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Cryptography: Overview

Cryptography

I Past: Diffie–Hellman (1976) and Rivest-Shamir-Adleman (1977)
II Nowadays: Blockchain ([1991], 2008)
III Future: Quantum ([1927, 1982], 1983) and Post-quantum

cryptography (1994,1996)

1. Martin, Keith M. Everyday cryptography. Fundamental principles
and applications. Second edition. Oxford, 2017.

2. Stinson, Douglas R. Cryptography. Theory and practice. Third
edition. Discrete Mathematics and its Applications (Boca Raton).
Chapman & Hall/CRC, Boca Raton, FL, 2006.

3. Daniel J. Bernstein & Tanja Lange, Post-quantum cryptography,
Nature, 2017, Vol.549, 188–194.
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Cryptography: Overview

Cryptography

I Past: Diffie–Hellman (1976) and Rivest-Shamir-Adleman (1977)
II Nowadays: Blockchain ([1991], 2008)
III Future: Quantum ([1927, 1982], 1983) and Post-quantum

cryptography (1994,1996)

Cryptography principles

1 Confidentiality: limits access to information
2 Data Integrity: accuracy of data
3 Authentication : confirms the truth of data / entity
4 Non-Repudiation: a technical/legal proof of authorship

c© Univ.-Prof. Dr. Goulnara Arzhantseva Chapter 01: Introduction 3 / 44



Cryptography principles = security services

Confidentiality / secrecy

limits access to information
not always required / not alone

Data Integrity

data was not altered (intentionally or accidentally)
detection of alteration (not prevention)
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Cryptography principles = security services

Data origin authentication / message authentication

confirms the origin of data with no temporal aspect
not necessarily an immediate source / not when

Entity authentication

a given entity is involved and currently active
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Cryptography principles = security services

Non-Repudiation

a source of data cannot deny to a third party being at the origin

Data origin authentication⇒ Data integrity

Non-Repudiation⇒ Data origin authentication

Data origin authentication 6= Entity authentication

Secrecy 6⇒ Data origin authentication
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Cryptography system as a part of a security service

Cryptography = toolkit

Cryptographic primitive = a basic tool in this toolkit
Examples:
Encryption, hash function, MAC (message authentication code),
digital signature, etc.

Cryptographic algorithm = Cipher = a specification of a primitive

Cryptographic protocol = a way to choose primitives and use them
for a security goal

Cryptosystem = implementation of primitives and the infrastructure
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Cryptosystem: basic model for secrecy

Figure: Basic model of a cryptosystem [image: K. Martin’s book]

An interceptor may or may not know the encryption / decryption
algorithm and the encryption key. The encryption key is known by the
receiver. The decryption key may or may not be known by the sender.
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Cryptosystem: basic model for secrecy

Encryption does not prevent communication interception.
For example, it is used over open networks.

Encryption of the communication channel does not guarantee
‘end-to-end’ confidentiality.
For example, the plaintext may be vulnerable.

Secrecy can be provided by (combination of):

(1) Cryptography (via encryption)

(2) Steganography (via information hiding)

(3) Access control (via software or hardware)
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Cryptography systems for secrecy

Encryption key ?←→ Decryption key

Symmetric = Secret-key cryptosystem: same keys
Asymmetric = Public-key cryptosystem: Public vs Private keys

Theoretical security: mathematics
Practical security: implementation
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Cryptosystem: basic model for secrecy
Definition: Cryptosystem is a 5 -tuple (P, C,K, E ,D) satisfying:

P is a finite set of possible plaintexts;
C is a finite set of possible ciphertexts;
K, the keyspace, is a finite set of possible keys;
E = {Ek : k ∈ K} consists of encryption functions Ek : P → C;
D = {Dk : k ∈ K} consists of decryption functions Dk : C → P;
For all e ∈ K there exists d ∈ K such that for all plaintexts p ∈ P
we have:

Dd (Ee(p)) = p

Symmetric cryptosystem: d = e
Public-key cryptosystem: d cannot be derived from e in a
computationally feasible way
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Cryptography applications

Securing Internet
WLAN = Wireless Local Area Network
Mobile communications (GSM, etc.)
Payment card transactions
Video broadcasting
Identity Cards
Online Anonimity (Tor, etc.)
Digital currency
File protection
Email security
Messaging security (WhatsApp, Telegram, etc.)
Platform security (iOS, etc.)
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Breaking encryption algorithms

• A practical method of determining the decryption key is found.

