = (5,0 < ¢ <r —1 (and for simplicity denote Vs = 1y
and yoz = 7¢).
Let t € 0,92, then its support idempotent s(¢) has rank . Thus Z1 (e) is the direct sum
2
(e)nZ (e) N Zols(1)) ) - (4.43)

1= (2, 1 (s0) + (24

Let us denote o
0 (T(Q)) ={t+&1€ 02 €€ 2 ()N Za(s(D)), (4.44)
(The notation is chosen as to indicate that the Fourier transforms of functions in H,q (T'(£2))
are supported in J; (T/(a)))
Jy (T/(a)) can be viewed as a bundle whose base is 9,2, and the fiber over t € 9,Qis Z1(e) N
2

Z1(s(t)). Let us consider on 9y (T/(a)) the measure fiy, defined by

= [\ [
/813(7{(50 Teji EXo) ( 7y (902

For every t € 9,9 let det(t) = Ny, (4))(t) be the determinant of ¢ in the Jordan algebra

—

X1(s(t)). We define a measure o, on 9y (T(Q)) via

oe L]
/813(7“/(5)) Jdo 8,02 ( 7y (902

i.e., doy(t, &) = det(t)’dfis(t,&). Namely, on the base 3, we use the measure u, and at the
fiber above t € 3,2 we use the measure det(t)bdf. Notice the analogy between g, and o) for
A> (r—1)5.

1
2

o Flt+6) dg) dpa(t). (4.45)

1
2

o) ft+¢) dg) det () dpue(t), (4.46)

1
2
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Lemma 4.7 Let 0 < <r—1and fiz w=u+iv+n € T(Q) (whereuEXl( ), v € Qand
URS Zl( )). Then the Fourier transform (with respect to x) ofI(( )( )= I(EU )(x—l—zF(f)—l—f)

is a measure on O¢ ( (Q)) which is absolutely continuous with respect to iy, and

diy, 2 ~ (2mn , - 1
9= C e (— <w—2NF(€ﬂ7)+§T(W)+F(€—77) t>) (1.47)

Moreover, with x, = (2m)?hH0==0% . 9=% we have

(%)
/ T g = X RS 0, ). (4.48)
o,(T(@) | e Ve

Proof: Using Lemma 4.5 for A = (5, we see that for t € 0,22 and £ € Zy (e),
2

K0 = B e (- Gt o FO = 28I dual)
It is easy to see that for all &,n € %( e)
(F(&m)lt) = (F(Pi(s(t), Prls(t))n)t)- (4.49)

Hence, the measure I(EU >) is supported in dy (T(Q))7 it is absolutely continuous with respect

to ji¢, and its Radon-Nikodym derivative with respect to jiy is given by (4.47). Next, using
(4.49) we see that for fixed ¢t € 0,

-(£3) dy
/ dIy wo| a = (277)22 €_<T(w)|t>/ ¢~ 2HFO) ge
Z3(e)nZy (s(1)) dfig o7 Zy (07, (s(1)
(277)2dlﬂ_éb

Hence, using Corollary 4.2, we obtain

-(£3) 2d, _tb
dK,,? 2r)“hir —lr(w
/ e dii (t,f) dO‘g(t,f) = ( ) B} / € {7 )|t>d,ué(t)
8g<T(Q)> e 9402

_ s X (¢2)
= N(r(w 2 = —~ K2 (w,w [ |
Lo (€5) () Foe (€5) (19,%)
Corollary 4.4 Let 0 < {<r —1. For every z,w € T(Q),
/ AR AR T X g9 ), (4.50)
5 (T(2) dfie dfie Low (03)

Proof: Both sides of (4.50) are holomorphic in z and anti-holomorphic in w, and they coincide
on the “diagonal” z = w. Hence they coincide for all z,w € T(Q). 1
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Theorem 4.4 Let T'(Q2) be a symmetric Siegel domain of type I1I, let 0 < { <r —1, and let f
be a holomorphic function on T(2). The following conditions are equivalent

(i) f € Hea(T());
(ii) The boundary values of f

Je(w) = Fla+iF(§) +&) = lim fz+iy+iF(§) +)

exist for almost all points x +1F'(£) + £ of the Shilov boundary H, the Fourier transform
t) = le e~ 4w fe(x)dx is a measure with support in 0 (T(Q)) which is abso-

lutely continuous with respect to fig, and the Radon-Nikodym derivative 8_* belongs to
12 (00 (T19) en).

