ANNEX 1: RSA KEYS VERSUS FACTORING

GOULNARA ARZHANTSEVA

We present a proof of a theorem from the second lecture (Chapter 2 of slides).

Reminder:

BPP = if a problem instance x is solvable by a polynomial probabilistic algorithm.

Factoring = given a natural number n compute a prime factor of it.

Asymmetry = compute the private key from the public key.

Asymmetry of RSA = compute d (and not, in addition, p and q), knowing (n, e).

Theorem 1. If the Factoring is not in BPP, then the Asymmetry of RSA is not in BPP.

Proof. We use the following notation: $\mathbb{Z}/k\mathbb{Z} = \mathbb{Z}_k$ denotes the ring of integers mod k, $(\mathbb{Z}/k\mathbb{Z})^{\times} = \mathbb{Z}_k^{\times}$ denotes the multiplicative group of integers mod k and $\operatorname{ord}_k^+ g$ denotes the (additive) order of an element $g \in (\mathbb{Z}_k, +)$, $\operatorname{ord}_k g$ denotes the (multiplicative) order of an element $g \in \mathbb{Z}_k^{\times}$.

Suppose that the secret key d is computable in polynomial time. Our goal is to show that we can factor n, knowing the secret key d and the private key e. By the Chinese Remainder theorem we have an isomorphism¹:

 $\mathbb{Z}_n^{\times} \to \mathbb{Z}_p^{\times} \times \mathbb{Z}_q^{\times}, a \bmod n \mapsto (a \bmod p, a \bmod q)$

It follows that

$$\operatorname{ord}_n(a) = \operatorname{lcm}\left(\operatorname{ord}_p(a), \operatorname{ord}_q(a)\right).$$

Therefore, to factor n we can use the following equivalence (whence p will be a factor):

 $c \equiv 1 \mod p, c \not\equiv 1 \mod q \iff n > \gcd(c-1, n) = p > 1.$

Our goal is to construct such an element c. For an arbitrary element a we have:

ord_p(a) | p - 1,
ord_q(a) | q - 1,
ord_n(a) | (p - 1)(q - 1) =
$$\phi(n)$$
 | ed - 1

If we write $ed - 1 = 2^s t$ with some s and with t odd, then $(a^t)^{2^s} = 1$ in the group \mathbb{Z}_n^{\times} (this group has cardinality $\phi(n)$), hence $\operatorname{ord}_n(a^t) \mid 2^s$. Choose randomly an element $a \in \mathbb{Z}_n^{\times}$ and take $b = a^t$. Then

$$\operatorname{ord}_p(b) = 2^i$$
 and $\operatorname{ord}_q(b) = 2^j$ with $i, j \leq s$

If $i \neq j$, say i < j, then we take $c = b^{2^i} \equiv 1 \mod p$ and $c \not\equiv 1 \mod q$ and we can factor n by p:

$$p = \gcd\left(c - 1, n\right).$$

It remains to show that $i \neq j$ for at least half of all $a \in \mathbb{Z}_n$. We will use the additive groups $(\mathbb{Z}_k, +)$ to check this, using the isomorphisms:

$$\mathbb{Z}_n^{\times} \cong \mathbb{Z}_p^{\times} \times \mathbb{Z}_q^{\times} \cong (\mathbb{Z}_{p-1}, +) \times (\mathbb{Z}_{q-1}, +),$$

 $^{^{1}}$ Since the corresponding rings are isomorphic, so are their multiplicative groups. Also, the multiplicative group of a direct product is the direct product of the multiplicative groups.

where for a primitive element $g \in \mathbb{Z}_p^{\times}$, the isomorphism $(\mathbb{Z}_{p-1}, +) \to \mathbb{Z}_p^{\times}$ is given by $x \mapsto g^x$. The above information on the orders of elements 'translates' into:

$$\operatorname{ord}_{p-1}^+(1) = p - 1 \mid 2^s t \text{ and } \operatorname{ord}_{p-1}^+(t) \mid 2^s.$$

Therefore, our new goal is to show that $\operatorname{ord}_{p-1}^+(xt) \neq \operatorname{ord}_{q-1}^+(yt)$ for at least half of all pairs $(x, y) \in \operatorname{ord}_{q-1}^+(yt)$ $(\mathbb{Z}_{p-1}, +) \times (\mathbb{Z}_{q-1}, +).$ Let $\operatorname{ord}_{p-1}^+(t) = 2^k$ and $\operatorname{ord}_{q-1}^+(t) = 2^\ell$. Observe² that

 $\operatorname{ord}_{p-1}^+(t) = \operatorname{ord}_{p-1}^+(xt)$ for all x odd, $\operatorname{ord}_{p-1}^+(t) > \operatorname{ord}_{p-1}^+(xt)$ for all x even.

The same holds if we replace in the above x by y and p-1 by q-1.

We have two cases.

If $k \neq \ell$, say $\ell < k$, then for all (x, y) with x odd we obtain:

$$\operatorname{ord}_{q-1}^+(yt) \leqslant \operatorname{ord}_{q-1}^+(t) = 2^{\ell} < 2^k = \operatorname{ord}_{p-1}^+(t) = \operatorname{ord}_{p-1}^+(xt).$$

This strict inequality holds for at least half of the pairs (x, y), namely those with odd x.

If $k = \ell$ then we have two sub-cases:

If x is odd and y is even, then

$$\operatorname{ord}_{q-1}^+(yt) < \operatorname{ord}_{q-1}^+(t) = 2^k = 2^\ell = \operatorname{ord}_{p-1}^+(t) = \operatorname{ord}_{p-1}^+(xt).$$

If x is even and y is odd, then

$$\operatorname{ord}_{q-1}^+(yt) = \operatorname{ord}_{q-1}^+(t) = 2^k = 2^\ell = \operatorname{ord}_{p-1}^+(t) > \operatorname{ord}_{p-1}^+(xt).$$

This strict inequality holds for at least half of pairs (x, y), namely those where $x \not\equiv y \mod 2$.

The following theorem (also from Chapter 2 of slides) has an analogous formulation.

Theorem 2. If the DLP in \mathbb{Z}_p^{\times} is not in BPP, then the Asymmetry of ElGamal is not in BPP.

Test question: What is the proof in this case?