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Weierstrass equation

Let k be a field.

Weierstrass equations

The affine Weierstrass equation:

E : y2 + a1xy + a3y = x3 + a2x2 + a4x + a6,ai ∈ k.

The homogeneous Weierstrass equation:

E∗ : y2z + a1xyz + a3yz2 = x3 + a2x2z + a4xz2 + a6z3,ai ∈ k.

The vanishing set:

E(k) = {(x : y : z) ∈ P2 so that x , y , z ∈ k is a solution of E∗} ⊆ P2

The defining polynomial:

F ∗ : y2z + a1xyz + a3yz2 − (x3 + a2x2z + a4xz2 + a6z3),ai ∈ k.

c© Univ.-Prof. Dr. Goulnara Arzhantseva Chapter 03: Elliptic Curve Cryptography 2 / 35



Elliptic curves

Definition: Elliptic curve

E is elliptic if E is smooth.

Normal forms

1. If char k 6= 2 then in E substitute y 7→ y − a1x+a3
2 obtaining

y2 = x3 + a′2x2 + a′4x + a′6

2. If char k 6= 2,3 then substitute x 7→ x − 1
3a′2, a′2 = a2 + a2

1
4 obtaining

y2 = x3 + ax + b

char k 6= 2,3 : disc (x3 + ax + b) = −16(4a3 + 27b2)

char k 6= 2, y2 = f (x) = x3 + a′2x2 + a′4x + a′6 is singular⇐⇒ disc f = 0
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Elliptic curves

Elliptic curves in normal form [image: Wikipedia]
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Elliptic curve: The group structure (E(k), +)

k a field, k its algebraic closure, O = (0 : 1 : 0) ∈ E(k) the point at∞

Group structure on the R-points of E : y2 = x3 − x + 1 [image: Wikipedia]

Group structure: collinear triples sum to O.
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Elliptic curve: The group structure (E(k), +)

k a field, k its algebraic closure.

E(k) is the projective algebraic set defined by a homogeneous
Weierstrass equation over the algebraic closure of the field.

An elliptic curve always contains the point at infinity, which is the
neutral element in the corresponding abelian group.

An elliptic curve is a special case of a plane algebraic curve.

We can view the addition geometrically, algebraically, and analytically.
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Elliptic curve and projective lines

The defining polynomial:

F ∗ : y2z + a1xyz + a3yz2 − (x3 + a2x2z + a4xz2 + a6z3),ai ∈ k.

Let L = {(x : y : z) | ax + by + cz = 0} ⊂ P2(k) be a projective line with
(a,b, c) 6= (0,0,0)

Theorem: Intersection of E with a projective line

Let L ⊂ P2(k) be a projective line. Then |L ∩ E(k)| = 3, counted with
multiplicity.

If L is k-rational (i.e. a,b, c ∈ k), and 2 of the intersection points are
k-rational, then so is the 3rd point of the intersection.

If a polynomial of degree d over k has d − 1 roots in k, then the last
root is also in k.
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Elliptic curve and projective lines

Proof: a = b = 0. Then L = {(x : y : 0)} is the line at infinity and
L ∩ E(k) = {(0 : 1 : 0)} of multiplicity 3.

a 6= 0 or b 6= 0. Then L = {(x : y : 1) | ax + by = −c} ∪ {(b : −a : 0)} and
we have two sub-cases.

1) b 6= 0. Then (b : −a : 0) 6= (0 : 1 : 0), hence, (b : −a : 0) 6∈ E(k) as
(0 : 1 : 0) is its only point at infinity.

We substitute y = −ax+c
b in E and obtain a cubic polynomial in x with 3

roots in k, counted with multiplicity.

2) b = 0,a 6= 0. (0 : 1 : 0) ∈ L ∩ E(k).

We substitute x = − c
a in E and obtain a quadratic polynomial in y that

has two roots in k, counted with multiplicity. This gives 3 points.

For the k-rationality assertion use Vieta’s formulas. �
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Elliptic curve and projective lines: Bézout’s theorem

Alternatively, to obtain |L ∩ E(k)| = 3, we can use the following result.