Moreover, the operator Vg : Hya (T'(82)) — L? (@ (1{(5)) ,O'g) defined via

AL o (@51

X¢ Ofig

(Vf)(t,€) = (

is a surjective isometry. Thus, for all f,g € %gg(T(Q)),

Lo (04 fdg
<fg>ee = M/ R (4.52)
2 Xe  Jo,(T(@) Ofte Ofie
Lo (65

_ ool of Linpg
o /am /Z%@)nz (s(2)) ¢ B 08 g (08 det®)] de [ duild).

1
2

The proof of Theorem 4.4 uses Lemma 4.7 and Corollary 4.4, as well as the standard arguments
used in the proofs of Proposition 4.1 and Theorem 4.2; it is therefore omitted.

Although the bundle J; (T(Q)) and the measure o, give natural and canonical description
of the space Hg% and its inner product (Theorem 4.4), they are not easy to use in some concrete
computation. We therefore develop now a formula for < f, ¢ >e2 analogous to (4.52) with more

concrete space and measure, which are however not invariant.

Recall that ug = 325_, e, vy = > gy €j- We write

(we), 79 = Z1(e) N Zo(u). (4.53)

1
2

1
Thus Z1 (e) = Z(2) + Z(O). Recall also (see Lemma 4.1) that every ¢t € NoA(us) C 0, has

Peirce decomp051t10n t= t1 —|—t1 +to, where t; € X1 (uy) positive and invertible, t1 € X1 (ug) =
X1 (ve), and tg € Xq(vs) depends on 1 and t1 via
2

to = 2u(t (t%tl_l)), (4.54)

1
2

where tl_l is the inverse of t1 in Xy (uy).
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1
Lemma 4.8 For every & = £1 + & € Z1 (with &1 € Z(12)
2 2 2 5

ti+1t1+to € NoA(u),

and & € Z ) and every t =

AN = [REF)E + Ry PR (4.55)
where t;% is the inverse oftl% in Xq(ug).
Proof: (4.55) will follow as soon as we prove that
2{es & udln) = [RODE | (4.56)
260 Erudlty) = (RUTTIR(GIREDE) (4.57)

2{Es Covdlts) = (RUDEIR( )R()E) (4.58)

and

2{6o, €, villte) = IR R(E)G% (4.59)

1
2

Indeed, by the “Peirce calculus” and orthogonality of the Peirce spaces

20 = 2({&1 + o, &1 + oy ue +vej[tn + 11 + o)
= 2({€1, &1, uetltn) + 2({€0, o, ve}to)
‘|‘2<{€07€%7Ug}|t%>—|—2<{€%7€07Ug}|t%>

Using the fact that R : Z;(e) — End(Z1(e)) is a monomorphism of Jordan-*-algebras, (see
2
1
[Lo75], Lemma 8.1, p. 75), we see that R|z (y,) : Z1(ue) — Z(f’)
2

(3)

is also a monomorphism of

Jordan-x-algebras. In particular, for every &1 € 7
2

Ll VT

RUIR(])E = R(n)Es and  R(G TR

1
2

It follows that

L L
IR = (€IRED RIDE) = (€1IR(E)E)
2<€;|{€1 ug, t1}), since ¢y is orthogonal to v,
2
= 2<{€% 1,uet|tr), by (4.36),
1
and (4.56) is established. Using similar arguments and the fact that R(t1)Z (10) C Z(12)7 we

2 2 2

obtain

-

o) = (ElRUF) R ) R(t2)60) = (€1 |R(11) o)
2(¢
= 2

[T

(RG)E R, RI

t1
2
I{&o, v, t1 1), since & is orthogonal to u,

€280, uilty).

1,
2
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This establishes (4.58). The proof of (4.57) is similar and is therefore omitted. To prove (4.59),
notice first that

N
l\J|>—-

Vol = (ColR(L)R(E?) R ) R(t
= (&l R(RITR()E).

Next, since R is a Jordan homomorphism, it preserves the “quadratic representation” operator

P(z) :=2M (z)* — M (2?) (where M (2)y := 2y = {z,e,y} Yo,y € Z1(e)). Thus

) = R(P(o))
= 2R(M(ty)*Y) — RO ).

