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Cryptography: Overview

Cryptography

I Past: Diffie–Hellman (1976) and Rivest-Shamir-Adleman (1977)
II Nowadays: Blockchain ([1991], 2008)
III Future: Quantum ([1927, 1982], 1983) and Post-quantum

cryptography (1994,1996)
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RSA cryptosystem

Definition: RSA cryptosystem

Let n = pq, where p,q are primes. Let P = C = Z/nZ and

K = {(n,p,q,d ,e) : de = 1 mod φ(n)}

For k = (n,p,q,d ,e), we define

Ek (x) = xe mod n and Dk (c) = cd mod n.

Public-key is (n,e) and private-key is (p,q,d).

Here, x is a plaintext.

Euler’s function φ(n) = the number of positive integers less than n and
relatively prime to n.

c© Univ.-Prof. Dr. Goulnara Arzhantseva Chapter 02: RSA and ElGamal 3 / 36



RSA cryptosystem

Encryption and decryption are inverse operations.

n = pq ⇒ φ(n) = (p − 1)(q − 1)
We have that de = 1 mod φ(n), i.e. de = tφ(n) + 1 for some t ∈ Z.

(1) Suppose that x ∈ (Z/nZ)×, then

(xe)d = x tφ(n)+1 mod n = (xφ(n))t x mod n = 1t x mod n = x mod n.

(2) If x 6∈ (Z/nZ)×, then x = 0 mod p or x = 0 mod q.

If x = 0 mod p, then (xe)d = 0 mod p as well. If the same holds for
mod q we are done by the Chinese remainder theorem.

Otherwise, x 6= 0 mod q. Then, by Fermat’s little theorem,
(xe)d = xed−1x = x t(p−1)(q−1)x = (xq−1)t(p−1)x=1t(p−1)x mod q = x
mod q. We conclude by the Chinese remainder theorem.
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Reminder: Cryptosystem: basic model for secrecy
Definition: Cryptosystem is a 5 -tuple (P, C,K, E ,D) satisfying:

P is a finite set of possible plaintexts;
C is a finite set of possible ciphertexts;
K, the keyspace, is a finite set of possible keys;
E = {Ek : k ∈ K} consists of encryption functions Ek : P → C;
D = {Dk : k ∈ K} consists of decryption functions Dk : C → P;
For all e ∈ K there exists d ∈ K such that for all plaintexts p ∈ P
we have:

Dd (Ee(p)) = p

Symmetric cryptosystem: d = e
Public-key cryptosystem: d cannot be derived from e in a
computationally feasible way
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RSA cryptosystem parameters

Algorithm: RSA parameter generation

1. Generate two large primes, p and q, such that p 6= q

2. n← pq and φ(n)← (p − 1)(q − 1)

3. Choose a random e with 1 < e < φ(n) such that gcd (e, φ(n)) = 1

4. d ← e−1 mod φ(n)

5. The public key is (n,e) and the private key is (p,q,d).
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Reminder: Breaking encryption algorithms

• A practical method of determining the decryption key is found.

RSA: Find the private key (p,q,d), knowing the public key (n,e)

• A weakness in the encryption algorithm leads to a plaintext.

RSA: Invert the RSA encryption function
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One-way function

A function that is easy to compute on every input, but almost always
hard to invert: a polynomial-time interceptor will fail to invert the
function, except with negligible probability.

Definition: Properties of an algorithm

An algorithm is deterministic if the output only depends on the input.
Otherwise, it is called probabilistic or randomized.

An algorithm is a polynomial algorithm if the number of operations
when executed by a multitape Turing machine is O(nk ) for some k ∈ N
on input of size n.
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Complexity classes

A problem instance x lies in the complexity class

P if x is solvable by a polynomial deterministic algorithm.
BPP if x is solvable by a polynomial probabilistic algorithm.
BQP if x is solvable by a polynomial deterministic algorithm on a
quantum computer.
NP if x is verifiable by a polynomial deterministic algorithm.

