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Cryptography: Overview

Cryptography

I' Past: Diffie—Hellman (1976) and Rivest-Shamir-Adleman (1977)
I Nowadays: Blockchain ([1991], 2008)

Il Future: Quantum ([1927, 1982], 1983) and Post-quantum
cryptography (1994,1996)
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RSA cryptosystem

Definition: RSA cryptosystem
Let n = pq, where p, g are primes. Let P = C = Z/nZ and

K={(n,p,q,d,e) : de=1 mod ¢(n)}

For k = (n,p, q, d, €), we define

d

Ex(x) =x° mod n and Dk(c) =c® mod n.

Public-key is (n, €) and private-key is (p, g, d).

Here, x is a plaintext.

Euler’s function ¢(n) = the number of positive integers less than n and
relatively prime to n.
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RSA cryptosystem

Encryption and decryption are inverse operations.

n=pq= ¢(n=(p-1)(q—-1)
We have that de =1 mod ¢(n), i.e. de = ty(n) + 1 for some t € Z.
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RSA cryptosystem

Encryption and decryption are inverse operations.

n=pq= ¢(n=(p-1)(q-1)
We have that de =1 mod ¢(n), i.e. de = ty(n) + 1 for some t € Z.
(1) Suppose that x € (Z/nZ)*, then

(x8)9 = x0T mod n= (x*){x modn=1'x modn=x mod n.
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RSA cryptosystem

Encryption and decryption are inverse operations.

n=pq= ¢(n=(p-1)(q-1)
We have that de =1 mod ¢(n), i.e. de = ty(n) + 1 for some t € Z.
(1) Suppose that x € (Z/nZ)*, then

(x8)9 = x0T mod n= (x*){x modn=1'x modn=x mod n.

(@) If x & (Z/nZ)*,then x =0 mod porx=0 mod g.

If x=0 mod p, then (x6)9 =0 mod p as well. If the same holds for
mod g we are done by the Chinese remainder theorem.
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RSA cryptosystem

Encryption and decryption are inverse operations.

n=pq= ¢(n=(p-1)(q-1)
We have that de =1 mod ¢(n), i.e. de = ty(n) + 1 for some t € Z.
(1) Suppose that x € (Z/nZ)*, then

(x8)9 = x0T mod n= (x*){x modn=1'x modn=x mod n.

(@) If x & (Z/nZ)*,then x =0 mod porx=0 mod g.

If x=0 mod p, then (x6)9 =0 mod p as well. If the same holds for
mod g we are done by the Chinese remainder theorem.

Otherwise, x # 0 mod q. Then, by Fermat’s little theorem,
(Xe)d = x€d—1y — xtp=1)(g-1)x — (Xq—1)t(p—1)X=1t(p—1)X mod q = x
mod q. We conclude by the Chinese remainder theorem.
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Reminder: Cryptosystem: basic model for secrecy
Definition: Cryptosystem is a 5 -tuple (P, C, K, £, D) satisfying:

m P is afinite set of possible plaintexis;

m C is afinite set of possible ciphertexis;

IC, the keyspace, is a finite set of possible keys;

m & = {Ex : k € K} consists of encryption functions Ex: P — C;
m D ={Dy : k € K} consists of decryption functions Dx: C — P;
[ |

For all e € K there exists d € K such that for all plaintexts p € P
we have:

Dqy(Ee(p)) = p

m Symmetric cryptosystem: d = e

Public-key cryptosystem: d cannot be derived from e in a
computationally feasible way
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RSA cryptosystem parameters

Algorithm: RSA parameter generation

1. Generate two large primes, p and g, such that p # q

2. n<+pgand ¢(n) < (p—1)(g—1)

3. Choose a random e with 1 < e < ¢(n) such that gcd (e, ¢(n)) = 1
4. d+ e ' mod 4(n)

5. The public key is (n, e) and the private key is (p, g, d).
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Reminder: Breaking encryption algorithms

¢ A practical method of determining the decryption key is found.

e A weakness in the encryption algorithm leads to a plaintext.
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Reminder: Breaking encryption algorithms

¢ A practical method of determining the decryption key is found.

RSA: Find the private key (p, g, d), knowing the public key (n, e)

e A weakness in the encryption algorithm leads to a plaintexi.

RSA: Invert the RSA encryption function
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One-way function

A function that is easy to compute on every input, but almost always
hard to invert: a polynomial-time interceptor will fail to invert the
function, except with negligible probability.

Definition: Properties of an algorithm

An algorithm is deterministic if the output only depends on the input.
Otherwise, it is called probabilistic or randomized.

