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Abstract

Human breath contains a myriad of endogenous volatile organic compounds (VOCs) which are reflective of ongoing metabolic or
physiological processes. While research into the diagnostic potential and general medical relevance of these trace gases is conducted
on a considerable scale, little focus has been given so far to a sound analysis of the quantitative relationships between breath levels
and the underlying systemic concentrations. This paper is devoted to a thorough modeling study of the end-tidal breath dynamics
associated with isoprene, which serves as a paradigmatic example for the class of low-soluble, blood-borne VOCs.

Real-time measurements of exhaled breath under an ergometer challenge reveal characteristic changes of isoprene output in
response to variations in ventilation and perfusion. Here, a valid compartmental description of these profiles is developed. By
comparison with experimental data it is inferred that the major part of breath isoprene variability during exercise conditions can be
attributed to an increased fractional perfusion of potential storage and production sites, leading to higher levels of mixed venous
blood concentrations at the onset of physical activity. In this context, various lines of supportive evidence for an extrahepatic tissue
source of isoprene are presented.

Our model is a first step towards new guidelines for the breath gas analysis of isoprene and is expected to aid further investigations
regarding the exhalation, storage, transport and biotransformation processes associated with this important compound.
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1. Introduction

1.1. Breath gas analysis and modeling
Human breath contains a myriad of endogenous volatile or-

ganic compounds (VOCs), appearing in the exhalate as a result
of normal metabolic activity or pathological disorders. The de-
tection and quantification of these trace gases seems to fulfill
all the demands and desires for non-invasive investigation and
has been put forward as a versatile tool for medical diagnosis,
biomonitoring of disease and physiological function or assess-
ments of body burden in response to medication and environ-
mental exposure (Amann and Smith, 2005; Amann et al., 2007,
2004; Buszewski et al., 2007; Rieder et al., 2001; Miekisch and
Schubert, 2006; Pleil, 2008). With the advent of powerful new
mass spectrometric techniques over the last 15 years, exhaled
breath can nowadays be measured on a breath-by-breath re-
solution, therefore rendering breath gas analysis as an optimal
choice for gaining continuous information on the metabolic and
physiological state of an individual.
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Within the framework sketched above, the success of us-
ing VOC breath concentration profiles for tracking endogenous
processes will hinge on the availability of adequate physical
descriptions for the observable exhalation kinetics of the trace
gas under scrutiny. Some major breath constituents have al-
ready been investigated in this form, e.g., during exercise con-
ditions or exposure scenarios (King et al., 2010b; Mörk and Jo-
hanson, 2006; Anderson et al., 2003; Kumagai and Matsunaga,
2000; Pleil et al., 2005). Nevertheless, VOC modeling remains
a challenging task due to the multifaceted impact of physio-
logical parameters (such as cardiac output or breathing pat-
terns (Cope et al., 2004)) as well as due to the sparse and of-
ten conflicting data regarding potential sources or sinks of such
substances in the human body. This paper will be devoted to
a thorough study of the end-tidal breath dynamics associated
with isoprene, which ranks among the most notable compounds
studied in the context of breath gas analysis.

1.2. Isoprene: a survey on physiologically relevant facts

Isoprene, also known as 2-methyl-1,3-butadiene (CAS num-
ber 78-79-5), is an unsaturated hydrocarbon with a molar mass
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of 68.11 g/mol and a boiling point of 34◦C. Isoprene is the most
abundant biogenic hydrocarbon emitted by the earth’s vegeta-
tion and it is also the major hydrocarbon that is endogenously
produced by mammals (Gelmont et al., 1981). Its primary
source in man has been attributed to the mevalonate pathway
of cholesterol biosynthesis (Deneris et al., 1984). Originating
from acetyl-CoA, mevalonate is transformed into dimethylallyl
pyrophosphate (DMPP). Subsequently, isoprene can be derived
from DMPP via an acidic decomposition demonstrated to oc-
cur in the cytosol of hepatocytes from rat liver in vitro (Deneris
et al., 1984). However, whether this final non-enzymatic path-
way prevails in the formation of isoprene under physiological
conditions continues to be a controversial issue. As has been
suggested by several authors, an enzymatic step might catalyze
the conversion of DMPP to isoprene in humans (Stone et al.,
1993; Miekisch et al., 2004; Taucher et al., 1997), similar to the
isoprene synthase reaction seen in the chloroplasts of plants and
trees (Silver and Fall, 1995). In this context, possible extrahep-
atic sites of isoprene production remain to be elucidated. Me-
tabolization of isoprene in mammals primarily rests on epoxida-
tion by cytochrome P450-dependent mono-oxygenases (Monte
et al., 1985; Watson et al., 2001), whereby significant species
differences can be observed (Filser et al., 1996; Csanády and
Filser, 2001; Bogaards et al., 2001). In particular, bioaccumu-
lation in man has been investigated within the framework of
toxicological inhalation studies (Filser et al., 1996).

Due to its volatility and low affinity for blood (as reflected
by a small blood:gas partition coefficient of λb:air = 0.75 at
body temperature (Filser et al., 1996; Karl et al., 2001)), iso-
prene is highly abundant in human breath and accounts for up
to 70% of total hydrocarbon removal via exhalation (Gelmont
et al., 1981). Furthermore, it can relatively easily be quan-
tified using a variety of methodologically distinct analytical
techniques (Kushch et al., 2008; Ligor et al., 2008; Miekisch
and Schubert, 2006; Turner et al., 2006; King et al., 2010a).
Apart from being a convenient choice in terms of measurability,
breath isoprene has received widespread attention in the litera-
ture due to the fact that it may serve as a sensitive, non-invasive
indicator for assaying several metabolic effects in the human
body (see (Salerno-Kennedy and Cashman, 2005) for an exten-
sive review).

Most notably, being a by-product of cholesterol biosynthesis
as outlined above, breath isoprene has been put forward as an
additional diagnostic parameter in the care of patients suffering
from lipid metabolism disorders such as hypercholesterolemia.
The fact that cholesterol-lowering drugs reduce isoprene out-
put confirms the in vivo relevance of this (Stone et al., 1993;
Karl et al., 2001). Moreover, interesting relationships between
the mevalonate pathway and cell proliferation as well as DNA
replication have been discovered (Salerno-Kennedy and Cash-
man, 2005; Rieder et al., 2001; Fritz, 2009; Brown and Gold-
stein, 1980). Further evidence points toward a strong linkage
of breath isoprene levels to different physiological states, thus
promoting its general use in biomonitoring, e.g., during sleep or
in an intraoperative setting (Amann et al., 2005; Cailleux et al.,
1993; Pabst et al., 2007). Despite this huge potential, isoprene
breath tests have not yet reached the level of routine clinical

methods and are still under development. This is partly due to
the fact that drawing reproducible breath samples remains an in-
tricate task that requires further standardization. Furthermore,
the decisive mechanisms driving systemic and pulmonary gas
exchange are still poorly understood.

