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Pseudorandomness

Cryptography:

Symmetric and asymmetric cryptosystems;
One-way functions, Hash functions;
Key management, Digital Signatures, Applications;
Pseudorandom generators.

Encoding, Error-correction.
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Randomness vs Pseudorandomness

Random numbers Pseudorandom number

Nondeterministic Deterministic

Physical processes, hardware Computer algorithm, software

No pattern Periodic

Unpredictable Predictable, depending on observers

Two of the most celebrated open problems in mathematics and
computer science, the Riemann Hypothesis and the P vs. NP
question, can be stated as problems about pseudorandomness.
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Bit generator

A seed is a number (or a vector) used to initialize a pseudorandom
number generator.

Definition: (k , l)-bit generator

k , l ∈ N, l > k + 1. A (k , l)-bit generator is

f : (Z2)k → (Z2)l

that is in P (as a function of k ).

The input s0 ∈ (Z2)k is the seed, and the output f (s0) ∈ (Z2)l is the
generated bitstring.

We assume that l is a polynomial function of k , called the stretch
function of f .
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Bit generator

A bit generator is deterministic.

We aim to construct bit generators so that f (s0) looks like random bits.
Such a bit generator is called a pseudo-random bit generator (PRBG).

Example of use: A seed is a secrete key, and a bit-generator generates
a key of the same length as the plaintext for the one-time pad.
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Linear Feedback Shift Register: Definition
Definition: LFSR for c = (c0, . . . , cl−1)T ∈ (Z2)l of degree l > 0, c0 6= 0

It is given by the linear recurrence:

sn+l = (sn, · · · , sn+l−1) ·

 c0
...

cl−1

 n > 0,

such that
t (0) := t = (t0, · · · , tl−1) ∈ (Z2)l is the initial value,
si = ti for 0 6 i 6 l − 1,
t (n) := (sn, · · · , sn+l−1) is the n-th state vector.
We write s := 〈c, t〉.

It is of degree l as each term depends on the previous l terms.

Question 23: Why c0 6= 0?

c© Univ.-Prof. Dr. Goulnara Arzhantseva Chapter 06: Pseudorandomness 6 / 28



Linear Feedback Shift Register: Example
LFSR for c = (1,1,0,0)T ∈ (Z2)4 of degree l = 4 with t = (1 0 1 0)

s = 1,0,1,0,1,1,1,1,0,0,0,1,0,0,1, | 1,0,1,0, . . .

Definition: periods of LFSR

s is k -periodic if si+k = si ∀i > 0, or equivalently, t (i+k ) = t (i) ∀i > 0.
c is k -periodic if s = 〈c, t〉 is k -periodic for all t ∈ (Z2)l .
The period is the smallest such number k .

Take k = 2l − 1. So, a short initial ‘key’ (seed) generates a keystream
with a long period:
given an l-bit seed, an LFSR of degree l produces 2l − l − 1 further
bits before repeating.

Question 24: Is this k the period?
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Linear Feedback Shift Register: Security

The LFSR is insecure! The knowledge of any 2l consecutive bits
allows to determine the seed, and hence the entire sequence.

For each n > 0, the linear recurrence expressing sn+l is a linear
equation in the l unknowns (c0, . . . , cl−1). For n ∈ {0,1, . . . , l − 1}, we
get l linear equations in l unknowns:

(sl , sl+1, . . . , s2l−1) = (c0, c1, · · · , cl−1) ·


s0 s1 . . . sl−1
s1 s2 . . . sl
...

...
...

sl−1 sl . . . s2l−2


If the matrix has the inverse mod 2, then we find (c0, . . . , cl−1) and
determine the entire sequence.
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Test question

Question 25

Show that the l × l coefficient matrix from the previous slide is indeed
invertible mod 2.

Hint: let vi = (si , . . . , si+l−1) for i > 0. The coefficient matrix has
v0, . . . vl−1 as rows. The goal is to prove that these l vectors are
linearly independent.

Remark: the coefficient matrix is an example of a Hankel matrix.
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A bit generator: Example

An LFSR of degree l is an example of a bit-generator.

Question 26

Consider an LFSR as a bit generator, what are, in this case,
parameters k and l from the definition of bit-generator?
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An RSA bit generator

Definition: RSA generator

Let p,q be k/2-bit primes, n = pq. Let e be such that gcd(e, φ(n)) = 1.
A seed s0 is any element of (Zn)×, so it has k bits. For i > 1, we define

si+1 = se
i mod n,

and then we define
f (s0) = (z1, z2, . . . , zl ),

where zi = si mod 2,1 6 i 6 l . Then f is a (k , l)-RSA generator.

Public-key is (n,e) and private-key is (p,q).

