Topics in Algebra: Cryptography - Blatt 2

http://www.mat.univie.ac.at/~gagt/crypto2019

Goulnara Arzhantseva goulnara.arzhantseva@univie.ac.at Martin Finn-Sell martin.finn-sell@univie.ac.at

1 Test questions from the lecture to refresh:

Question 1. What is the complexity of the RSA parameter generation?

Question 2. Let f be a one-way function. Is $f \circ f$ necessarily a one-way function?

Question 3. What is the worst case / average case complexities of trial division?

Question 4. Design an algorithm for computing the square root of an integer. What about its complexity? What about its modular variant and its complexity?

Question 5. Which of the following statements are true?

- 1. If the RSA cryptosystem is breakable, then large numbers can be factored;
- 2. Breaking the ECC cryptosystem is equivalent to solving the discrete logarithm problem;
- 3. There is no message expansion in the ECC cryptosystem.

Question 6. Why in practice public-key cryptosystems have longer key lengths than symmetric cryptosystems?

2 Exercises

Question 7. Solve the discrete logarithm problem in $(\mathbb{Z}/n\mathbb{Z}, +)$, where $n \in \mathbb{N}$. What is the complexity?

Question 8. A plaintext x is said to be *fixed* if $e_{\mathcal{K}}(x) = x$. Show that, for $\mathcal{K} = RSA$, the number of possible fixed $x \in \mathbb{Z}_n^{\times}$ is equal to:

$$gcd(b-1, p-1)gcd(b-1, q-1)$$
.

Question 9. Find and describe the steps of Shanks algorithm, then compute $\log_5 20$ in \mathbb{Z}_{47}^{\times} .

Question 10. Interpret the function $h : \mathbb{Z} \to \mathbb{Z}_n$, where $h(x) = x \mod n$ as a function on binary strings. Is this function a reasonable one way or hash function?

Question 11. Show that the function $y^2 = x^3 + 2x - 2$ is an elliptic curve for some field.

3 Optional computer exercises

An exercise here is not mathematically harder than the above, but the numbers are too large and they are and best solved by computer:

Question 12. Find, describe and implement the steps of Shanks algorithm, and use it to compute $\log_{106}12357$ in $\mathbb{Z}_{24691}^{\times}$.

Question 13. Let E be the elliptic curve $y^2 = x^3 + x + 28$ defined over \mathbb{Z}_{71} .

- a) Determine the number of points in E;
- b) Show that E is not a cyclic group;
- c) What is the maximal order of an element in E? Exhibit an element with that order in E.