Isoprene concentrations in exhaled human breath exhibit a
large variability. In children and adolescents, isoprene excre-
tion in breath appears to increase with age (Taucher et al.,
1997; Smith et al., 2010) (with undetectable or very low levels
in the breath of neonates (Nelson et al., 1998)), until reach-
ing a gender- and age-invariant end-tidal nominal value of
about 100 ppb (approx. 4 nmol/l at standard ambient pressure
and temperature) characteristic for adults under resting condi-
tions (Kushch et al., 2008). Apart from the factors indicated in
the previous paragraph, a number of additional clinical condi-
tions and external influences have been reported to affect iso-
prene output, including renal dialysis (Capodicasa et al., 1999,
2007; Lirk et al., 2003), heart failure (McGrath et al., 2001),
sleep/sedation (Cailleux and Allain, 1989; Amann et al., 2005)
and exercise (Karl et al., 2001; King et al., 2009). However,
the physiological meaning of these changes has not been estab-
lished in sufficient depth.

Isoprene can be regarded as the prototype of an exhaled
breath VOC exhibiting pronounced rest-to-work transitions in
response to physical activity (Karl et al., 2001; King et al.,
2009; Turner et al., 2006). We recently demonstrated that
end-tidal isoprene abruptly increases at the onset of moderate
workload ergometer challenges at 75 W, usually by a factor
of about 3–4 compared with the steady state value during rest.
This phase is followed by a gradual decline and the develop-
ment of a new steady state after about 15 min of pedaling (King
et al., 2009), see also Fig. 1. Since endogenous isoprene syn-
thesis as discussed above has been attributed to pathways with
much larger time constants, common sense suggests that the
aforementioned rise in isoprene concentration is not due to an
increased production rate in the body, but rather stems from
changes in hemodynamics or changes in pulmonary function.
In this sense, isoprene might also be thought of as a sensi-
tive marker for quantifying fluctuations in blood and respiratory
flow.

With the background material of the previous paragraphs in
mind, we view isoprene as a paradigmatic example for the ana-
lysis of low-soluble, blood-borne VOCs, even though it cannot
cover the whole spectrum of different physico-chemical char-
acteristics. The emphasis of this paper lies on examining the
physiological processes underlying the above-mentioned peak
shaped response of end-tidal isoprene at the onset of exercise by
developing a mechanistic description of the observable exhala-
tion kinetics in normal healthy volunteers. The physical model
to be presented here aims at yielding further insights into the
flow and distribution route of isoprene in various parts of the
human body. Such a quantitative approach is imperative for as-
sessing the relevance and predictive power of extracted breath
isoprene concentrations with respect to the endogenous situa-
tion and is expected to enhance the fundamental understanding
of the physiological role of isoprene in a variety of experimental
scenarios.
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2. Experimental basics

2.1. Setup
End-tidal isoprene concentration profiles are obtained by

means of a real-time setup designed for synchronized measure-
ments of exhaled breath VOCs as well as a number of respi-
ratory and hemodynamic parameters. Our instrumentation has
successfully been applied for gathering continuous data streams
of these quantities during ergometer challenges as well as in a
sleep laboratory setting. These investigations aim at evaluating
the impact of breathing patterns, cardiac output or blood pres-
sure on the observed breath concentration and permit a thor-
ough study of characteristic changes in isoprene output follow-
ing variations in ventilation or perfusion. We refer to (King
et al., 2009) for an extensive description of the technical details
as well as for the various protocols under scrutiny.

In brief, the core of the mentioned setup consists of a head
mask spirometer system allowing for the standardized extrac-
tion of arbitrary exhalation segments, which subsequently are
directed into a Proton-Transfer-Reaction mass spectrometer
(PTR-MS, Ionicon Analytik GmbH, Innsbruck, Austria) for on-
line analysis. This analytical technique has proven to be a sensi-
tive method for the quantification of volatile molecular species
M down to the ppb (parts per billion) range by taking advantage
of the proton transfer

H3O+ + M → MH+ + H2O

from primary hydronium precursor ions (Lindinger et al.,
1998a,b). Note that this “soft” chemical ionization scheme
is selective to VOCs with proton affinities higher than water
(166.5 kcal/mol), thereby precluding the protonation of the bulk
composition exhaled air, N2, O2 and CO2. Count rates of
the resulting product ions MH+ or fragments thereof appear-
ing at specified mass-to-charge ratios m/z can subsequently be
converted to absolute concentrations of the compound under
scrutiny. Specifically, protonated isoprene is detected in PTR-
MS at m/z = 69 and can be measured with breath-by-breath
resolution. For further details regarding quantification and the
underlying PTR-MS settings used the interested reader is re-
ferred to (Schwarz et al., 2009) and (King et al., 2009), respec-
tively. From the viewpoint of quality control, isoprene time pro-
files obtained with the setup described above have recently been
cross-validated by means of manually extracted GC–MS sam-
ples (using solid phase micro-extraction as a pre-concentration
step) (King et al., 2010a). Table 1 summarizes the measured
variables relevant for this paper. In general, breath concentra-
tions will always refer to end-tidal levels. An underlying sam-
pling interval of 5 s is set for each parameter.

Variable Symbol Nominal value (units)

Cardiac output Q̇c 6 (l/min) (Mohrman and Heller, 2006)

Alveolar ventilation V̇A 5.2 (l/min) (West, 2005)

Isoprene concentration Cmeas 4 (nmol/l) (Kushch et al., 2008)

Table 1: Summary of measured parameters together with some nominal values
during rest, assuming ambient conditions; breath concentrations refer to end-
tidal levels.

2.2. Recent results and heuristics
This section serves to collect some experimental evidence

supporting the hypothesis of a peripheral tissue source of iso-
prene formation in man, derived from dynamic breath con-
centration measurements under exercise conditions. The ratio-
nale given here mainly builds on our earlier phenomenological
studies in (King et al., 2009) and (King et al., 2010a). Com-
plementary experiments will be indicated where appropriate.
All results are obtained in conformity with the Declaration of
Helsinki and with the necessary approvals by the Ethics Com-
mission of Innsbruck Medical University.

Investigating an ensemble of eight normal healthy volun-
teers, King et al. (2009) recently demonstrated that isoprene
evolution in end-tidal breath exhibits a very reproducible and
consistent behavior during moderate exercise scenarios. For
perspective, Fig. 1 shows typical results corresponding to a bi-
cycle ergometer challenge of one single volunteer under a con-
stant workload of 75 W with several periods of rest.
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Figure 1: Typical smoothed profiles of end-exhaled isoprene concentrations
and physiological parameters in response to two-legged ergometer exercise at
75 W. Data are taken from (King et al., 2009) and correspond to one single
healthy male volunteer (26 years, 72 kg bodyweight). Workload segments are
shaded in grey.

Generally, starting from a steady state value of about
4 nmol/l during rest, isoprene concentrations in end-tidal air
exert a pronounced peak at the onset of exercise (corresponding
to an increase by a factor of up to 4). This phase is followed
by a gradual decline and the development of a new steady
state after approximately 15 min of pedaling. Interestingly, by
repeating this regime, the peak size after intermediate exercise
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breaks can be demonstrated to depend on the duration of
the resting phase, despite almost identical profiles of cardiac
output and alveolar ventilation. Full recovery of the initial
height requires about one hour of rest. A valid model for the
description of isoprene concentrations in end-tidal air should
be able to faithfully reproduce this wash-out behavior.