• A weakness in the encryption algorithm leads to a plaintext.
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Key lengths and sizes

Length of the key = number of bites it takes to represent the key

Size of the keyspace = number of possible different decryption keys

Length ?←→ Size

Symmetric: Size 6 2 Length

Example: Size of a 256-bit keyspace is 2128 times as big as Size
of a 128-bit key.

Asymmetric: Length is an indication on Size
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Exhaustive key search = brute-force attack

1. Select a decryption key from the keyspace

2. Decrypt the ciphertext

3. Check if the plaintext makes sense

4. If ‘yes’ then label the decryption key as a candidate;
otherwise, select a new decryption key
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Exhaustive key search = brute-force attack

Assumptions:

– All keys from the keyspace are equally likely to be selected

– The correct decryption key is identified as soon as it is tested

If Size = n = 2k , then, on average, one needs ∼ 2k−1 attempts to find
the correct decryption key:

E [X ] =
n∑

i=1

i · 1
n

=
n(n + 1)

2
· 1

n
=

2k + 1
2
∼ 2k−1

c© Univ.-Prof. Dr. Goulnara Arzhantseva Chapter 01: Introduction 16 / 44



Exhaustive key search = brute-force attack

Assumptions:

– All keys from the keyspace are equally likely to be selected

– The correct decryption key is identified as soon as it is tested

If Size = n = 2k , then, on average, one needs ∼ 2k−1 attempts to find
the correct decryption key:

E [X ] =
n∑

i=1

i · 1
n

=
n(n + 1)

2
· 1

n
=

2k + 1
2
∼ 2k−1

c© Univ.-Prof. Dr. Goulnara Arzhantseva Chapter 01: Introduction 16 / 44



Exhaustive key search = brute-force attack

If Size = n = 2k , then, on average, one needs ∼ 2k−1 attempts to find
the correct decryption key.

1 year = 31556926 seconds ∼ 3 · 107 seconds ∼ 225 = 33554432 sec.

1000 ∼ 210 = 1024 and 1000000 ∼ 220 = 1048576

In 1 year, 1000 processors testing 1000000 keys per second will test in
total:

∼ 225 · 210 · 220 = 255 keys

Therefore, a 56-bit key will be enough if the cover time is 1 year.

Cover time = the time for which a plaintext must be kept secret.
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Exhaustive key search = brute-force attack

Key lengths needed to protect against a brute-force attack if the cover
time is 1 year:

Strength of attack Key length

Human: one key per second 26 bits

1 processor: 1000000 keys per second 46 bits

1000 processors: each 1000000 keys per second 56 bits

1000000 processors: each 1000000 keys per second 66 bits
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Types of attack

Passive attack = unauthorized access to data (remains unnoticed)

Traffic analysis (location / hosts / frequency / length of messages)
Release of message contents
Monitoring processor computations (timing / power analysis)

Active attack = changing the information in an unauthorized way

Initiating unintended or unauthorized transmission of information.
Unauthorized deletion of data
Denial of access to information for legitimate users (denial of
service).
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Examples of symmetric cryptosystems: Caesar

Caesar Cipher = Shift Cipher Vienna Caesar−→ Ylhqqd

Replace each alphabet by another alphabet which is ‘shifted’ by some
fixed number between 0 and 25. Key = ’secret shift number’. Length=1

Figure: Caesar Cipher with a shift of 3 [image: geeksforgeeks.org]

Plaintext / Ciphertext: strings of letters (or numbers between 0 and 25)
Encryption / Decryption key: a number between 0 and 25, Size = 26

Ciphertext letter = Plaintext letter + Key mod 26
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Examples of symmetric cryptosystems: Substitution

Simple Substitution Cipher Vienna Substitution−→ Saiffp

Replace each alphabet by another alphabet which is its random
permutation. Key = a permutation of 26 letters. Length = 26

Plain alphabet: ABCDEFGHIJKLMNOPQRSTUVWXYZ
Cipher alphabet: PHQGIUMEAYLNOFDXJKRCVSTZWB

Plaintext / Ciphertext: strings of letters (or numbers between 0 and 25)
Encryption / Decryption key: a permutation σ ∈ Sym(26), Size = 26!