Theorem: Bézout’1779

Let C1, C2 be two plane projective curves over a field k whose defining
polynomials F1,F2 are relatively prime (i.e. their polynomial greatest
common divisor is a constant) and have degrees d1 and d2.

Then their intersection C1 ∩ C2 in P2(k′), with k′ an algebraically closed
field k′ ⊇ k, counted with their multiplicities, consists of d1 · d2 points.

E has degree 3 (i.e. F ∗ has degree 3), a projective line has degree 1.
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Elliptic curve and projective lines: Tangents

Definition: Tangents

Let P ∈ E(k). The projective line

TP :=
{

(u : v : w) ∈ P2 | ∂F ∗

∂x
(P) · u +

∂F ∗

∂y
(P) · v +

∂F ∗

∂z
(P) · w = 0

}
is the tangent of E at point P.

Let ∇ = ( ∂
∂x ,

∂
∂y ,

∂
∂z ), then TP is defined by ∇F ∗(P) ·

 u
v
w

 = 0.

For O = (0 : 1 : 0), we have ∇F ∗(O) = (0,0,1), then
O ∈ TO = {(u : v : w) | w = 0} the line at∞.
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Elliptic curve: The group structure (E(k), +)

We can view the addition geometrically, algebraically, and analytically.

Group structure on E(k), geometrically

For P,Q ∈ E(k) define P ∗Q by E(k) ∩ L = {P,Q,P ∗Q}, where

L :=

{
the projective line through P and Q if P 6= Q
the tangent TP of E at P if P = Q

We define
P + Q := (P ∗Q) ∗ O.
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Elliptic curve: The group structure (E(k), +)

Theorem: Group structure on E(k)

Let P,Q,R ∈ E(k) and L ⊂ P2(k) a projective line. Then:
1 ∗ and + are commutative.
2 (P ∗Q) ∗ P = Q.
3 O ∗ O = O
4 If L ∩ E(k) = {P,Q,R}, then (P + Q) + R = O.
5 P +O = P.
6 P + Q = O ⇔ P ∗Q = O.
7 + is associative.
8 (E(k),+) is an abelian group with neutral element O and
−P = P ∗ O.

9 E(k) is a subgroup of E(k).
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Elliptic curve: The group structure (E(k), +)
Proof:

1 By definitions of ∗ and +.
2 By definition of L in the definition of ∗.
3 Since O ∈ TO, see above.

4 (P + Q) + R = (((P ∗Q) ∗ O) ∗ R) ∗ O 2.= O ∗ O 3.= O.
5 P +O = (P ∗ O) ∗ O 1.= (O ∗ P) ∗ O 2.= P.

6 If P ∗Q = O, then P + Q = (P ∗Q) ∗ O = O ∗ O 2.= O. If P + Q = O,
then
P ∗Q 5.= (P ∗Q) +O = ((P ∗Q) ∗ O) ∗ O = (P + Q) ∗ O = O ∗O 3.= O.

7 Case by case analysis (whether P = Q or/and R = P + Q, etc.) or,
use algebraic formulas, or see the next slide.

8 Follows from 1, 5, 6, and 7.
9 If E is defined over k and P,Q ∈ E(k), then L,L ∩ E are defined

over k. In addition, P ∗Q is, as the 3rd root of L ∩ E(k), also in k.
�
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The group structure (E(k), +): Associativity

Sketch: Let P,Q,R ∈ E(k).

To compute −((P + Q) + R) we form projective lines
L1 = PQ,M2 = O,P + Q and L3 = R,P + Q.

To compute −(P + (Q + R)) we form projective lines
M1 = QR,L2 = O,Q + R and M3 = P,Q + R.

We see that Pij = Li ∩Mj ∈ E , except possibly P33. By the Theorem
below, having 8 points Pij 6= P33 on E ⇒ P33 ∈ E .

Since L3 ∩ E = {R,P + Q,−((P + Q) + R)}, we must have
−((P + Q) + R) = P33.