Assumption: the Factoring is not in BPP.
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Towards a pseudo-random number generator

A pseudo-random number generator should be fast (i.e. computable in
polynomial time) and secure.

Our examples are fast. How secure they are?

Intuitively: it should be impossible in an amount of time that is
polynomial in k (equivalently, polynomial in l) to distinguish a string of l
bits produced by a PRBG from a string of l truly random bits.
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Towards a pseudo-random number generator

Example: if a bit generator produces 1 with probability 2/3, then on
average a generated bitstring of length l will contain 2l/3 bits 1.

In contrast, a truely random bitstring of length l will contain l/2 1’s on
average.

Given a bitstring with l1 1’s, if l1 >
l/2+2l/3

2 = 7l
12 , then we conclude that it

is a generated bitstring (not a truely random).
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Deterministic distinguisher
Notation: z i = (z1, . . . , zi )

Definition: Distinguisher

Let p0 and p1 be two probability distributions on (Z2)l . For j = 0,1 and
z l ∈ (Z2)l we denote by pj (z l ) the probability that the string z l occurs in
the distribution pj . Let dst : (Z2)l → {0,1} be a function and ε > 0. We
define

Edst(pj ) =
∑

{z l∈(Z2)l : dst(z l )=1}
pj (z l ).

We say that dst is an ε-distinguisher of p0 and p1 provided that

|Edst(p0)− Edst(p1)| > ε,

p0 and p1 are ε-distinguishable if there exists an ε-distinguisher of p0
and p1.
If dst(z l ) can be computed in polynomial time, it is a polynomial-time
distinguisher.
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Randomized distinguisher

As above but with

Edst(pj ) =
∑

z l∈(Z2)l

pj (z l ) · Pr [ dst(z l ) = 1].
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Towards a pseudorandom generator
A truly random sequence corresponds to the uniform distribution pul on
the set of all bitstrings of length l :
each string among all 2l strings can occur with probability 1/2l .
If f is a bit generator with a k -bit seed chosen uniformly at random,
then we obtain a probability distribution pf = f (puk ) on the same set.

pf is very non-uniform

If we assume that no two seeds give same sequence of bits. Then, of
the 2l possible sequences, 2k sequences each occur with probability
1/2k , and the remaining 2l − 2k sequences never occur.

We would like to have f such that pul and pf are ε-distinguishable in
polynomial time only for small values of ε.

Exercise: producing 0’s and 1’s with equal probability is not sufficient
to ensure indistinguishability.
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Next bit predictor

Let f be a (k , l)-bit generator.

Definition: Next bit predictor

Let 1 6 i 6 l − 1. A next bit predictor for f is a function

nbp : (Z2)i−1 → Z2,

which takes as input an (i − 1)-tuple z i−1 = (z1, . . . , zi−1), the first i − 1
bits produced by f (given, an unknown, truly random, k -bit seed), and
produces by a polynomial time probabilistic algorithm, the i th bit of the
bitstring generated by f (given the first i − 1 bits) with probability at
least 1/2 + ε, where ε > 0.
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Next bit predictor: Theorem

pf induces the probability distribution on any of the l generated bits (or
on any subsequence of these l generated bits).

For 1 6 i 6 l , we think of the i th generated bit as a random variable zi .

Theorem: Next bit predictor

Let f be a (k , l)-bit generator. Then the nbp is an ε-i th bit predictor for f
if and only if

∑
z i−1∈(Z2)i−1

pf (z i−1) · Pr [zi = nbp(z i−1) | z i−1] >
1
2

+ ε.
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Next bit predictor: a straightforward proof

Proof:
The probability of correctly predicting the i th generated bit,
Pr [zi = nbp(z i−1)], is computed by summing over all possible
(i − 1)-tuples z i−1 = (z1, . . . zi−1) the product of the probability that the
(i − 1)-tuple z i−1 is produced by the bit generator f and the probability
that the i th bit is predicted correctly, given the (i − 1)-tuple z i−1. �
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Main result

Main result: A next bit predictor is a universal test

A bit generator is secure if and only if there does not exist any
polynomial-time ε-i th bit predictor for the generator, except for very
small values of ε.

One direction of the implication is given by the next result.
Here, Dist has z i as an input, and 1 as output if the value predicted by
nbp(z i−1) is the same as the actual value of zi . Otherwise, it outputs 0.