The aforementioned peak shaped behavior of isoprene has
mainly been attributed to its low blood:gas partition coeffi-
cient λb:air = 0.75. According to classical pulmonary inert
gas elimination theory (cf. Appendix A), the low affinity for
blood implies a high sensitivity of the associated breath con-
centrations with respect to changes in ventilation or perfu-
sion. More specifically, the basic Farhi equation (A.3) predicts
that, other factors being equal, increasing/decreasing the alve-
olar ventilation will decrease/increase exhaled breath concen-
trations (due to increased/decreased dilution), whereas the re-
lationship between breath concentrations and cardiac output is
monotonic and reflects dependence on supply. Using similar
reasoning, Karl et al. (2001) proposed a simple quantitative de-
scription of breath isoprene concentration time courses during
exercise, which is now widely accepted as “standard model”.
However, as has already been argued in (King et al., 2009),
their formulation is deficient in several regards. A principal
criticism is that the model of Karl et al. essentially relies on
a markedly delayed rise of alveolar ventilation with respect to
pulmonary blood flow, a premise which clearly contrasts exper-
imental evidence (see, e.g., Fig. 1 as well as (Wagner, 1992;
Lumb, 2005)). The onset of the ventilatory response to exercise
is instantaneous and may actually precede the latter (possibly
being part of a learned response), so a delay as required above
is highly unlikely. Consequently, when subjecting this model
to real data streams including measured profiles of pulmonary
blood flow Q̇c and alveolar flow V̇A, it fails to capture the ob-
served isoprene data, see Fig. 4.

Further insights into the decisive components affecting
breath isoprene excretion can be gained by comparing its dy-
namic behavior with the profiles of blood-borne VOCs expected
to show similar exhalation kinetics. In this context, it has re-
cently been pointed out that breath concentrations of endoge-
nous butane (considered to originate from protein oxidation
and/or bacteria production in the colon (Kharitonov and Barnes,
2002)) during ergometer exercise resemble the trend anticipated
from Equation (A.3), while isoprene exhibits an entirely differ-
ent qualitative response (King et al., 2010a). This is certainly
counter-intuitive, as butane is widely comparable with isoprene
in terms of various functional factors expected to affect pul-
monary gas exchange (including, e.g., blood and tissue solubil-
ity as well as molecular weight).

In light of this discrepancy, it can be conjectured that some
unknown substance-specific (release) mechanism has to be
taken into account for capturing the exhalation dynamics of iso-
prene. In order to restrict the number of potential tissue sources
for this effect, in a series of auxiliary experiments the ergome-
ter protocol sketched above was modified as follows. Instead
of pedaling with both legs, we orchestrated several one-legged
workload challenges on a standard ergometer, alternating bet-

ween left and right limb for doing the exercise. The heel of the
non-working leg rested on a small chair placed beside the bi-
cycle. Special care was taken to ensure a comfortable seating
position of the volunteer so that any contractive movement of
the resting leg for stabilization purposes could be avoided. The
hand rest of the ergometer was adjusted in such a way that the
test subjects could maintain their torso in an upright position
throughout the measurement period, with both arms stretched.
A constant resistance of 50 W was imposed for the entire ex-
periment and pedaling cadence was maintained at 60 rpm.

In total, five normal healthy volunteers (age 27-34 years,
4 male, 1 female) were recruited and investigated in this way.
No test subject reported any prescribed medication or drug in-
take. No special restrictions regarding pre-experimental food
intake were applied, as this variable seems to have a negligi-
ble effect on breath isoprene concentrations (Smith et al., 1999;
Kinoyama et al., 2008). However, volunteers were required to
rest at least 20 minutes prior to analysis due to the significant
impact of physical activity as discussed in Section 1.2. Within
this time informed consent was obtained regarding the exper-
imental protocol. Additional instrumentation and monitoring
closely followed the general procedure reported in (King et al.,
2009). Fig. 2 shows a representative experimental outcome for
one single volunteer.
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Figure 2: Typical smoothed profiles of end-exhaled isoprene concentrations
and physiological parameters in response to one-legged ergometer exercise at
50 W. Data correspond to one single healthy male volunteer (27 years, 75 kg
bodyweight). Left and right leg exercise segments are shaded in light and dark
grey, respectively.

At the beginning, the qualitative response of end-tidal iso-
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prene concentrations closely resembles the situation presented
in Fig. 1 for the two-legged case. After 10 minutes of pedal-
ing with the left leg, followed by a resting period of 4 minutes,
a clear wash-out effect becomes discernible, yielding a signifi-
cantly lower peak height when continuing the exercise with the
same leg. However, if the working limb is now switched to
the right leg (after an intermediate break of 4 minutes as be-
fore), an almost complete recovery of the initial peak size can
be observed (cf. the time frame between 23 and 30 minutes in
Fig. 2). On the contrary, it should be noted that the associated
rise in cardiac output and alveolar ventilation is of comparable
order within all three workload phases. These basic character-
istics could reliably be reproduced within the entire collective
of test subjects. In particular, consistent results are obtained if
the leg switch is from right to left.

Combining the aforementioned findings provides a clear hint
that breath isoprene levels during exercise are linked to local
variations of gas exchange in peripheral tissue groups. In par-
ticular, they open up a new line of supportive evidence for
peripheral production sites of isoprene as indicated in Sec-
tion 1.2. Furthermore, the common viewpoint that the breath
isoprene peaks characteristic for exercise conditions can mainly
be traced back to altered pulmonary gas exchange conditions
(resulting, for instance, from an impairment of cardiac output
and ventilatory drive (Karl et al., 2001)) or local generation in
the respiratory tree (as in the case of NO release in the paranasal
sinuses during humming (Weitzberg and Lundberg, 2002)) has
to be rejected. As will be discussed in the modeling sections be-
low, we attribute the observable wash-out behavior of isoprene
to an increased fractional perfusion of potential storage and pro-
duction sites, leading to higher levels of the mixed venous blood
concentration at the onset of physical activity. While the exact
tissue groups involved in this process remain speculative, possi-
ble origins might include the skeletal locomotor muscles them-
selves but also the walls of the vascular tree, both of which
receive a disproportionately high share of blood flow during
exercise. There are some indications in the literature that iso-
prene synthesis can play a role at these sites (Miekisch et al.,
2001; Brown and Goldstein, 1980). However, further biochem-
ical investigations will need to clarify whether an appropriate
metabolic pattern exists in these extrahepatic tissues.

3. Isoprene modeling

3.1. Preliminaries and assumptions

For the sake of maintaining a balance between tractability
and sufficient complexity of the model structure, we shall adopt
the usual compartmental approach in our attempts to describe
the end-tidal isoprene behavior outlined above. This approach
consists in dividing the body into an ensemble of roughly ho-
mogenous tissue control volumes that are interconnected via the
arterial and venous network (Reddy et al., 2005; Leung, 1991;
Gerlowski and Jain, 1983; Fiserova-Bergerova, 1983). Previ-
ously developed physiologically based descriptions of isoprene
pharmacokinetics in man and rodents can be found in (Filser
et al., 1996; NTP, 1999; Melnick and Kohn, 2000; Bogaards

et al., 2001). These mainly centered on quantifying body bur-
den in response to severe environmental exposure (driven by
concerns about the carcinogenic potential of isoprene and/or its
metabolites (Melnick et al., 1994; NTP, 1999)) and hence often
neglected the relatively small contribution of endogenous pro-
duction to overall bioaccumulation. In contrast, here we will
mainly focus on the characteristics of isoprene formation and
distribution within specific body tissues under normal physio-
logical conditions. Similarly to the models mentioned above,
two major aspects of isoprene exchange will be taken into con-
sideration.