Ciphertext letter = σ (Plaintext letter)
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Examples of symmetric cryptosystems: Substitution

Caesar Cipher is a specific example of Simple Substitution cipher.

26! = 4.0329146e + 26 ∼ 4 · 1026 � 1022 = number of stars in universe

Exhaustive key search is currently not feasible.

Simple Substitution Ciphers are examples of monoalphabetic ciphers
(each given letter is encrypted into a unique letter).

Simple Substitution Cipher is breakable by Letter frequency analysis.
(A long enough plaintext is required.)

A large keyspace is necessary but not sufficient for security.
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Example: Letter frequency analysis

Figure: English Letter
Frequencies. [image: Crypto
Corner]

Figure: Ciphertext letter
frequencies [image: Crypto
Corner]
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Examples of symmetric cryptosystems: Vigenère

Vigenère Cipher Vienna
Vigenère−→ Bwyyaa

Generate a key by repeating a given key until it matches the length of
the plaintext. Replace each plaintext letter by another letter using a
Caesar Cipher, whose key is the number associated to the
corresponding letter of the generated key. Key = a string of letters.

Plaintext: U N I VERS I TY Key: GOULNARA
Generated key: GOU LNARAGO
Ciphertext: A BCGRR J I Z M

Plaintext / Ciphertext: strings of letters (or numbers between 0 and 25)
Encryption / Decryption generated key length = length of the plaintext

Ciphertext letteri = Plaintext letteri + Keyi mod 26
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Examples of symmetric cryptosystems: Vigenère

Figure: Vigenère Cipher table [image: geeksforgeeks.org]

c© Univ.-Prof. Dr. Goulnara Arzhantseva Chapter 01: Introduction 25 / 44



Examples of symmetric cryptosystems: Vigenère

Vigenère Cipher is an example of polyalphabetic ciphers (each given
letter can be encrypted into ‘length of the key’ different letters).

Same letter is encrypted differently depending on its position in the
plaintext. Hence, a natural letter frequency analysis is not feasible.

For large enough plaintexts the exhaustive key search is currently not
feasible.

Vigenère Cipher is breakable by breaking a sequence of Caesar
Ciphers in a strict rotation. (A length of the given key is required.)

Enigma machine: a sequence of component substitution encryption
processes in rotation, using a long key.
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Test questions

Question 1

Give an example of an application where
(i) entity authentication and data origin authentication are both
required;
(ii) data origin authentication is required but not data integrity.

Question 2

If the given key of a Vigenère Cipher has repeated letters, does it
make it any easier to break?

Question 3

Invent and analyze (length, size, attacks?) an Affine Cipher.
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Computational complexity
Operation Complexity

Addition of two n-bit numbers n

Multiplication of two n-bit numbers n2

Raising a number to an n-bit power n3

Exhaustive key search for an n-bit key 2n

Complexity of multiplication

∑
06k6n−1

ak · 2k ×
∑

06`6n−1

b` · 2` =
∑

06m62(n−1)

cm · 2m, cm =
∑

k+l=m

akb`

Calculation of each cm requires 6 2n − 1 elementary multiplications
and 6 2n − 2 additions and corresponding carries, thus the algorithm
requires less than 2n · 4n steps, hence, at most quadratic complexity.
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Computational complexity of attacks

We can estimate real attack times.

Assumption: computer makes 1 000 000 operations per second

Exhaustive key search real attack time for a 30-bit key

230

106 sec. = 1073.741824 seconds = 17.8956970667 minutes

Computational complexity is an indication on a real attack time,
on a computational security.
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Test questions

Question 4

How long (in years, days, hours, seconds) it will take 1000000
computers, each processing 1000000 operations per second, to
(1) multiply two 1000-bit numbers together;
(2) perform an exhaustive search for a 128-bit key;
(3) find the correct key (on average) while performing a brute-force

attack on a 128-bit key.
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Evaluating security

Computational security: computational complexity is high.

