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1 Test questions from the lecture to refresh:
Question 1. i) Why does ElGamal produce two components of ciphertext?

ii) Why are the exponents used for decryption smaller for ElGamal compared to RSA?

iii) Why is ECC more popular than the original ElGamal?

Question 2. Which of the following statements is true:

i) Breaking ElGamal is equivalent to solving “Asymmetry of ElGamal”;

ii) ElGamal is less e�cient for encryption than RSA;

iii) ElGamal is more e�cient for decryption than RSA;

iv) There is no message expansion in the RSA-OAEP cryptosystem.

Question 3. Prove the Cayley–Bacharach theorem.

2 Exercises
Question 4. In this question, Alice and Bob are experimenting with the ElGamal cryptosystem.
Let G be a �nite group of order 43, with generator g and suppose Alice’s private key is 10.

1. What is Alice’s public key, and what is her decryption function?

2. If Bob wants to send Alice the messagem ∈ G, and picks exponent t = 7, what ciphertext
does Alice receive?
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3. Check that Alice’s decryption function correctly recoversm.

Question 5. We will do a more complicated implementation of the ElGamal cryptosystem,
this time implemented in F33 . The Polynomial x3+ 2x2+ 1 is irreducible over Z3[x], and hence
Z3[x]/(x3 + 2x2 + 1) is the �nite �eld F33 . We can associate the 26 letters of the alphabet with
the 26 non-zero �eld elements, and thus encrypt ordinary text in a convenient way. We will
use lexicographic ordering on the (non-zero) polynomials to set up the correspondence. This
gives:

A↔ 1 B↔ 2 C↔ x

D↔ x+ 1 E↔ x+ 2 F↔ 2x

G↔ 2x+ 1 H↔ 2x+ 2 I↔ x2

J↔ x2 + 1 K↔ x2 + 2 L↔ x2 + x
M↔ x2 + x+ 1 N↔ x2 + x+ 2 O↔ x2 + 2x
P ↔ x2 + 2x+ 1 Q↔ x2 + 2x+ 2 R↔ 2x2

S↔ 2x2 + 1 T ↔ 2x2 + 2 U↔ 2x2 + x
V ↔ 2x2 + x+ 1 W ↔ 2x2 + x+ 2 X↔ 2x2 + 2x
Y ↔ 2x2 + 2x+ 1 Z↔ 2x2 + 2x+ 2

Suppose Alice uses g = x and d = private key = 11, then y = x + 2. How would Alice
decrypt the following string of ciphertext (and what does it say)?

(K,H)(P, X)(N,K)(H,R)(T, F)(V, Y)(E,H)(F,A)(T,W)(J,D)(U, J)

3 Hasse’s bound
In this section we add some notes for proving Hasse’s bound. It requires two facts, and we
will discuss them in detail in the next exercise class. Let E be an elliptic curve and let K(E) be
the �eld we obtain doing algebraic geometry to E - that is the �eld extension of K obtained by
taking K[x, y] and dividing it by the ideal generated by the polynomial y2 − ax3 − bx − c, and
then passing to the maximal �eld quotient.

1. The degree of a map of elliptic curves φ : E1 → E2 is determined by the corresponding
type of �eld extension we get in duality to φ - that is we de�ne:

deg(φ) = [K(E1) : φ∗K(E2)]

This will then be related to the size of the corresponding Galois group, etc. We’ll discuss
this.

2. The degree of a composition of endomorphisms of E satis�es:

|deg(f ◦ g) − deg(f) − deg(g)| ≤ 2
√
(deg(f)deg(g))

The proof of this uses bilinear forms - and then we can get to the proof of Hasses theorem
from here - one has to understand degree correctly in this case, however.
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