3.1.1. Pulmonary gas exchange
Following a general premise of classical pulmonary inert gas

elimination theory (see Appendix A), we postulate that uptake
and removal of isoprene takes place exclusively in the alveolar
region. In particular, any pre- and post-alveolar absorption and
release mechanisms occurring in the conductive airways (e.g.,
due to interactions with the tracheo-bronchial lining fluid (An-
derson et al., 2003; Anderson and Hlastala, 2007; King et al.,
2010b)) are assumed to be negligible, which is a reasonable re-
quirement for low-soluble VOCs such as isoprene (Anderson
et al., 2003). The lung function will be taken into account by
considering one single homogenous alveolar unit characterized
by an averaged ventilation–perfusion ratio close to one during
resting conditions. While this approach ignores the regional
ventilation–perfusion scatter throughout the lung, it constitutes
a convenient simplification that is justified by the need to keep
the parameterization as parsimonious as possible at this stage
of the modeling phase. Delivery and elimination of isoprene
within the alveolar tract will be governed by cardiac output
Q̇c and alveolar ventilation V̇A, respectively, thereby neglect-
ing the small intrapulmonary shunt and alveolar dead space
fraction (Lumb, 2005). Owing to its lipophilic characteristics
and small molecular size, isoprene can be assumed to rapidly
pass through the alveolar tissue barrier, so that an instantaneous
diffusion equilibrium will be established between end-capillary
blood and the free gas phase. This is likely to hold true also
under moderate, sub-anaerobic exercise conditions (Wagner,
2008). In the absence of chemical bindings with blood it can
thus be deduced that the concentration Ca of isoprene in arte-
rial blood leaving the lungs is proportional to the concentration
CA within the alveoli, viz.,

Ca = λb:airCA. (1)

Here, λb:air denotes the isoprene-specific blood:gas partition co-
efficient as introduced in Section 1.2.

3.1.2. Body compartments
The systemic part of the model incorporates two well-mixed

functional units: a richly perfused tissue (rpt) compartment,
lumping together tissue groups with comparable blood:tissue
partition coefficient λb:rpt ≈ 0.4 (viscera, brain, connective mus-
cles, skin), as well as a peripheral tissue compartment, repre-
senting an effective buffer volume that acts as a reservoir for the
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storage of isoprene (tentatively skeletal muscles). Both com-
partments are separated into an intracellular space and an ex-
tracellular space (including the vascular blood and the intersti-
tial space), whereby a venous equilibrium is assumed to hold
at these interfaces. The relevant blood:tissue partition coeffi-
cients are summarized in Table C.1. Due to the low fractional
perfusion of adipose tissue, an extra fat compartment was not
considered.

In order to capture the redistribution of systemic perfusion
during bicycle ergometer exercise, fractional blood flow qper ∈

(0, 1) to peripheral tissue is assumed to resemble fractional
blood flow to both legs. The latter increases with cardiac output
and will be modeled as

qper(Q̇c) := qrest
per + (qmax

per − qrest
per )×(

1 − exp (−τ max{0,
Q̇c − Q̇rest

c

Q̇rest
c

})
)
, τ > 0. (2)

Reference values for the indicated variables can be found in
Table C.1. For perspective, in the sequel we set qrest

per = 0.08 and
qmax

per = 0.7 (which approximately corresponds to the fractional
perfusion of both legs during bicycle exercise at 75 W (Sullivan
et al., 1989)). The constant τ will be estimated in Section 4.
Alternatively, the right-hand side expression in (2) might also
be replaced with a piecewise constant function taking values
qrest

per and qmax
per during rest and exercise, respectively.

As has been mentioned previously, the tissues contributing
to isoprene formation are not fully established. In view of the
biochemical and experimental results in Sections 1.2 and 2.2,
respectively, two distinct non-negative production rates krpt

pr and
kper

pr are incorporated into the model. These values quantify po-
tential hepatic and peripheral sources of endogenous isoprene,
the latter being interpreted as a by-product of the biosynthe-
sis of polyisoprenoid compounds, their degradation, or both.
While isoprene production in general appears to be subject to
diurnal variations (Cailleux and Allain, 1989; Amann et al.,
2005), within the typical experimental time frame considered
here both rates are treated as constant. Analogously, metabo-
lization of isoprene is described by conventional first order ki-
netics and will be captured by introducing two rate constants
krpt

met and kper
met, reflecting cytochrome P450 activity in liver and

extrahepatic tissues, respectively (Filser et al., 1996). Other
ways of isoprene clearance such as excretion via the renal sys-
tem are considered as long-term mechanisms in this context and
will thus be ignored. The specific values for the production and
metabolization rates introduced above will have to be estimated
based on experimental results and may depend on the individual
volunteer investigated. The latter case would be particularly in-
teresting in the light of the fact that isoprene may reflect certain
aspects of endogenous cholesterol synthesis.

3.2. Model equations and a priori analysis

In order to capture the gas exchange and tissue distribution
mechanisms presented in the previous paragraphs, the model
consists of three different compartments. A sketch of the model
structure is given in Fig. 3 and will be detailed in the following.

Model equations are derived by taking into account standard
conservation of mass laws for the individual compartments. In
view of the diffusion equilibria postulated in Section 3.1, the
compartment capacities are governed by the effective volumes
ṼA := VA + Vc′λb:air, Ṽrpt := Vrpt + Vrpt,bλb:rpt as well as Ṽper :=
Vper + Vper,bλb:per. Nominal values for the indicated parameters
are given in Table C.1. 1
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Figure 3: Sketch of the model structure. The body is divided into three distinct
functional units: alveolar/end-capillary compartment (gas exchange), richly
perfused tissue (metabolism and production) and peripheral tissue (storage,
metabolism and production). Dashed boundaries indicate a diffusion equilib-
rium. Abbreviations connote as in Table C.1.

According to Fig. 3, the mass balance equation for the alve-
olar compartment reads

ṼA
dCA

dt
= V̇A(CI −CA) + Q̇c(Cv̄ −Ca), (3)

with CI denoting the inhaled (ambient) gas concentration, while
for the richly perfused and peripheral tissue compartment we
find that

Ṽrpt
dCrpt

dt
= (1−qper)Q̇c(Ca−λb:rptCrpt)+krpt

pr −krpt
metλb:rptCrpt, (4)

and

Ṽper
dCper

dt
= qperQ̇c(Ca − λb:perCper) + kper

pr − kper
metλb:perCper, (5)

respectively. Here, the associated concentrations in mixed ve-
nous and arterial blood are given by

Cv̄ := (1 − qper)λb:rptCrpt + qperλb:perCper (6)

and Equation (1), respectively. Moreover, we state that the
measured (end-tidal) isoprene concentration equals the alveo-
lar level, i.e.,

y := Cmeas = CA. (7)
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Note that in Equations (1) and (6) it is tacitly assumed that
any transport delays between tissues, heart and lung can be
neglected. A more refined formulation in this regard can be
achieved by considering delay differential equations, see for
instance (Batzel et al., 2007).