Provable security: breaking the cryptosystem would solve a problem
known to be hard.

Unconditional security: breaking is not possible even if computational
resources are unlimited.
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Perfect secrecy

A cryptosystem has perfect secrecy if seeing the ciphertext gives not
extra information about the plaintext.

A cryptosystem with perfect secrecy is unconditionally secure against
a ciphertext only attack.
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Probability distributions on plaintexts and keyspace

Let (P, C,K, E ,D) be a cryptosystem and probability distributions are
given on P and K:

Pr [p = p] denotes the probability that a plaintext p ∈ P occurs,

Pr [k = k ] denotes the probability that a key k ∈ K is chosen.

Analogously, Pr [c = c] denotes the probability that a ciphertext c ∈ C
transmitted.

Assumptions:
– the key and the plaintext are independent random variables;
– each key is used for only one encryption.
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Probability distribution on ciphertexts
For k ∈ K, let C(k ) := {Ek (p) : p ∈ P} be the set of possible ciphertexts
if k is the key. Then ∀c ∈ C we have:

Pr [c = c] =
∑

{k : c∈C(k )}
Pr [k = k ] Pr [p = Dk (c)]

Then: Pr [c = c | p = p] =
∑

{k : p=Dk (c)}
Pr [k = k ]

Using Bayes’ theorem
(

Pr [X | Y ] =
Pr [X ] Pr [Y | X ]

Pr [Y ]
if Pr [Y ] > 0

)
:

Pr [p = p | c = c] =

Pr [p = p]
∑

{k : p=Dk (c)}
Pr [k = k ]

∑
{k : c∈C(k )}

Pr [k = k ] Pr [p = Dk (c)]
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Perfect secrecy

Definition: Perfect secrecy Shannon’49

A cryptosystem has perfect secrecy if Pr [p = p | c = c] = Pr [p = p] for
all p ∈ P, c ∈ C.

Proposition:

TFAE:

1 (P, C,K, E ,D) has perfect secrecy;
2 random variables p and c are independent;
3 Pr [c = c | p = p] = Pr [c = c];
4 ∀p1,p2 ∈ P Pr [c = c | p = p1] = Pr [c = c | p = p2]

In particular, a cryptosystem has perfect secrecy independently of the
language used in the plaintext (prob. distribution on P is irrelevant).
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Perfect secrecy: Example
P = {a,b} with Pr [a] = 1/4, Pr [b] = 3/4 and C = {1,2,3,4}

K = {k1, k2, k3} with Pr [k1] = 1/2, Pr [k2] = Pr [k3] = 1/4.

Let the encryption be defined by:

Ek a b
k1 1 2
k2 2 3
k3 3 4

Then the induced probability distribution on C is defined, e.g.
Pr [2] = 7/16,Pr [3] = 1/4, etc.
Then the conditional probability distributions on the plaintext, given a
certain ciphertext can be computed, e.g. Pr [b | 2] = 6/7, etc.
Hence, this cryptosystem has no perfect secrecy (although, it has it on
a specific ciphertext c = 3).
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Perfect secrecy: Shannon’s theorem

Theorem: Perfect secrecy Shannon’49

Let (P, C,K, E ,D) be a cryptosystem with |K| = |C| = |P|. Then it has
perfect secrecy if and only if every key is used with equal probability
1/|K|, and ∀p ∈ P, ∀c ∈ C, there is a unique key k ∈ K such that
Ek (p) = c.

Proof: (⇒) We can assume that ∀p ∈ P Pr [p] > 0,∀c ∈ C Pr [c] > 0. Fix
p ∈ P. For each c ∈ C, we have Pr [c | p] = Pr [c] > 0, that is, ∀c ∈ C
there is at least one k ∈ K with Ek (p) = c.

Therefore, |C| = |{Ek (p) | k ∈ K}| 6 |K| and, as |K| = |C|, there is no
distinct k1 6= k2 with Ek1(p) = Ek2(p) = c. That is, ∀p ∈ P, ∀c ∈ C, there
is a unique key k ∈ K such that Ek (p) = c.

