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Here we present a proof of the Cayley–Bacharach theorem. We begin by recalling some
useful facts, and then proving the result. 1

Theorem 1. (Bézout) Let C1, C2 be two plane curves over a �eld k whose de�ning polynomials
F1, F2 are relatively prime and have degrees d1 and d2. Then there intersection C1 ∩ C2 in P2(k ′),
where k’ is an algebraically closed �eld containing k, counted with their multiplicities, consists of
d1d2 points.

This version di�ers from the notes of Tao. We remark that the version he is working with
follows from this result, since the number of points (up to multiplicities) actually included in
k will be smaller than d1d2, and the notion of “common component” agrees with the notion of
“relatively prime” we use above.

The second thing we need to know is that given any pair of points, there is a unique line
between them - similarly, for any �ve points there is a quadric and 9 points a cubic. For a
justi�cation of these points, think about the linear algebraic formulation of these statements
- for instance given two points A = (a0, a1) and B = (b0, b1), then the line between them
L = {(x, y) | ax+by = c} is overde�ned - we have four values and three unknowns. The same
is the case for higher degree curves as mentioned above.

Lemma2. Letk[x, y, z]d be the space of homogeneous polynomials of degreed2. Then dimk k[x, y, z]d =
(d+1)(d+2)

2
.

Proof. Count the polynomials by �guring out a basis.

Let Rd = P(k[x, y, z]d), and P(Rd(P1, ..., Pn)) = {M ∈ Rd | M(Pi) = 0 for all i =

{1, ..., n}}. When k is algebraically closed, and n ≤ (d+1)(d+2)
2

− 1, the subspace Rd(P1, ..., Pn)
of Rd has dimension at most (d+1)(d+2)

2
− n− 1.

1https://terrytao.wordpress.com/2011/07/15/pappuss-theorem-and-elliptic-curves/
would provide an alternative source - as an exercise translate that version into this one.

2recall that elements of k[x, y, z]ddefineplanecurvesofdegreedoverk
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IfΩ = {P1, ..., Pn} ⊂ P2(k) is a set of points, thenΩ de�nes l conditions on polynomials
of degree d if the codimension of Rd(Ω) is l. We say that Ω de�nes independent conditions if
the codimension of Rd(Ω) in Rd is exactly |Ω| = n.

Proposition 3. Let Ω = {P1, ..., Pn} ⊂ P2(k) be any collection of n ≤ 2d + 2 points. Then
the points ofΩ fail to determine independent conditions on curves of degree d if and only if either
d+ 2 of the points are colinear, or n = 2d+ 2 andΩ is contained in a conic.

Proof. The “if” direction: If d + 2 points of Ω lie on a line L, then by Bézout’s theorem any
curve of degree d must contain L. The subset of curves of degree d containg L has dimension(
d+2
2

)
−

(
d+1
2

)
= d + 1. The remaing n − (d + 2) points can impose at most n − (d + 2)

conditions, so we see that Ω imposes at most n − 1 conditions. A similar argument for the
second case completes that direction.

The “only if” direction. We must do induction on both the degree d and the number of
points n. The induction hypothesis for n will allow us to assume that no proper subset ofΩ
does not impose independent conditions on curves of degree d. If we were supposing that Ω
does not impose independent conditions, then this hypothesis states that any curve of degree
d that contains all but one point ofΩ in fact contains all ofΩ.

We note that for d = 1, the result is satis�ed (The reader should check this).
For arbitrary d satisfying n ≤ d + 1 the result is also easy - to exhibit a curve of degree d

containing all but one point Pn ∈ Ω - and we do this by taking the union of general lines Li
through Pi for i ∈ {1, ..., n− 1} and any curve of degree d− n+ 2 not passing through Pn.

Now we take arbitrary d satisfying n > d+ 1.
Suppose �rst thatΩ contains d+1 points on a line L. Suppose that no further points belong

to L, and let Ω ′ be the complementary set of n − (d + 1) points of Ω. We claim that Ω ′ must
fail to impose independent conditions on curves of degree d − 1 - otherwise we could �nd a
curve M of degree d− 1 containing all but one point of Ω ′ and then L ∪M would be a curve
of degree d containing all but one point ofΩ.

By induction,Ω ′ must consist of exactly d+1 points on a line L ′, and thus either L contains
d+ 2 points, or n = 2d+ 2 andΩ lies on the conic L ∪ L ′.

Next, suppose that only some line L contains l ≥ 3 points ofΩ. By the previous argument,
the remaining n−l points ofΩmust fail to impose independent conditions on curves of degree
d− 1, and so must include at least d+ 1 colinear points - which is precisely what we ended up
considering in the previous paragraph.

We are done now, except for the case thatΩ contains no three colinear points. Choose any
three points P1, ..., P3 inΩ and letΩ ′ be the complement of these three points inΩ. If for any
i the points ofΩ ′ ∪ {Pi impose independent conditions on curves of degree d− 1, we are done
- for then we can �nd a curve C of degree d − 1 containing Ω ′ but not Pi, and then the union
of C with the line joining the remaining Pj and Pk is a curve of degree d containing all of Ω
except Pi.

Thus, we can suppose that Ω ′ ∪ {Pi} fails to impose independent conditions on curves of
degree d−1. Since it cannot contain d+1 colinear points, we have by induction thatn = 2d+2
and for each i the setΩ ′ ∪ {Pi} is contained in a conic Ci. In the case d = 2, we are done since
six points fail to impose indepenent conditions on conics if and only if they lie on a conic.
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If d ≥ 3 then Ω ′ contains at least 5 points, no three colinear and so there can be at most
one conic coontaining Ω, thus all the conics Ci must be equal to a single conic curve C which
then contains all ofΩ.

Now we can prove the Cayley–Bacharach theorem.

Theorem 4. (Cayley–Bacharach) Let P1, ..., P8 be points in P2(k), no 4 on a line and no 7 on a
conic then there is a 9th point Q such that any cubic through P1, ..., P8 also passes through Q.

Proof. We apply the above proposition when d = 3, Ω = {P1, ..., P8} (so n = 8). In this case,
Ω must determine independent conditions on cubics - as if we suppose not then we will �nd
our other hypotheses in contradiction to the equivalence in Proposition 1.

Unpacking what this de�nition means - R3(Ω) has codimension 8, but the dimension of R3
is 9. So there is a cubic containing P1, ..., P8 in general position, and it must also pass through
one more point Q satisfying the conditions by Bézout’s theorem.
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