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Digital Signature Scheme
To ensure the non-repudiation of data over an insecure channel:

Definition: Signature scheme is a 5-tuple (P,A,K,S,V), satisfying:

P is a finite set of possible messages;
A is a finite set of possible signatures;
K, the keyspace, is a finite set of possible keys;
S = {sigk : k ∈ K} consists of polynomial signing algorithms
sigk : P → A;
V = {verk : k ∈ K} consists of polynomial verification algorithms
verk : P ×A → {true, false};

∀x ∈ P, ∀y ∈ A: verk (x , y ) =

{
true, if y = sigk (x)
false, otherwise.

A pair (x , y ) with x ∈ P, y ∈ A is called a signed message.
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Handwritten signature vs Digital signature

Usual Signature Digital Signature

A part of the document Transmitted and stored separately

Verified by comparison Anyone can verify, efficiently
with the original

A copy is distinguished A copy is identical
from the original to the original

Easy to forge Computationally hard to forge

Efficient signing process Efficient signing process
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Public-key Cryptosystem vs Digital signature

Public-key cryptosystem Digital Signature

Encrypt with Ek Sign with Dk

Decrypt with Dk Verify with Ek

Mathematics: Is swapping of Dk and Ek a valid operation?

Practice: Is swapping of the corresponding primitives a valid
operation?

Key management: not same keys for distinct applications.
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RSA Digital signature

Definition: RSA Signature scheme is a 5-tuple (P,A,K,S,V) such that:

n = pq, where p,q are primes, P = A = Z/nZ and

K = {(n,p,q,d ,e) : de = 1 mod φ(n)}

For k = (n,p,q,d ,e), we define

sigk (x) = xd mod n and

verk (x , y ) =

{
true, if x = ye mod n
false, otherwise.

Public-key is (n,e) and private-key is (p,q,d).
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Test questions

Question 15

1 The DSS requires that S = {sigk : k ∈ K} consists of polynomial
signing algorithms sigk : P → A but the RSA Signature scheme
involves the exponentiation. Is there a contradiction?

2 The DSS defines verk (x , y ) = true, if y = sigk (x) but the RSA
Signature scheme defines sigk (x) = xd mod n and
verk (x , y ) = true, if x = ye mod n. Is there a contradiction?
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Attacks on DSS and their goals
Attacks on DSS

Key-only: The attacker knows the public verification key, hence, verk .

Known message: The attacker knows some messages (not selected
by him) and their signatures.

Chosen message: The attacker knows some messages (selected by
him) and their signatures.

Goals of attacks on DSS

Total break: The attacker determines Alice’s private key, hence, sigk .

Selective forgery: With a non-negligible probability, the attacker creates
a valid signature on a message chosen by someone else.

Existential forgery: Forge a signature for some message (without the
ability to do this for any message).

Universal forgery: Forge signatures of any message.
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DSS goal

DSS goal: strongest variant

The resistance against universal forgery under a chosen message
attack.

RSA Signature scheme is not resistant

Choose an arbitrary signature y ∈ Z/nZ, then compute the message
x = ye mod n; Thus, y is a valid signature on the message x (because
y = xd mod n; note that d is private).
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Attacks on DSS: Examples

Existential forgery using key-only attack is always possible: Choose an
arbitrary signature y , then compute the message x given by x := Ek (y ).

To prevent existential forgery: message redundancy or hashing.

If the corresponding one-way function with trapdoor is multiplicative
(e.g. in the RSA case: (xy )e = xe · ye), then the universal forgery under
a chosen message attack is possible. Indeed, to sign x decompose it
as x = x1x2 with x1 6= x 6= x2. Get the signatures yi of xi (this is possible
as we are under a chosen message attack). Compute (x , y ) = (x , y1y2).

The RSA case (and the other one-way functions with trapdoor case):
The signature has same length as the message.
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DSS + Hashing = Hash-then-sign

Definition: DSS with hashing is a DSS 5-tuple (P,A,K,S,V) such that:

P = {0,1}∗ and A = {0,1}` for some ` ∈ N;
h : P → A a public hash function given by a polynomial algorithm;
sigk (x) = f−1

k (h(x)), where fk : A → A is a one-way function with
trapdoor.

