Topics in Algebra: Cryptography - Blatt 3

11.30-12:15, Seminarraum 9, Oskar-Morgenstern-Platz 1, 2.Stock http://www.mat.univie.ac.at/~gagt/crypto2018

Goulnara Arzhantseva goulnara.arzhantseva@univie.ac.at Martin Finn-Sell martin.finn-sell@univie.ac.at

1 Test questions from the lecture to refresh:

Question 1. Give a proof of Theorem 2 from the Annex notes for Chapter 2.

2 Exercises

Question 2. Suppose that p > 3 is an odd prime, and $a, b \in \mathbb{Z}_p$. Further, suppose that the equation $x^3 + ax + b = 0 \pmod{p}$ has three distinct solutions in \mathbb{Z}_p . Prove that the corresponding elliptic curve group (E, +) is not a cyclic group. (Hint: Consider the subgroup of elements of order 2.)

Question 3. Suppose that E is an elliptic curve defined over \mathbb{Z}_p , where p > 3 is prime. Suppose also that |E| is a prime, $P \in E$ and $P \neq O$.

- i) Prove that the discrete logarithm $log_P(-P) = |E| 1$;
- ii) Describe how to compute |E| in $O(p^{\frac{1}{4}})$ time using Hasse's bound on |E| together with a modification of Shank's algorithm.