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Introduction
Basic Problem

I Various motives for trades on financial markets:
I Rebalancing of mutual funds.
I Hedging of derivative positions.
I Liquidation due to margin calls.
I ...

I Endogenous motive to trade  pay trading costs for
consuming liquidity.

I Resulting optimization problems widely studied in
Mathematical Finance and Financial Economics.

I But who are the counterparties for these trades?
Who provides liquidity and how?



Introduction
Specialist Markets

Who provides liquidity? Classical setting:
I Monopolistic (or oligopolistic) specialists.
I Obliged to match incoming order flow. Compensated by

earning the spread between their bid and ask prices.
I Optimization problem: set spread to maximize profits from

matching all incoming orders.
I Tradeoff: earning spread vs. inventory risk due to price moves

I Garman (1976). Amihud & Mendelson (1980). Ho &
Stoll (1981). Avallaneda & Stoikov (2008). Gueant, Lehalle, &
Fernandez-Tapia (2013).

I Separate literature on adverse selection/information risk (e.g.,
Glosten & Milgrom (1985)).



Introduction
Limit Order Markets

Who provides liquidity? As stock markets have become automated:
I Monopolistic market makers replaced by electronic limit order

books on many trading venues.
I Anybody can post buy and sell orders. Purchases and sales

are matched automatically.
I Liquidity provision as an algorithmic trading strategy for

hedge funds.
I For small liquidity providers: order book given exogenously.

Cannot choose the spread.
I But: not obliged to match all orders. Can choose how much

liquidity to provide.
I This is the setting we study.



Introduction
Results in a Nutshell

I Optimal policy characterized by upper and lower boundaries
for the investor’s position:

I If a sell order of another market participant allows to buy
cheaply, trade to upper boundary.

I Likewise, jump to lower boundary when the opportunity for a
profitable sale arises.

I Between these profitable trades, manage inventory risk by
keeping position between boundaries with market orders.

I Kühn and Stroh (2010):
I Log investor, only holds long positions.
I Market with constant spread, order flow, and prices following

geometric Brownian motion.
I Boundaries determined by free boundary problem.



Introduction
Results in a Nutshell ct’d

Here: general model. Explicit asymptotic formulas.
I For tractability:

I Limiting regime of small spreads and frequent orders by other
market participants.

I Mid price follows a martingale.
I Results:

I Simple robust formulas for leading-order optimal trading
boundaries and their performance.

I Valid for general dynamics of mid price, spread, and order flow.
I Preferences of the liquidity provider can be arbitrary, too.
I Extension that incorporates price impact due to, e.g., adverse

selection.



Model
Limit Order Markets

Two types of orders:
I Market Orders:

I Executed immediately.
I But purchases cost higher exogenous ask price (1 + εt)St .

Sales only earn lower bid price (1− εt)St .
I Limit Orders:

I Execution price can be specified freely.
I But only executed once a matching order of another trader

arrives.
I Dealing with arbitrary limit orders is very hard.
I But: for small liquidity providers, only orders close to the

current best bid-ask prices make sense.
I Moving into the book delays execution.
I Narrowing the spread reduces profits.



Model
Limit Order Markets ct’d

Our model (cf. Kühn & Stroh (2010), Guilbaud & Pham (2013)):
I Can always trade with market orders at the “bad’ side of the

bid-ask spread [(1− εt)St , (1 + εt)St)].
I When buy or sell orders of other traders arrive at the jump

times of counting processes N1,N2, limit orders in the book
are executed at the “good” side of the spread.

I Liquidity provider is small. Orders of any size are executed.
I Limit orders can be placed, updated, or deleted for free.
I Reduces primitives of the model to:

I Mid price St .
I Spread εt .
I Arrival rates α1

t , α
2
t of incoming buy and sell orders.



Model
Limit Order Markets ct’d

I Mid price St is a martingale: dSt/St = σtdWt
I Disentangles liquidity provision and directional investment.
I Leads to long and short positions even in the limit for small

spreads.
I Small spreads and frequent incoming orders:

I Spread εt = εEt for Itô process Et and small parameter ε.
I Arrival rates αi

t = ε−ϑλi
t for Itô processes λi

t and ϑ ∈ (0, 1).
I ϑ ∈ (0, 1) ensures “continuity” for ε→ 0. Continuous trading

and no market-making profits in the frictionless limit.
I Regularity assumptions on σt , Et , λi

t :
I Continuous semimartingales.
I Bounded and bounded away from zero.
I Drift and diffusion parts absolutely continuous with bounded

rate.



Model
Preferences

I Arbitrary utility function U : R→ R:
I Strictly increasing, strictly concave, C2.
I Absolute risk aversion ARA = −U ′′/U bounded and bounded

away from zero.
I Marginal utility U ′ bounded by an exponential.

I Investor starts with x0 in cash, maximizes expected utility
from terminal liquidation wealth:

E [U(XT )]→ max!