1R(t, *)R(L )éo)

1
2

N =

1
2

1
2

R(ty)R(t7 ) R(t

1 1
2 2

Now, M(t )47t =t (tltl_l) € Xi(w) 4+ Xi(ve), hence

2R(M(1

: ;
Ve = 4{t%(t%t1_1), ve, &0}, since & is orthogonal to wuy

= Moo(ts(tsty")), v, o}

= 2{to,vs, &}, by (4.54).
Next, t2 € X1 (u¢) + X1(ve). Hence M(ti)tl_l € X1(u¢), and therefore R(M(ti)tl_l)fo =0.1It
follows zichat ’ ’

1
2

NI

[R(t, ?)R(t1)éol* = <50|QR(M(t%)2t1—l)fo—R(M(té)tfl)fd
= 2(&l{&o: ve, to}) = 2({&o, &0, ve}|to)

and (4.59) is established. This completes the proof of Lemma 4.8. 1

1
2

)

Let us define a measure &, on the set NoA(us) x Z(l via
2

/ / , Fdi= / o FE+€)dey | N dpel). (4.60)
N A(uy) 2 No A(ue) Zf :

Notice the analogy between ¢y and oy (and the fact that they use the same number of variables.

The advantage of G, is that it uses fixed coordinates (t1,t;/2,&1/2) € Q1 (ue) X Xy /a(ue) X Zi%z).

N

Lemma 4.9 Let 0 < {(<r—1and w e T (). Then

P 2

g)

% ~ Xt -(£2)

()| doy(t, &1 :7(1[((2 w, w), 4.61
/NQA (uze) / % dpie (h¢4) Lo (€5) (19,%) (%61)

where ¢ is as in Lemma 4.7.

Proof: Write w = u+ iv+ n with v € Xy(e), v € Qand n € Z1, and fix t € NgA(uy) with
2
Peirce decomposition t =t + t1 + to with ¢, € X, (us) and tg given by (4.54). Then
2

e 2
-(£%)
dK 2
WL )| = (277)%1 e—(T(w)|t>6_2<F(£%_n)|t>
dpie 7 ’
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and in view of Lemma 4.8,

/ AHEE0 g, ) = / IR )@ f2=mp2) = RO )Rl g,
2y 2y

= [T AR ) = N

1/2
7L

Using this and the knowledge of the Laplace transform of p, (see Theorem 4.1), we obtain

/]

N[A(ug) Zil/é2)

2dq+0b
_ @m™e / =) gy (1)

v

e

d k2

w7£1/2
—(t
L

2
df1/2 Né(tl)b dpe(t) =

NQA(’U,[)
I 2d1+¢b _a X¢ (ra
- % N(r(w)™% = = KD (w,w) .

Theorem 4.5 Let T'(Q) be a symmetric Siegel domain of type II. Let 0 < { < r — 1, and let
f be a holomorphic function on T(). Then the following conditions are equivalent:

() f € Hye (T(Q));
(ii) The boundary values of f at points of the Shilov boundary H :

Je(a) = J(e + i F(E) +8) lim J(w+ iy +iF()+E)

exist almost everywhere on H, the Fourier transform fg (t) is a measure with support in Jp Q

which is absolutely continuous with respect to g, and the Radon-Nikodym derivative %(t)

/]

59) 71

satisfies
d fél/z
dpug

2
Aoy (t,8175) < o0

(1)

Moreover, the operator Vg : Hya (T'(82)) — L2(9,Q x Zi}éz), G¢) defined via

Lo (ﬁ%)) 2 d e (0) (4.62)

VG = (RO R

is a surjective isometry. Thus, for all f,g € %gg(T(Q)),

G dfe die, —t
(f,9)ea = Lo (f5) / / L (1) —L(1) ISP Ne(t)3 05ty dtis; . (4.63)
2 X¢ diug
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The proof relies on Lemma 4.9 and standard techniques (as in the proof of earlier Theorems
in this section); it is therefore omitted.

Remark: (1) 84((?(9\)) should not be confused with the boundary orbit dy(7(€2)) of T'(2):

(T(Q) = {zeT(Q); 7(2) € 90} (4.64)

(2) There is a representation ¢ +— @ of GL(§) on Z; /5(e), defined on the generators of GL((2)
via

P(z)=R(z), z€Q, and (=/, tel.
One has
e(F (&) =F(2(§),2(n), ¢ € GL(Q), & n € Zije).

GL(Q) acts also on 0y (1{(5)) via

@.(t,f) = (@(t),@(f)), p e GL(Q)7 te 8((9)7 f € Zl/2(€) N ZI/Z(S(t)) .