∀x ∈ P, ∀y ∈ A: verk (x , y ) =

{
true, if fk (y ) = h(x)
false, otherwise.

To avoid the attacks h must be a one-way non-multiplicative function.

h is collision resistant if it is infeasible to find x1 6= x2 with h(x1) = h(x2).
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Hash algorithm in practice: Example

The SHA = Secure Hash Algorithms are cryptographic hash functions
published by the National Institute of Standards and Technology
(NIST) as a U.S. Federal Information Processing Standard (FIPS).

In 2017 CWI Amsterdam and Google announced they had performed
a collision attack against SHA-1. Since 2017 Microsoft, Google, Apple
and Mozilla have all announced that their respective browsers stop
accepting SHA-1 SSL certificates.

Collisions allow two files to produce the same signature, so a signature
may appear valid even though that file was never actually signed.

Current use: SHA-2, Future: SHA-3 (both have various specifications).
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Hash algorithm in practice: Concept
A stream cipher: one bit or byte at a time (e.g. Caesar, Vernam).
A block cipher: blocks of bits at a time (e.g. Vigenère, Feistel)
Symmetric key algorithms: DES’1975 (64-bits blocks),
3DES=TDES’1998 (64-bits blocks), AES’2000 (128-bits blocks)

Definition: Hash functions from block ciphers

Let P = K = C = {0,1}` for some ` ∈ N and E be a block cipher:

E : P ×K → C, (x ,e) 7→ Ee(x).

Define h(x1, . . . , xr ) ∈ {0,1}` with xi ∈ {0,1}` recursively, by h(∅) = 0,
and

h(x1, . . . , xr ) = Eeh (xr ) + eh, where eh = h(x1, . . . , xr−1).

SHA-1: {0,1}∗ → {0,1}160 is such example.
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DSS + Public-key cryptosystem

Alice sends a signed encrypted message to Bob

1 Given x ∈ P, she computes her signature y = sigdAlice
(x).

2 She encrypts both x and y using Bob’s public key z = EeBob(x , y ).
3 She sends z to Bob, who decrypts it DdBob(z) = (x , y ).
4 He uses her public verification function to check whether

vereAlice(x , y ) = true.

First signed, then encrypted.

Question 16

What if in the DSS + Public-key cryptosystem scheme we inverse the
order of operations: what if Alice first encrypts x , and then signs the
result?
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ElGamal variant of Digital Signature
Definition: ElGamal Signature scheme

Let p be a prime and g a primitive element modp.
Let P = (Z/pZ)×,A = (Z/pZ)× × (Z/(p − 1)Z) and define

K = {(p,g,d , y ) : y = gd mod p}.

For k = (p,g,d , y ), and for a secrete random r ∈ (Z/(p − 1)Z)×, define

sigk (x ; r ) = (y1, y2), where

y1 = gr mod p, and y2 = (x − dy1)r−1 mod p − 1.

For x , y1 ∈ (Z/pZ)× and y2 ∈ Z/(p − 1)Z, define

verk (x , (y1, y2)) = true⇔ yy1(y1)y2 ≡ gx mod p

Public key is (p,g, y ) and private key is d .
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ElGamal variant of Digital Signature

Verification step: a signature will be accepted by the verifier

yy1(y1)y2 ≡ (gd )y1gr (x−dy1)r−1
mod p ≡ gx mod p

Reminder (a consequence of Fermat’s little theorem):
Since g is primitive modp it has order p − 1.
Therefore, ga−b ≡ 1 mod p ⇔ a ≡ b mod p − 1.

This verification can be done using only public information.
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ElGamal variant of Digital Signature

Security assumptions: computationally hard to forge a signature

To forge a signature of a given message x without knowing d an
attacker chooses an arbitrary y1 and then tries to find y2:

y2 ≡ logy1
gxy−y1 mod p,

so he must solve the DLP in (Z/pZ)×.

Alternatively, he chooses an arbitrary y2 and then tries to find y1:

yy1yy2
1 ≡ gx mod p,

so he must solve this equation with the unknown y1.

Assumption: Both problems 6∈ BPP
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ElGamal signature scheme: Example of misuse

Proposition: same r twice

The total break holds whenever the same r is used at least twice.

