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Code

Let P be a finite set of possible messages.

Definition: Code

A code is a subset C ⊂ {0,1}n with |C| = |P|, and an encoding is given
by a bijective map ψ : P → C.

Linear code

A linear code C is a code with P = {0,1}k for some k < n, and
encoding is done by a linear operator (a generating matrix)
AC ∈ Fk×n

2 :
ψ(v ) = vT AC .

A linear code C is a linear subspace of {0,1}n of dimension k , whose
basis is given by the rows of k × n matrix AC .
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Distance and rate of a code

For x , y ∈ C, the Hamming distance dH (x , y ) = number of distinct bits

Definition: Distance and rate

d(C) = min
x , y ∈ C

x 6= y

dH (x , y ), r (C) =
log2 |C|

n

The distance measures the ability to resolve corrupted bits.

The distance should be large: two codewords should be sufficiently
dissimilar so that corruption of a single bit (or of a small number of bits)
does not turn one codeword into another.
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What code will correct t-bit errors?

If 2 bits are bad in a codeword a, the resulting (erroneous) codeword a′

is at distance 2 = dH (a,a′).

Such errors can be corrected if d(a′, c) > 3: the correct codeword a is
the closest to a′. Thus, d(C) > 5 is required:

5 6 d(C) 6 dH (a, c) 6 dH (a,a′) + dH (a′, c).

Similarly, we obtain the following result.

Observation

A code with d(C) > t + (t + 1) = 2t + 1 can correct t-bit errors.
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Distance and rate of a code

For x , y ∈ C, the Hamming distance dH (x , y ) = number of distinct bits

Definition: Distance and rate

d(C) = min
x , y ∈ C

x 6= y

dH (x , y ), r (C) =
log2 |C|

n

The rate measures the number of information-bits.

For a linear code of dimension k , the rate is log2 2k

n = k
n , the amount of

non-redundant information per bit.

The rate should be large.
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Distance versus rate

A sparser code has larger distance (i.e. more errors can be corrected)
but smaller rate (i.e. smaller information-density).

Theorem: Quantifying the distance-rate tradeoff Hamming’1950

Let C ⊂ {0,1}n be a code and t =
⌊

d(C)−1
2

⌋
. Then

|C|
2n 6

1∑t
i=0
(n

i
)

A code is perfect if it achieves the Hamming bound.
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Distance versus rate

Proof: For x ∈ {0,1}n, B(x , t) = {y ∈ {0,1}n | dH (x , y ) 6 t} is the ball
of radius t centered at x , with respect to the Hamming distance.

For all x , y ∈ C, x 6= y , the sets B(x , t) and B(y , t) are disjoint.

Otherwise, dH (x , y ) 6 2t < d(C), contradicting the definition of d(C).

Each B(x , t) has size
∑t

i=0
(n

i
)
. Their union is contained in {0,1}n, so

|C|
t∑

i=0

(
n
i

)
6 2n

�
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Distance versus rate

Example: the Hamming bound

A linear code of length n, dimension k and distance 3 satisfies

k 6 n − log2(n + 1)

Example: a Hamming code of length 7, dimension 4 and distance 3

For (x1, x2, x3, x4) ∈ {0,1}4, we define

CHam(x1, x2, x3, x4) = (x1, x2, x3, x4, x2⊕x3⊕x4, x1⊕x3⊕x4, x1⊕x2⊕x4)

4 = 7− log2(7 + 1), hence, CHam has the largest possible dimension for
any binary code of length 7 and distance 3.
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Distance of a linear code

For c ∈ Fn
2, the support supp c = the set of positions with nonzero bits.

|supp c| = the number of nonzero bits, the weight of c.

Lemma: Distance of a linear code

For a linear code C, we have d(C) = minc∈C,c 6=0 |supp c|.

Proof: If c, c′ ∈ C, then c ⊕ c′ ∈ C, since C is linear. Then,

dH (c, c′) = dH (0, c ⊕ c′) = |supp (c ⊕ c′)|.

�
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Asymptotically good codes

Definition: Asymptotically good code

A family C of codes Cn ⊂ {0,1}n as n→∞, is asymptotically good if
there exist constants α, λ > 0 such that for all Cn ∈ C,

d(Cn)
n

> α and r (Cn) > λ.

We want both a constant-fraction number of errors and a constant rate.

We also want that encoding and decoding is in P, ideally in linear time.
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Bipartite graphs

Definition: A bipartite graph

A graph is bipartite if there is a partition of its set of vertices into two
(disjoint) subsets S and T such that every edge has one endpoint
vertex in S and another one in T .

Definition: An (l , r )-regular graph

A bipartite graph is (l , r )-regular if all vertices in S have degree l , and
all vertices in T have degree r .

The complete graph K3,3 is a bipartite graph. It is (3,3)-regular.
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Bipartite expander graphs

Definition: Bipartite expander

A bipartite graph X is an (l , r , α, δ)-expander if it is (l , r )-regular, and for
all sets U ⊂ S with |U| 6 α|S|, we have |∂U| > δ|U|.

∂U denotes the external boundary of the set U = the set of vertices at
distance 1 from U, in the edge-length distance on X .

Here, α, δ > 0 are real constants and l , r are positive integers.

Small subsets of S have big enough boundary: they are ‘expanding’.
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Parity check matrix

Let S ⊂ Fr
2 be an r -bit linear code of dim. k with parity check matrix PS:

c ∈ S ⇐⇒ PSc = 0.

The (r − k )× r matrix PS describes linear relations that hold ∀c ∈ S.

Rows of AS span S and rows of PS span S⊥.

That is, PSAT
S = (0), the zero matrix of size (r − k )× k .