In particular, 3(£) € Z1/2(e)N 71 /2(s(¢(t))). The proof of Lemma 4.7 yields the transformation

formula
d

op0 o = (Det ) Pt3)/5 g, Ve € GL(Q) (4.65)

as well as the Laplace transform formula

/ e oy (1, €) = (2m) "0 Ty (€5) N (v) ™" (4.66)

e

9e(T(2))

a
2

for all v € Q. These properties are analogous to the corresponding properties of s (see
Theorem 4.1).

5 Realization of H,,(7(1?)) and H,,(D) by boundary integration

In this section our main concern will be the Wallach points
d
Oég:f%—l——, 0<l<r—1. (5.1)
r

Let D be a Cartan domain and let 7'(£2) be the associated symmetric Siegel domain (as in the
previous section). We assume that 7'(Q2) is of type II; the analysis in the type I case is easier
and will follow from the general case.

For 0 < ¢ <r —1 consider the set
W(T(Q) ={z€T(Q); 7(2) € 00} (5.2)
Thus 0y (T'(2)) consists of all points
z=a+iy+iF(§) +&, xeXl(e),er%,yeagQ. (5.3)
Hence 0,(T(2)) is the direct sum of the Shilov boundary H and ¢ 9,8:

0u(T(Q)) = H + i 9,Q. (5.4)
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We equip 0y(7'(€2)) with the measure
M (z) = &7 da dg dpue(y), (5.5)
where z = 2 + iy + i F'(§) + € as in (5.3) and

o, — o4 ravie-nz Law (65) (5.6)
Lo (ae)

The reason for including the constant 521 in the measure will be clarified by the next lemma.
Thus MZT(Q) is a constant multiple of the product measure MZT(Q) =mypy X ¢, where
dmi(x +iF(€) + €) = do d¢ (5.7)

is the Haar measure of H.

Lemma 5.1 Fizw=u+w+n €T(Q), withu e Xi(e),veQ and n € Zi(e). Then
2

JR

9e(T())

2
dM] ) = K00 (1, w). (5.8)

Proof: Let z € 9;(1T(Q2)) have the decomposition (5.3). Then

] 2 ] 1 —20([
KGO = [N - 29 F € +i 0+ Jr(a) + FE— )
Hence, as in [AU97, Theorem 6.3]
2 1 —2ay
[Isgoaf ar = [ (zri (vt 3w re-m))| e
X X
1 —Qaz-l-dTl
= N (ytyrrre-n)
where dy = dimg X;(e) =r(r —1)§ 4+ r and
d
c= 4d1—7’0&gﬂ_d1 FQ(Q&Z — Tl)
Ta(ay)?
Next, using the formula
TRl SN — /e—<5|f>N(t)2afz—2dT1 dt
Lo (20, — 54)
with s =y + $7(w) + F(£ — 1), we obtain
/ / ‘ Kii‘”(z)\? deds = — S / =570l (20028 gy / e~ (FE=nlD) e
Lo (200 — %)
Zy(e) X Q Z1(e)



Thus,

2
/ ‘K{Ua’»’)(z)‘ dM ) (2) =

ou(T(2)
-1 rb
:_ZJEL3/€®WWN@M4%%%/KWWW@
Lo (20, — %) 092
f4
_ g @)y / e~ (3@ ()=t gy
Lo (20 — &)

:gfmﬁ%wmm”Ndeywzﬂwww» .
Lo — d—l) 2 7

r

For 0 < ¢ <r —1 we consider the Hardy-type space
12 (0,(T(9)) = B (0:(T(), M)

consisting of all holomorphic functions f on (T(2)) for which

17120, crsny) = s /lﬂHwWMﬁ@@
9(T(Q))

is finite. Standard arguments show that for f € H? (9,(T(2))) the boundary values

f(z):= lim f(z+1it), z€d(T(N))

Q3t—=0
exist almost everywhere, and
. . T2
1 our@)) = gim / [F(z+ i) db) ()
9(T(92))
= [ ser e,
9(T(92))

See the proof of Theorem 6.3 in [AU97].

Theorem 5.1 For 0 < {<r —1 we have H,, = H*(0:(T(2))), and moreover
[ lloe = 1l Fr2 o,y VS € Hoo(T().

Thus, for all f,g € Ha,

<hgza=im o [T o).

