Topics in Algebra: Cryptography - Blatt 3

http://www.mat.univie.ac.at/~gagt/crypto2019

Goulnara Arzhantseva N goulnara.arzhantseva@univie.ac.at martin

Martin Finn-Sell martin.finn-sell@univie.ac.at

1 Test questions from the lecture to refresh:

Question 1. Give a proof of Theorem 2 from the Annex notes for Chapter 2.

2 Exercises

Throughout these exercises, let \mathbb{F}_p be the field with p elements, where p is prime and $E := E(\mathbb{F}_p)$ be the set of \mathbb{F}_p -points of an elliptic curve defined over \mathbb{F}_p .

Question 2. Suppose that p > 3 is an odd prime, and $a, b \in \mathbb{F}_p$. Further, suppose that the equation $x^3+ax+b=0 \mod p$ has three distinct solutions in \mathbb{F}_p . Prove that the corresponding elliptic curve group $(\mathsf{E},+)$ is not a cyclic group. (Hint: Consider the subgroup of elements of order 2.)

Question 3. Using Hasse's bound, show that the only finite fields **k** over which there is an elliptic curve without **k**-rational points are \mathbb{F}_2 , \mathbb{F}_3 and \mathbb{F}_4 .

Question 4. Let p > 3 is prime. Suppose also that |E| is a prime, $P \in E$ and $P \neq O$, where O is the point at infinity.

- i) Prove that the discrete logarithm $\log_P(-P) = |E| 1$;
- ii) Describe how to compute |E| in $O(p^{\frac{1}{4}})$ time using Hasse's bound on |E| together with a modification of Shank's algorithm.

Question 5. (Finite Fields and their extensions)

- 1. Show that for an irreducible polynomial f over \mathbb{F}_p that the finite field extension **k** generated by \mathbb{F}_p and the roots of f is isomorphic to \mathbb{F}_p^n for some n > 0.
- 2. Compute the algebraic closure of \mathbb{F}_p .

Question 6. We consider the following two models for the projective plane $\mathbb{R}P^2$. Here \mathbb{R}^3 is given by (x, y, z)-coordinates.

Model 1: the sphere S^2 in \mathbb{R}^3 with antipodal points identified. Model 2: the plane $P = \{(x, y, z) \mid z = 1\}$ in \mathbb{R}^3 .

- 1. Describe why (or prove how) these models are equivalent (Perhaps a sketch would help).
- 2. What are lines in the second model of $\mathbb{R}P^2$?
- 3. What do these lines look like as lines on the sphere?