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1 Test questions from the lecture to refresh:

Question 1. Is the Hamming distance indeed a distance?
Question 2. Given a linear code C, is its generating matrix uniquely defined?
Question 3. Is the complete graph Kj 3 a bipartite expander?

Question 4. Let Y be a non-bipartite expander with expansion parameter A. What is the ex-
pansion parameter of the bipartite expander X constructed from Y (constructed in the lecture
notes )? What about the diameter and the girth of X (supposing we know the diameter and the
girth of Y)?

2 Exercises
uestion 5. Let X be a finite d-regular graph with girth g > 3. Prove that
Q gular grap girth g
IX| > d(d — ])L(ng)/ZJ'
uestion 6. Let {X;} be a d-regular expander family. Show that d > 2.
Q g P y

Question 7. What's the difference between the interior and exterior boundaries of a subset of
vertices? Can we measure one in terms of the other?

Question 8. Let X be a finite graph of cardinality n, and let A be the matrix with entries
a,y =number of edges between x,y € V(X).

i) Show that A* has entries that count the number of walks of length k in X.
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ii) Let D be the diagonal matrix with entries Dy, = deg(x) for each x € V(X) and let
A =D — A. Show that X is connected if and only if the multiplicity of the eigenvalue O is
1. Can you generalise this to the situation where X has k connected components?

The goal of question 8 is to show how graphs and their properties can be encoded in lin-
ear algebra. The matrix A is called the adjacency matrix, D the degree matrix and A the graph
laplacian. The operator A encodes what happens to neighbours - if we feed into this the charac-
teristic functions of subsets of vertices with size less than |V(X)/2|, we can connect this matrix
to the boundary of a set defined in the class. In this way, we can link geometric expansion to
the spectrum of eigenvalues of A. We’ll talk more about this in the class.
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