An algorithm is a polynomial algorithm if the number of operations
when executed by a multitape Turing machine is O(n*) for some k € N
on input of size n.
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Complexity classes

A problem instance x lies in the complexity class

m P if x is solvable by a polynomial deterministic algorithm.
m BPP if x is solvable by a polynomial probabilistic algorithm.

m BQPF if x is solvable by a polynomial deterministic algorithm on a
quantum computer.

m NP if x is verifiable by a polynomial deterministic algorithm.
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Complexity classes

A problem instance x lies in the complexity class

m P if x is solvable by a polynomial deterministic algorithm.
m BPP if x is solvable by a polynomial probabilistic algorithm.

m BQPF if x is solvable by a polynomial deterministic algorithm on a
quantum computer.

m NP if x is verifiable by a polynomial deterministic algorithm.

Known: P C NP, P C BPP, Factorisation and Discrete logarithm
problem are in NP N BQP.

Conjectures: P=BPP, Factorisation and Discrete logarithm problem are
not in NP N BPP.

Open Problem: Is there x € NP\ BQP?
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One-way function

A function that is easy to compute on every input, but almost always
hard to invert: a polynomial-time interceptor will fail to invert the
function, except with negligible probability.

Definition: Negligible function

A function f: N — R is negligible if for each positive polynomial p,

3ny € N such that |f(n)| < 51 for all n > ng

Example: f=2-" Non-example: f = n—*
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One-way function

A function that is easy to compute on every input, but almost always
hard to invert: a polynomial-time interceptor will fail to invert the
function, except with negligible probability.

Definition: Negligible function

A function f: N — R is negligible if for each positive polynomial p,

3ny € N such that |f(n)| < 51 for all n > ng

Example: f=2-" Non-example: f = n—*

Notation: {0,1}* = set of all finite binary strings
({0,1}*, concatenation) is a semi-group
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One-way function

Definition: One-way function
A function f: {0,1}* — {0,1}* is a one-way function if

i for all input x € {0, 1}* there is a polynomial deterministic
algorithm that outputs 7(x);

2 for all polynomial probabilistic algorithm A: {0,1}* — {0,1}*
there is a negligible function negl such that

PrlA(f(x)) € £ (f(x))] < negl (n),

where the probability is over the choice of x according to the
uniform distribution on {0, 1}", and the randomness of A.
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One-way function

Definition: One-way function

A function f: {0,1}* — {0,1}* is a one-way function if

i for all input x € {0, 1}* there is a polynomial deterministic
algorithm that outputs 7(x);

2 for all polynomial probabilistic algorithm A: {0,1}* — {0,1}*
there is a negligible function negl such that

PrlA(f(x)) € £ (f(x))] < negl (n),

where the probability is over the choice of x according to the
uniform distribution on {0, 1}", and the randomness of A.

Hard to invert when the input is uniformly distributed. In particular, hard
to invert in the average-case (not in the worst-case sense =NP-hard).

Hard to invert for long enough inputs.
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One-way function

We are interested in existence of injective trapdoor one-way functions,

i.e. those easy to invert with the knowledge a trapdoor (e.g. with a
private-key).
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One-way function

We are interested in existence of injective trapdoor one-way functions,

i.e. those easy to invert with the knowledge a trapdoor (e.g. with a
private-key).

Open problem: Do one-way functions exist?
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One-way function

We are interested in existence of injective trapdoor one-way functions,

i.e. those easy to invert with the knowledge a trapdoor (e.g. with a
private-key).

Open problem: Do one-way functions exist?

Open problem: Is breaking RSA as hard as factoring integers?
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RSA keys vs Factoring

Theorem: RSA keys vs Factoring
If the Factoring is not in BPP, then the Asymmetry of RSA is not in BPP.

Asymmetry problem = compute the private key from the public key
Here: compute d (and not, in addition p and q), knowing (n, e).
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RSA keys vs Factoring

Theorem: RSA keys vs Factoring
If the Factoring is not in BPP, then the Asymmetry of RSA is not in BPP.

Asymmetry problem = compute the private key from the public key
Here: compute d (and not, in addition p and q), knowing (n, e).

Theorem: One-way < Pseudorandom

The existence of one-way functions is a minimal assumption that is
both necessary and sufficient for constructions of pseudorandom
generators and functions.
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Cryptanalysis of RSA: Weakness of the RSA primitive

If the interceptor can factor the modulus nin polynomial-time, then the
private key can be efficiently calculated.

Integer factorisation methods

m Trial division

m Pollard’s p — 1 method

m Elliptic curve method

m Quadratic sieve and Number field sieve
...

A 768-bit number factored, two years of computations in 2007-2009.
So, 512-bit keys are ‘sufficient’.
In practice, RSA keys are typically 1024- to 2048-bits long.
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Cryptanalysis of RSA: Factoring

If nis composite, then it has a prime factor p < /n

Complexity of such attacks allow to derive lower bounds on RSA
parameters (key size etc.)
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Test questions

Question 6
What is the complexity of the RSA parameter generation?