Proof: Let (y1, y2) a signature of x1 and (y1, z2) a signature of x2. Then

yy1yy2
1 ≡ gx1 mod p, yy1yz2

1 ≡ gx2 mod p, thus, gx1−x2 ≡ yy2−z2
1 mod p.

Since y1 = gr mod p, we have an equation with the unknown r :
gx1−x2 ≡ gr (y2−z2) mod p, which is equivalent (see the Reminder), to

x1 − x2 ≡ r (y2 − z2) mod p − 1.
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ElGamal signature scheme: Example of misuse
We want to solve: x1 − x2 ≡ r (y2 − z2) mod p − 1.
Let s = gcd(y2 − z2,p − 1). Then s | (x1 − x2) and we define

x ′ =
x1 − x2

s
, y ′ =

y2 − z2

s
, p′ =

p − 1
s

.

Then the equation becomes: x ′ ≡ ry ′ mod p′. Since gcd(y ′,p′) = 1, we
compute z ′ = (y ′)−1 mod p′. Then r = x ′z ′ mod p′. This gives s
candidates for r :

r = x ′z ′ + ip′ mod p − 1, for 0 6 i 6 s − 1.

We determine the unique correct value by testing the condition
y1 ≡ gr mod p.
Now that r is known, the attacker can compute d . Indeed, if
gcd(y1,p − 1) = 1, then

d = (x − ry2)(y1)−1 mod p − 1.

Otherwise, test gcd(y1,p − 1) solutions until d with y = gd mod p. �
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EC variant of Digital Signature

EIGamal Signature Scheme: a suitable signature scheme, not just use
of the ElGamal cryptosystem in the DSS.

Schnorr Signature Scheme: ElGamal Signature in a subgroup of size
q of (Z/pZ)× (DLP in a subgroup 6∈ BPP) and the hashing is integrated
in the signing (opposite to the hash-and-sign).

Digital Signature Algorithm (DSA): Schnorr Signature Scheme +
hash-and-sign (SHA-1)

ECDSA: EC variant of the DSA
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ECDSA: EC variant of Digital Signature

p prime, k = Z/pZ, E = E(k), P ∈ E of prime order q.

Definition: ECDSA, hash-and-sign

P = {0,1}∗,A = (Z/qZ)× × (Z/qZ)× and

K = {(p,q,E ,P,d ,Q) : Q = dP}, where 0 6 d 6 q − 1.

For k = (p,q,E ,P,d ,Q), and a secrete random r , 1 6 r 6 q− 1, define

sigk (x , r ) = (t , s), where rP = (u, v ) with

t = u mod q
s = r−1(h(x) + dt) mod q

If either t = 0 or s = 0, a new random value of r is chosen.
The public key is (p,q,E ,P,Q) and the private key is d .
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ECDSA: EC variant of Digital Signature

p prime, k = Z/pZ, E = E(k), P ∈ E of prime order q

Definition: ECDSA, verification

For x ∈ {0,1}∗ and t , s ∈ (Z/qZ)×, we compute

w = s−1 mod q
i = wh(x) mod q
j = wt mod q
(u, v ) = iP + jQ
verk (x , (t , s)) = true⇔ u mod q = t .
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ElGamal Signature scheme versus ECDSA

d = logP Q the discrete log: similar to y = gd mod p in the ElGamal SS

The order of P is a large prime q: similar to the order of a primitive g

Computation of rP: similar to computation of gr in the ElGamal SS

Computation of t , the first coordinate of the elliptic curve point rP,
modq: similar to computation of gr mod p to get y1, the first
component of the signature (y1, y2)

s is computed from t ,d , r , x : similar to computation of y2 from
y1,d , r , x .
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Test questions

Question 17

1 What if in the argument showing that the Existential forgery is
always possible we first choose an arbitrary x and then compute
the corresponding signature y?

2 Assume that the hash function is not collision-resistant. Is an
existential forgery using a known message attack possible?
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Test questions

Question 18

Why is the ElGamal signature scheme not just the use of the ElGamal
cryptosysytem in the DSS? Compare with the RSA signature scheme.

Question 19

Does the ElGamal Signature scheme provide the authentication?
Compare to the ECDSA.
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