9e(T())
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Theorem 5.1 is the generalization of Theorem 6.3 of [AU97] to symmetric Siegel domains of type
I. The proof uses Lemma 5.1 (which yields (5.12) and (5.13) for functions in H,,(7(92))©) =
span{KfUa"); w € T(Q)}) as well as the standard arguments used in the proofs of the theorems
in Section 6 and in the proof of Theorem 6.3 in [AU97].

Notice that, in particular, the reproducing kernel of H?(9,(T(9))) is

K@ (2 w) = N(r(z,w))™%, 2z € d(T(Q), w e T(Q). (5.14)

Consider the inverse Cayley transform ¢ : T(Q) — D,

cHuw) = e ’:e +V2i R((wy + ie) ™Y w

1
wy + e 2

(5.15)

(where w = wy twy, w € Zi(e), wi € Z%(e)). ¢ extends to (T(Q)) = {w € T(Q); T(w) €
08}, and it maps holomorphic boundary components of 7'(£2) to holomorphic boundary com-
ponents of D, and preserves the rank of the boundary components. But not every holomorphic
boundary component B(v) = v+ Dg(v) of D is obtained in this way, since ¢(B(v)) = oo if
e — v is not invertible in Z;(e). Thus

cHour@) = |J B S ouD). (5.16)

vES,_yp
e—wv invertible

On the set ¢™! (9(T(92))) consider the measure
AMP (2) = [Je(z)|” 7 dM @ (e(2)). (5.17)

Then MP is absolutely continuous with respect to the volume measure on ¢~ (9,(T(2))).
Since 8,—¢(D)\c™ (3(T(R2))) is a lower dimensional subset of 9,_;(D), its volume measure is
zero. This consideration enables us to consider MZD as an absolutely continuous measure on
all of 0,_¢(D) in a unique way.

The Hardy space

H?*(0,—¢(D)) = H? (9,—_¢(D), MP) (5.18)
is the space of all holomorphic functions in D for which
ey = 50 [ 17 aMP () (5.19)
0<t<1
8r—¢(D)

is finite. By standard arguments, for each f € H?(d,_¢(D)) the radial limit (here fi(z) :=

f(tz))
filz) = lim fi(2), z€0,—e(D) (5.20)

t—=1—

exists in L?(0,_¢(D)) and almost everywhere on d,_¢(D). Moreover

12,y = Hm ([ fellrzo, ool fill 225, _o(p))- (5.21)
t—1

Recall that the operator
fre (foo)(Jeyelr

maps H,,(1(2)) isometrically onto H,,(D). Therefore Theorem 5.1 enables us to obtain the

following result.
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Theorem 5.2 For 0 < ( <r —1 we have Ho, (D) = H* (0,_¢(D), MP) and
[ lae = 1126, _y0y, mpy - VS € Har(D). (5.22)

Thus, for all f,g € H.,(D)

< [,9>0,= lim / f(tz) g(tz) dMP(2). (5.23)

9r—e(D)
Theorems (3.1) and (5.2) combine to yield the following result.

Theorem 5.3 Let 0 < { <r—1 and, as before, let oy = (5 + %. Then there exists an operator
T on C*®(DUd,_¢(D)) which is GL(Q)-invariant, so that

(1) For every f € %gg(D) with Peter-Weyl expansion f =" (0 [0, one has

Tf= Z f m( f (5.24)
m® 2 m(
(ii) For all f,g € Hya (D),
<fig>e = <T)g>mp,_ )= im / T(fg)dMp. (5.25)
9,_¢(D)

The volume measure m on d,_¢(D) is given by

/ fdm= / dv,_¢(v) / Jo(2) dmy(2) (5.26)
ar_g(D) Sr_¢ DO(U)
where m,, is the Lebesgue measure on Dgy(v). Let us consider the Radon-Nikodym derivative
dMP
w(z) = dnf; (2), z€0—e(D).

Then formula (5.25) can be written in the form

<hozs = [ [ LOIETE ) dme)

Sr_¢ Dq(v)
_ / dv,_o(v) / Ty (oG9 (2) (v + 2) dmo (2). (5.27)
Sr_¢ Dq(v)

6 Canonical Realization of Lassalle measure

Analogous to the domain D, the cone  has boundary orbits (under GL()) given by
0 = {z € Q:rank (z) = (} (6.1)
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for 0 < ¢ < r—1. It is known [RV76], [La87] that the Riesz distribution for parameter

$ can be realized as a measure p; on 0¢§2 which is relatively invariant under the action of

G L(Q2). We will show that ps has a natural polar decomposition with respect to the subgroup
Aut (X)) C GL(Q). Along the way we also give an explicit construction of p, using elementary
Jordan theory.