Similarly, −(P + (Q + R)) = P33, so −((P + Q) + R) = −(P + (Q + R)),
whence the associativity.

Cases: Pij = O or Pij = Pkl (a line is tangent) or two lines are equal. �
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The group structure (E(k), +): Associativity
Theorem: Cayley-Bacharach’1886

If P1, . . . ,P8 are points in P2(k), no 4 on a line, and no 7 on a conic,
then there is a 9th point Q such that any cubic through P1, . . . ,P8 also
passes through Q.

Using the Theorem: Two cubic curves, L1L2L3 = 0 and M1M2M3 = 0,
pass through 8 points: O,P,Q,R,P + Q,Q + R,−(P + Q),−(Q + R). By
Bezout’s theorem, two cubics intersect in 9 points, P33 is the 9th point.

By the Theorem, any other cubic through these 8 points also passes
through P33. So, E passes through P33. On M1M2M3 ∩ E we have:

O,P,Q,R,P + Q,Q + R,−(P + Q),−(Q + R),−(P + (Q + R)),P33.

Only 3 points on a line intersect a cubic, so two of these points must
coincide. By definition, P33 is 6= any of the first 8 points, so

P33 = −(P + (Q + R)).

Similarly, for L1L2L3 ∩ E , that gives P33 = −((P + Q) + R). �
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The group structure (E(k), +): Associativity

Theorem: Cayley-Bacharach’1886

If P1, . . . ,P8 are points in P2(k), no 4 on a line, and no 7 on a conic,
then there is a 9th point Q such that any cubic through P1, . . . ,P8 also
passes through Q.

Hypothesis of the Theorem are fulfilled: If 4 of the points
O,P,Q,R,P + Q,Q + R,−(P + Q),−(Q + R) are on a line L, then, as
they are also on E , |L ∩ E(k)| > 4, which contradicts Bezout’s theorem
(as 1 · 3 = 3).

If 7 of them lie on a conic C, as they are also on E , |C ∩ E(k)| > 7,
which contradicts Bezout’s theorem (as 2 · 3 = 6.) �
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Elliptic curve: The group structure (E(k), +)

The defining polynomial:

F ∗ : y2z + a1xyz + a3yz2 − (x3 + a2x2z + a4xz2 + a6z3),ai ∈ k.

P = (x1, y1) = (x1 : y1 : 1),Q = (x2, y2) = (x2 : y2 : 1) ∈ E(k) with
P,Q 6= O.

Let λ = y2−y1
x2−x1

if P 6= Q and λ =
∂F∗
∂x (P)

∂F∗
∂y (P)

= −a1y1−3x2
1−2a2x1−a4

2y1+a1x1+a3
if P = Q.

Group structure on E(k), algebraically (without proof)

P + Q = (λ2 + a1λ− a2 − x1 − x2,−y1 + λ(x1 − x3)− a1x1 − a3)

−P = P ∗ O = (x1 : −y1 − a1x1 − a3 : 1)

Here: x3 = λ2 + a1λ− a2 − x1 − x2.
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Elliptic curve: The group structure (E(k), +)

Theorem: Mordell’1922–Weil’1928

For an abelian variety A over a number field k, the group A(k) of
k-rational points of A is a finitely-generated abelian group.

Corollary

For a number field k, the abelian group E(k) is finitely generated.

Theorem: Structure of finitely generated abelian groups

Given a finitely generated abelian group A, there exist r , k ∈ N>0 and
n1, . . . ,nk ∈ N with ni |ni+1 such that A ∼= Zr ×Z/n1Z× · · · ×Z/nkZ, r is
the rank of A and the ni ’s are the determinantal divisors of A.
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Elliptic curve: Size of (E(Fq), +)

Let p be a prime, q = pn and N = |E(Fq)|.

Theorem: Hasse’1933 (without proof)

The order of E(Fq) satisfies:

|q + 1− N| 6 2
√

q

Let P ∈ E(Fq), the order of E(Fq) satisfies N · P = O.