Known: P ⊆ NP, P ⊆ BPP, Factorisation and Discrete logarithm
problem are in NP ∩ BQP.

Conjectures: P=BPP, Factorisation and Discrete logarithm problem are
not in NP ∩ BPP.

Open Problem: Is there x ∈ NP \ BQP?
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One-way function

A function that is easy to compute on every input, but almost always
hard to invert: a polynomial-time interceptor will fail to invert the
function, except with negligible probability.

Definition: Negligible function

A function f : N→ R is negligible if for each positive polynomial p,
∃n0 ∈ N such that |f (n)| < 1

p(n) for all n > n0

Example: f = 2−n Non-example: f = n−4

Notation: {0,1}∗ = set of all finite binary strings
({0,1}∗, concatenation) is a semi-group
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One-way function

Definition: One-way function

A function f : {0,1}∗ → {0,1}∗ is a one-way function if
1 for all input x ∈ {0,1}∗ there is a polynomial deterministic

algorithm that outputs f (x);
2 for all polynomial probabilistic algorithm A : {0,1}∗ → {0,1}∗

there is a negligible function negl such that

Pr [A(f (x)) ∈ f−1(f (x))] 6 negl (n),

where the probability is over the choice of x according to the
uniform distribution on {0,1}n, and the randomness of A.

Hard to invert when the input is uniformly distributed. In particular, hard
to invert in the average-case (not in the worst-case sense =NP-hard).

Hard to invert for long enough inputs.
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One-way function

We are interested in existence of injective trapdoor one-way functions,
i.e. those easy to invert with the knowledge a trapdoor (e.g. with a
private-key).

Open problem: Do one-way functions exist?

Open problem: Is breaking RSA as hard as factoring integers?
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RSA keys vs Factoring

Theorem: RSA keys vs Factoring

If the Factoring is not in BPP, then the Asymmetry of RSA is not in BPP.

Asymmetry problem = compute the private key from the public key
Here: compute d (and not, in addition p and q), knowing (n,e).

Theorem: One-way⇔ Pseudorandom

The existence of one-way functions is a minimal assumption that is
both necessary and sufficient for constructions of pseudorandom
generators and functions.
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Cryptanalysis of RSA: Weakness of the RSA primitive

If the interceptor can factor the modulus n in polynomial-time, then the
private key can be efficiently calculated.

Integer factorisation methods

Trial division
Pollard’s p − 1 method
Elliptic curve method
Quadratic sieve and Number field sieve
. . .

A 768-bit number factored, two years of computations in 2007-2009.
So, 512-bit keys are ‘sufficient’.
In practice, RSA keys are typically 1024- to 2048-bits long.
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Cryptanalysis of RSA: Factoring

If n is composite, then it has a prime factor p 6
√

n

Trial division

Exhaustive search over all successive primes until
√

n.

Complexity of such attacks allow to derive lower bounds on RSA
parameters (key size etc.)
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Test questions

Question 6

What is the complexity of the RSA parameter generation?

Question 7

Let f be a one-way function. Is f (f (x)) necessarily a one-way function?

Question 8

What is the worst-case / average-case complexities of trial division?

Question 9

Design an algorithm computing the square root of a positive integer.
What about its complexity? What about its modular variant and its
complexity?
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Cryptanalysis of RSA: The RSA parameters

Attacks on the RSA function

Low e or d attack
Partial d exposure attack
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Cryptanalysis of RSA: Implementation attacks

Side-channel attaks

Time analysis: a correlation between e and the runtime of the
cryptographic operation (Solution: delay / blinding)
Power analysis: monitoring power consumption (Solution:
engineering)
Fault analysis: exploiting errors in cryptographic operations
(Solution: verify with e)
. . .
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Remainder: RSA cryptosystem parameters

Algorithm: RSA parameter generation

1. Generate two large primes, p and q, such that p 6= q

2. n← pq and φ(n)← (p − 1)(q − 1)