I Admissibility of a family (X ε)ε>0 of wealth processes:
I Bounded risky position, in line with “risk budgets” in practice.
I Converges to zero uniformly for ε→ 0. In line with small

inventories of high-frequency traders.



Main Results
Optimal Policy

I Define position limits

βt =
2εtα

2
t

ARA(x0)σ2
t
, βt = − 2εtα

1
t

ARA(x0)σ2
t

I Keep risky position between β, β by market orders, trade to
boundaries when limit orders are executed:

dβεt+ = βεt σtdWt+(βt−βεt )dN1
t +(β−βεt )dN2

t +dΨt , βε0 = 0

Ψ is minimal finite variation process that ensures βε ∈ [β, β].
I This strategy optimal at the leading order ε2(1−ϑ) for small ε.



Main Results
Optimal Policy ct’d

I The position limits

βt =
2εtα

2
t

ARA(x0)σ2
t
, βt = − 2εtα

1
t

ARA(x0)σ2
t

are:
I Myopic. Only local dynamics matter. Like for liquidity takers

facing proportional transaction costs.
I Inversely proportional to risk aversion and variance.
I Proportional to spread earned per trade, and trading rates.
I Like classical Merton proportion µ/ARAσ2. Drift rate µ

replaced by rates at which revenues accumulate by limit orders.



Main Results
Welfare

I Performance of above strategy can also be quantified.
Certainty equivalent:

x0 +
ARA(x0)

2 E
[∫ T

0
(β

2
t 1A1

t
+ β2

t 1A2
t
)σ2

t dt
]

ω ∈ A1
t if the investor’s last trade before time t was a

purchase and ω ∈ A2
t if it was a sale.

I Certainty equivalent of order O(ε2(1−ϑ)). Dominates all
families of competitors up to terms of order o(ε2(1−ϑ)).

I Average of future squared target positions. Scaled by risk
aversion.



Main Results
Welfare ct’d

For a symmetric order flow α1
t = α2

t :
I Certainty equivalent:

x0 +
ARA(x0)

2 E

∫ T

0

(
βt
St

)2

d〈S〉t


I Squared trading boundaries in numbers of shares.
I Averaged with respect to business time d〈S〉t .
I Physical probability coincides with frictionless dual pricing

measure here.
I Like for liquidity takers with proportional transaction costs.



Main Results
Welfare ct’d

If all model parameters (σ, ε, α1, α2) are constant:
I Explicit formula for certainty equivalent:

x0 +
(2εα1)(2εα2)

2ARA(x0)σ2 T .

I Liquidity provision equivalent to an annuity:
I Inversely proportional to risk aversion and variance.
I Proportional to the rate at which revenues are earned from the

spread.
I For a symmetric order flow α1

t = α2
t = α:

I Like classical squared Sharpe ratio µ2/2ARAσ2.
I Drift µ again replaced by 2εα.



Adverse Selection and Price Impact
Motivation

So far:
I Incoming orders do not affect bid-ask prices.
I Justified if these are small and uninformed. Small noise

traders.
But:
I Larger trades eat into order book:

I Purchases increase prices.
I Sales decrease them.

I Adverse selection of counterparties with superior information:
I Prices increase after insider purchases.
I Decrease after they sell.

In both cases:
I Price impact systematically works against liquidity provider.



Adverse Selection and Price Impact
Extension of the Model

I Prices rise after exogenous purchases, drop after sales.
I Captured by simple reduced form model:

dSt/St− = σt dWt − κεt dN1
t + κεt dN2

t

I Limit orders executed at St−. Adverse price move immediately
after execution.

I κ ∈ [0, 1] measures (relative) price impact.
I κ = 0: baseline model without price impact.
I κ ≈ 1: model à là Madhavan et al. (1997). Market makers do

not earn the spread but only small exogenous compensation.



Adverse Selection and Price Impact
Results

I Model remains tractable.
I Target positions of a similar form:

βt =
2εt((1− κ

2 )α2
t − κ

2α
1
t )

ARA(x0)σ2
t

, βt = −
2εt((1− κ

2 )α1
t − κ

2α
2
t )

ARA(x0)σ2
t

,

Liquidity provision reduced by adverse price impact.
Inventory management changed as well.

I For a symmetric order flow (α1
t = α2

t = α):

βt =
2εt(1− κ)αt
ARA(x0)σ2

t
, βt = −2εt(1− κ)αt

ARA(x0)σ2
t

Liquidity provision simply reduced by factor 1− κ.
I Formula for certainty equivalent remains valid.



Summary

I Small liquidity provider trading in a limit order market.
I General dynamics for mid-price, spread, and order flow.

Arbitrary preferences.
I Explicit formulas for almost optimal trading boundaries,

associated welfare.
I Extension of the model to account for adverse selection/price

impact.

For more information (and proofs):
I Kühn, C. and Muhle-Karbe, J. Optimal liquidity provision in

limit order markets. (Hopefully) available soon.
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