By Hasse’s bound, we can find N in 4
√

q steps.

Exercises: Shank’s Baby-Step Giant-Step algorithm to solve the DLP
in E(Fq). In particular, we can find N in 4q

1
4 steps.
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Elliptic curve: Structure of (E(Fq), +)

Theorem: existence of elliptic curves over finite fields (without proof)

Let p be a prime, q = pn and N = q + 1− a for some a ∈ Z with
|a| 6 2

√
q. Then there is an elliptic curve E(Fq) with |E(Fq)| = N if and

only if a satisfies one of the following conditions:
1 gcd(a, p) = 1.
2 n is even and a = ±2

√
q

3 n is even, p 6≡ 1 mod 3, and a = ±√q.

4 n is odd, p = 2 or p = 3, and a = ±p
n+1

2 .

5 n is even, p 6≡ 1 mod 4, and a = 0.
6 n is odd and a = 0.
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Elliptic curve: Structure of (E(Fq), +)

Theorem: structure for elliptic curves over finite fields (without proof)

Let p be a prime, q = pn and N = q + 1− a for some a ∈ Z with
|a| 6 2

√
q. Write N = pen1n2 with p 6 |n1n2 and n1|n2 (possibly n1 = 1).

Then there is E(Fq) such that

E(Fq) ∼= Z/peZ× Z/n1Z× Z/n2Z

if and only if
1 n1|q − 1 in the cases 1, 3, 4, 5, 6 of the preceding Theorem.
2 n1 = n2 in the case 2 of the preceding theorem.

These are all groups that occur as E(Fq).
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Realizations of abelian groups

DLP assumption includes that the DLP in ((Z/pZ)×, ·) is not in BPP.

Exercises: the DLP in (Z/(p − 1)Z,+) is in P.

However,
((Z/pZ)×, ·) ∼= (Z/(p − 1)Z,+).

Thus, the complexity of the DLP depends on the realization of the
abelian group.

(E(k),+) is an elliptic curve realization of the abelian group.

It is a realization which resists all known attacks on the DLP.

SafeCurves = curves with efficient and secure implementation.
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ECC versus RSA

A smaller key size with ECC

ECC with 256-bit key ∼ RSA with 3072-bit key

Protection Symmetric RSA modulus Elliptic curve
Standard: not now 80 1024 160
Near-term: 2018-28 128 3072 256
Long-term: 2018-68 256 15360 512

Table: ECRYPT-CSA Recommendations (2018)
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ECC versus RSA

A smaller key size with ECC

ECC with 256-bit key ∼ ElGamal 3072-bit group size

General number field sieve (GNFS) for DLP in (Z/pZ)× runs in time
2O(n1/3·(log2 n)2/3) for p of length O(n).

So, for a 512-bit prime p, the GNFS solves the DLP in (Z/pZ)× in
roughly

25121/3·92/3 ∼ 28·4 = 232 steps.

The best generic algorithm solves DLP in E(Fq) with N = |E(Fq)|,
where N is a 64-bit prime, in roughly

√
N ∼ 264/2 = 232 steps.
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ECC in Practice: Example

SSL / TLS protocols

SSL=Secure Sockets Layer, TLS=Transport Layer Security

They use public key cryptography to derive symmetric keys and then
use symmetric key cryptography to ensure confidentiality and data
integrity of the communication.

Web browsing, email, instant messaging, communication between a
browser and a server.
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Diffie-Hellman key agreement

To exchange keys securely over an insecure communication channel:

Diffie-Hellman’1976 Key exchange protocol

1 Alice and Bob agree publicly on a cyclic group G = 〈g〉.
2 Alice choses randomly 0 6 a 6 |G| and computes A := ga. Bob

chooses randomly 0 6 b 6 |G| and computes B := gb.

3 Alice sends A, Bob sends B.
4 Alice computes S := Ba. Bob computes S := Ab.
5 Since it is the same S, they can use it as their secrete key to

encrypt and decrypt messages.