Let G be a locally compact group with a (left) Haar measure p, and let H C G be a
closed subgroup with a left Haar measure 3. By [Bou63, p.44] every (Radon) measure v on GG
satisfying

opv = AH(h) v YVhe H (6.2)

induces a ”"quotient” measure v/3 on GG/H such that
[aver= [ awon [ s sigh (63
G G/H H

for all f € C.(G). Here §;, denotes right translation on G and Ay is the modulus function on
H.

If H' C H is a closed subgroup, with a left Haar measure 3, such that for all ' € H'
A By = Ap(h), (6.4)
the quotient measures v/3 and 3/’ also exist, and
[ awipye= [ awmn [ assin - e (65
G/H G/H HIH
for all p € C.(G/H’) [Bou63, p.64]. If x : G — R is a character such that for all 2’ € H’

A (R)

h) = .
then the measure yu on G satisfies
A (B
O (Xp) = Oprx - S = = ( ,) XAG(I) = Ap(h) xp (6.7)
Ag(h)

and the resulting quotient measure yu/3 on G/H' is relatively invariant with multiplier x
[Bou63, p.58].

Now assume G is a Lie group, and consider the left translation action g — v, of G on G/H.
Let J(g,s) denote the Jacobian of v, evaluated at s € G/H. For h € H, Adg(h) leaves ) C g
invariant, and v, has the tangent map Ady/(h) at H € G/H. Therefore

Det Adg(h)
With [Dieu74, 19.16.4.3] this implies
Ap(h)
J(h,H)| = 6.9
1) = S50 (6.9)



On the other hand, we have v3 I = I and therefore

J(gh,H)=J(g,H)J(h,H) . (6.10)
It follows that
plg) = |J (g, H)| (6.11)
satisfies for all h € H: Al
plah) = plo) S5 = pla) ) (6.12)
Hence
Ap(h)

Sn(pp) = 0pp - p p Ag(h)p=Anu(h) pp (6.13)

=p

Aclg)

so that the quotient measure pp/f exists on G/H. For b/ € H', (6.4), (6.6) and (6.9) imply
A (R Ap(h)

Xy = I = S = o) (6.14)

and therefore , ,
xh)  x@) x(W)  x9)

ph’) — p@) P pg) (615)
It follows that % is a function on G/H’. Applying (6.5) we obtain
N nXxX _
/ d(xp/P') ¢ = / d(pp/B') ,P=
G/H' G/H'

_ / / X(gh) /

= [ aowmam [ a@sn) SO et (6.16)
G/H H/H

for all ¢ € C.(G/H'). The function % can be determined as follows: Suppose for any g € G
there exists k € K and h € H such that

gH' = khH' . (6.17)

Here K C G is a compact subgroup. Then

X (") = x(kh)  x(k)x(h) x(h) Ac(h) . (6.18)

p T pkhy T ek p(h)  Au(h)

We will now apply these general considerations to the reductive (hence unimodular) Lie

group
G = GL(Q) (6.19)

with maximal compact subgroup

K = Aut (X) (6.20)

(Jordan algebra automorphisms). The group G has an involution ¢ — ¢* satisfying

glz(g™y) =} = {(92) y™(92)} (6.21)
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for all z,y,z € X [U87]. The corresponding Lie algebra involution A — A* of g = gl(Q?)
satisfies

Afwy 2} = {(Aw) y"z} —{x(A7y) 2} +{2y"(A2)} . (6.22)
We have K = {ke G : k*=k'}.
Fix 0 < ¢ < r, and consider the boundary orbit

=G uy . (6.23)
The closed subgroup
H :={h eG: hMu =u}, (6.24)
with Lie algebra
h ={A cg: A u =0}, (6.25)
induces a diffeomorphism
G/H/99H/ngZ€8gQ. (6.26)

Via this identification, we have a commuting diagram

2,0 < 9,0

T T (6.27)
G/H' — G/H',

where v, denotes left translation on G//H'.