Question 7
Let f be a one-way function. Is f(f(x)) necessarily a one-way function?

Question 8
What is the worst-case / average-case complexities of trial division?

Question 9

Design an algorithm computing the square root of a positive integer.
What about its complexity? What about its modular variant and its
complexity?
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Cryptanalysis of RSA: The RSA parameters

Attacks on the RSA function

m Low e or d attack
m Partial d exposure attack
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Cryptanalysis of RSA: Implementation attacks

Side-channel attaks

m Time analysis: a correlation between e and the runtime of the
cryptographic operation (Solution: delay / blinding)

m Power analysis: monitoring power consumption (Solution:
engineering)

m Fault analysis:  exploiting errors in cryptographic operations
(Solution: verify with e)

m...
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Remainder: RSA cryptosystem parameters

Algorithm: RSA parameter generation

1. Generate two large primes, p and g, such that p # q

2. n <« pqand ¢(n) < (p—1)(g—1)

3. Choose a random e with 1 < e < ¢(n) such that ged (e, ¢(n)) = 1
4. d + e ' mod ¢(n)

5. The public key is (n, €) and the private key is (p, g, d).

Randomness of the encryption key is to resist an informed exhaustive
plaintext search attack. This contrasts the symmetric key encryption.

© Univ.-Prof. Dr. Goulnara Arzhantseva Chapter 02: RSA and ElGamal 19/36



Cryptanalysis of RSA: practice

Key choice
1024- to 2048-bits long

Strong primes vs Random primes

Multi-prime RSA

More than two primes p and g, hence, primes are smaller for a big n,
the encryption is faster.
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Cryptanalysis of RSA: practice

Encoding of plaintext = Padding schemes

Plaintext is preprocessed using a probabilistic encoding: same
plaintext with the same e gives a different ciphertext.

Goal: resist to the informed exhaustive plaintext search attack.
Definition: Hash function
A one-way function h: {0,1}* — {0, 1} for some k € N.

Hash: data of arbitrary size is mapped to data of fixed size.
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Optimal asymmetric encryption padding (OAEP)

A simplified variant: ignoring the lengths of input / outputs.

Given: x and (n, e), two hashes hy; and h», and a random number r.
RSA-OAEP encoding

1. Hash r using hy and XOR to x:
A=hi(r)® x
2. Hash A using ho and XOR to r:

B=h(A)®r
3. Apply RSA to the concatenation A||B:

c=(A|B)® modn

XOR = the exclusive disjunction = ® = + mod 2
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Optimal asymmetric encryption padding (OAEP)

Bob can decrypt without knowing r.

RSA-OAEP decoding
1. Decrypt c using d, get A||B
2. Hash A using h, and XOR to B, get r:

ha(A) @ B = hpo(A) @ (ha(A) & r) =
3. Hash r using h; and XOR to A, get x:

hi(r)® A= hi(r) @ (hy(r) © x) = x

Hashes: with trapdoor, given by a polynomial algorithm.
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Discrete Logarithm problem

Let G be a finite group, g € G an element, (g) < G a cyclic subgroup it
generates, n its order.

Discrete Logarithm Problem = DLP

Given n, g and y € (g), find the unique integer d, 0 < d < n— 1, such
that

9%=y.
d :=log, y is called the discrete logarithm of y to base g.
Example: G = (Z/pZ)*, g is a primitive element mod p, n=p — 1

A primitive element mod p is an element of (Z/pZ)* of order p — 1.

© Univ.-Prof. Dr. Goulnara Arzhantseva Chapter 02: RSA and ElGamal 24/36



Cryptosystems based on the DLP: ElGamal
cryptosystem

ElGamal’1985 cryptosystem is a cryptosystem based on the Discrete
Logarithm problem in (Z/pZ)*

DLP assumption
1. The DLP in (Z/pZ)* is not in BPP.
2. The Factoring is not in BPP.
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ElGamal cryptosystem: Parameter generation

ElGamal’1985 cryptosystem is a cryptosystem based on the Discrete
Logarithm problem in (Z/pZ)*

Algorithm: EIGamal parameter generation

1. Generate a large prime p.

2. Choose a primitive element g € (Z/pZ)*.

3. Choose arandom d with1 <d < p—1.

4.y < g9 modp

5. The public key is (p, g, y) and the private key is d.
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ElGamal cryptosystem: informally

The encryption of a plaintext x is randomised using a random value r
chosen by Alice in Z/(p — 1)Z:

There are p — 1 ciphertexts ¢ that are encryptions of the same x.
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ElGamal cryptosystem: informally

The encryption of a plaintext x is randomised using a random value r
chosen by Alice in Z/(p — 1)Z:

There are p — 1 ciphertexts c that are encryptions of the same x.