3. Choose a random e with 1 < e < φ(n) such that gcd (e, φ(n)) = 1

4. d ← e−1 mod φ(n)

5. The public key is (n,e) and the private key is (p,q,d).

Randomness of the encryption key is to resist an informed exhaustive
plaintext search attack. This contrasts the symmetric key encryption.
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Cryptanalysis of RSA: practice

Key choice

1024- to 2048-bits long

Strong primes vs Random primes

Multi-prime RSA

More than two primes p and q, hence, primes are smaller for a big n,
the encryption is faster.
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Cryptanalysis of RSA: practice

Encoding of plaintext = Padding schemes

Plaintext is preprocessed using a probabilistic encoding: same
plaintext with the same e gives a different ciphertext.

Goal: resist to the informed exhaustive plaintext search attack.

Definition: Hash function

A one-way function h : {0,1}∗ → {0,1}k for some k ∈ N.

Hash: data of arbitrary size is mapped to data of fixed size.
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Optimal asymmetric encryption padding (OAEP)
A simplified variant: ignoring the lengths of input / outputs.

Given: x and (n,e), two hashes h1 and h2, and a random number r .

RSA-OAEP encoding

1. Hash r using h1 and XOR to x :

A = h1(r )⊕ x

2. Hash A using h2 and XOR to r :

B = h2(A)⊕ r

3. Apply RSA to the concatenation A ‖B:

c = (A ‖B)e mod n

XOR = the exclusive disjunction = ⊕ = + mod 2
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Optimal asymmetric encryption padding (OAEP)

Bob can decrypt without knowing r .

RSA-OAEP decoding

1. Decrypt c using d , get A ‖B

2. Hash A using h2 and XOR to B, get r :

h2(A)⊕ B = h2(A)⊕ (h2(A)⊕ r ) = r

3. Hash r using h1 and XOR to A, get x :

h1(r )⊕ A = h1(r )⊕ (h1(r )⊕ x) = x

Hashes: with trapdoor, given by a polynomial algorithm.
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Discrete Logarithm problem

Let G be a finite group, g ∈ G an element, 〈g〉 6 G a cyclic subgroup it
generates, n its order.

Discrete Logarithm Problem = DLP

Given n,g and y ∈ 〈g〉, find the unique integer d , 0 6 d 6 n − 1, such
that

gd = y .

d := logg y is called the discrete logarithm of y to base g.

Example: G = (Z/pZ)×, g is a primitive element mod p, n = p − 1

A primitive element mod p is an element of (Z/pZ)× of order p − 1.
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Cryptosystems based on the DLP: ElGamal
cryptosystem

ElGamal’1985 cryptosystem is a cryptosystem based on the Discrete
Logarithm problem in (Z/pZ)×

DLP assumption

1. The DLP in (Z/pZ)× is not in BPP.

2. The Factoring is not in BPP.
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ElGamal cryptosystem: Parameter generation

ElGamal’1985 cryptosystem is a cryptosystem based on the Discrete
Logarithm problem in (Z/pZ)×

Algorithm: ElGamal parameter generation

1. Generate a large prime p.

2. Choose a primitive element g ∈ (Z/pZ)×.

3. Choose a random d with 1 < d < p − 1.

4. y ← gd mod p

5. The public key is (p,g, y ) and the private key is d .
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ElGamal cryptosystem: informally

The encryption of a plaintext x is randomised using a random value r
chosen by Alice in Z/(p − 1)Z:
There are p − 1 ciphertexts c that are encryptions of the same x .

Randomization of x :
the plaintext x is ‘masked’ by multiplying it by y r yielding c2.

The value gr is also transmitted giving part c1 of the ciphertext (c1, c2).

Bob, knowing the private key d , can compute y r from gr .