Remark 1. For later purposes, we note that a model accom-
modating the experimental situation during exhalation and in-
halation to and from a fixed volume exposure atmosphere can
simply be derived by augmenting Equations (3)–(5) with an ad-
ditional compartment obeying

ṼI
dCI

dt
= V̇A(CA −CI). (8)

This typically describes closed system (rebreathing) setups
such as in (Filser et al., 1996).

Some fundamental model properties are discussed in Ap-
pendix B. In particular, the components of the state variable
c := (CA,Crpt,Cper)T remain non-negative, bounded and will
approach a globally asymptotically stable equilibrium ce(u)
once the measurable external inputs u := (V̇A, Q̇c,CI) affect-
ing the system are fixed. This corresponds, e.g., to the situa-
tion encountered during rest or constant workload, see Fig. 1.
Analogous results can be established for the augmented sys-
tem incorporating Equation (8), describing the evolution of the
composite state variable c := (CA,Crpt,Cper,CI)T . In this case,
the corresponding equilibrium for fixed inputs will be denoted
by ce(u).

4. Model validation and estimation

4.1. Comparison with ergometer datasets
In this section we calibrate the proposed model based on the

physiological data presented in Fig. 1, corresponding to one
single representative volunteer breathing an atmosphere free
of isoprene (i.e., we set CI ≡ 0 in the sequel). It will turn
out that the model appears to be flexible enough to capture the
isoprene profiles in exhaled breath generally observed during
moderate workload ergometer challenges as conducted in (King
et al., 2009). Moreover, our formulation provides a prelimi-
nary basis for estimating some of the unspecified parameters
p j ∈ {k

rpt
pr , k

per
pr , k

rpt
met, k

per
met, τ, Ṽper} from the knowledge of mea-

sured breath concentrations y. More specifically, our aim is to
(at least partially) determine the subject-dependent parameter
vector

p = (krpt
pr , k

per
pr , k

rpt
met, k

per
met, τ, Ṽper)

as well as the nominal endogenous steady state levels c0 = c(t0)
by solving the ordinary least squares problem

argmin
p,c0

n∑
i=0

(
yi −CA(ti)

)2
, (9)

subject to the constraints
g(u0,p, c0) = 0 (steady state)
p, c0 ≥ 0 (positivity)
ce

4(u0,p) = 25 nmol/l (exposure steady state).
(10)

Here, g is the right-hand side of the ODE system (3)–(5) (see
also (B.1)) and yi = Cmeas,i is the measured end-tidal isoprene
concentration at time instant ti (t0 = 0). The solution point
will be denoted by (p∗, c∗0). For perspective, the last constraint
has been introduced in order to account for additional informa-
tion regarding the biotransformation of isoprene available on
the basis of toxicological inhalation studies (Filser et al., 1996).
As has been demonstrated there for an ensemble of four nor-
mal healthy test subjects, isoprene concentrations in a closed
rebreathing chamber of fixed volume will plateau at a level of
approximately 600 ppb after about 2 hours of quiet tidal breath-
ing at rest, irrespective of the initial amount of isoprene present
in the system. The extracted parameters will be adjusted to au-
tomatically meet this boundary condition, thereby maintaining
consistency with the aforementioned experimental findings.

For simulation purposes the measured physiological func-
tions V̇A and Q̇c were converted to input function handles u
by applying a local smoothing procedure to the associated
data and interpolating the resulting profiles with splines.
Tissue volumes and partition coefficients are as in Table C.1.
In particular, while the peripheral compartment so far has
been treated as an abstract control volume without particular
reference to any specific tissue group, for identifiability reasons
we now set λb:per = 0.5, which corresponds to the in vitro
blood:tissue partition coefficient for muscle (Filser et al., 1996).
Note, however, that this choice is rather arbitrary, cf. Remark 4.

The above minimization problem (9) was solved by imple-
menting a multiple shooting routine (Bock, 1987) in Matlab.
This iterative method can be seen as a generalization of the
standard Gauss–Newton algorithm, designed to avoid diver-
gence issues of the latter due to large residuals. For further
details as well as convergence and stability properties we refer
to (Bock, 1981; Peifer and Timmer, 2007). The necessary
derivatives of the trajectories with respect to p and c0 were
computed by simultaneously solving the associated variational
equations (Hairer et al., 1993). Convergence was assumed to be
achieved when the maximum componentwise relative change
between two successive iterations was less than 0.1%. Fig. 4
summarizes the results of these calculations. Fitted parameter
values and initial conditions are given in Table 2.

All estimated quantities for the test subject under scrutiny
take values in a physiologically plausible range. According to
Equations (1) and (6), arterial and mixed venous blood concen-
trations at the start of the experiment are estimated as Ca(0) =

4.5 nmol/l and Cv̄(0) = 10.6 nmol/l, respectively, which is in
direct agreement with available data from the literature (cf. Ta-
ble C.1). Total endogenous production equals approximately
125 nmol/min, which is comparable to previous predictions
ranging from 2.5 to 5.7 nmol/min/kg bodyweight (Hartmann
and Kessler, 1990; Filser et al., 1996). Moreover, the estimated
value for Ṽper is close to experimentally measured thigh muscle
volumes (see (Tothill and Stewart, 2002) for instance).

For the sake of comparison, in Fig. 4 we also show the out-
come of the model by Karl et al. subjected to the time courses of
V̇A and Q̇c as above (assuming the same end-tidal steady state
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value of 6 nmol/l at rest). As has been indicated in Section 2.2,
the associated predictions result in a poor representation of the
observed data.
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Figure 4: First panel: simulation of end-tidal isoprene behavior during exer-
cise conditions, cf. Fig. 1. Second panel: predicted concentrations in mixed
venous blood (Cv̄) and venous blood returning from the peripheral (λb:perCper)
and richly perfused tissue groups (λb:rptCrpt). Third panel: predicted profile of
fractional peripheral blood flow qper according to Equation (2).

The local identifiability of the extracted estimates in Table 2
was investigated by checking the non-singularity of the infor-
mation matrix Q := S T S , where S is the sensitivity function
matrix having rows

S i,− :=
(
∂y(ti−1,p∗,c∗0)

∂p
∂y(ti−1,p∗,c∗0)

∂c0

)
. (11)

More specifically, we adopted the standard numerical rank cri-
terion

rank Q = max{k; σk > ε‖Q‖∞}, (12)

where σ1 ≥ σ2 ≥ . . . ≥ 0 are the singular values of Q and
ε = 10−8 denotes the maximum relative error of the calculated
sensitivities (Golub and Van Loan, 1996). Accordingly, we find
that Q has full rank, suggesting that all estimated quantities are
practically identifiable (Cobelli and DiStefano, 1980). How-
ever, some degree of ill-conditioning is present as can be con-
cluded from calculating the approximate posterior correlation
matrix R defined by

Ri, j := Q−1
i, j

(
Q−1

i,i Q−1
j, j
)− 1

2 ∈ [−1, 1]. (13)

The entry Ri, j quantifies the degree of interplay between the ith
and jth parameter (initial condition) under scrutiny.