Standard choice: G = (Z/pZ)×, Public information: G = 〈g〉,A,B.
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Diffie-Hellman key agreement: Interceptor attacks

Passive attack by Eve

Eve= eavesdropper should solve the DHP, i.e. given ga and gb (but not
a or b) she wants to find S = gab.

Solving the DLP in G would solve the DHP in G. Hence, DHP 6∈ BPP is
at least as strong as DLP 6∈ BPP. The equivalence is unknown.

Active attack by Mallory

Mallory= (wo)man-in-the middle attack tells Allice to be Bob and does
the exchange getting S.

He/she tells to Bob to be Alice and does the exchange getting S′.

Whenever Alice sends Bob a message, Mallory takes the cyphertext,
decrypts it with S, reads it, then encrypts it with S′ and sends to Bob.
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EC based Diffie-Hellman

Standard choice: G = (Z/pZ)×, Public information: G = 〈g〉,A,B.

ECC choice: G = E(Fq) and the elliptic-curve public-private key pair.

Practice: ECDHE protocol, last E=ephemeral, i.e. the public keys are
not static, they are temporary.

c© Univ.-Prof. Dr. Goulnara Arzhantseva Chapter 03: Elliptic Curve Cryptography 28 / 35



Digital Signature Scheme
To ensure the authenticity of data over an insecure channel:

Definition: Signature scheme is a 5-tuple (P,A,K,S,V), satisfying:

P is a finite set of possible messages;
A is a finite set of possible signatures;
K, the keyspace, is a finite set of possible keys;
S = {sigk : k ∈ K} consists of polynomial signing algorithms
sigk : P → A;
V = {verk : k ∈ K} consists of polynomial verification algorithms
verk : P ×A → {true, false};

∀x ∈ P, ∀y ∈ A: verk (x , y ) =

{
true, if y = sigk (x)
false, otherwise.

A pair (x , y ) with x ∈ P, y ∈ A is called a signed message.
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Digital Signature Scheme (DSS)

∀k ∈ K, verk is public and sigk is private.

There might by more than one y ∈ A such that verk (x , y ) = true,
depending on the definition of verk .

We require that the problem that, given a message x ∈ P, anyone
other than Alice can compute a signature y ∈ A such that
verk (x , y ) = true, is not in BPP.

A forged signature is a valid signature produced by someone other
than Alice.

Usually, one signs only hash values of messages for performance
reasons: ‘hash-then-sign’.

A digital signature should lose its validity if anything in the signed data
was altered.
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RSA and EC variants of Digital Signature

RSA Signature Algorithm

It is the DSS with sigk defined by the RSA decryption function Dk and
verk defined by the RSA encryption function Ek :

sigk (x) = Dk (x) and verk (x , y ) = true⇔ x = Ek (y )

Reminder: Dk (x) = xd mod n and Ek (y ) = ye mod n,

Analogously: DSS using one-way functions with trapdoors.
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EC variant of Digital Signature

EIGamal Signature Scheme: a suitable signature scheme, not just use
of the ElGamal cryptosystem in the DSS.

Digital Signature Algortihm (DSA)

ECDSA
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Every day example

‘The connection to this site is encrypted and authenticated using TLS
1.2 (a strong protocol), ECDHE_RSA with X25519 (a strong key
exchange), and AES_128_GCM (a strong cipher).’
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Test questions

Question 12

1 Why does ElGamal produce two components ciphertext?
2 Why the exponents used for decryption are smaller for ElGamal

compared to RSA?
3 Why ECC is more popular than the original ElGamal?

Question 13

Which of the following statements are true?
1 Breaking ElGamal is equivalent to solving Asymmetry of ElGamal.
2 ElGamal is less efficient for encryption than RSA.
3 ElGamal is more efficient for decryption than RSA.
4 There is no message expansion in the RSA-OAEP cryptosystem.
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Test questions

Question 14

Prove Cayley-Bacharach’s theorem.

Question 15

Check that for a prime q, each natural number in the Hasse interval
occurs as the order of E(Fq).
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