Theorem: from nbp to distinguisher

Let nbp be a polynomial time ε-i th bit predictor for the (k , l)-bit
generator f , and pf ,pul be as above, on (Z2)i . Then the distinguisher
algorithm Dist is a polynomial-time ε-distinguisher of pf and pul .
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Theorem: from nbp to distinguisher
Proof: By definition, Dist(z i ) = 1⇐⇒ nbp (z i−1) = zi . Then,

EDist(pf ) =
∑

z i∈(Z2)i

pf (z i ) ·Pr [Dist(z i ) = 1] =
∑

z i∈(Z2)i

pf (z i ) ·Pr [nbp (z i−1) = zi ]

Define z = (z1, . . . , zi−1,0) and z ′ = (z1, . . . , zi−1,1). Then,

pf (z) · Pr [nbp (z i−1) = 0] + pf (z ′) · Pr [nbp (z i−1) = 1] =

pf (z i−1) ·
∑

j∈{0,1}
Pr [zi = j | z i−1] · Pr [nbp (z i−1) = j ] =

pf (z i−1) · Pr [zi = nbp (z i−1) | z i−1].

It follows that

EDist(pf ) =
∑

z i−1∈(Z2)i−1

pf (z i−1) · Pr [zi = nbp (z i−1) | z i−1] >
1
2

+ ε,

as nbp is an ε-i th bit predictor (use the previous Theorem).
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Theorem: from nbp to distinguisher (suite)

On the other hand, any predictor will predict the i th bit of a truly random
sequence with probability 1/2. Therefore, EDist(pul ) = 1/2. Hence,

|EDist(pul )− EDist(pf )| > ε.

as required. �
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Main theorem

Theorem: from distinguisher to nbp Yao’1982

Suppose dst is a (polynomial-time) ε-distinguisher of pf and pul , where
pf is the probability distribution induced on (Z2)l by the (k , l)-bit PRBG
f , and pul is the uniform probability distribution on (Z2)l . Then for some
i ,1 6 i 6 l − 1, there exists a polynomial-time ε/l-i th bit predictor for f .

That is, a pseudo-random bit generator is secure if there does not exist
an ε-next bit predictor except for very small values of ε.
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Main theorem: proof

Proof: (Hybrid argument) For 0 6 i 6 l , let qi be a probability
distribution on (Z2)l with first i bits generated by f , and the other l − i
bits are generated truly randomly. Thus, q0 = pul and ql = pf .

By hypothesis, |E dst(q0)− E dst(ql )| > ε. By the triangle inequality,

|E dst(q0)− E dst(ql )| 6
l∑

i=1

|E dst(qi−1)− E dst(qi )|.

Then there is i , 1 6 i 6 l , such that |E dst(qi−1)− E dst(qi )| > ε
l . WLOG,

we assume
E dst(qi−1)− E dst(qi ) >

ε

l
.

We will construct an ε-i th bit predictor for this value of i .
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Main theorem: proof (continued)

Intuitively: The predicting algorithm produces an l-tuple according to
qi−1, given that z i−1 is generated by the PRBG. If dst answers 0, then it
thinks that the l-tuple was generated according to qi .

The i th bit is truly random in qi−1, it is given by the PRBG in qi .

Hence, if dst answers 0, it thinks that the i th bit, zi is what would be
produced by the PRBG. Then zi is our prediction for the i th bit.

If dst answers 1, it thinks that zi is truly random, so we take 1− zi as
our prediction for the i th bit.

Input: z i−1 = (z1, . . . , zi−1)
Choose (zi , . . . , zl ) ∈ (Z2)l−i+1 truly randomly
Compute z = dst(z1, . . . , zl )
Define nbp (z1, . . . , zi−1) = (z + zi ) mod 2
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Main theorem: proof (continued)

If dst gives 0, then the prediction is correct with probability pf (zi | z i−1)

If dst gives 1, then it is correct with probability 1− pf (zi | z i−1).

Let z = z l . We have

qi−1(z) · pf (zi | z i−1) = qi (z)/2.
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Main theorem: proof (continued)

Pr [zi = nbp(z i−1)] =

∑
z∈(Z2)l

qi−1(z)
(

Pr [dst(z) = 0] · pf (zi | z i−1) + Pr [dst(z) = 1] · (1− pf (zi | z i−1))
)

=

∑
z∈(Z2)l

qi (z)
2
·Pr [dst(z) = 0]+

∑
z∈(Z2)l

qi−1(z)·Pr [dst(z) = 1]−
∑

z∈(Z2)l

qi (z)
2
·Pr [dst(z) = 1]

=
1− E dst(qi )

2
+E dst(qi−1)− E dst(qi )

2
=

1
2

+E dst(qi−1)−E dst(qi ) >
1
2

+
ε

l
.

�
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Main theorem: Summary

The ε-distinguishability implies ε/l-predictability.

Hybrid argument: if a distinguisher can ε-distinguish extreme hybrids
given by pf and pul , then it can also distinguish adjacent hybrids given
by qi−1 and qi , with gap at least ε/l .

The distinguisher is used to produce a predictor.

The contrapositive is that unpredictability implies indistinguishability.
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