A value of Ri, j near +1 or −1 indicates that it may be
difficult to estimate both parameters separately, as changes in
the model output caused by perturbing one of these parameters
can nearly be compensated by an appropriate perturbation of
the other (Jacquez and Perry, 1990; Seber and Wild, 2003;
Rodriguez-Fernandez et al., 2006). The highest correlation
is achieved for the pair (krpt

pr , k
rpt
met), with an associated value

of 0.995. This indicates a poor estimability of the above-
mentioned two parameters if only the breath isoprene dynamics
in Fig. 4 are taken into account. However, the constraints
in (10) provide additional information on krpt

pr and krpt
met that

will prove sufficient for guaranteeing the extraction of reliable
estimates. Alternatively, such identifiability issues might also
be circumvented by designing multi-experimental regimes
guaranteeing a sufficiently large and independent influence of
all parameters under scrutiny (for instance, by complement-
ing ergometer challenges with closed chamber rebreathing
protocols as indicated above). The absolute value of all other
pairwise correlations is below 0.9.

A ranking of the fitted parameters and initial conditions with
respect to their impact on the model output can be obtained by
numerically approximating the squared L2-norm of the normal-
ized sensitivities, viz.,

ς(p j) :=

tn∫
t0

(
∂y(t,p∗, c∗0)

∂p j

p∗j
maxs |y(s)|

)2

dt, (14)

and similarly for the components of c0. A graphical comparison
of these sensitivity indices is given in Fig. 5, revealing a strong
influence of kper

pr , Cper(0) and Ṽper on the predicted breath iso-
prene profile. This is intuitively reasonable as these quantities
govern the shape of the observed isoprene peak during exercise.
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Figure 5: Squared L2-norm of the normalized model sensitivities (cf. Equa-
tion (14)) with respect to the fitted parameters in Table 2.

Contrarily, only minor effects are seen when varying the
(poorly determined) parameters krpt

pr and krpt
met. In fact, it should

be pointed out that production and metabolization in the richly
perfused tissue group are not needed for producing a satis-
factory fit of the data given in Fig. 4. However, we refrained
from generally eliminating these variables as they play a major
role in isoprene distribution during resting conditions (when
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blood flow is directed mainly to the richly perfused tissue
compartment). In particular, they ensure the consistency of the
model with closed chamber rebreathing scenarios as discussed
before. From the ensemble of fixed model parameters, the most
influential quantities (having a sensitivity index value greater
than 0.25 according to Eq. (14)) are the maximum fractional
perfusion to peripheral tissue (ς(qmax

per ) = 0.88), the partition
coefficient between blood and peripheral tissue (ς(λb:per) = 0.6)
and the blood:gas partition coefficient (ς(λb:air) = 0.26). These
variables should be given special attention when applying the
proposed model to a larger study population as they require a
careful assessment with respect to inter-individual variations.

In order to give some insight into the information content
of the extracted parameter values, approximate standard errors
were constructed by employing a variant of residual bootstrap-
ping (Dogan, 2007; Huet et al., 2003, Sect. 2.3.5). For an excel-
lent overview of resampling techniques in general the interested
reader is referred to (Shao and Tu, 1995), while a recent com-
parison between standard asymptotic theory and bootstrapping
for uncertainty quantification in inverse problems can be found
in (Banks et al., 2010).

In particular, this method allows for taking into account au-
tocorrelations detected among the model residuals

ri := yi − y(ti,p∗, c∗0), i = 0, . . . , n. (15)

Such autocorrelation patterns can be seen as a general feature
of dense time course, ventilation-related data streams (Liang
et al., 1996) and neglecting their presence typically tends to
distort variance assessments of least squares estimates derived
from conventional covariance matrix approximations (Seber
and Wild, 2003; Davidian and Giltinan, 1995). Adopting the
general procedure suggested by Dogan (2007), we first use stan-
dard techniques from time series analysis (see, e.g., (Box et al.,
1994)) to model the interdependence between the ri via an au-
toregressive process of order two, viz.,

ri = αri−1 + βri−2 + r̃i. (16)

Plots of the resulting r̃i versus time clearly exhibit random pat-
terns, thereby suggesting that the former can be treated as inde-
pendent and homoscedastic realizations of the underlying error
process. Furthermore, a Ljung–Box portmanteau test (Ljung
and Box, 1978) confirmed the lack of statistically significant
autocorrelations. We can hence conclude that the error terms r̃i

are interchangeable.
Consequently, a single bootstrap dataset yb :=

(
yb

0, . . . , y
b
n
)

may be generated by the following procedure: we draw n − 1
samples from a uniform discrete distribution over the set
{r̃i; i = 0, . . . , n}. The results are combined to yield a vector(
r̃b

2, . . . , r̃
b
n
)
, from which yb is obtained via Equations (16)

and (15) (we set rb
i := ri for i = 0, 1). This resampled dataset

is then plugged into the minimization procedure (9) to arrive
at new estimates

(
p∗,b,c∗,b0

)
. Repeating the above step B times

generates a population of B fits for each component of p and
c0, reflecting the sensitivity of these estimates with respect to
the given data. Approximate standard errors might then be

computed from the empirical variances associated with these
populations. Here, we use B = 100.

The variation coefficients in Table 2 suggest that under the
constraints imposed in (10) all unknown parameters and ini-
tial conditions might be determined from the individual breath
concentration data in Fig. 1 with reasonable accuracy. While
this confirms that inference on endogenous isoprene kinetics
by virtue of exhaled breath measurements is potentially feasi-
ble, it must be emphasized that the extracted values are clearly
model-dependent. In particular, additional modeling efforts in-
vestigating a more refined compartmentalization and descrip-
tion of perfusion patterns as in Equation (2) will be imperative
before such estimates can become practically relevant. More-
over, further experimental evidence needs to be gathered with
respect to (fixed) physiological parameters that are known to
drastically affect the model output. Sensitivity and identifiabil-
ity methodologies as indicated above can guide these tasks (see
also (Brun et al., 2002; Cintrón-Arias et al., 2009; Hengl et al.,
2007)). In this sense, the preceding analysis should merely be
seen as a preliminary proof of concept, that primarily aims at
proposing a novel qualitative description of the normal physio-
logical flow of isoprene rather than at drawing further quantita-
tive conclusions with respect to the indicated estimates.

Variable Symbol Fitted value (units) CV

Production rpt krpt
pr 20.8 (nmol/min) 16

Production periphery kper
pr 104.5 (nmol/min) 3

Metabolism rate rpt krpt
met 3.6 (l/min) 8

Metabolism rate periphery kper
met 0.96 (l/min) 7

Constant Eq. (2) τ 2.1 12

Tissue volume periphery Ṽper 9.2 (l) 8

Initial concentration alveoli CA(0) 6 (nmol/l) 3

Initial concentration rpt Crpt(0) 12.5 (nmol/l) 6

Initial concentration periphery Cper(0) 150 (nmol/l) 5

Table 2: Decisive model parameters resulting from the fit in Fig. 4. The corre-
sponding variation coefficients (CV, in %) were obtained by calculating boot-
strap standard errors from the repeated fits of B = 100 resampled datasets.