Then he can remove the ‘mask’ by dividing c2 by y r to obtain x .
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ElGamal cryptosystem

Definition: ElGamal cryptosystem

Let p be a prime and g a primitive element mod p.
Let P = (Z/pZ)×, C = (Z/pZ)× × (Z/pZ)× and define

K = {(p,g,d , y ) : y = gd mod p}.

For k = (p,g,d , y ), and for a secrete random number r ∈ Z/(p − 1)Z,
define

Ek (x ; r ) = (c1, c2), where

c1 = gr mod p, and c2 = xy r mod p.

For c1, c2 ∈ (Z/pZ)×, define

Dk (c1, c2) = c2(cd
1 )−1 mod p

Public key is (p,g, y ) and private key is d .
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ElGamal cryptosystem

Encryption and decryption are inverse operations

c2(cd
1 )−1 = xy r ·((gr )d )−1 mod p = x ·(gd )r ·((gr )d )−1 mod p = x mod p

Theorem: ElGamal keys vs DLP

If the DLP in (Z/pZ)× is not in BPP, then the Asymmetry of ElGamal is
not in BPP.
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ElGamal Cryptosystem: finite fields etc.

ElGamal is for an arbitrary finite group G, we had (Z/pZ)×. Other
groups:

1. The multiplicative group of the finite field Fpk

2. The group of an elliptic curve defined over a finite field.

The group has to satisfy the DLP assumption.
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Weierstrass equation

Let k be a field.

Weierstrass equations

The affine Weierstrass equation:

E : y2 + a1xy + a3y = x3 + a2x2 + a4x + a6,ai ∈ k.

The homogeneous Weierstrass equation:

E∗ : y2z + a1xyz + a3yz2 = x3 + a2x2z + a4xz2 + a6z3,ai ∈ k.

The vanishing set:

E(k) = {(x : y : z) ∈ P2 so that x , y , z ∈ k is a solution of E∗} ⊆ P2
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Singular points and curves
The defining polynomial:

F ∗ : y2z + a1xyz + a3yz2 − (x3 + a2x2z + a4xz2 + a6z3),ai ∈ k.

Definition: Singular points and curves

Let P = (x0 : y0 : z0) ∈ E(k).

1. P is a singular point of E if

∂F ∗

∂x
(x0, y0, z0) =

∂F ∗

∂y
(x0, y0, z0) =

∂F ∗

∂z
(x0, y0, z0) = 0.

2. E is singular if there is a singular point P ∈ E(k), otherwise E is
nonsingular or smooth.

Example: (0 : 1 : 0) is the only point of E at infinity, i.e. at z = 0. It has
multiplicity 3 as E∗(x , y ,0) : x3 = 0.
It is not singular: ∂F ∗

∂z (0,1,0) = 1 6= 0.
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Elliptic curves

Definition: Elliptic curve

E is elliptic if E is smooth.

Normal forms

1. If char k 6= 2 then in E substitute y 7→ y − a1x+a3
2 obtaining

y2 = x3 + a′2x2 + a′4x + a′6

2. If char k 6= 2,3 then substitute x 7→ x − 1
3a′2, a′2 = a2 + a2

1
4 obtaining

y2 = x3 + ax + b

char k 6= 2,3 : disc (x3 + ax + b) = −16(4a3 + 27b2)

char k 6= 2, y2 = f (x) = x3 + a′2x2 + a′4x + a′6 is singular⇐⇒ disc f = 0
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Elliptic curves

Elliptic curves in normal form [image: Wikipedia]
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Elliptic curve: The group structure (E(k), +)

k a field, k its algebraic closure

Group structure [image: Wikipedia]
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Test questions

Question 10

Which of the following statements are true?
1 If the RSA cryptosystem is breakable, then large numbers can be

factored.
2 Breaking the ECC cryptosystem is equivalent to solving the

discrete logarithm problem.
3 There is no message expansion in the ECC cryptosystem.

Question 11

Why in practice public-key cryptosystems have longer key lengths than
symmetric cryptosystems?
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