Let P, denote the compact space of all rank ¢ projections in X. Consider the fibration
0 Q2 = U Qi (p) (disjoint union) (6.28)
PEP,

into boundary components Q1 (p) (the strictly positive cone in X;(p)) [Lo77]. Since G permutes
the fibers of (6.28), there exists an action ¢ — ¢ of G on Py satisfying

g (p)) = Q1 (9(p)) (6.29)

for all g € G and p € P;. Equivalently, the diagram

2,0 < 9,0

Tl 0 (6.30)
P — B
g

commutes, where 7 is the canonical projection. The action of G on Fy is transitive, so that
there exists a diffeomorphism

G/H > gH — g(w) € Py, (6.31)

where
H = {heG: h(u)=u} (6.32)
= {heG: h(ug) € Qi (ue)} (6.33)
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is a closed subgroup containing H’, with Lie algebra
h:={A€g: Aus€ Xi(u)} . (6.34)

Via this identification, we have a commuting diagram

P < P

0 0 (6.35)
G/H T G/H ,

where 7, denotes left translation on G//H.
For h € H, we have huy € Q(ug) and h*(e — ug)) € Qo(ug). Thus we obtain characters
h— N(hug+ e — w) (6.36)

and

h— N(ug+ h"(e — uy)) (6.37)
of H. The associated infinitesimal characters on h) are given by

A T(Auy) (6.38)

and

A T(A% (e — ) , (6.39)

respectively. Here 7 : X — R is the Jordan algebra trace, normalized by 7e; =

Proposition 6.1 For A € §j we have

tr adg/y(A) = % [(T(A™(e —up)) — (r — ) T(Auy)] (6.40)
and
T(Aug) + 7(A"(e — ug)) = 7(Ae) . (6.41)

Proof: We will use the (restricted) root decomposition

53]
0= Z O (6.42)

of a reductive Lie algebra g with respect to a Cartan subspace a C g. For a € af (= linear
dual space of a), we put

a,:={B€g: [A,B]l=a(A)B V A€a}. (6.43)
Then gy D a and
[8ay 98] C ga+s (6.44)
for all a, 3 € al. In order to describe the root decomposition of g = gl (), fix a frame
{e1,...,€.} of projections in X and define the Cartan subspace
a:= {Z/\kekﬂez: /\1,...,/\TER} . (6.45)
k=1
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Using the associated Peirce spaces

5F + &%
Xij=X;;=<2eX: {epefa}= 5 & vk (6.46)
for 1 <¢,7 <r, define
gij={e; 02 =2 0¢€: v Xy}, (6.47)
Here we use the "triple operator”
(x O y") z:={ay*z} (6.48)
for all z,y, 2z € X. The Jordan triple identity [U87] implies, for i # j and z € X;

[er Oep,e; Oa]={erere;} O™ —e; O{zeler) =

ok 1 gk 5k _ 5k
’ Lo, 0% == I oe; O 2% . (6.49)

k
=6"¢ Oa" —

Therefore g;; is the root space for

r k
o Z A a e} A i 5] /\i —A
ker U e Z k 5 (6.50)
k=1

One can show [UU94] that

g=g0®8, B gij (6.51)
i#j
where gy = a and
g={Acg: Aep=0 Yk} (6.52)

belong to & = 0. Now consider the sub-algebra
h=<S Acg: Aus € Xy (up) Z X (6.53)
1<i<j<t
For A € g}, we have Auy = Ae; + ...+ Ae, = 0. Therefore g} C §. Since

. ex k </
(ex Beg) ue = { Ok Ny (6.54)

we also have a C h. Now let A = 2 O ¢} for some © € X;; with ¢ # j. If j > {, then
Aug=A{zveler} +...+{zefe} =0. If j <L, then

Auw ={zejej} = - (6.55)

belongs to Xj(uy) if and only if 7 < £. Hence

hb=go & Y, a5 O Y 8 (6.56)

1<i,j<e >t
(£ (£
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and

52
g=b® > g (6.57)
j<e<i
It suffices to prove (6.40) and (6.41) for A € b belonging to the various root subspaces. Suppose
first that
A=¢; 02" =z O¢] (6.58)

for some z € X;; with ¢ # j and ¢ < £ or j > (. Since A belongs to a non-zero root (6.50), we
have tr adg/y(A) = 0 by (6.44). On the other hand, Auy = {v ejus} € Xj; and A*(e — ur)) =
{zef(e —up)} € Xyj are both traceless since ¢ # j. Similarly, Ae = {vefe} = 3 € Xj; has
trace 0. Therefore (6.40) and (6.41) hold in this case. Next, assume A € gf C aut (X) = L.
Then A* = —A and

Aug=A"(e—w)=Ae=0 (6.59)
whereas tr adg/, (A) = 0 since K is compact. This proves (6.40) and (6.41).
Now let .
A=Y MepOerea. (6.60)
k=1