Randomization of x:
the plaintext x is ‘masked’ by multiplying it by y” yielding c..
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ElGamal cryptosystem: informally

The encryption of a plaintext x is randomised using a random value r
chosen by Alice in Z/(p — 1)Z:

There are p — 1 ciphertexts c that are encryptions of the same x.

Randomization of x:
the plaintext x is ‘masked’ by multiplying it by y” yielding c..

The value g is also transmitted giving part ¢; of the ciphertext (cy, ¢»).
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ElGamal cryptosystem: informally

The encryption of a plaintext x is randomised using a random value r
chosen by Alice in Z/(p — 1)Z:

There are p — 1 ciphertexts c that are encryptions of the same x.

Randomization of x:
the plaintext x is ‘masked’ by multiplying it by y” yielding c..

The value g is also transmitted giving part ¢; of the ciphertext (cy, ¢»).
Bob, knowing the private key d, can compute y’ from g’.

Then he can remove the ‘mask’ by dividing ¢, by y” to obtain x.
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ElGamal cryptosystem

Definition: ElGamal cryptosystem

Let p be a prime and g a primitive element mod p.

Let P = (Z/pZ)*,C = (Z/pZ)* x (Z/pZ)* and define
K={(p.g.d,y): y=9° mod p}.

For k = (p, g, d, y), and for a secrete random number r € Z/(p — 1)Z,
define
Ex(x;r) = (c1, c2), where

ct=9" modp, and ¢ =xy" modp.

For ¢1, ¢ € (Z/pZ)*, define
Di(c1, ) = c2(cf)™" mod p

Public key is (p, g, y) and private key is d.
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ElGamal cryptosystem

Encryption and decryption are inverse operations

ca(cf) " = xy"((9N?) " mod p=x-(g9)"((9")?)"" mod p=x modp

Theorem: ElGamal keys vs DLP

If the DLP in (Z/pZ)* is not in BPP, then the Asymmetry of EIGamal is
not in BPP.
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ElGamal Cryptosystem: finite fields etc.

ElGamal is for an arbitrary finite group G, we had (Z/pZ)*. Other
groups:

1. The multiplicative group of the finite field IF

2. The group of an elliptic curve defined over a finite field.

The group has to satisfy the DLP assumption.

© Univ.-Prof. Dr. Goulnara Arzhantseva Chapter 02: RSA and ElGamal 30/36



Weierstrass equation

Let k be a field.
Weierstrass equations
The affine Weierstrass equation:

E:y?+aixy+asy = X3+ ax? + ayx + ag, a; € k.

The homogeneous Weierstrass equation:

E*: y2z+ aixyz + asyz? = x® + @ x®z + ayxz° + agz°, aj € k.

The vanishing set:
E(k) = {(x:y:z) e P?sothat x, y, z € kis a solution of E*} C P?
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Singular points and curves
The defining polynomial:

F*: y?z + ajxyz + azyz® — (x3 + apx?z + ayxz? + agz%), a; € k.

Definition: Singular points and curves
Let P=(xo: Yo : 20) € E(K).
1. Pis a singular point of E if

* * *

I (X0, Y0, 20) = dy (X0, Y0, 20) = 9z (X0, Y0, 20) = 0.

2. E is singular if there is a singular point P € E(k), otherwise E is
nonsingular or smooth.

Example: (0 : 1 :0) is the only point of E at infinity, i.e. at z = 0. It has
multiplicity 3 as E*(x, y,0): x3 = 0.
It is not singular: 2£-(0,1,0) = 1 #0.
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Elliptic curves

Definition: Elliptic curve

E is elliptic if E is smooth.

Normal forms

1. If chark # 2 then in E substitute y — y — 2°3® obtaining

y2 = X3 + ax? + dyx + a
2. If chark # 2, 3 then substitute x — x — %a’z, a=a+ ? obtaining
yv’=x3+ax+b

chark # 2,3 : disc (x3 + ax + b) = —16(4a° + 27b°)

chark # 2, y? = f(x) = x3 + ax? + d,x + g is singular <= discf = 0
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Elliptic curves

| A
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yZ=x3-x y2=x?-x+1

Elliptic curves in normal form [image: Wikipedia]
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Elliptic curve: The group structure (E(k), +)

k a field, k its algebraic closure

P+Q+R=0 P+Q+Q=0 P+Q+0=0 P+P+0=0

Group structure [image: Wikipedia]
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Test questions

Question 10
Which of the following statements are true?

i If the RSA cryptosystem is breakable, then large numbers can be
factored.

2 Breaking the ECC cryptosystem is equivalent to solving the
discrete logarithm problem.

3 There is no message expansion in the ECC cryptosystem.

Question 11

Why in practice public-key cryptosystems have longer key lengths than
symmetric cryptosystems?
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