ANNEX 1: RSA KEYS VERSUS FACTORING

GOULNARA ARZHANTSEVA

We present a proof of a theorem from the second lecture (Chapter 2 of slides).
Reminder:

BPP = if a problem instance x is solvable by a polynomial probabilistic algorithm.
Factoring = given a natural number n compute a prime factor of it.

Asymmetry = compute the private key from the public key.

Asymmetry of RSA = compute d (and not, in addition, p and ¢), knowing (n, e).

Theorem 1. If the Factoring is not in BPP, then the Asymmetry of RSA is not in BPP.

Proof. We use the following notation: Z/kZ = Z; denotes the ring of integers mod k, (Z/kZ)* =
Z; denotes the multiplicative group of integers mod k and ord; g denotes the (additive) order of
an element g € (Zy, +), ord;g denotes the (multiplicative) order of an element g € Z;'.

Suppose that the secret key d is computable in polynomial time. Our goal is to show that we can
factor n, knowing the secret key d and the private key e. By the Chinese Remainder theorem we
have an isomorphis

Zy — 7y X Z;,amod n+ (a mod p,amod gq)

It follows that
ord, (a) = lem (ord,(a), ord,(a)).

Therefore, to factor n we can use the following equivalence (whence p will be a factor):
c=1mod p,cZ1mod g<=n>ged(c—1,n)=p>1.
Our goal is to construct such an element c. For an arbitrary element a we have:
ord,(a) |p—1,
ordg(a) |q — 1,
ordn(a) [ (p—1)(g = 1) = ¢(n) | ed — 1

If we write ed — 1 = 2°t with some s and with ¢ odd, then (a')?" = 1 in the group Z* (this group
has cardinality ¢(n)), hence ord,(a') | 2°. Choose randomly an element a € Z* and take b = a'.
Then

ord,(b) = 2" and ord,(b) = 2/ with i,j < s.

If i # j, say i < j, then we take ¢ = b* = 1 mod p and ¢ #Z 1 mod ¢ and we can factor n by p:
p=ged(c—1,n).

It remains to show that ¢ # j for at least half of all a € Z,. We will use the additive groups
(Zy, +) to check this, using the isomorphisms:

X ~ X X ~
Zn — Zp X Zq — (Zp—la +) X (Zq—la +)7
I Since the corresponding rings are isomorphic, so are their multiplicative groups. Also, the multiplicative group

of a direct product is the direct product of the multiplicative groups.
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where for a primitive element g € Z, the isomorphism (Z,_1,+) — Z) is given by x +— g”. The
above information on the orders of elements ‘translates’ into:

ordy (1) =p—1]| 2°t and ord;}_(t) | 2°.

Therefore, our new goal is to show that ord}_, (xt) # ord;_, (yt) for at least half of all pairs (z,y) €
(Zp-1,4) X (Zg-1,+)-
Let ord} () = 2" and ord]_,(t) = 2“. Observeﬂ that

ord’_,(t) =ord)_;(xt) for all z odd,
ord; | (t) >ord} | (xt) for all x even.

The same holds if we replace in the above x by y and p — 1 by ¢ — 1.
We have two cases.

If k # ¢, say ¢ < k, then for all (x,y) with x odd we obtain:
ord/_;(yt) <ord} (t) =2 < 2* = ord}_,(t) = ord_,(at).
This strict inequality holds for at least half of the pairs (x,y), namely those with odd z.

If kK = ¢ then we have two sub-cases:
If x is odd and y is even, then

ord; | (yt) < ord) () = ok = 9f = ordf | (t) = ord;_(xt).
If x is even and y is odd, then
ord; | (yt) = ord} ,(t) = ok = 9f = ord) | (t) > ord; (xt).
This strict inequality holds for at least half of pairs (z,y), namely those where z Z y mod 2. O

The following theorem (also from Chapter 2 of slides) has an analogous formulation.
Theorem 2. [f the DLP in Z; is not in BPP, then the Asymmetry of ElGamal is not in BPP.

Test question: What is the proof in this case?

2Check this!