Moreover, we again stress the fact that the fitting procedure
above has been carried out for one single representative
volunteer only, inasmuch as our major goal was to demonstrate
the principal explanatory power of the proposed model for
capturing the presented breath isoprene behavior. The popu-
lation spread of the fitted parameters within the larger study
cohort investigated by King et al. (2009) might be assessed
by a Bayesian (see (Mörk et al., 2009) for instance) or mixed
effects approach (Kuhn and Lavielle, 2005), which, however
would be beyond the scope of this paper.

Remark 2. For the sake of completeness, we briefly note that a
formal description of the experimental situation during the one-
legged ergometer trials as in Section 2.2 can be obtained by
simply augmenting the model with a copy of Equation (5). For
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symmetry reasons, each of these two peripheral compartments
(interpreted as left and right leg) might then be assigned 50%
of the volume Ṽper, nominal fractional blood flow qper, produc-
tion kper

pr and metabolization rate kper
met as given in Table 2 and

Table C.1 (note that the initial steady state concentrations re-
main unchanged). Consequently, by alternately distributing in-
creased fractional perfusion during the individual exercise seg-
ments to either one of these compartments, a good qualitative
agreement with the data shown in Fig. 2 can be achieved.

4.2. Physiological interpretation
The second panel in Fig. 4 clearly reveals the physiological

mechanism underlying the peak shaped dynamics of breath
isoprene concentrations in response to constant load exercise.
During rest, the peripheral compartment is characterized by
high isoprene concentrations resulting from extrahepatic pro-
duction according to kper

pr . However, due to the minute fractional
blood flow qrest

per to these tissues, mixed venous concentrations
are mainly governed by the lower values in venous blood from
the rpt group. As soon as fractional perfusion in the periphery
increases as a result of exercise hyperemia, mixed venous
concentrations become dominated by peripheral venous return.
The isoprene peak visible in mixed venous blood and breath
is an immediate consequence of this transition. Subsequently,
a depletion of the peripheral tissue compartment and hence a
decline in mixed venous blood concentration can be observed.
As a matter of fact, if V̇work

A and Q̇work
c are maintained at a

roughly fixed level reflecting some constant workload, the
compartmental concentrations will approach a new steady state
ce(uwork), which is attained after about 15 minutes of pedaling,
cf. Section 2.2. When the workload is stopped, perfusion
will be redistributed according to the compartmental shares at
rest and the peripheral isoprene buffer will be replenished. If
exercise is continued before this process is completed, the cor-
responding isoprene peak will be lower than at the start of the
first exercise segment, despite a similar response of ventilation
and perfusion. This clarifies the wash-out behavior discernible
in repeated workload segments. In the special situation of
Fig. 4, starting from the final state at t = 20 min (using the fitted
parameter values in Table 2 and applying the physiological
inputs u0 corresponding to resting conditions) the time required
until all compartmental concentrations are within 1% of their
initial level c0,i can be simulated as approximately 58 min. This
is consistent with experimental observations (King et al., 2009).

In other words, according to the preceding rationale the
major part of breath isoprene variability during ergometer
challenges can be attributed to varying fractional contributions
of distinct compartmental levels to the mixed venous blood
concentration Cv̄. The aforementioned reasoning compares
favorably with the fact, that peripheral venous blood concen-
trations (median 30 nmol/l; range 15-70 nmol/l (Cailleux et al.,
1992)) appear to be significantly higher than mixed venous
ones (median 9 nmol/l; range 0.5-24 nmol/l (Miekisch et al.,
2001)). In particular, note that with the present model the ob-
served isoprene dynamics can be explained assuming constant
endogenous production rates, which agrees with the intuitive

perception of isoprene synthesis as a slowly varying process. In
this sense, the aforementioned putative mechanism optimally
respects a wide spectrum of fundamental phenomenological
as well as physiological boundary conditions. From a prac-
tical point of view, the intimate ties between compartmental
hemodynamics and endogenous isoprene flow put forward
by the previous analysis might render breath isoprene as a
promising new parameter for studying vascular control and the
redistribution of blood flow during exercise.

Remark 3. A word is in order regarding the necessity of in-
troducing a hypothetical production rate kper

pr for ensuring the
formation of a systemic isoprene pool. To this end, consider an
arbitrary non-producing and non-metabolizing body compart-
ment which may essentially be characterized by a mass balance
equation of the form (5), with kper

pr and kper
met set to zero (the in-

dex “per” is kept merely for notational convenience). As steady
state conditions can be assumed to hold during rest (see Sec-
tion 2.2), the initial venous concentration Cper(0)λb:per of iso-
prene associated with this compartment will be equal to the in-
coming arterial concentration Ca(0) of the compound. Adopt-
ing the above notation we thus find that

Cper(0)λb:per = Ca(0) ≤ Cv̄(0). (17)

The last inequality is a consequence of the algebraic steady state
relation associated with the alveolar compartment (cf. Equa-
tion (A.3), which is a standard mass balance equation for gas
exchange in the lung). Hence, when switching to an increased
fractional perfusion of such body compartments as a result of
exercise, the mixed venous return will become enriched with
blood having isoprene concentrations close to the previous ar-
terial level during rest. In other words, Cv̄ will fall rather than
rise. Using this simple but general rationale it is clear why pre-
vious models of isoprene pharmacokinetics such as in (Filser
et al., 1996) fail to reproduce the peak-shaped behavior of
breath isoprene during exercise, even if differential blood flow
is taken into account.

Regarding further model validation, the experimental out-
come associated with the one-legged ergometer regimes pre-
sented in Section 2.2 appears to furnish the fact that any quan-
titative formulation neglecting a peripheral release mechanism
of isoprene will be an inappropriate physiological description
of the prevailing isoprene dynamics during exercise. However,
further biochemical and physiological studies will have to be
conducted in order to pinpoint the exact origin of this effect.
Apart from the line of argumentation presented above, alterna-
tive isoprene sources might comprise

(a) an exercise-induced, time-varying production in contract-
ing muscle (possibly due to rapid switches in cellular
metabolism)

(b) a change of diffusion capacities in peripheral tissue (re-
flected, for instance, by an abrupt increase of λb:per, cf.
Equation (6)).
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However, note that while (a) is not consistent with our current
understanding of the isoprene synthetic pathway and does not
provide a natural explanation for the distinct peak heights ob-
served in repeated workload regimes, (b) appears questionable
due to the fact that such a transition is likely to influence both
isoprene and butane kinetics in a similar way. This contra-
dicts experimental evidence (see the discussion in Section 2.2
and (King et al., 2010a)).

Remark 4. It should be mentioned that a more precise specifi-
cation of the peripheral tissue compartment on the basis of esti-
mated volumes and partition coefficients could not be achieved.
For instance, choosing λb:per = 1/82 (which is the proposed
blood:tissue partition coefficient for fat (Filser et al., 1996)) and
setting Ṽper = 0.23 l as well as Cper(0) = 6147 nmol/l in Table 2
yields a fit of similar quality as in Fig. 4. With these modifica-
tions in mind, contrary to the previous interpretation as muscle
tissue, the peripheral compartment might hence also be viewed
as a small isoprene buffer volume characterized by a high lipid
content (such as for instance the endothelial layer lining the
vascular walls). This lack of joint estimability of λb:per and Ṽper
within the present experimental setting is also reflected by a
high degree of collinearity between the associated sensitivities
∂y/∂λb:per and ∂y/∂Ṽper, respectively.