Since dim g;; = dim X;; = a for ¢+ # j, we have

Ai — A
tr adg, (A) = a 5 ! (6.61)
and hence, by (6.57)
a a
tr adgy(A) = 5 d =) = Sl A A = (it A= 0] (6.62)
j<e<i
4 r
On the other hand, A* = A and therefore 7(Auy) = A and T(A*(e —wp)) = D) A =
k=1 k=¢+1
7(A(e — uy)). This proves (6.40) and (6.41) in the remaining case. N
Proposition 6.2 For h € H, we have
N (ug 4 h*(e — ug))t*/?
Ap(h) = Det Adyy(h) = 6.63
m(h) € g/f)( ) N(hug+ e — ug)r=Dar2 ( )
and
N(hue+ e —ug) N(ug+h*(e —ug)) = N(he) . (6.64)
Proof: Since
& Y, 8;Ch (6.65)

1<i<y<r

it follows that {Ae: A € h} = X. Therefore the identity component H® of H acts transitively
on Q [ ]. Thus for each h € H there exists hy € H° satisfying he = hy e. Hence

k=nhi'he HnAut (X) . (6.66)
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Moreover, hy = exp (A;) - - -exp (A,) for suitable Ay,..., A, € b, implying
h=exp(Ay)---exp(A,)k. (6.67)

Since both sides of (6.63) and (6.64) define characters of H, it suffices to consider the factors
of (6.67) separately.

For h = exp A, A € b, the identities (6.63) and (6.64) follow from (6.40) and (6.41),
respectively, by differentiation. For k € H N Aut (X), kus € Xq1(u) is a rank ¢ projection,
hence kuy = up. Also, k* = k=1 and hence

Fle—u)=ke—uw)=kte—ktu=e—u. (6.68)

It follows that
N(u+ k" (e—up)) =N(ku+e—u)=N(ke)=1. (6.69)

Since H N Aut (X)) is compact, we also have
Det Adgy(k) =1 (6.70)
Thus (6.63) and (6.64) hold for k as well. 1
Since H acts transitively on §; (u¢), with stabilizer subgroup H’, there is a diffeomorphism
H/H' 5 hH — huy € Q(u) . (6.71)
Now Q4 (u¢) has the invariant measure
N(x+e—u) " de (6.72)

where n’ = dim X (uy). It follows that (6.4) is satisfied and 3/’ corresponds to (6.72) under
the identification (6.71).

Corollary 6.1 There exists a measure py on &y Q =~ G/H' which is relatively invariant under
G with character

X(g) == N(ge)**/* . (6.73)
Proof: For ' € H' we have A’ uy = uy and hence
Ap(h') = N(ug+ (B') (e — ug))t%/? = N(B'e)t/? (6.74)

by (6.63) and (6.64). Since ¢ is unimodular, (6.4) implies that (6.6) is satisfied, and xp /3’
is a relatively invariant measure (for y) on G/H’ which, under the identification (6.26), gives
the Lassalle measure gy on d; Q2. 1

Theorem 6.1 The Lassalle measure j; on 0¢ 2 has the polar decomposition

/duz-@z/dp / Ny+e-p)5 Tol) . (6.75)
Q1(p)

00 2 P,

|3

Here dp is the K-invariant probability measure on Pj.
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Proof: The measure pp/3 on G/H is invariant under the left translation action of K since

p(kg) = |J (kg, H)| = |J (k, gH)[|J (g, H)| = |J (g, H)| = p(g) - (6.76)

It follows that pp /3 is (proportional to) the normalized K-invariant measure dp on P, ~ G/H.
Now let g € G. Then
p = g(ue) = ku (6.77)
for some k € Aut (X). Since k =k, h:=k™!g satisfies

h(uz) = k‘l(ﬁ(w)) = Uy . (6.78)

Therefore h € H. Put
yi=gu =khu € 9 Q~G/H . (6.79)

Computing 3 as in (6.18), (6.63) and (6.64) imply

Xy = X N(he) /2 N(hug + € — ug) =00/
P T AN T T Nuet hr(e — ug))lar?

= N(hurte—u) = N(y+e—p) (6.80)
since y = khus and p = kus. Now the assertion follows with (6.16), since the measure

N(y+e—p)~/tdy on Q(p) is the image under k of the measure N(z 4+ e — u;)~"/¢dzx on
Qi (ug), which is identified with 5/5. 1
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