By a changing of basis of Fr
2, we write AS = (Ik M), where Ik the k × k

identity matrix.

Then, PS = (MT Ir−k ).
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Towards expander codes

Let X be an (l , r )-regular expander whose l-degree side has n vertices
and l < r .

We will extend an r -bit linear code S to an n-bit linear code C(X ,S).

This will allow to produce an asymptotically good family of codes.
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Expander codes

Let {u1, . . . ,un} be n vertices on the l-degree side of X .

Then the r -degree side has (l · n)/r vertices, say {v1, . . . , vln/r}.

Let σ be a function such that for i = 1, . . . , ln/r , the neighbours of vi are
uσ(i,1), . . . ,uσ(i,r )

Definition: C(X ,S)

C(X ,S) = {(x1, . . . , xn) ∈ Fn
2 | ∀i we have (xσ(i,1), . . . , xσ(i,r )) ∈ S}
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Expander codes

Lemma: Expander code is linear

C(X ,S) is a linear code.

Proof: If BX ,i is the 0− 1 matrix that maps (x1, . . . , xn) to
(xσ(i,1), . . . , xσ(i,r )), of size r × n, then the parity check matrix PC(X ,S) is
the matrix whose rows are the union of the rows of the matrices
PSBX ,i , each of size (r − k )× n, for i = 1, . . . , ln/r . �
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Expander code

Theorem: Expander code Sipser-Spielman’1994

Suppose that X is an (l , r , α, l/rε)-expander, and S has rate
R > 1− 1/l and normalised distance d(S)/r = ε. Then C(X ,S) has
rate at least 1− l(1− R) and normalised distance at least α.

Proof: Each matrix PSBX ,i has r − k = (1− R) · r rows. So, the parity
check matrix of C(X ,S) has

l · n
r

(1− R)r = ln(1− R) rows.

This spans C(X ,S)⊥. Hence, the dimension of C(X ,S) is at least
n − ln(1− R), and rate of at least n−ln(1−R)

n = 1− l(1− R).

Next we bound the normalised distance d(C(X ,S))/n.
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Expander code: Theorem (suite)

Suppose by contradiction that there is c ∈ C(X ,S) with |supp c| 6 αn.

Let U be the vertices in X corresponding to the coordinates of supp c.

By the expansion of the graph, |∂U| > l
rε |U|. There are l |U| edges

from U to X \ U, so some vi ∈ ∂U has < rε neighbours in U.

Then, (xσ(i,1), . . . , xσ(i,r )) ∈ S has < rε 1-bits, contradicting the
hypothesis that the normalised distance of S is ε.

�
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Asymptotically good error-correcting codes

Corollary

If (Xi )i>1 is a family of (l , r , α, l/rε)-expanders with n vertices of its
l-degree side, as n→∞, than C(Xi ,S)i>1 are asymptotically good
error-correcting codes.
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Expander code: Example

Expander code from the even-weight code

Let Seven ⊂ Fr
2 be the code consisting of all even-weight codewords.

Then PSeven = (1 1 · · · 1), the normalised distance of Seven is 2/r and the
rate R = 1− 1/r .

If X is an (l , r , α, l/2)-expander, then, by the Theorem, C(X ,Seven) has
the normalised distance at least α and the rate at least 1− l/r .
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Linear error-correcting (without proof)

Theorem: Linear decoding Sipser-Spielman’1994

If X is an (l , r , α, 3
4 l)-expander, then the code C(X ,Seven) permits an

α/2 fraction of errors to be corrected in linear time.

C(X ,Seven) has normalised distance at least α and rate at least 1− l/r .
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Linear error-correcting

There is a linear-time algorithm that will map to a codeword any word
of relative distance at most α from that codeword, for some positive
constant α.

Algorithm

While not all constraints are satisfied, find a variable xi in more
unsatisfied than satisfied constraints, and switch xi .

C(X ,Seven) has n variables and (l · n)/r constraints.

Given (x1, . . . , xn) ∈ {0,1}n, a constraint vi is satisfied if
(xσ(i,1), . . . , xσ(i,r )) ∈ Seven, i.e. the mod2 sum of the coordinates is zero.
Otherwise, it is unsatisfied.

One shows that the algorithm terminates after linear number of
switches and can be implemented in linear time.
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Asymptotically good linear time error-correcting codes

Corollary

If (Xi )i>1 is a family of (l , r , α, 3
4 l)-expanders with n vertices of its

l-degree side, as n→∞, than C(Xi ,Seven)i>1 are asymptotically good
linear time error-correcting codes.
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Existence and constructions of expanders: Remarks

Theorem: Existence of expanders Kolmogorov-Barzdin’1968

A random (bipartite) graph is an expander.

The above definition of expander can be adapted to usual (not
necessarily) bipartite graphs.

Examples of explicit (non bipartite) expanders can be produced by
taking box spaces of finitely generated residually finite groups with
Kazhdan’s property (T).

SL3(Z) is such a group and SL3(Z/pZ) as prime p →∞ is such an
(explicit) expander.
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Existence and constructions of expanders: Remarks

A usual expander gives a bipartite expander: take two copies of the
vertex set for each finite graph and have an edge between vertices in
different copies if and only if there is an edge between these vertices in
the original graph.

Expander graphs are ubiquitous in mathematics and computer
science!
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Test questions
Question 27

Is the Hamming distance indeed a distance?

Question 28

Given a linear code C, is its generating matrix uniquely defined?

Question 29

Is the complete graph K3,3 a bipartite expander?

Question 30

Let Y is a non bipartite expander with the expansion parameter λ.
What is the expansion parameter of the bipartite expander X
constructed from Y as in the previous slide. What about the diameter
and the girth of X (given the diameter and the girth of Y )?
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