(Analogously, |P| 6 |K|.)
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p ∈ P. For each c ∈ C, we have Pr [c | p] = Pr [c] > 0, that is, ∀c ∈ C
there is at least one k ∈ K with Ek (p) = c.

Therefore, |C| = |{Ek (p) | k ∈ K}| 6 |K| and, as |K| = |C|, there is no
distinct k1 6= k2 with Ek1(p) = Ek2(p) = c. That is, ∀p ∈ P, ∀c ∈ C, there
is a unique key k ∈ K such that Ek (p) = c.

(Analogously, |P| 6 |K|.)
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Perfect secrecy: Shannon’s theorem (continued)

Let n = |K|,P = {p1, . . . ,pn}, and c ∈ C be fixed. Let ki ∈ K be so that
Eki (pi ) = c. Using Bayes’ theorem:

Pr [pi | c] =
Pr [c | pi ] Pr [pi ]

Pr [c]
=

Pr [ki ] Pr [pi ]
Pr [c]

.

Perfect secrecy implies that ∀i Pr [ki ] = Pr [c], all keys are used with
equal probability. Since there are |K| keys, the probability is 1/|K|.

(⇐) ∀p ∈ P, ∀c ∈ C Pr [c | p] = 1/|K|, hence, we conclude by the
Proposition. �
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One-time pad

Definition: One-time pad Vernam’1917

Let P = C = K = (Z/2Z)n and Ek (p) = k + p mod 2.

One-time pad has perfect secrecy:

∀p ∈ P, ∀c ∈ C Pr [c | p] = 1/|K|,

hence, we conclude by the Proposition (alternatively, one can use
Shannon’s theorem).
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Test questions

Question 5

(1) Does one-time pad remain with perfect secrecy if we reuse the
same key twice?

(2) Has Vigenère Cipher perfect secrecy?

(3) Could we use one-time pads in practice?
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Symmetric encryption

DES = Data Encryption Standard’1975
AES = Advanced Encription Standard’2000
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Asymmetric encryption: Public-key encryption

RSA = Rivest-Shamir-Adleman cryptosystem’[1970] 1977
ECC = Elliptic curves cryptography’[1985] 2004

Public-key cryptosystem can never provide unconditional security.
Therefore, we study the computational security of public-key
cryptosystems.

c© Univ.-Prof. Dr. Goulnara Arzhantseva Chapter 01: Introduction 42 / 44



Asymmetric encryption: Public-key encryption

RSA = Rivest-Shamir-Adleman cryptosystem’[1970] 1977
ECC = Elliptic curves cryptography’[1985] 2004

Public-key cryptosystem can never provide unconditional security.
Therefore, we study the computational security of public-key
cryptosystems.

c© Univ.-Prof. Dr. Goulnara Arzhantseva Chapter 01: Introduction 42 / 44



RSA cryptosystem

Definition: RSA cryptosystem

Let n = pq, where p,q are primes. Let P = C = Z/nZ and

K = {(n,p,q,a,b) : ab = 1 mod φ(n)}

For k = (n,p,q,a,b), we define

Ek (x) = xb mod n and Dk (c) = ca mod n.

Public-key is (n,b) and private-key is (p,q,a).

Here, x is a plaintext.

Euler’s function φ(n) = the number of positive integers less than n and
relatively prime to n.
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RSA cryptosystem

Encryption and decryption are inverse operations.

n = pq ⇒ φ(n) = (p − 1)(q − 1)
We have that ab = 1 mod φ(n), i.e. ab = tφ(n) + 1 for some t ∈ Z.

(1) Suppose that x ∈ (Z/nZ)∗, then

(xb)a = x tφ(n)+1 mod n = (xφ(n))t x mod n = 1t x mod n = x mod n.

(2) If x 6∈ (Z/nZ)∗, then x = 0 mod p or x = 0 mod q.

If x = 0 mod p, then (xb)a = 0 mod p as well. If the same holds for
mod q we are done by the Chinese remainder theorem.

Otherwise, x 6= 0 mod q. Then, by Fermat’s little theorem,
(xb)a = xba−1x = x t(p−1)(q−1)x = (xq−1)t(p−1)x = 1t(p−1)x mod q = x
mod q. We conclude by the Chinese remainder theorem.
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