5. Conclusion

This paper is devoted to the development of a first mech-
anistic description of isoprene evolution in different tissue
compartments of the human body by simulating the behavior of
breath isoprene output during several short-term exercise pro-
tocols. In Section 2.2 various lines of supportive experimental
evidence for an extrahepatic tissue source of isoprene have
been presented. These findings have led us to a simple kinetic
model that is expected to aid further investigations regarding
the exhalation, storage, transport and biotransformation pro-
cesses associated with this important compound.

The emphasis of this work has been laid on deriving a sound
mathematical formulation flexible enough to cover a wide
spectrum of possible isoprene behavior in end-tidal breath,
while simultaneously maintaining consistency with earlier
experimental findings as well as physiological plausibility
of the involved parameters. Depending on the specific field
of application, necessary model refinements might include
the incorporation of a multi-compartment lung for mapping
ventilation–perfusion mismatch or changes in diffusion ca-
pacity, as well as a less coarse partition of the systemic tissue
groups, similar as in (Filser et al., 1996; Melnick and Kohn,
2000). The statistical significance of these generalizations
might then be assessed, e.g., by employing residual-based com-
parison techniques for nested models as described in (Banks
and Tran, 2009; Banks and Fitzpatrick, 1990). However, at
the current stage of research and given the limited data on the
dynamic behavior of breath isoprene throughout a broader
spectrum of experimental scenarios, it is preferable to maintain
a compartmentalization and parameterization as parsimonious

as possible.

On-line determinations of dynamic VOC concentration pro-
files in exhaled breath combined with adequate kinetic model-
ing is a promising field of research, still in its infancy. From a
methodological point of view, this work demonstrates that such
dynamic patterns reflect fundamental physiological changes
and can potentially be used for exploring the fate of volatile
species in the human body. Generally, it should also be empha-
sized that a reliable quantification of relevant substance-specific
characteristics of endogenous trace gases (such as production
and metabolism) from breath data might yield novel diagnos-
tic or therapeutic indicators that are complementary to those
gained by employing more invasive methods. In this sense, we
hope that the present contribution will help to consolidate the
potential role of breath gas analysis in biomonitoring and will
also stimulate future efforts to establish mathematical modeling
as a core technique in VOC research.
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Appendix A. Classical inert gas elimination theory

Adopting the nomenclature in Table C.1, the basic equation
for modeling pulmonary exchange of blood-borne inert gases
using one single lung compartment is a mass balance equation
of the form (see, e.g., (Batzel et al., 2007))

VA
dCA

dt
= V̇A(CI −CA) + Q̇c(Cv̄ −Ca), (A.1)

where CX denotes the trace gas concentration in a region X av-
eraged over a period ∆t, i.e.,

CX(t) = 1/∆t

t+∆t/2∫
t−∆t/2

ĈX(s)ds. (A.2)

From Equation (A.1), by assuming steady state conditions
dCA/dt = 0 as well as CI = 0 (i.e., no trace gas is inspired)
and by substituting Henry’s law Ca = λb:air CA we derive the
familiar equation due to Farhi (1967),

Cmeas = CA =
Cv̄

λb:air + V̇A

Q̇c

. (A.3)
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Here, the quotient V̇A/Q̇c is called ventilation–perfusion ratio,
whereas λb:air denotes the substance-specific and temperature-
dependent blood:gas partition coefficient.

Appendix B. Some fundamental model properties

Here we shall briefly recall some general properties of the
proposed model that necessarily must be satisfied in any valid
description of concentration dynamics. Firstly, note that Equa-
tions (3)–(5) can be written as a time-varying, linear inhomo-
geneous system

ċ = A(u,p)c + b(u,p) =: g(u,p, c) (B.1)

in the state variable c := (CA,Crpt,Cper)T , which is dependent
on a constant parameter vector p as well as on a vector u :=
(V̇A, Q̇c,CI) lumping together all measurable external inputs.

Non-negativity of the trajectories associated with (B.1) for
non-negative initial conditions easily follows from the fact that
the system is cooperative. Moreover, by considering the dy-
namics of the total amount of isoprene m :=

∑
i Ṽici ≥ 0, viz.,

ṁ = kper
pr + krpt

pr − kper
metλb:perCper − krpt

metλb:rptCrpt+

V̇A(CI −CA), (B.2)

it can readily be verified that the trajectories are bounded from
above if either V̇A > 0 or if at least one of the two metabolic
rates krpt

met or kper
met is strictly positive. Furthermore, it can be

proven that under physiological steady state conditions, i.e., for
constant u, the time-invariant matrix A will be Hurwitz if

det(A) = V̇Aϑ1 + krpt
metϑ2 + kper

metϑ3 + krpt
metk

per
metϑ4 , 0, ϑi < 0,

cf. (King et al., 2010b, Prop. 2). Hence, except for the degener-
ate case V̇A = krpt

met = kper
met = 0 (which, as can be seen from (B.2),

necessarily results in divergent trajectories if one of the two pro-
duction rates is strictly positive) the compartmental concentra-
tions can be guaranteed to approach a globally asymptotically
stable equilibrium ce(u) := −A−1b once the inputs u affecting
the system are fixed.

Appendix C. Nomenclature

Parameter Symbol Nominal value (units)

Concentrations

alveoli CA 4 (nmol/l)a

end-capillary Cc′

arterial Ca 5.7 (nmol/l)b

mixed-venous Cv̄ 9 (nmol/l)b

richly perfused tissue (rpt) Crpt

peripheral tissue Cper

inhaled (ambient) CI 0 (nmol/l)

Compartment volumes

alveoli VA 4.1 (l)c

end-capillary Vc′ 0.15 (l)d

richly perfused (rpt) Vrpt 13.25 (l)e

blood rpt Vrpt,b 1.97 (l)e

peripheral tissue Vper

blood peripheral tissue Vper,b

ambient ṼI

Fractional blood flows

periphery (both legs) qper

maximal qmax
per 0.7 f

nominal (rest) qrest
per 0.08g, 0.14h

constant Eq. (2) τ

Partition coefficients

blood:air λb:air 0.75i, j

blood:rpt λb:rpt 0.4 j

blood:peripheral tissue λb:per 0.5 (muscle) j; 0.012 (fat) j

Rate constants

hepatic metabolic rate krpt
met

extrahepatic metabolic rate kper
met

production rpt krpt
pr

production peripheral tissue kper
pr

Table C.1: Basic model parameters and reference values for normal sub-
jects during rest; a(Kushch et al., 2008); bmechanically ventilated patients
in (Miekisch et al., 2001); c(Mörk and Johanson, 2006); d(Hughes and Morell,
2001); ecomprising viscera, brain and connective muscles according to Ta-
ble 8.2 in (Ottesen et al., 2004); f corresponding to 450 kpm/min or approx.
75 W according to Fig. 6 in (Sullivan et al., 1989); g(Johnson, 2007); hobtained
by qrest

per = 2 (single leg blood flow/cardiac output) according to Table 1 in (Sul-
livan et al., 1989); i(Karl et al., 2001); j(Filser et al., 1996).
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