Topics in Algebra: Cryptography - Blatt 1

http://www.mat.univie.ac.at/~gagt/crypto2019

Goulnara Arzhantseva goulnara.arzhantseva@univie.ac.at Martin Finn-Sell martin.finn-sell@univie.ac.at

1 Test questions from the lecture to refresh:

Question 1. Give an example of an application where

- i) entity authentication and data origin authentication are both required;
- ii) data origin authentication is required but not data integrity.

Question 2. If a given key of a Vingère cipher has repeated letters, does it make it any easier to break?

Question 3. Invent and analyse an affine cipher (i.e consider length, size, attacks etc).

Question 4. How long (in years, days, hours, seconds) will it take 1000000 computers each processing 1000000 operations per second to

- i) multiply two 1000-bit numbers together;
- ii) perform an exhaustive search for a 128-bit key;
- iii) find the correct key (on average) while performing a brute force attack on a 128-bit key.

Question 5. i) Does a one time pad retain perfect secrecy if we reuse the same key twice?

- ii) Has a Vingère cipher got perfect secrecy?
- iii) Could we use one time pads in practice?

Question 6. Describe the Turing machine that implements subtraction of one binary string from another.

Question 7. Estimate the run time for calculating the determinant of an $n \times n$ integer matrix.

Question 8. A user of the one-time pad encrypts the message 10101 and obtains 11111. What was the key?

Question 9. Show that the halting problem is undecidable

Question 10. What are the relationships between the sets of languages in NP, R (recursive) and RE (recursively enumerable)?

2 Exercises

Question 11. Describe 3 elements of the set \mathcal{K} in the definition of RSA encryption for the primes p = 7 and q = 11, that is generate three public and private key pairs. Use those elements to simulate the sending of the message 42, and describe the steps in detail where appropriate.

Question 12. For n = pq, where p and q are distinct primes, consider:

$$\lambda(n) = \frac{\varphi(n)}{\gcd(p-1,q-1)}.$$

Suppose we modify the RSA cryptosystem by asking that $ab = 1 \mod \lambda(n)$.

- i) show that the encryption and decryption are well defined operations in this new system;
- ii) for p = 37, q = 79, and b = 7 compute a in this modifed RSA system. How does it compare to the value in the original RSA scheme?

Question 13. Prove that RSA is vulnerable (i.e insecure to) a chosen cipher text attack. In particular, given a cipher text y, describe how to choose $\tilde{y} \neq y$ such that knowledge of the plaintext $\tilde{x} = D_{\mathcal{K}}(\tilde{y})$ allows $x = D_{\mathcal{K}}(y)$ to be computed.

Question 14. A k-tape Turing Machine is a variation of the definition of a Turing Machine in which there are k tapes instead of 1.

- a) Give a precise definition for a k-tape Turing Machine
- b) Show that a k-tape Turing Machine can be simulated on a 1-tape Turing Machine.

Question 15. Show that the set of composite numbers $\{kl \mid k, l \ge 2\}$ can be recognised by a non-deterministic Turing Machine. Can we recognise it with a deterministic one in reasonable time?